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THE HIGHER TRANSVECTANTS ARE REDUNDANT

by Abdelmalek ABDESSELAM & Jaydeep CHIPALKATTI

Abstract. — Let A,B denote generic binary forms, and let ur = (A,B)r
denote their r-th transvectant in the sense of classical invariant theory. In this
paper we classify all the quadratic syzygies between the {ur}. As a consequence,
we show that each of the higher transvectants {ur : r > 2} is redundant in the sense
that it can be completely recovered from u0 and u1. This result can be geometrically
interpreted in terms of the incomplete Segre imbedding. The calculations rely upon
the Cauchy exact sequence of SL2-representations, and the notion of a 9-j symbol
from the quantum theory of angular momentum.

We give explicit computational examples for SL3, g2 and S5 to show that this
result has possible analogues for other categories of representations.

Résumé. — Pour deux formes binaires génériques A,B, notons ur = (A,B)r
leur transvectant d’ordre r, tel que défini en théorie classique des invariants. Dans
cet article, nous obtenons une classification complète des syzygies quadratiques
entre les {ur}. Il en résulte que les transvectants d’ordre supérieur {ur : r > 2}
sont redondants, en ce sens qu’ils peuvent être exprimés à partir de u0 et u1. Ce
résultat peut s’interpréter géométriquement en termes du plongement incomplet
de Segre. Les calculs utilisés reposent sur la suite exacte de Cauchy en théorie
des représentations de SL2, ainsi que sur la notion de symbole 9-j de la théorie
quantique du moment angulaire.

Nous donnons des exemples de calculs explicites concernant SL3, g2 et S5 afin
d’indiquer l’existence possible de résultats analogues pour d’autres catégories de
représentations.

1. Introduction

Transvectants were introduced into algebra more or less independently by
Cayley and Aronhold (see [11, 13]). The German school of classical invariant
theorists used them dexterously in the symbolical treatment of algebraic
forms (for instances, see [22, 41]). In their modern formulation, they encode

Keywords: Angular momentum in quantum mechanics, binary forms, Cauchy exact se-
quence, 9-j symbols, representations of SL2, transvectants.
Math. classification: 13A50, 22E70.



1672 Abdelmalek ABDESSELAM & Jaydeep CHIPALKATTI

the decomposition of the tensor product of two finite-dimensional SL2-
representations over a field of characteristic zero.

We begin by giving an elementary definition of transvectants. In §1.3-1.5
we describe their reformulation in the language of SL2-representations. An
outline of the main results is given in §1.9 (on page 1676) after the required
notation is available.

We will use [20, 23] as standard references for classical invariant theory,
and in particular the symbolic calculus. Modern accounts of this subject
may be found in [15, 31, 35]. The reader is referred to [19, Lecture 6], [40,
Ch. 3] and [42, Ch. 4] for the basic theory of SL2-representations.

1.1.

Let

A =
m∑
i=0

(
m

i

)
ai x

m−i
1 xi2, B =

n∑
i=0

(
n

i

)
bi x

n−i
1 xi2;

denote binary forms of orders m,n in the variables x = {x1, x2}. (The
coefficients are assumed to be in a field of characteristic zero.) Let r denote
an integer such that 0 6 r 6 min(m,n). The r-th transvectant of A and B
is defined to be the binary form

(1.1) (A,B)r = (m− r)! (n− r)!
m!n!

r∑
i=0

(−1)i
(
r

i

)
∂ rA

∂xr−i1 ∂xi2

∂ rB

∂xi1 ∂x
r−i
2

of order m+n−2r. In particular (A,B)0 is the product of A,B, and (A,B)1
is (up to a multiplicative factor) their Jacobian. By construction,

(1.2) (B,A)r = (−1)r (A,B)r.

The process of transvection commutes with a change of variables in the

following sense. Let g =
(
α β

γ δ

)
denote a matrix of indeterminates.

Define

A′ =
m∑
i=0

(
m

i

)
ai (αx1 + β x2)m−i (γ x1 + δ x2)i,

and similarly for B′ etc. Then we have an identity

(A′, B′)r = (det g)r [(A,B)r]′.

In classical terminology, (A,B)r is a joint covariant of A,B.

ANNALES DE L’INSTITUT FOURIER



HIGHER TRANSVECTANTS 1673

1.2.

Now let A,B denote generic forms of orders m,n, that is to say, their
coefficients are assumed to be independent indeterminates. Write ur =
(A,B)r for the r-th transvectant.(1) Broadly speaking, the main result of
this paper is that the higher transvectants {ur : r > 2} are redundant in
the sense that each of them can be recovered from the knowledge of u0 and
u1. We begin with an illustration.

Example 1.1. — Assume m = 5, n = 3. Then we have an identity

(1.3) 21
8

(u0, u0)2 + 21
16

(u0, u1)1 + 315
256

u2
1 = u0 u2,

which gives a formula for u2 in terms of u0, u1. (This is an instance of
general formulae to be proved below.) Similarly,

(1.4) 20
3

(u0, u1)2 + 20
9

(u0, u2)1 + 25
14

u1 u2 = u0 u3,

which indirectly expresses u3 in terms of u0, u1. Our result shows the exis-
tence of such formulae in general.

Theorem 1.2. — Assume m,n, r > 2. With notation as above, there
exist constants ci,j ∈ Q such that we have an identity

ur = 1
u0

∑
06i6j<r

ci,j (ui, uj)r−i−j .

Since the right hand side depends only on {u0, . . . , ur−1}, it follows by
induction that u0, u1 determine the rest of the higher transvectants. In
fact, more generally we will exhibit explicit formulae for all the quadratic
syzygies between the {ui}, of which (1.3) and (1.4) are special cases.

The title of the paper should not be understood to mean that ‘higher
transvection’ is redundant. Notice, for instance, that the formula for u2
itself involves (u0, u0)2.

1.3. SL2-representations

Throughout this paper we work over an arbitrary field k of charac-
teristic zero. Let V denote a two-dimensional k-vector space with ba-
sis x = {x1, x2}. For m > 0, the symmetric power Sm = Symm V is
the space of binary m-ics, with an action of the linearly reductive group

(1) ‘Uberschiebung’ in German.
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1674 Abdelmalek ABDESSELAM & Jaydeep CHIPALKATTI

SL(V ) = {ϕ ∈ End(V ) : det ϕ = 1}. The {Sm : m > 0} are a complete set
of irreducible SL(V )-representations, and any finite-dimensional represen-
tation decomposes as a direct sum of irreducibles. By Schur’s lemma, if a
linear map Sm −→ Sm is SL(V )-equivariant, then it is necessarily a scalar
multiplication.

Henceforth, V will not be explicitly mentioned if no confusion is likely;
for instance, Sm(Sn) will stand for Symm (Symn V ) etc.

1.4.

It will be convenient to introduce several pairs of variables

y = (y1, y2), z = (z1, z2), . . .

all on equal footing with x. Then, for instance, an element of the tensor
product Sm ⊗ Sn can be represented as a bihomogeneous form F (x,y) of
orders m,n in x,y respectively. Define Cayley’s Omega operator

Ωx y = ∂2

∂x1 ∂y2
− ∂2

∂x2 ∂y1
,

and the polarisation operator

y∂x = y1
∂

∂x1
+ y2

∂

∂x2
.

If cx stands for the symbolic linear form c1 x1 + c2 x2, then

(y∂x)`cmx = m!
(m− `)!

cm−`x c`y.

The operators Ωxz, y∂z etc. are similarly defined. The symbolic bracket
(x y) stands for x1 y2 − x2 y1, and likewise for (x z) etc.

1.5.

We have a direct sum decomposition of the tensor product

(1.5) Sm ⊗ Sn '
min(m,n)⊕
r=0

Sm+n−2r,

usually called the Clebsch-Gordan decomposition. Let

πr : Sm ⊗ Sn −→ Sm+n−2r

denote the projection map, which acts by the recipe

(1.6) F (x,y) πr−→ f(m,n; r) [ Ωrx y F (x,y) ]y→x ;

ANNALES DE L’INSTITUT FOURIER



HIGHER TRANSVECTANTS 1675

where
f(m,n; r) = (m− r)! (n− r)!

m!n!
.

We have written y→ x for the substitution of x1, x2 for y1, y2 respectively,
so that the right hand side of (1.6) is of order m+ n− 2r in x as required.

In particular if A(x) ∈ Sm, B(x) ∈ Sn, then a straightforward binomial
expansion shows that the image πr(A(x)B(y)) coincides with the transvec-
tant (A,B)r as defined in (1.1). In symbols, if A = αmx , B = βnx , then we
have the formula

(1.7) (A,B)r = (αβ)r αm−rx βn−rx .

The initial scaling factor in (1.6) is so chosen that (1.7) has the simplest
possible form.

1.6.

The map πr is a split surjection, let ır : Sm+n−2r −→ Sm ⊗ Sn denote
its section. For cm+n−2r

x ∈ Sm+n−2r, it is given by

cm+n−2r
x

ır−→ g(m,n; r) (x y)r cm−rx cn−ry ,

where

(1.8) g(m,n; r) =
(
m
r

)(
n
r

)(
m+n−r+1

r

) .
Define

(1.9) h(m,n; r) = f(m,n; r) g(m,n; r) = (m+ n− 2r + 1)!
(m+ n− r + 1)! r!

.

Now observe that by the formula on [23, p. 54],

{Ωrxy [(x y)r cm−rx cn−ry ] }y→x = 1
h(m,n; r)

cm+n−2r
x ,

which verifies that πr ◦ ır is the identity map on Sm+n−2r (also see [17]
and [30, §18.2]).

1.7. Angular momenta

There is a process analogous to transvection in the quantum theory of
angular momentum. In brief, the eigenvectors (of the Casimir element for
the Lie algebra su2) can exist in any of the states j labelled by the non-
negative half-integers {0, 1/2, 1, 3/2, . . .}. The coupling of two states j1, j2
produces a finite set of angular momentum states

|j1 − j2|, |j1 − j2|+ 1, |j1 − j2|+ 2, . . . , j1 + j2.

TOME 59 (2009), FASCICULE 5



1676 Abdelmalek ABDESSELAM & Jaydeep CHIPALKATTI

If we let m = 2 j1, n = 2 j2, then this reduces to the Clebsch-Gordan decom-
position. (The standard account of this theory may be found in [6, 16].) At
a crucial place in our study of transvectant syzygies we will need the con-
cept of 9-j symbol which arises from the possible couplings of four angular
momentum states. This is further explained in §7, where an introduction to
the relevant notions from the quantum theory of angular momentum will
be given.

1.8. Self-duality

The map Sm⊗Sm −→ k establishes a canonical isomorphism of Sm with
its dual representation S∨m = Hom (Sm,k). It identifies A ∈ Sm with the
functional

Sm −→ k, B −→ (A,B)m.
Consequently, every finite-dimensional SL2-representation is canonically
isomorphic to its own dual.(2) We have a canonical trace element in Sm⊗Sm
which corresponds to the form (x y)m.

1.9. Results

We can now state the main results of this paper. Let the {ui} be as in
§1.2. For an integer r such that 2 6 r 6 min(m,n), define a (quadratic)
syzygy of weight r to be an identity

(1.10)
∑

ϑi,j (ui, uj)r−i−j = 0, ϑi,j ∈ Q

where the summation is quantified over all pairs (i, j) such that

0 6 i 6 j, i+ j 6 r.

Notice that only one summand in (1.10) involves ur, namely ϑ0,r u0 ur.
Let K(m,n; r) denote the vector space of weight r syzygies. In §2.3–2.4

we will show that there is a natural isomorphism of K(m,n; r) with the
space of equivariant morphisms

HomSL(V ) (S2(m+n−r),∧2Sm ⊗ ∧2Sn).

This will imply that K(m,n; r) has a basis which is in natural bĳection
with the set of integral points

Π(m,n; r) =
{

(a, b) ∈ N2 : a+ b 6
r − 2

2

}
.

(2) This is no longer true of SLN -representations when N > 2. In some contexts this
self-duality leads to simplification, and in some others to confusion.

ANNALES DE L’INSTITUT FOURIER



HIGHER TRANSVECTANTS 1677

Since (a, b) = (0, 0) is such as point, there exist nontrivial syzygies of
any weight r > 2. For an arbitrary p = (a, b) ∈ Π(m,n; r), let ϑ(p)

i,j denote
the corresponding syzygy coefficients.

In §2.10 we will give an explicit formula for the rational number ϑ(p)
i,j . It

will follow that if we specialise to p = (0, 0), then ϑ
(p)
0,r 6= 0. We can then

rewrite identity (1.10) in the form

ur = 1
u0

∑
−
ϑ

(p)
i,j

ϑ
(p)
0,r

(ui, uj)r−i−j ,

and thereby complete the proof of Theorem 1.2. In Theorem 3.1 we prove
the thematically related result that the morphism

PSm ×PSn −→ P(Sm+n ⊕ Sm+n−2)

which sends a pair of forms (A,B) to (AB, (A,B)1), is an imbedding of
algebraic varieties.

Of course it would be of interest to find similar redundancy theorems
for other categories of representations. In sections 4,5 and 6, we give one
example each of this phenomenon respectively for representations of SL3, g2
and S5.

2. The Cauchy exact sequence

In this section we establish the basic set-up which leads to the charac-
terisation of quadratic syzygies between transvectants.

2.1.

Given any two finite-dimensional vector spaces W1,W2, we have a short
exact sequence (see [4, §III.1]) of GL(W1)×GL(W2)-representations

(2.1) 0 −→ ∧2W1 ⊗ ∧2W2︸ ︷︷ ︸
C

δ−→ S2(W1⊗W2) ε−→ S2(W1)⊗S2(W2) −→ 0,

which we may call the Cauchy exact sequence. (The corresponding formula
on characters is due to Cauchy – see [19, Appendix A].)

Let the dot stand for symmetrised tensor product, i.e., we write g · h
instead of 1

2 (g ⊗ h+ h⊗ g). With this notation, ε is the ‘regrouping’ map

(g1 ⊗ g2) · (h1 ⊗ h2) −→ (g1 · h1)⊗ (g2 · h2),

and δ is the map

(g1 ∧ h1)⊗ (g2 ∧ h2) −→ (g1 ⊗ g2) · (h1 ⊗ h2)− (g1 ⊗ h2) · (h1 ⊗ g2).

TOME 59 (2009), FASCICULE 5



1678 Abdelmalek ABDESSELAM & Jaydeep CHIPALKATTI

The exactness of (2.1) is an instance of a general result about Schur func-
tors (see loc. cit.), but it is elementary to check in this case. Indeed, it is
immediate that ε ◦ δ = 0, implying im δ ⊆ ker ε. Now write wi = dimWi,
and observe that the dimensions of the first and the third vector space add
up to the second:(

w1

2

)(
w2

2

)
+
(
w1 + 1

2

)(
w2 + 1

2

)
=
(
w1 w2 + 1

2

)
,

hence im δ = ker ε.

2.2.

Consider the Segre imbedding

PSm ×PSn −→ P(Sm ⊗ Sn), [(A,B)] −→ [A⊗B]

with image X, and ideal sheaf IX . Since X is projectively normal, we have
an exact sequence

(2.2) 0 −→ H0(IX(2)) g−→ H0(OP (2)) h−→ H0(OX(2)) −→ 0.

Let us introduce a series of generic forms

(2.3) A =
m∑
k=0

(
m

k

)
ak z

m−k
1 zk2 , B =

n∑
k=0

(
n

k

)
bk z

n−k
1 zk2 ,

of orders m,n, and

(2.4) U` =
m+n−2`∑
k=0

(
m+ n− 2`

k

)
qk,` z

m+n−2`−k
1 zk2 ,

of orders m+ n− 2` for 0 6 ` 6 min(m,n). (That is to say, the a, b, q are
assumed to be sets of distinct indeterminates.) Consider the polynomial
algebras

Q = k [{qk,`}], R = k [a0, . . . , am; b0, . . . , bn].
The former is graded by N, and the latter by N × N. If we write U` =
(A,B)z

` (where the transvectant is taken with respect to z variables) and
equate coefficients in z, then each qk,` is given by a polynomial expression
in a, b. This defines a ring morphism Q −→ R. Now, we have isomorphisms
of graded (respectively bigraded) rings

Q
∼−→
⊕
e>0

Se([Sm ⊗ Sn]∨),

R
∼−→
⊕
e,e′>0

Se(S∨m)⊗ Se′(S∨n )

ANNALES DE L’INSTITUT FOURIER



HIGHER TRANSVECTANTS 1679

defined as follows: observe that

(−1)k × (U`, zm+n−2`−k
2 zk1 )z

m+n−2` = qk,`,

hence we identify qk,` with the functional in [Sm ⊗ Sn]∨ which sends the
biform αmx βny ∈ Sm ⊗ Sn to

(−1)k × ((αβ)` αm−`z βn−`z , zm+n−2`−k
2 zk1 )z

m+n−2`.

This extends to give an isomorphism of Q with the symmetric algebra on
the space [Sm ⊗ Sn]∨. The second isomorphism is defined similarly. The
induced map Q2 −→ R2,2 on vector spaces may be naturally identified
with the map h from (2.2).

2.3.
Consider a formal expression

Ψ =
∑
i,j

ϑi,j (Ui, Uj)z
r−i−j ,

where ϑi,j are arbitrary elements in Q. We should like to determine whether
Ψ corresponds to a weight r syzygy. Now, the datum Ψ is equivalent to a
morphism of SL(V )-representations

fΨ : S2(m+n−r) −→ Q2, H(z) −→ (H(z),Ψ)z
2(m+n−r).

This is to be interpreted as follows: Ψ,H(z) are both forms of order 2(m+
n− r) in the z-variables. Hence after transvection the right hand side has
no z-variables remaining, and we get a quadratic expression in the {qk,`}.

Now Ψ represents a bona fide weight r syzygy iff the following condition is
satisfied: if we substitute (A,B)i for Ui, then Ψ vanishes. This is equivalent
to the requirement that h ◦ fΨ = 0, i.e., fΨ factor through kerh. Hence we
have proved the following:

Proposition 2.1. — The vector space K(m,n; r) of weight r syzygies
is naturally isomorphic to HomSL(V ) (S2(m+n−r),H

0(IX(2))). �

2.4.

Now, by specialising (2.1) we have the exact sequence

(2.5) 0 −→ ∧2Sm ⊗ ∧2Sn︸ ︷︷ ︸
C

δ−→ S2(Sm ⊗ Sn)︸ ︷︷ ︸
D

ε−→ S2(Sm)⊗ S2(Sn)︸ ︷︷ ︸
E

−→ 0.

By self-duality (see §1.8) we can identify H0(P(Sm ⊗ Sn),OP (2)) and
H0(OX(2)) respectively with D and E , inducing an isomorphism of
H0(IX(2)) with C.

TOME 59 (2009), FASCICULE 5



1680 Abdelmalek ABDESSELAM & Jaydeep CHIPALKATTI

2.5.

We have isomorphisms

∧2Sm ' S2(Sm−1) '
bm−1

2 c⊕
a=0

S2(m−1)−4a,

and similarly for ∧2Sn. Hence, for each pair p = (a, b) in the set

(2.6) Π(m,n; r) = {(a, b) ∈ N2 : 2 (a+ b+ 1) 6 r},

we have a morphism φa,b defined to be the composite

S2(m+n−r)
θ1−→ S2(m−1)−4a ⊗ S2(n−1)−4b

θ2−→ S2(Sm−1)⊗ S2(Sn−1)
θ3−→ ∧2Sm ⊗ ∧2Sn.

Here θ1 is dual to the (r − 2a− 2b− 2)-th transvectant map, θ2 is dual
to the tensor product of 2a-th and 2b-th transvectant maps, and θ3 is an
isomorphism.

By construction the {φa,b : (a, b) ∈ Π} form a basis of the space of
SL(V )-equivariant morphisms S2(m+n−r) −→ C. Let K(a,b) denote the cor-
responding weight r syzygy, written as

(2.7)
∑

κi,j (ui, uj)r−i−j = 0,

where the sum is quantified over pairs (i, j) such that 0 6 i, j 6 r and
i + j 6 r. (We have not yet imposed the condition i 6 j.) In order to
extract the coefficient κi,j , we will construct a sequence of morphisms

S2(Sm ⊗ Sn) η1−→ (Sm ⊗ Sn)⊗2 η2−→ (
⊕
i

Sm+n−2i)⊗ (
⊕
j

Sm+n−2j)

η3−→ Sm+n−2i ⊗ Sm+n−2j
η4−→ S2(m+n−r),

where η1 is the natural inclusion

v1 · v2 −→
1
2

(v1 ⊗ v2 + v2 ⊗ v1),

η2 is an isomorphism, η3 is the tensor product of natural projections, and
η4 is the (r − i− j)-th transvection map.

In §2.6 – 2.7 below, we will give precise symbolic formulae for these maps.
Once this is done, the following proposition is immediate.

ANNALES DE L’INSTITUT FOURIER
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Proposition 2.2. — For any p = (a, b) ∈ Π(m,n; r), the endomor-
phism

η4 ◦ η3 ◦ η2 ◦ η1 ◦ δ ◦ θ3 ◦ θ2 ◦ θ1︸ ︷︷ ︸
ξ

: S2(m+n−r) −→ S2(m+n−r)

is the multiplication by κ(a,b)
i,j .

2.6.

In order to describe θ1 we will realise S2(m+n−r) as the space of order
2(m + n − r) forms in z, and S2m−2−4a ⊗ S2n−2−4b as the space of biho-
mogeneous forms of orders (2m− 2− 4a, 2n− 2− 4b) in x,y respectively.
Then

θ1 : f(z) −→

(x y)r−2a−2b−2

(2m+ 2n− 2r)!
[ (x ∂z)2m−2a+2b−r (y ∂z)2n+2a−2b−rf(z)].

We realise S2(Sm−1)⊗S2(Sn−1) as the space of quadrihomogeneous forms
of orders (m − 1,m − 1, n − 1, n − 1) respectively in p,q,u,v, which are
symmetric in the variable pairs p,q and u,v. Then

θ2 : g(x,y) −→ (p q)2a (u v)2b

(2m− 4a− 2)!(2n− 4b− 2)!
×

[ (p ∂x)m−2a−1 (q ∂x)m−2a−1 (u ∂y)n−2b−1 (v ∂y)n−2b−1 g(x,y) ].

2.7.

Now realise S2(Sm ⊗ Sn) as the space of forms of orders (m,n,m, n)
respectively in p,u,q,v which are symmetric with respect to the simul-
taneous exchange of variable pairs p ↔ q,u ↔ v. Inside this space, the
image of δ consists of those forms which are antisymmetric in each of the
pairs p,q and u,v. Then

δ ◦ θ3 : h(p,q,u,v) −→ (p q)(u v)h(p,q,u,v).

Realising Sm+n−2i ⊗ Sm+n−2j as biforms in x,y, the composite morphism
η3 ◦ η2 ◦ η1 sends Q(p,u,q,v) to

h(m,n; i) h(m,n; j) [ Ωipu Ωjqv Q(p,u,q,v) ],

followed by the substitutions p,u → x and q,v → y. The multiplier h is
as in §1.6. Finally,

η4 :R(x,y) −→

h(m+ n− 2i,m+ n− 2j; r − i− j) [ Ωr−i−jx y R(x,y) ]x,y→z.
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2.8.

The h factors are introduced to ensure that if Ψ = (ui, uj)r−i−j , then the
map (see §2.3)

η4 ◦ · · · ◦ η1 ◦ fΨ : S2(m+n−r) −→ S2(m+n−r)

is the identity. By contrast, the normalising factors appearing in θi are not
so crucial; their purpose is merely to simplify some intermediate expres-
sions. Their omission would have the harmless effect of multiplying each
syzygy coefficient by the same factor.

2.9.

To recapitulate, for each (a, b) ∈ Π(m,n; r), the endomorphism of
S2(m+n−r) defined by the composite

S2(m+n−r)

S2(m+n−r)

S2m−2−4a
⊗

S2n−2−4b

Sm+n−2i
⊗

Sm+n−2j

S2(Sm−1)
⊗

S2(Sn−1)

(
⊕
i

Sm+n−2i)

⊗
(
⊕
j

Sm+n−2j)

∧2Sm
⊗
∧2Sn

(Sm ⊗ Sn)
⊗

(Sm ⊗ Sn)
S2(Sm ⊗ Sn)

- - -

?
����

is the multiplication by κ(a,b)
i,j .

2.10.

This reduces the calculation of κ(a,b)
i,j to the task of chasing a long succes-

sion of symbolically defined morphisms. Here we record only the outcome
of this calculation, and defer the proof to §7.12. Define

N1 = (m+ n− 2i+ 1)! (m+ n− 2j + 1)! (2m− 2a)! ×
(2a+ 1)! (m− 2a− 1)! (n− 2b− 1)! (2m− r − 2a+ 2b)! ×
(2n− r + 2a− 2b)! (2m+ 2n− r − 2a− 2b− 1)! ,

N2 = j! (m− i)! (m− j)! (m+ n− j + 1)! (m+ n− r + i− j)! ×
(m+ n− r − i+ j)! (2m+ 2n− r − i− j + 1)! ×
(2m− 4a− 2)! (2n− 4b− 2)! .
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Let Λ = Λ(m,n, r; a, b) denote the set of integer triples (x, y, z) satisfying
the inequalities

0 6 x 6 min(n− 2b− 1, n− j),
max(0, n− r + 2a+ 1− x) 6 y 6 min(2a+ 1, 2n− r + 2a− 2b),
max(0, r −m− i− x) 6 z 6 min(n− i, r − i− j, n− i+ 2a+ 1− y).

For (x, y, z) ∈ Λ(m,n, r; a, b), let
T1 = (n− x)! (m− j + x)! (n− 2b− 1 + x)!×

(m− 2a− 1 + y)! (r − 2a− 2b− 2 + y)! (m+ n− 2i− z)!×
(m+ n− r + i− j + z)! (n− i+ 2a+ 1− y − z)!,

T2 =x! y! z! (n− j − x)! (n− 2b− 1− x)! (2a+ 1− y)!×
(2m− 4a− 1 + y)! (2n− r + 2a− 2b− y)! (n− i− z)! (r − i− j − z)!×
(m+ n− i+ 1− z)! (m− r + i+ x+ z)! (−n+ r − 2a− 1 + x+ y)!,

and now define

(2.8) Γ = (−1)n−j
∑

(x,y,z)∈Λ

(−1)x+y+z T1

T2
.

Then we have the formula

(2.9) κ
(p)
i,j = N1

N2
Γ .

From the definition of κ (but certainly not from its formula), it is clear that

κ
(p)
j,i = (−1)r−i−j κ(p)

i,j .

Now use the sign rule (1.2) to enforce i 6 j, and let

ϑ
(p)
i,j =

{
2κ(p)

i,j if i 6= j,
κ

(p)
i,j if i = j.

Then one can immediately rewrite (2.7) as a syzygy

(2.10)
∑

06i6j6r

ϑ
(p)
i,j (ui, uj)r−i−j = 0,

for every p ∈ Π(m,n; r).

2.11.

The numerical restrictions on i, j, a, b ensure that only factorials of non-
negative numbers appear inN1,N2, in particular theNi are always nonzero.
Similarly, each lattice point (x, y, z) ∈ Λ is such that only factorials of non-
negative integers appear in each Ti. The rational number Γ is (up to a
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factor) a 9-j symbol in the sense of the quantum theory of angular momen-
tum; this will be further explained in §7.8.

If (i, j) = (0, r) and p = (0, 0), then Λ reduces to the single triple
(x, y, z) = (n − r, 1, 0), which forces Γ 6= 0. As we remarked before, this
implies Theorem 1.2.

Of course it will often happen that ϑ(a,b)
0,r 6= 0 for values of (a, b) other

than (0, 0). E.g., for (m,n, r) = (8, 6, 5) we have ϑ(1,0)
0,5 = −2/63. Hence, in

general ur can be expressed in terms of u0, . . . , ur−1 in more than one way.

2.12.

It is evident that the formula for the syzygy coefficients is very compli-
cated, hence one would like some reassurance that it is indeed correct. To
this end, we programmed it in Maple. E.g., let (m,n, r) = (7, 5, 4), and
choose (a, b) = (0, 1). Then it gives the syzygy

(u0, u0)4 + 8
3

(u0, u1)3 + 54
55

(u0, u2)2 −
1
6

(u0, u3)1 −
10
63

u0 u4

− 7
12

(u1, u1)2 + 63
55

(u1, u2)1 + 49
72

u1 u3 −
1512
3025

u2
2 = 0,

which, as another Maple calculation shows, is indeed true of generic A
and B. The formula has met the test in scores of such cases, in particular
we are quite confident that it involves no typographical errors.

2.13. Formulae for u2, u3

For r = 2, 3, we get Π(m,n; r) = {(0, 0)}. This gives a unique syzygy in
either case, leading to the formulae below.

u0 u2 = z1 (u0, u0)2 + z2 u2
1 + z3 (u0, u1)1,

where
z1 = (m− 2 + n)(m− 1 + n)

2 (m− 1)(n− 1)
,

z2 = mn (m− 2 + n)(m− 1 + n)
(m− 1)(n− 1)(m+ n)2 ,

z3 = (m− 1 + n)(m− 2 + n)(m− n)
(m− 1)(n− 1)(m+ n)

;

and
u0 u3 = w1 (u0, u1)2 + w2 (u0, u2)1 + w3 u1 u2,
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where
w1 = (m− 4 + n)(m− 3 + n)

(m− 2)(n− 2)
,

w2 = (m− 3 + n)(m− 4 + n)(m− n)
(m− 2)(n− 2)(m− 2 + n)

,

w3 = mn (m− 4 + n)(m− 3 + n)
(m− 2)(n− 2)(m+ n)(m− 1 + n)

.

2.14. A closed form syzygy

For every r > 2, the space K(m,n; r) of quadratic syzygies contains a
distinguished syzygy whose coefficients admit a particularly simple form.
We deduce it in this section, which gives another proof of Theorem 1.2. We
will use the general formalism of [20, §3.2.5] for the symbolic computations.

Let the notation be as in the beginning of §2.7. Consider the map

α : S2(m+n−r) −→ S2(Sm ⊗ Sn)

which sends f2(m+n−r)
z to the form Q(p,u,q,v), given by

(p u)r fm−rp fn−ru fmq fnv + (q v)r fmp fnu f
m−r
q fn−rv

− (q u)r fmp fn−ru fm−rq fnv − (p v)r fm−rp fnu f
m
q fn−rv .

It is clear that Q is invariant under the simultaneous exchanges p↔ q and
u ↔ v. Notice that it is antisymmetric in each of the pairs p,q and u,v;
i.e., it lies in the image of δ. Thus we can deduce a syzygy by calculating
η4 ◦ · · · ◦ η1 ◦α. Write Q = T1 + T2 − T3 − T4 (using obvious notation). We
should like to assess the effect of η3 ◦ η2 ◦ η1 on each Tk.

Now the effect of Ωqv on (say) T3 can be seen as follows: we extract one
each of the q and v factors, and contract them against each other. E.g.,
a contraction of a (qu) with an fv produces an fu. The contraction of fq
with fv leads to (f f) = 0, hence such a choice contributes nothing. After
j such extractions one sees that Ωjqv ◦ T3 is a constant multiple of

T ′3 = (q u)r−j fmp fn−r+j
u fm−rq fn−jv .

(This constant, which we will not write down explicitly, is obtained by
counting all possible choices of such contractions.) By the same argument,
Ωipu ◦ T ′3 is a constant multiple of

T ′′3 = (q u)r−i−j fm−ip fn−r+j
u fm−r+i

q fn−jv .
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After the substitutions p,u→ x and q,v→ y into T ′′3 we get

(x y)r−i−j fm+n−r−i+j
x fm+n−r+i−j

y

(up to a sign). A similar analysis applies to T4. As to T2, notice that if
j < r then at least one bracket factor (q v) remains after the extractions,
hence the expression goes to zero after q,v→ y. Thus T2 gives a nonzero
contribution only for i = 0, j = r, and T1 only for i = r, j = 0.

Now calculating the coefficients is only a matter of keeping track of the
multiplying factors. This is straightforward, hence we omit the details. The
resulting expression is as follows:

Define δi,j to be 1 if i = j, and 0 otherwise; and εi,j to be 1 if i = j, and
2 otherwise. Let

βi,j = m!n! r! (m+ n− 2i+ 1)! (m+ n− 2j + 1)!
i! j! (n− i)! (m− j)! (r − i− j)! (m+ n− i+ 1)! (m+ n− j + 1)!

,

and define

(2.11) ϑi,j = εi,j (δi,0 δj,r + δi,r δj,0 − βi,j − (−1)r+i+j βj,i).

Then we have a syzygy in the notation of (1.10). (As before, we have
thoroughly checked this formula in Maple.)

Lemma 2.3. — The coefficient ϑ0,r is nonzero (in fact, strictly positive).

Proof. — We are reduced to proving the inequality

(2.12)
(
m+ n− r + 1

r

)
>

(
m

r

)
+
(
n

r

)
.

Assume that we have a chest filled with (m − r + 1) Spanish silver coins,
(r − 1) Spanish gold coins and (n − r + 1) French gold coins, altogether
making a total of (m+ n− r + 1) coins. Let S be the set of subcollections
of r Spanish coins, and G the set of subcollections of r gold coins. Then
S∩G = ∅, but every member of S∪G gives a subcollection of r coins from
the entire chest. Hence the left hand side of (2.12) is no smaller than the
right hand side.

Now consider a subcollection formed out of (r− 2) Spanish gold coins, a
single Spanish silver coin, and a single French gold coin. It does not belong
either to S or G, hence the inequality must be strict. �

3. The incomplete Segre imbedding

In this section we give a geometric interpretation to the redundancy
result.
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3.1.

Write W = Sm+n ⊕ Sm+n−2, and consider the morphism

σ : PSm ×PSn −→ PW, (A,B) −→ [u0, u1].

Theorem 3.1. — The morphism σ is an imbedding of algebraic vari-
eties.

Since W is a subrepresentation of

Sm ⊗ Sn ' H0(Pm ×Pn,OPSm×PSn(1, 1))

(using the self-duality of §1.8), the morphism σ is defined by an incomplete
linear subseries of |OPm×Pn(1, 1)|.

Proof. — By Theorem 1.2, the u0, u1 determine all the higher ur. Hence
they determine the pair (A,B) up to an ambiguity of (η A, 1

η B) for some
constant η ∈ k∗. This shows that σ is set-theoretically injective.

By [25, Ch. II, Prop. 7.3], it suffices to show that the map dσ on tangent
spaces is injective. A tangent vector to PSm×PSn at (A,B) can be repre-
sented by a pair of binary forms (M,N) of orders m,n, considered modulo
scalar multiples of A,B respectively (cf. [24, Lecture 16]). Its image via dσ
is given by

lim
δ→0

1
δ

[ σ(A+ δM,B + δ N)− σ(A,B) ]

= (AN +MB, (A,N)1 + (M,B)1).
Assume that the image vanishes, then there exists a constant c such that

(3.1) AN +MB = cAB, (A,N)1 + (M,B)1 = c (A,B)1.

Let N ′ = N − cB, and Q = gcd(A,B). Then we may write A = A′Q,B =
B′Q where A′, B′ are coprime. The first equality in (3.1) leads to A′N ′ =
−MB′, so we must have N ′ = B′R for some R, and then M = −A′R.
Hence

(A,N ′)1 + (M,B)1 = (A′Q,B′R)1 − (A′R,B′Q)1 = 0.

By the next lemma this implies that A′B′ (Q,R)1 = 0, i.e., (Q,R)1 = 0.
This forces R = eQ for some constant e (see [21, Lemma 2.2]). But then

M = −eA, N = (e+ c)B,

proving that (M,N) was the zero vector. This shows that dσ is injective.
�
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Lemma 3.2. — Let A,B denote binary forms of orders m,n, and Q,R

of order s. Then we have an equality

(AQ,BR)1 − (AR,BQ)1 = s (m+ n+ 2s)
(m+ s)(n+ s)

AB (Q,R)1.

Proof. — Write A = amx , B = bnx, Q = qsx, R = rsx. A general recipe for
calculating transvectants of symbolic products is given in [20, §3.2.5]. It
gives the expression

(3.2)
(AQ,BR)1 = 1

(m+ s)(n+ s)
am−1

x bn−1
x qs−1

x rs−1
x ×

{mn (a b) qx rx +ms (a r) bx qx + ns (q b) ax rx + s2 (q r) ax bx},
and similarly

(3.3)
(AR,BQ)1 = 1

(m+ s)(n+ s)
am−1

x bn−1
x qs−1

x rs−1
x ×

{mn (a b) qx rx +ms (a q) bx rx + ns (r b) ax qx + s2 (r q) ax bx}.
Use Plücker syzygies to write

(a r) bx qx = (q r) ax bx + (a q) bx rx, (q b) ax rx = (r b) ax qx + (q r) ax bx.

Substitute these into (3.2), and subtract (3.3) from the result. We are left
with

(AQ,BR)1 − (AR,BQ)1 = (ms+ ns+ 2s2)
(m+ s)(n+ s)

(q r) amx bnx q
s−1
x rs−1

x ,

which completes the calculation, as well as the proof of the theorem. �

3.2.

Theorem 3.1 implies that any expression in the {u0, u1, u2, . . .} admits
a ‘formula’ in terms of u0, u1. In order to make this precise, let E denote
an arbitrary compound transvectant expression which is homogeneous of
degree e and isobaric of weight w. For instance,

(u1, (u0, u3)3)2 − 3 u2 (u0, u5)2 + 5 (u1, u0 u7)1

is of degree 3 (since each term involves three ur), and isobaric of weight 9
(e.g., in the first term 1 + 0 + 3 + 3 + 2 = 9).

Proposition 3.3. — With notation as above, there exists an identity
of the form

E(u0, . . . , ur) = Q(u0, u1)
uN0

,

for some positive integer N .
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Proof. — Let Y = imageσ. The expression E corresponds to an equi-
variant morphism

ϕE : Se(m+n)−2w −→ H0(OPSm⊗Sn(e)) ' H0(OY (e)).

Consider the exact sequence

H0(OPW (e+N)) −→ H0(OY (e+N)) −→ H1(IY (e+N)).

Now, to say that uN0 E can be rewritten as a compound expression Q(u0, u1)
is to say that ϕuN0 E can be lifted to a morphism

S(e+N)(m+n)−2w −→ Se+N W ' H0(OPW (e+N)).

But this can always be arranged by choosing N sufficiently large, so that
the group H1(IY (e+N)) = 0. �

This is analogous to the result on associated forms (see [23, §131]). The
smallest such N is bounded above by the Castelnuovo regularity of IY
(see [34, Lecture 6]).

3.3.

It is a natural problem to find a set of SL2-invariant defining equations
for the variety Y = image (σ). The syzygies calculated above can be used
to solve this problem; we illustrate this with an example.

Example 3.4. — Assume m = n = 2. In the notation of §2.4, we have
C = S2 ⊗ S2 = S4 ⊕ S2 ⊕ S0. The three summands correspond to the three
quadratic syzygies

u0 u2 = 3
2

u2
1 + 3 (u0, u0)2, u1 u2 = −3 (u0, u1)2,

u2
2 = 3

2
(u0, u0)4 −

3
2

(u1, u1)2.

These are the equations of the usual Segre imbedding PS2×PS2 → P(S4⊕
S2 ⊕ S0) in disguise. Now isolate u2 from the first equation and substitute
into the other two, then we get the following defining equations for Y in
degrees 3 and 4 respectively:

(3.4)
u1 [u2

1 + 2 (u0, u0)2] + 2 u0 (u0, u1)2 = 0,

[u2
1 + 2 (u0, u0)2]2 − 2

3
u2

0 [(u0, u0)4 − (u1, u1)2] = 0.

However, these equations do not generate the ideal of Y . We wrote down the
map σ in coördinates, and calculated the ideal IY using Macaulay-2. The
outcome shows that IY is generated by 20-dimensional space of equations
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in degree 3. By construction, the degree 3 part (IY )3 is a subrepresentation
of

S3(S4 ⊕ S2) ' S12 ⊕ S10 ⊕ (S8)⊕2 ⊕ (S6)⊕5 ⊕ (S4)⊕4 ⊕ (S2)⊕4 ⊕ S0.

(This was calculated using John Stembridge’s ‘SF’ package for Maple.)
Each irreducible summand of (IY )3 corresponds to a cubic syzygy in-

volving only u0, u1. By an exhaustive search we found the syzygies

(3.5) (u2
1, u1)2 + 2 ((u0, u1)2, u0)2 + 2 ((u0, u0)2, u1)2

((u0, u1)1, u1)2

}
= 0,

in order 2, together with

(3.6) u3
1 + 9 u0 (u0, u1)2 − 7 (u2

0, u1)2
3 u1 (u0, u1)1 + 7 (u2

0, u0)3

}
= 0,

in order 6. This corresponds to the SL2-isomorphism

(IY )3 ' (S6 ⊕ S2)⊕2.

To recapitulate, the equations (3.4) define the variety Y set-theoretically,
whereas (3.5) and (3.6) together generate its ideal.

Problem 1. Find similar equations for general m,n.

3.4. The minimal equation for u1

Assume m = n = 2. If u0 is given, then u1 may assume
(4

2
)

= 6 possible
values, hence u1 must satisfy a degree 6 univariate polynomial equation
whose coefficients are covariants of u0. (The argument leading to this con-
clusion is very similar to [12, §6.3], hence we will not reproduce it here.)
The minimal equation must have the form

(3.7) u6
1 + ϕ2,4 u4

1 + ϕ4,8 u2
1 + ϕ6,12 = 0,

where φk,2k is a covariant of u0 of degree k and order 2k. (Since (A,B)1 =
−(B,A)1, only even powers of u1 appear in the equation.) The actual terms
are easily calculated as in [loc. cit.]. Define the following covariants of u0
(cf. [23, §89]):

H = (u0, u0)2, I = (u0, u0)4, T = (u0,H)1,

and then

ϕ2,4 = 6H, ϕ4,8 = −2 I u2
0 + 12H2, ϕ6,12 = −16T 2.

Problem 2. Find the minimal equation of u1 for any m,n. It will neces-
sarily be of degree

(
m+n
m

)
.
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4. SL3-representations

It would be of interest to know whether there is an analogue of Theo-
rem 1.2 for SLN -representations when N > 3. Specifically, let λ, µ denote
two partitions, and Sλ,Sµ the corresponding irreducible representations of
SLN (see(3) [4] and [18, Ch. 8]). There is a decomposition

Sλ ⊗ Sµ '
⊕
ν

(Sν ⊗ k〈λ,µ;ν〉),

quantified over partitions ν such that |ν| = |λ|+ |µ|. The integers 〈λ, µ; ν〉
are usually called Littlewood-Richardson numbers. We have a series of
SLN -equivariant projection morphisms (described in [4, §IV.2])

π(w)
ν : Sλ ⊗ Sµ −→ Sν ,

parametrised by lattice words w of content µ and shape ν−λ. (Thus there
are exactly 〈λ, µ; ν〉 such words.) Let A ∈ Sλ, B ∈ Sµ denote generic tensors,
and write

(4.1) u(w)
ν = π(w)

ν (A,B),

which are the analogues of transvectants in the SLN -case. If 〈λ, µ; ν〉 = 1,
then w may be safely omitted from the notation.
Problem 3. Find a subcollection of {u(w)

ν : (w, ν)} which determines the
rest.

We will work out one such example for SL3; but first it is necessary to
recall some generalities on the (ternary) symbolic method. We will follow
the formalism of [32, p. 334 ff].

4.1. The symbolic L-R multiplication

Assume N = 3. Let V denote a three-dimensional vector space with
basis x = (x1, x2, x3), and u = (u1, u2, u3) the dual basis of V ∗. Given
λ = (λ1, λ2), there is a natural split injection (see [19, §15.5])

SλV ↪→ Symλ2 V ∗ ⊗ Symλ1−λ2 V.

Hence an element A ∈ Sλ can be represented as a polynomial of degree λ2
in u, and of degree λ1 − λ2 in x. In classical terminology, A is of degree
λ1 − λ2 and class λ2.

(3) Note however that the conventions governing Young diagrams in [4] and [18] are
conjugates of each other. We will follow the latter.
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Now, for instance, consider the tableau

T =
(
a a a a a

b b b

)
on the shape λ = (5, 3). Reading it columnwise, we get the symbolic ex-
pression E = (a bu)3 a2

x. Here

(a bu) =

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
u1 u1 u2

∣∣∣∣∣∣ , ax = a1 x1 + a2 x2 + a3 x3,

with similar notation to follow.
Given an arbitrary A(x,u) ∈ S(5,3), construct a differential operator Ã

by replacing each xi by ∂
∂ai

, and u1, u2, u3 by

∂2

∂a2 ∂b3
− ∂2

∂b2 ∂a3
,

∂2

∂a3 ∂b1
− ∂2

∂b3 ∂a1
,

∂2

∂a1 ∂b2
− ∂2

∂b1 ∂a2

respectively. Then we have an identity

A(x,u) = 3
6! 3!

(Ã ◦ E).

In this sense, E represents a ‘generic’ form of degree 2 and class 3. The
general result is as follows:

Lemma 4.1. — Let λ = (λ1, λ2), and E = (a bu)λ2 aλ1−λ2
x . Then for any

polynomial A(x,u) ∈ Sλ, we have an identity

A(x,u) = λ1 − λ2 + 1
(λ1 + 1)!λ2 !

(Ã ◦ E).

Hence, every tensor A can be represented by the corresponding differ-
ential operator Ã. We will omit the proof of the lemma, since we will
make no use of this scaling factor. In general, an element of Sλ may be
described by several polynomials A(x,u), because of the identical rela-
tion x1 u1 + x2 u2 + x3 u3 = 0. For instance, A = x1 u1 + 2x2 u2 and
A′ = x2 u2 − x3 u3 represent the same element of S(2,1). This leads to no
complications however, since Ã = Ã′.

4.2.

Continuing the example above, let E ′ = (c du) c2
x corresponding to T ′ =(

c c c

d

)
. Given B(x,u) ∈ S(3,1), define B̃ by replacing xi by ∂

∂ci
etc.
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The L-R number 〈(5, 3), (3, 1); (5, 4)〉 = 2, i.e., there are two linearly
independent maps

π
(zi)
(5,4) : S(5,3) ⊗ S(3,1) −→ S(5,4), i = 1, 2.

They can be explicitly written down as follows: one can use the L-R proce-
dure to unload the entries of T ′ and attach them to T (see [19, Appendix
A]); this leads to two possible tableaux a a a a a c

b b b c c

d

 ,
 a a a a a c

b b b c d

c


on the shape (6, 5, 1). (Notice that S(6,5,1) ' S(5,4) for SL3.) If we read
the newly added entries from top to bottom and right to left, then we get
the corresponding lattice words z1 = c c c d, z2 = c d c c. Form the symbolic
expressions

Q1 = (a b d) (a bu)2 (a cu)2 cx, Q2 = (a b c) (a bu)2 (a cu) (a du) cx,

and now the required maps are given by

π
(zi)
(5,4) = Ã B̃ ◦ Qi, i = 1, 2.

Example 4.2. — Consider the following decomposition(4) of representa-
tions of SL3:

S(2,1) ⊗ S(2,1) ' S(4,2) ⊕ S(3) ⊕ S(3,3) ⊕ (S(2,1) ⊗ k2)⊕ S(0)︸ ︷︷ ︸
E

,

with u(4,2) etc. as in (4.1). The point of the example is to show that u(0) is
redundant, i.e., it can be recovered from the rest of the factors. For instance,
the map S(2,1) ⊗ S(2,1) −→ S(3) takes A⊗B to

u(3) = Ã B̃ ◦ (a b d) ax c
2
x.

Henceforth the operators Ã, B̃ will be understood, and we will avoid writing
them explicitly. Thus,

u(4,2) = (a bu) (a du) c2
x, u(3,3) = (a bu) (a cu) (c du),

u(0) = (a b c) (a c d),

and
u

(w1)
(2,1) = (a b d) (a cu) cx, u

(w2)
(2,1) = (a b c) (a du) cx

(4) Throughout this example, all the calculations involving inner and outer plethysms
were carried out using the ‘SF’ (Symmetric Functions) package for Maple, written by
John Stembridge.
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corresponding to the words w1 = c c d and w2 = c d c. As in the binary case,
the quadratic syzygies between the uν correspond to the summands of

C = ∧2 S(2,1) ⊗ ∧2 S(2,1).

Using SF we find that there are 9 copies of the module S(4,2) inside C, and
hence a 9-dimensional space of syzygies of degree 2 and order 2.

Now, in order to build quadratic syzygies, we need to write down all
possible maps S2(E) −→ S(4,2); which is of course done similarly. E.g.,
there is (up to constant) a unique map S(4,2) ⊗ S(3) −→ S(4,2) given by

(a bu)2 a2
x ⊗ c3

x −→ (a b c) (a bu)(a cu) ax cx, etc.

Using SF again, one sees that the space HomSL3(S2(E),S(4,2)) is 19-dimen-
sional. We wrote down all the maps explicitly, and found a 9-dimensional
subspace of syzygies by solving a system of linear equations. (This was done
in Maple.) One conveniently chosen syzygy is the following:

u(4,2) u(0) = 3
12800

π(z1)(u(4,2), u(4,2)) + 3
1280

π(z2)(u(4,2), u(4,2))

− 5
448

π(u(4,2), u(3))−
1

1344
π(u(4,2), u(3,3)) + 1

80
π(z3)(u(4,2), u

(w1)
(2,1))

− 11
400

π(z4)(u(4,2), u
(w1)
(2,1))−

17
280

π(z3)(u(4,2), u
(w2)
(2,1))−

11
175

π(z4)(u(4,2), u
(w2)
(2,1))

+ 1
11520

π(u(3,3), u(3,3))−
1
96
π(u(3,3), u

(w1)
(3,2,1)),

where z1 = c c c c d d, z2 = c c d c d c, z3 = c c d, z4 = c d c.
Throughout, we have written π for π(4,2) and omitted the lattice word

from the notation whenever it is uniquely determined. This establishes the
claim that u(0) can be recovered from the rest of the transvectants.

5. The standard representation of g2

In this section we will give a similar example for the exceptional Lie
algebra g2. A very readable account of its representation theory may be
found in [19, Lecture 22] (also see [26]).

5.1.

In conventional notation the two simple roots of g2 can be identified with
the vectors

α1 = (1, 0), α2 =
(
−3

2
,

√
3

2

)
∈ R2.
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The two fundamental weights ω1 = ( 1
2 ,
√

3
2 ), ω2 = (0,

√
3), define the closed

Weyl chamber
W+ = {aω1 + b ω2 : a, b > 0}.

For integers a, b > 0, let Γa,b denote the irreducible g2-representation with
highest weight aω1 + b ω2. The 7-dimensional representation Γ1,0 is called
the standard representation of g2. We have a decomposition

Γ1,0 ⊗ Γ1,0 ' Γ2,0 ⊕ Γ1,0 ⊕ Γ0,1 ⊕ Γ0,0,

with projection maps πi,j : Γ1,0 ⊗ Γ1,0 −→ Γi,j . Let A,B ∈ Γ1,0, and write

Tij = πi,j(A⊗B).

By the Weyl character formula (see [19, Prop. 24.48]), there is one copy of
Γ2,0 inside Γ0,1 ⊗ Γ0,1, and two copies of Γ2,0 inside Γ2,0 ⊗ Γ2,0. Let

ξ1 : Γ0,1 ⊗ Γ0,1 −→ Γ2,0,

ξp, ξq : Γ2,0 ⊗ Γ2,0 −→ Γ2,0,

denote the corresponding projections. (The precise normalisations for these
maps will be specified later.)

Theorem 5.1. — With notation as above, there are identities

−T20 T00 = 7
64
π2,0(T10, T10) + 1

4
ξp(T20, T20) + 1

2
ξq(T20, T20),

and

−T20 T00 = 7
768

ξ1(T01, T01)− 1
16
ξp(T20, T20) + 1

64
ξq(T20, T20).

Consequently, T00 can be recovered from either of the pairs

{T20, T10}, {T20, T01}.

5.2.

We will outline the computations which went into deducing these identi-
ties. Let V denote a three-dimensional vector space, and write Sλ for SλV
as in §4.1. Then we can make an identification of g2 with

(5.1) S(2,1) ⊕ S(1,0) ⊕ S(1,1),

with sl3 ' S2,1 as a Lie subalgebra. Since every g2-representation is a
fortiori an sl3-representation, the ternary symbolic calculus is available
to us. Notice that any g2-representation W is naturally Z3-graded: given
any sl3-summand S(m,n) ⊆ W , the degree of an element in S(m,n) is m +
n (mod 3).
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In symbolic terms, the Lie bracket on g2 can be explicitly written down
as follows: let X = (A, v, α), Y = (B,w, β) ∈ g2 in the notation of (5.1),
i.e., A ∈ S(2,1) etc. Then [X,Y ] = (C, z, γ), where

C = Ã B̃ ◦ (a b c)(a du) cx + (ṽ β̃ − w̃ α̃) ◦ (a du) cx,

z = (Ã w̃ − B̃ ṽ) ◦ (a b c) ax − 2 α̃ β̃ ◦ (a b d) cx,

γ = (B̃ α̃− Ã β̃) ◦ (a b d)(a cu) + ṽ w̃ ◦ (a cu).

In each term, say in B̃ α̃ ◦ (a b d) (a cu), there is a pair of operators acting
on a symbolic expression. Our convention is that the operator on the left
(i.e., B̃) is obtained by the substitutions

xi →
∂

∂ai
, u1 →

∂2

∂a2 ∂b3
− ∂2

∂b2 ∂a3
, etc.

and the one on the right (i.e., α̃ ) is obtained by

xi →
∂

∂ci
, u1 →

∂2

∂c2 ∂d3
− ∂2

∂d2 ∂c3
, etc.

5.3.

There are Z3-graded isomorphisms

(5.2)
Γ1,0 ' Q⊕ S(1,0) ⊕ S(1,1),

Γ2,0 ' (Q⊕ S(2,1))⊕ (S(1,0) ⊕ S(2,2))⊕ (S(2,0) ⊕ S(1,1)),

and Γ0,1 ' g2 is the adjoint representation. We have calculated symbolic
descriptions for all the g2-actions, as well as all the morphisms involved.
These descriptions are too laborious to be written down here in their en-
tirety, but an example should suffice to convey the idea. Let

X = (A, v, α) ∈ g2, and Ψ = (p,B;w,Q;E, β) ∈ Γ2,0.

The notation follows (5.1) and (5.2); thus A ∈ S(2,1) and w ∈ S(1,0) etc.
Let ϕX(Ψ) = Ψ′ = (p′, B′;w′, Q′;E′, β′) denote the image of Ψ under the
action of X. Then, we have formulae

(5.3)

w′ = Ã w̃ ◦ (a b c) ax + 7 p v + ṽ B̃ ◦ (a c d) cx+
1
2
α̃ Ẽ ◦ (a b c) cx − 2 α̃ β̃ ◦ (a b d) cx,

p′ = 2
3
ṽ β̃ ◦ (a c d) + 1

3
α̃ w̃ ◦ (a b c),

with similar expressions for other factors.
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Formulae (5.3) (and others like it) are obtained as follows. The Lie al-
gebra action induces a map of sl3-representations g2 ⊗ Γ2,0 −→ Γ2,0. Now,
g2 ⊗ Γ2,0 contains three copies of the trivial representation, coming from
the summands S(2,1) ⊗ S(2,1),S(1,0) ⊗ S(1,1), and S(1,1) ⊗ S(1,0). This shows
the existence of a formula of the type

p′ = e1 Ã B̃ ◦ (a b c)(a c d) + e2 ṽ β̃ ◦ (a c d) + e3 α̃ w̃ ◦ (a b c),

for some rational constants ei. Now write similar formulae for B′, w′ etc.
with indeterminate coefficients ei. We must have an identity

ϕX ◦ ϕY (Ψ)− ϕY ◦ ϕX(Ψ) = ϕ[X,Y ](Ψ),

which translates into a system of homogeneous quadratic equations in the
ei. Up to a constant, this system has a unique solution which fixes the
action. (Throughout we have used Maple for all such computations.) Some
of the ei may be zero, for instance e1 is.

The same method was used to deduce symbolic formulae expressing the
projections πi,j and ξ. We have fixed the following normalisations, which
determine the projections uniquely:

π2,0 (1⊗ 1) = 1, π1,0 (x1 ⊗ u1) = 2,
π0,1 (x1 ⊗ u1) = x1 u1, π0,0 (1⊗ 1) = 1,

and
ξp(x1 u1 ⊗ x2) = x2, ξ1(x1 ⊗ u1) = −4 + 7

2 x1 u1,

ξq(x1 u1 ⊗ x2) = u1 u2.

Finally, notice that the module

(∧2 Γ1,0)⊗ (∧2 Γ1,0) = (Γ1,0 ⊕ Γ0,1)⊗ (Γ1,0 ⊕ Γ0,1)

classifies the quadratic syzygies between the Tij . It is seen to contain four
copies of Γ2,0, and two of the syzygies are those given in Theorem 5.1.

6. The standard representation of Sd

In this section we will give a similar example coming from the standard
representation of the permutation group S5. We conjecture that there is a
similar general result to be found for all higher Sd.

Recall that the irreducible representations of Sd are in bĳection with
the partitions λ ` d (see [18, Ch. 7], [19, Lecture 4]). The corresponding
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representation Vλ has a basis of standard tableaux on shape λ comprising
all the numbers from 1 to d. For instance, the tableaux[

1 2 3
4 5

]
,

[
1 2 4
3 5

]
,

[
1 2 5
3 4

]
,

[
1 3 4
2 5

]
,

[
1 3 5
2 4

]
form a basis of V(3,2). Usually V(d−1,1) is called the standard representation
of Sd.

6.1.

The tensor product Vλ⊗Vµ decomposes into a direct sum of irreducibles;
let λ◦µ◦ν denote the multiplicity of Vν in this decomposition. This symbol
is invariant under all permutations of the letters, i.e.,

λ ◦ µ ◦ ν = µ ◦ λ ◦ ν = µ ◦ ν ◦ λ.

If λ ◦ µ ◦ ν = 1, then a matrix M which describes the projection morphism
Vλ ⊗ Vµ → Vν can be calculated as follows: given an element α ∈ Sd we
have a commutative diagram

Vλ ⊗ Vµ
M−−−−→ Vν

Q
(α)
λ
∗Q(α)

µ

y yQ(α)
ν

Vλ ⊗ Vµ −−−−→
M

Vν

where e.g., Q(α)
ν is the matrix describing the action of α on Vν and ∗

denotes the Kronecker product of matrices. Once theQ-matrices are known,
the equality M Q

(α)
ν = (Q(α)

λ ⊗ Q
(α)
µ )M gives a system of homogeneous

linear equations in the entries of the unknown matrix M . Then M can be
determined (up to a multiplicative scalar) from the combined system of the
cycles α = (1, 2), (1, 2, 3, . . . , d).

For instance, the projection morphism V(3,1) ⊗ V(2,2) −→ V(2,1,1) is given
by the matrix

M =



1 −1 2
2 1 1
−2 1 1
−1 2 −1
−1 2 1

1 1 2


.
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This is interpreted as follows: given the tableaux bases

A1 =
[

1 2 3
4

]
, A2 =

[
1 2 4
3

]
, A3 =

[
1 3 4
2

]
,

B1 =
[

1 2
3 4

]
, B2 =

[
1 3
2 4

]
,

C1 =

 1 2
3
4

 , C2 =

 1 3
2
4

 , C3 =

 1 4
2
3

 ,
the rows of M sequentially describe the images of

A1 ⊗B1, A1 ⊗B2, A2 ⊗B1, A2 ⊗B2, A3 ⊗B1, A3 ⊗B2.

E.g., A2 ⊗B1 −→ −2C1 + C2 + C3.

6.2.

Henceforth assume d > 5. The symmetric square of V(d−1,1) has the
decomposition

S2 V(d−1,1) = V(d−1,1) ⊕ V(d−2,2) ⊕ V(d),

with the associated projection morphisms π1, π2, π3 onto the respective
factors. Write zi = πi(u ⊗ v) for u, v ∈ V(d−1,1). Since V(d) is the one-
dimensional representation with basis [1 2 · · · d], one can identify z3 with a
constant. Since (d− 1, 1) ◦ (d− 2, 2) ◦ (d− 1, 1) = 1, the projection

η1 : V(d−1,1) ⊗ V(d−2,2) −→ V(d−1,1)

is defined.
There is an isomorphism ∧2 V(d−1,1) = V(d−2,1,1), and hence an exact

sequence (see §2.1)

0→ V(d−2,1,1) ⊗ V(d−2,1,1) → S2
[
V(d−1,1) ⊗ V(d−1,1)

]
→ S2 V(d−1,1) ⊗ S2 V(d−1,1) → 0.

6.3.

Now let d = 5. A simple calculation with the character table shows
that (3, 2) ◦ (3, 2) ◦ (4, 1) = 1, let η2 : V(3,2) ⊗ V(3,2) → V(4,1) denote the
corresponding projection. Moreover, there is precisely one copy of V(4,1)

TOME 59 (2009), FASCICULE 5



1700 Abdelmalek ABDESSELAM & Jaydeep CHIPALKATTI

inside the syzygy module V(3,1,1) ⊗ V(3,1,1), which must represent a linear
relation between the elements

π1(z1 ⊗ z1), η1(z1 ⊗ z2), η2(z2 ⊗ z2), z1 z3.

We calculated the matrices for π1, π2, π3, η1, η2 using the recipe above, and
then found the identical relation

(6.1) 32π1(z1 ⊗ z1) + 100 η1(z1 ⊗ z2) + 25 η2(z2 ⊗ z2)− 180 z1 z3 = 0,

which of course shows that z3 can be recovered from z1, z2. For the record,
the chosen normalisations were as follows: π1, π2, π3 respectively map the
tensor [

1 2 3 4
5

]
⊗
[

1 2 3 4
5

]
,

to the elements

−3
[

1 2 3 4
5

]
+ . . . , 2

[
1 2 4
3 5

]
+ . . . , 2

[
1 2 3 4 5

]
.

Moreover,[
1 2 3 4
5

]
⊗
[

1 2 3
4 5

]
η1−→ −2

[
1 2 3 5
4

]
+ . . . ,

and [
1 2 3
4 5

]
⊗
[

1 2 3
4 5

]
η2−→ 2

[
1 2 3 4
5

]
+ . . . .

6.4.

We make the following cascading series of conjectures, which would imply
that in general z3 can always be recovered from z1, z2.

Conjecture 6.1. — Assume d > 6.
• We have (d− 2, 2) ◦ (d− 2, 2) ◦ (d− 1, 1) = 1. This would define the

map η2 : V(d−2,2) ⊗ V(d−2,2) −→ V(d−1,1).
• We have (d−2, 1, 1)◦ (d−2, 1, 1)◦ (d−1, 1) > 1, which would imply

the existence of an identical relation of the form

c1 π1(z1⊗z1)+c2 η1(z1⊗z2)+c3 η2(z2⊗z2)+c4 z1 z3 = 0, (ci ∈ Q).

Of course, the ci would depend on the normalisations chosen for
the projections.
• In this relation, the constant c4 6= 0.

We have verified the entire conjecture for d = 6, 7.
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7. Wigner symbols

In this section we complete the proof of formula (2.9) from §2.10, which
depends on the so-called Ališauskas-Jucys triple sum formula for 9-j sym-
bols.

For the reader’s interest we add a short representation-theoretic ac-
count of Wigner’s 3-j, 6-j and 9-j symbols. A comprehensive discussion
of the quantum theory of angular momentum and Wigner symbols may be
found(5) in [6]. One can find a quick and readable summary of the quantum
theory of angular momentum in [8, Appendix A]. We refer the reader to [7,
Ch. V] for generalities on Hilbert spaces.

7.1.

Throughout this section, we work over the field of complex numbers C.
For any j ∈ 1

2 N, we let Hj = S2j which can be seen as the space of
homogeneous forms

F (z) =
2j∑
k=0

(
2j
k

)
ak z

2j−k
1 zk2 =

2∑
i1,...,i2j=1

fi1,...,i2j zi1 . . . zi2j

in the variables z =
[
z1
z2

]
, where the tensor entries fi1,...,i2j are symmetric

in their 2j indices. E.g., a typical element in H3/2 is of the form

F (z) = f111 z1z1z1 + f112 z1z1z2 + f121 z1z2z1 + . . . (8 terms in all).

The Hj become finite dimensional complex Hilbert spaces when equipped
with the natural Hermitian inner product

〈F |G〉 =
2∑

i1,...,i2j=1
fi1,...,i2j gi1,...,i2j .

For instance, if

F (z) =
2j∑
k=0

(
2j
k

)
ak z

2j−k
1 zk2 and G(z) =

2j∑
k=0

(
2j
k

)
bk z

2j−k
1 zk2 ;

then

〈F |G〉 =
2j∑
k=0

(
2j
k

)
ak bk .

(5) However, note that errors have crept in some of the formulae in this book; in particular
the triple sum formula is not correctly stated on [6, p. 130].
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Define the set

Mj = {m : m ∈ 1
2

Z, j −m ∈ Z, −j 6 m 6 j},

then the forms

ejm = (−1)j+m
√(

2j
j −m

)
zj−m1 zj+m2 , (m ∈Mj)

constitute an orthonormal basis of the (2j + 1)-dimensional space Hj :

〈ejm|ejm′〉 = δmm′ .

In the physics literature, ejm is often written as |j m〉.

7.2.

Given g ∈ SL2C, define (g · F )(z) = F (g−1 z). When this action is
restricted to SU2, the Hj turn into unitary representations, i.e.,

〈(g · F )|(g ·G)〉 = 〈F |G〉 for g ∈ SU2.

Let

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
denote the so-called Pauli matrices which generate the Lie algebra su2. For
a = 1, 2, 3, let Ja denote the corresponding infinitesimal operators on the
representation Hj :

Ja(F ) = −i d
dθ

(
ei
θ
2σa · F

)∣∣∣
θ=0

.

They satisfy the so-called angular momentum commutation relations

[Ja, Jb] = i εabc Jc

where εabc is antisymmetric in a, b, c = 1, 2, 3 with ε123 = 1. If we let
J± = J1±iJ2, then their actions on F (z) ∈ Hj can be seen as the following
differential operators:

J+ = −z2
∂

∂z1
,

J− = −z1
∂

∂z2
,

J3 = 1
2

(
z2

∂

∂z2
− z1

∂

∂z1

)
.
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In particular,

J+ ejm =
√
j(j + 1)−m(m+ 1) ej,m+1,

J− ejm =
√
j(j + 1)−m(m− 1) ej,m−1,

J3 ejm = mejm,

J2 ejm = j (j + 1) ejm,

where J2 = J2
1 + J2

2 + J2
3 .

7.3.

Given two values j1, j2 of the angular momentum, Hj1⊗Hj2 can be seen
as the space of bihomogeneous forms

B(x,y) =
2∑

p1,...,p2j1 ,q1...,q2j2 =1
bp1,...,p2j1 ;q1...,q2j2

xp1 . . . xp2j1
yq1 . . . yq2j2

with complex coefficients, of degree 2j1 in x = (x1, x2) and of degree 2j2 in
y = (y1, y2). The tensor entries bp1,...,p2j1 ;q1...,q2j2

are assumed to be sym-
metric separately in the p and q indices. Once again, we have a Hermitian
inner product

〈B|C〉 =
2∑

p1,...,p2j1 ,q1...,q2j2 =1
bp1,...,p2j1 ;q1...,q2j2

cp1,...,p2j1 ;q1...,q2j2

on Hj1 ⊗ Hj2 , such that {ej1,m1 ⊗ ej2,m2 : mi ∈ Mji} is an orthonormal
basis. This evidently generalises to tensor products with more than two
factors.

We say that (j1, j2, j) is a triad if all the three expressions

j1 + j2 − j, j2 + j − j1, j + j1 − j2,

are nonnegative integers. Moreover, the triad is stretched if one of these
integers is zero. Then the Clebsch-Gordan decomposition becomes

Hj1 ⊗Hj2 =
⊕

j∈Tj1j2

Hj ,

where the set Tj1j2 consists of those j ∈ 1
2 N such that (j1, j2, j) is a triad.

An SL2-equivariant injection ıj1j2j : Hj → Hj1 ⊗ Hj2 is necessarily of
the form

(ıj1j2j(F ))(x,y) = cj1j2j

(2j)!
(x y)j1+j2−j(x ∂z)j+j1−j2 (y ∂z)j+j2−j1F (z),
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where cj1j2j is a nonzero constant to be fixed by convention.
Likewise an SL2-equivariant projection πj1j2j : Hj1 ⊗Hj2 → Hj is nec-

essarily of the form

(πj1j2j(B))(z) = dj1j2j
(j + j1 − j2)! (j + j2 − j1)!

(2j1)! (2j2)!
[
Ωj1+j2−j

xy B(x,y)
]

x,y→z

for a constant dj1j2j .

7.4.

Given the previous natural choices of inner products, one can reduce
the arbitrariness by requiring that ıj1j2j be an isometry, i.e., ||F ||2 =
||ıj1j2j(F )||2. Using the formula on [23, p. 54], this forces

|cj1j2j | =

√
(2j1)! (2j2)! (2j + 1)!

(j1 + j2 + j + 1)! (j1 + j2 − j)! (j + j1 − j2)! (j + j2 − j1)!
.

We will also choose πj1j2j to be the Hermitian transpose of ıj1j2j , i.e.,

〈ıj1j2j(F ), G〉 = 〈F, πj1j2j(G)〉, for all F ∈ Hj , G ∈ Hj1 ⊗Hj2 .

This is tantamount to requiring that dj1j2j = cj1j2j . At this point the
constants are well-determined up to multiplication by a complex number of
unit modulus. Several phase conventions are prevalent in physics literature
for removing this ambiguity in a consistent manner. Before stating them
we need to define the vector coupling coefficients:

(7.1) Cj1j2j
m1m2m = 〈ej1m1 ⊗ ej2m2 | ıj1j2j(ejm)〉,

where the inner product is that of Hj1 ⊗Hj2 .
The Wigner phase convention requires that

Cj1,j2,j
j1,−j2,j1−j2

> 0,

it appears in the 1931 German edition of [43].
The Condon-Shortley phase convention requires that with respect
to the basis {ıj1j2j(ejm) : j ∈ Tj1j2 , m ∈ Mj} of Hj1 ⊗ Hj2 , all the
matrix elements of J (1)

3 which are nondiagonal with respect to j must be
nonnegative (see [14]). Here J (1)

3 is the infinitesimal generator analogous
to J3, for the SU2-action on Hj1 ⊗Hj2 given by the natural action on the
first factor and the trivial one on the second factor.
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The Brussaard phase convention [9, p. 209] is a less cumbersome re-
statement of the Condon-Shortley phase convention. It essentially amounts
to the requirement

Cj1,j2,j
j1,j−j1,j

> 0.
A similar prescription is used by Racah in [36, §2].

Fortunately we have the following result.

Proposition 7.1. — All of these conventions are equivalent, and
amount to making the most obvious choice:

cj1j2j =

√
(2j1)! (2j2)! (2j + 1)!

(j1 + j2 + j + 1)! (j1 + j2 − j)! (j + j1 − j2)! (j + j2 − j1)!
.

With this choice, let ıPHY
j1j2j

and πPHY
j1j2j

denote the corresponding injec-
tion and projection maps respectively; they are the standard ones used in
physics literature. To recapitulate,

ıPHY
m
2 ,
n
2 ,
m+n−2r

2
= 1√

g(m,n; r)
ır, πPHY

m
2 ,
n
2 ,
m+n−2r

2
=
√

g(m,n; r) πr

in the notation of §1.6.

7.5. The 3-j symbols

Now Wigner’s 3-j symbol is defined to be(
j1 j2 j

m1 m2 m

)
= (−1)j1−j2−m
√

2j + 1
Cj1,j2,j
m1,m2,−m,

where m1 ∈Mj1 etc. Its value is given by a terminating 3F2 hypergeometric
series. The reader is referred to [2, 3] for more on these symbols and their
use, e.g., in proving sharp Castelnuovo-Mumford regularity bounds.

7.6. The 6-j symbols

A 6-j symbol is usually represented as an array

A =
{
j1 j2 j12
j3 J j23

}
,

where (j1, j2, j12), (j2, j3, j23), (j12, j3, J) and (j1, j23, J) are assumed to be
triads.
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Consider the endomorphism φ : HJ → HJ obtained as the composition
(7.2)
HJ −→ Hj1 ⊗Hj23 −→ Hj1 ⊗ (Hj2 ⊗Hj3)

−→ (Hj1 ⊗Hj2)⊗Hj3 −→ Hj12 ⊗Hj3 −→ HJ ,

using the obvious ıPHY and πPHY maps. By Schur’s Lemma, this is a mul-
tiple α IdHJ of the identity map on HJ . Let u ∈ HJ denote an arbitrary
vector of unit norm. Then 〈u|φ(u)〉 is independent of u, and is equal to
the multiplying factor α. Since the maps ıPHY and πPHY are Hermitian
transposes of each other, we also have

α = 〈zL|zR〉,

where zL and zR are respectively the images of u via the maps(
ıPHY
j1,j2,j12

⊗ IdHj3
)
◦ ıPHY
j12,j3,J , and

(
IdHj1 ⊗ ı

PHY
j2,j3,j23

)
◦ ıPHY
j1,j23,J ,

and the Hermitian inner product is that of Hj1 ⊗Hj2 ⊗Hj3 .
Now the standard definition of Wigner’s 6-j symbol is (see [16, p. 92])

A = (−1)j1+j2+j3+J√
(2j12 + 1)(2j23 + 1)

× α.

Appendix B of [8] gives a very good summary of the properties of the 6-j
symbols, including Racah’s celebrated single sum formula [36, Appendix B]
which expresses it as the value of a terminating 4F3 hypergeometric series.

7.7.

The following is essentially the same way of stating the definition. Start
with a generic form F (z) of order 2J and apply the following operators in
succession, precisely following the sequence (7.2).

(u y)j1+j23−J (u ∂z)j1+J−j23 (y ∂z)j23+J−j1 ,

(v w)j2+j3−j23 (v ∂y)j2+j23−j3(w ∂y)j3+j23−j2 ,

Ωj1+j2−j12
uv , {u,v→ x}, Ωj12+j3−J

xw , {x,w→ z}.

The result is simply a multiple of the original form, i.e., α̃ F (z) for some
α̃ ∈ Q. Then{

j1 j2 j12
j3 J j23

}
= (−1)j1+j2+j3+J(2J + 1)×

√
P1

P2 P3
× α̃,
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where

P1 = (j1 + j12 − j2)! (j2 + j12 − j1)! (j12 + J − j3)! (j3 + J − j12)!,
P2 = (j1 + j23 − J)! (j1 + J − j23)! (j23 + J − j1)! (j2 + j3 − j23)!×

(j2 + j23 − j3)! (j3 + j23 − j2)! (j1 + j2 − j12)! (j12 + j3 − J)!,
P3 = (j1 + j2 + j12 + 1)! (j2 + j3 + j23 + 1)! (j1 + j23 + J + 1)!

(j12 + j3 + J + 1)! .

7.8. The 9-j symbols

A 9-j symbol is usually represented as an array

B =


j1 j2 j12
j3 j4 j34
j13 j24 J

 ,
where all the rows and columns are assumed to be triads.

Consider the endomorphism ψ : HJ −→ HJ obtained as the composition

HJ −→ Hj13 ⊗Hj24 −→ (Hj1 ⊗Hj3)⊗ (Hj2 ⊗Hj4)
−→ (Hj1 ⊗Hj2)⊗ (Hj3 ⊗Hj4) −→ Hj12 ⊗Hj34 −→ HJ ,

of the natural ıPHY and πPHY maps. By Schur’s lemma, ψ = β IdHJ . Now
the standard definition of the 9-j symbol (see [27] for instance) is along the
same lines as that for 6-j symbols, namely

B = 1√
(2j12 + 1)(2j34 + 1)(2j13 + 1)(2j24 + 1)

× β.

One can evaluate β as 〈zL|zR〉, where zL and zR are respectively the images
of an arbitrary unit vector u via the maps(

ıPHY
j1,j2,j12

⊗ ıPHY
j3,j4,j34

)
◦ ıPHY
j12,j34,J

and (
IdHj1 ⊗ τ ⊗ IdHj4

)
◦
(
ıPHY
j1,j3,j13

⊗ ıPHY
j2,j4,j24

)
◦ ıPHY
j13,j24,J

with
τ : Hj3 ⊗Hj2 −→ Hj2 ⊗Hj3

designating the map that switches the factors.
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7.9.

Starting with an arbitrary form F (z) of order 2J , apply the following
operators in succession:

(x y)j13+j24−J (x ∂z)j13+J−j24(y ∂z)j24+J−j13 ,

(p q)j1+j3−j13 (p ∂x)j1+j13−j3(q ∂x)j13+j3−j1 ,

(u v)j2+j4−j24 (u ∂y)j2+j24−j4(v ∂y)j4+j24−j2 ,

Ωj1+j2−j12
p u , {p,u→ x}, Ωj3+j4−j34

q v , {q,v→ y}, Ωj12+j34−J
x y , {x,y→ z}.

The end result will be of the form β̃ F (z) for some β̃ ∈ Q. Then the 9-j
symbol is given by

(7.3)


j1 j2 j12
j3 j4 j34
j13 j24 J

 = (2J + 1)

√
Q1

Q2 Q3
× β̃ ,

where
Q1 = (j1 + j12 − j2)! (j2 + j12 − j1)! (j3 + j34 − j4)!×

(j4 + j34 − j3)! (j12 + J − j34)! (j34 + J − j12)!,
Q2 = (j1 + j2 + j12 + 1)! (j3 + j4 + j34 + 1)! (j13 + j24 + J + 1)!×

(j1 + j3 + j13 + 1)! (j2 + j4 + j24 + 1)! (j12 + j34 + J + 1)!,
Q3 = (j1 + j2 − j12)! (j3 + j4 − j34)! (j13 + j24 − J)! (j13 + J − j24)!×

(j24 + J − j13)! (j1 + j3 − j13)! (j1 + j13 − j3)! (j3 + j13 − j1)!×
(j2 + j4 − j24)! (j2 + j24 − j4)! (j4 + j24 − j2)! (j12 + j34 − J)!.

Prima facie, the multiplicative prefactors entering into the definitions of
3-j, 6-j and 9-j symbols might seem unusal, but their purpose is to ensure
maximal symmetry of the symbols.

An important property of the 9-j symbol is embodied in the following
proposition (see [27]).

Proposition 7.2. — The 9-j symbol is invariant with respect to matrix
transposition of the array. Any permutation σ of the rows or columns alters
the symbol by a sign factor equal to

ε(σ)
∑

j

where ε(σ) is the signature of the permutation, and
∑
j denotes the sum

of all the nine entries (which necessarily is an integer).
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Except for the Regge symmetries, all known symmetry properties of the
3-j, 6-j and 9-j symbols (such as the one stated in the previous proposition)
become trivial if one uses the diagrammatic formalism outlined in [1, 3].

7.10. The triple sum formula

The Ališauskas-Jucys formula (see [28, §3]) expresses the 9-j symbol as
a triple summation over lattice points. Define

x1 = 2 j34, y1 = −j2 + j4 + j24, z1 = 2 j1,

x2 = j3 + j4 − j34, y2 = j13 + j24 − J, z2 = −j1 + j2 + j12,

x3 = j12 − j34 + J, y3 = 2 j24 + 1, z3 = j1 + j3 + j13 + 1,
x4 = −j3 + j4 + j34, y4 = j2 + j4 − j24, z4 = j1 + j3 − j13,

x5 = j12 + j34 − J, y5 = j13 − j24 + J, z5 = j1 − j2 + j12,

p1 = j1 + j3 − j24 + J, p2 = −j2 + j3 − j34 + j24, p3 = −j1 + j2 − j34 + J,

and

[a, b, c] =

√
(a− b+ c)! (a+ b− c)! (a+ b+ c+ 1)!

(−a+ b+ c)!
.

Let Λ denote the set of integer triples (x, y, z) satisfying the inequalities

0 6x 6 min(x4, x5),
max(0,−p2 − x) 6 y 6 min(y4, y5),
max(0,−p3 − x) 6 z 6 min(z4, z5, p1 − y).

Then
(7.4)

B = (−1)x5
[ j3, j1, j13 ] [ j2, j4, j24 ] [ J, j13, j24 ]
[ j3, j4, j34 ] [ j2, j1, j12 ] [ J, j12, j34 ]

×

∑
(x,y,z)∈Λ

(−1)x+y+z (x1 − x)! (x2 + x)! (x3 + x)! (y1 + y)! (y2 + y)!
x! y! z! (x4 − x)! (x5 − x)! (y3 + y)! (y4 − y)! (y5 − y)!

×

(z1 − z)! (z2 + z)! (p1 − y − z)!
(z3 − z)! (z4 − z)! (z5 − z)! (p2 + x+ y)! (p3 + x+ z)!

.

The triple sum formula was discovered in a rather indirect way in [5].
It is often mistakenly referred to as the Jucys-Bandzaitis formula, perhaps
because the first 1965 edition of [29] predates [5]. An elementary yet difficult
proof was given in [29], in the style of Racah’s proof of his single-sum
formula for 6-j symbols. The simplest method of proof seems to be the one
due to Rosengren [37, 38].
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7.11.

In general, given j1, j2, . . . , jn+1 and J , one can consider morphisms

HJ
ψ1−→

n+1⊗
`=1
Hj`

ψ2−→ HJ

arising from two different choices of successive transvections; this leads to
the general notion of a 3n-j symbol. These are instances of the so-called spin
networks which play a prominent role in loop quantum gravity (see [8, 10]
and references therein).

7.12. The proof of Formula (2.9)

Recall that by Proposition 2.2, the constant κ(a,b)
(i,j) is characterised by the

equality
ξ = κ

(a,b)
(i,j) IdS2(m+n−r) .

Going through the prescriptions of §2.6-2.7 shows that the action of ξ on
a form f

2(m+n−r)
z amounts to the succession of operators:

(x y)r−2a−2b−2 (x ∂z)2m−2a+2b−r(y∂z)2n+2a−2b−r,

(p q)2a+1 (p ∂x)m−2a−1(q ∂x)m−2a−1,

(u v)2b+1 (u ∂y)n−2b−1(v ∂y)n−2b−1,

Ωip u, {p,u→ x}, Ωjq v, {q,v→ y}, Ωr−i−jx y , {x,y→ z},
together with multiplication by

K = h(m,n; i) h(m,n; j) h(m+ n− 2i,m+ n− 2j; r − i− j)
(2m+ 2n− 2r)! (2m− 4a− 2)! (2n− 4b− 2)!

.

Now choose the specific 9-j array

B =


j1 j2 j12
j3 j4 j34
j13 j24 J

 =



1
2 m

1
2 n

1
2 (m+ n)− i

1
2 m

1
2 n

1
2 (m+ n)− j

m− 2a− 1 n− 2b− 1 m+ n− r

 ,
which brings this into perfect agreement with the sequence of operators in
§7.9. Hence we get an equality

(7.5) κ
(a,b)
(i,j) = K

2J + 1

√
Q2 Q3

Q1
× B .
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Now interchange rows 2 and 3 of B, then interchange columns 1 and 3, and
finally take the transpose. This gives an equivalent array

B′ =



1
2 (m+ n)− i m+ n− r 1

2 (m+ n)− j

1
2 n n− 2b− 1 1

2 n

1
2 m m− 2a− 1 1

2 m

 .
Now apply the triple sum formula (7.4) to B′, and feed the result into (7.5).
The outcome exactly boils down to the identity (2.9). �

The switch B → B′ is necessary due to the peculiarity that the symme-
tries given by Proposition 7.2 are not visible from the triple sum formula.
Our choice of B′ ensures that when i = a = b = 0 and j = r, the array
becomes doubly-stretched (i.e., two of its six triads are stretched) according
to the pattern 

j3 + j13 j3 + j13 + j2 j2

j3 j4 j34

j13 j24 J

 ,
which is known to reduce the triple sum to a single term [28, Eq. 18]. This
ensures that κ(0,0)

(0,r) 6= 0.
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