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A BOCHNER TYPE THEOREM FOR INDUCTIVE
LIMITS OF GELFAND PAIRS

by Marouane RABAOUI

Abstract. — In this article, we prove a generalisation of Bochner-Godement
theorem. Our result deals with Olshanski spherical pairs (G, K) defined as in-
ductive limits of increasing sequences of Gelfand pairs (G(n), K(n))n>1. By using
the integral representation theory of G. Choquet on convex cones, we establish a
Bochner type representation of any element ϕ of the set P\(G) of K-biinvariant
continuous functions of positive type on G.

Résumé. — Dans cet article, on démontre une généralisation du théorème de
Bochner-Godement. Ce résultat concerne les paires sphériques d’Olshanski qui sont
définies comme des limites inductives de suites croissantes de paires de Guelfand(
G(n), K(n)

)
n>1

. En utilisant la théorie de la représentation intégrale de G. Cho-
quet sur les cônes convexes, on établit une représentation intégrale de type Bochner
pour tout élément ϕ de l’ensemble P\(G) des fonctions continues sur G, de type
positif et biinvariantes par K.

1. Introduction

One of the main problems in harmonic analysis is to decompose a unitary
representation by means of irreducible ones. The classical Bochner theorem
provides an answer for this problem by giving a decomposition of a con-
tinuous function of positive type on R as an integral of indecomposable
ones.

In harmonic analysis on groups of the type G =
⋃∞
n=1G(n), where G(n)

is a sequence of classical groups, with a subgroup K of the same type,
i.e. K =

⋃∞
n=1K(n), K(n) ⊂ G(n), several extensions of the Bochner

theorem had been proved. For example, E. Thoma in 1964 and S. Kerov, G.

Keywords: Function of positive type, Gelfand pair, Bochner-Godement theorem, spher-
ical pair, inductive limit, Von Neumann algebra.
Math. classification: 22E30, 43A35, 43A85, 43A90.



1552 Marouane RABAOUI

Olshanski and A. Vershik in 2004 studied the case of the infinite symmetric
group S∞ =

⋃∞
n=1 Sn, with G = S∞ × S∞ and K = diag(S∞ × S∞)

(cf. [19], [13]). D. Voiculescu in 1976 and G. Olshanski in 2003 treated
the pair G = U(∞) × U(∞), K = diag(U(∞) × U(∞)) ' U(∞), where
U(∞) =

⋃∞
n=1 U(n) is the infinite dimensional unitary group (cf. [15], [21]).

G. Olshanski proved that the inductive limit of an increasing sequence
of Gelfand pairs is a spherical pair. Hence, the cited examples and many
others are part of G. Olshanski’s theory for spherical pairs which was elab-
orated in 1990 (cf. [14]). However, a Bochner type decomposition in this
setting has not been established yet. In this paper, by using Choquet’s
theorem, we prove such generalisation, answering a question asked by J.
Faraut inInfinite Dimensional Harmonic Analysis and Probability (cf. [8]).

This paper consists of 4 sections devoted to the following topics : in
section 2 we begin by recalling some definitions and results concerning
continuous functions of positive type, then we prove that, for a classical
Gelfand pair (H,M), the commutant πϕ(H)

′
is commutative and use this

to give a direct proof of the fact that the set P\(H) of M -biinvariant
continuous functions of positive type on H is a lattice. In section 3, we
move to the general setting of an increasing sequence of Gelfand pairs
(G(n),K(n))n>1. Our main tool for establishing the generalised Bochner
type decomposition is Choquet’s theorem. In order to prove the existence
of the decomposition, we embed P\(G), for G =

⋃∞
n=1G(n), and K =⋃∞

n=1K(n), into a bigger set Q. For the uniqueness, we prove that the
commutant πϕ(G)

′
remains commutative, and that P\(G) is a lattice too.

At the end of this paper, we present some remarks and open questions.
We have tried to keep notations and proofs to a minimum in order to

make the presentation as clear as possible, we refer to [1], [9], [10] and [11]
for more details on functions of positive type and Bochner theorem. The
method we follow in our proof is a generalisation of E. Thoma’s method
in the case of a countable discrete group (cf. [20]), with some modifica-
tions inspired from Olshanski’s work on the space of infinite dimensional
hermitian matrices (cf. [16]).

2. Definitions and results for continuous functions of
positive type

We first recall some definitions and results about functions of positive
type. Let G be a Hausdorff topological group having e as unit, and K a
closed subgroup of G.

ANNALES DE L’INSTITUT FOURIER
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Definition 2.1. — A function ϕ : G −→ C is said to be of positive type
if the kernel defined on G×G by (g1, g2) 7−→ ϕ(g−1

2 g1) is of positive type,
i.e. for all g1, g2, . . . , gn ∈ G and all c1, c2, . . . , cn ∈ C,

n∑
i=1

n∑
j=1

cicjϕ(g−1
j gi) > 0.

Proposition 2.2. — Every function ϕ of positive type on G is her-
mitian, i.e. for all g ∈ G, ϕ(g) = ϕ(g−1). In addition, ϕ is bounded :
|ϕ(g)| 6 ϕ(e).

A function ϕ defined on G is said to be K-biinvariant if it verifies
ϕ(k1gk2) = ϕ(g), for all k1, k2 ∈ K and all g ∈ G. For a unitary rep-
resentation (π,H), we denote by HK the subspace of K-invariant vectors
in H.

Proposition 2.3. — Let (π,H) be a unitary representation of G and
ξ a vector in HK . Then, the function ϕ : G −→ C , g 7−→ 〈π(g)ξ, ξ〉H is
K-biinvariant of positive type.

Using the G.N.S. (Gelfand-Naimark-Segal) construction, we can prove
that every K-biinvariant function of positive type on G can be represented
by a unitary representation on G.

Proposition 2.4 (G.N.S. construction). — Let ϕ be aK-biinvariant
continuous function of positive type on G. Then, there exists a triplet
(πϕ,Hϕ, ξϕ) consisting of a unitary representation πϕ on a Hilbert space
(Hϕ, 〈., .〉ϕ), and a cyclic vector ξϕ ∈ Hϕ

K such that, for all g ∈ G,

ϕ(g) = 〈πϕ(g)ξϕ, ξϕ〉ϕ.

Moreover, this triplet is unique in the following sense : if (π,H, ξ) is another
triplet, then there exists an interwining isomorphism T : Hϕ → H between
πϕ and π such that Tξϕ = ξ.

Let P(G) be the set of continuous functions of positive type on G. P(G)
is a convex cone which is invariant under product and complex conjugation.

For a convex set E, we denote by Ext(E) its subset of extremal points.
We also denote by P61(G) (respectively P1(G)) the set of elements ϕ of
P(G) verifying ϕ(e) 6 1 (respectively ϕ(e) = 1).

Lemma 2.5. — Ext (P61(G)) = Ext (P1(G)) ∪ {0}.

Next, we will prove some algebraic characterizations which will be used
to establish the uniqueness of the decomposition given by the generalized
Bochner theorem.
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1554 Marouane RABAOUI

Let Γ be a convex cone in a topological vector space E. This cone is
equipped with its proper order : γ1 � γ2 if γ2− γ1 ∈ Γ. The cone Γ is said
to be a lattice if each couple of elements γ1, γ2 in Γ have (for the order
defined by the cone) a least upper bound in Γ, denoted by γ1 ∨ γ2, and a
greatest lower bound in Γ, denoted by γ1 ∧ γ2.
For γ0 ∈ Γ, we denote by Γγ0 the face of Γ defined as:

Γγ0 = {γ ∈ Γ | ∃ λ > 0 ; γ � λγ0}.

The order of Γγ0 coincides with the one induced by Γ. The cone Γ is a
lattice if and only if, for every γ0, the face Γγ0 is a lattice.

Let now Γ = P\(G) be the subcone of P(G) which consists of K-
biinvariant elements. On this convex cone, and similarly on P\61(G), the
proper order � is given by:

ϕ� ψ if and only if ψ − ϕ ∈ P\(G) (ϕ,ψ ∈ P\(G)).

Recall that every function ϕ ∈ P\(G) is associated to a triplet (πϕ,Hϕ, ξϕ).
Let A = πϕ(G)

′
be the commutant of πϕ(G). It is a selfadjoint subalgebra

of L(Hϕ). We will prove that each face Γϕ of P\(G) is lineary isomorphic
to the cone A+ = {T ∈ A | ∀ v ∈ Hϕ, 〈Tv, v〉ϕ > 0} of positive operators
of A on which we define an order, denoted ≺ :

P ≺ Q if and only if 〈Pv, v〉ϕ 6 〈Qv, v〉ϕ (v ∈ Hϕ, P,Q ∈ A+).

Theorem 2.6. — Let K be a closed subgroup of a Hausdorff topolog-
ical group G. For all ϕ ∈ P\(G) the face Γϕ is lineary isomorphic to the
cone A+ of positive operator of the algebra A = πϕ(G)

′
. This bĳective

correspondence identifies an element ψ ∈ Γϕ with an element T ∈ A+ such
that

(2.1) ψ(g) = 〈Tπϕ(g)ξϕ, ξϕ〉ϕ, g ∈ G.

Proof. — Let T ∈ A+. The operator T
1
2 exists and belongs to A+ ([5],

page 430, 11.17). So, for all g ∈ G,

ψ(g) = 〈Tπϕ(g)ξϕ, ξϕ〉ϕ = 〈T 1
2πϕ(g)ξϕ, (T

1
2 )∗ξϕ〉ϕ

= 〈πϕ(g)T
1
2 ξϕ, T

1
2 ξϕ〉ϕ.

The function ψ is of positive type (Proposition 2). It is also continuous
since the map ξ 7−→ πϕ(g)ξ is continuous for every g ∈ G. It is also K-
biinvariant. Hence, ψ ∈ P\(G).

ANNALES DE L’INSTITUT FOURIER
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If we put λ0 = ||T ||, where ||.|| is the usual operator norm defined on
L(Hϕ), then λ0ϕ− ψ ∈ P\(G). In fact

(λ0ϕ− ψ)(g) = ||T ||〈πϕ(g)ξϕ, ξϕ〉ϕ − 〈πϕ(g)Tξϕ, ξϕ〉ϕ
= 〈πϕ(g)Cξϕ, ξϕ〉ϕ,

where C = ||T ||I − T . As, for all v ∈ Hϕ, 0 6 〈Tv, v〉ϕ 6 ||T ||〈v, v〉ϕ, the
operator C ∈ A+. Hence C = D2 with D ∈ A+, and so

(λ0ϕ− ψ)(g) = 〈πϕ(g)D2ξϕ, ξϕ〉ϕ = 〈πϕ(g)Dξϕ, Dξϕ〉ϕ.

This proves, by Proposition 2, that λ0ϕ − ψ is of positive type. It is also
continuous and K-biinvariant. Hence, λ0ϕ− ψ ∈ P\(G).

One can also remark that ψ uniquely determine T . In fact, for every
g, h ∈ G,

ψ(h−1g) = 〈πϕ(h−1g)Tξϕ, ξϕ〉ϕ = 〈Tπϕ(g)ξϕ, πϕ(h)ξϕ〉ϕ.

If T̃ is another operator in A+ verifying (2.1), then for every g, h ∈ G,

〈πϕ(g)(T − T̃ )ξϕ, πϕ(h)ξϕ〉ϕ = 0.

Since Vϕ = V ect{πϕ(g)ξϕ , g ∈ G} is dense in Hϕ,

T = T̃ .

It remains to prove that, for every ψ ∈ Γϕ, there exists T ∈ A+ verifying
(2.1). Let us denote by

M0(G) := {µ =
m∑
i=1

aiδxi | (ai)i ⊂ C , (xi)i ⊂ G},

the space of measures with finite support. For a function of positive type
ϕ and µ, ν ∈ M0(G), put

(ϕ, ν∗ ∗ µ) =
m∑
i=1

n∑
j=1

bjaiϕ(x−1
j xi) > 0.

We can also define the function

µ ∗ ϕ(x) =
∫
G

ϕ(y−1x)dµ(y) =
m∑
i=1

aiϕ(x−1
i x),

it is continuous and right K-invariant. With the previous notation and
definitions, the vector space Vϕ can also be given by :

Vϕ := {ϕµ = µ ∗ ϕ̌ =
m∑
i=1

aiπ
ϕ(gi)ξϕ, µ ∈ M0(G)},

TOME 58 (2008), FASCICULE 5
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where ϕ̌(g) = ϕ(g−1), for all g ∈ G. For ϕµ, ϕν ∈ Vϕ, put

〈ϕµ, ϕν〉ϕ = (ϕ, ν∗ ∗ µ).

The map (ϕµ, ϕν) 7−→ 〈ϕµ, ϕν〉ϕ is a hermitian positive form on Vϕ, which
is in addition definite as it verifies, for all g ∈ G,

|ϕµ(g)|2 = |µ ∗ ϕ(g)|2 6 ϕ(e)〈ϕµ, ϕµ〉ϕ.

Now, let ψ ∈ Γϕ, there exists λ0 > 0 such that

λ0ϕ− ψ ∈ P\(G).

So, for all µ ∈ M0(G),

(λ0ϕ− ψ, µ∗ ∗ µ) > 0 or equivalently (ψ, µ∗ ∗ µ) 6 (ϕ, µ∗ ∗ µ).

Hence
〈ψµ, ψµ〉ψ 6 λ0〈ϕµ, ϕµ〉ϕ.

Consequently, we can define on Vϕ×Vϕ a hermitian form ω given, for every
µ, ν ∈ M0(G), by

ω(ϕµ, ϕν) = (ψ, ν∗ ∗ µ) = 〈ψµ, ψν〉ψ.

In fact

|ω(ϕµ, ϕν)|2 = |〈ψµ, ψν〉ψ|2 6 λ2
0〈ϕµ, ϕµ〉ϕ〈ϕν , ϕν〉ϕ.

In addition

ω(ϕµ, ϕν) = (ψ, ν∗ ∗ µ) = (ψ, µ∗ ∗ ν) = ω(ϕν , ϕµ).

So, ω is a well-defined hermitian form which is continuous on Vϕ × Vϕ. It
is also positive as, for all µ ∈ M0(G),

ω(ϕµ, ϕµ) = (ψ, µ∗ ∗ µ) > 0.

As Vϕ is dense in Hϕ, ω may be extended to a positive hermitian con-
tinuous form on Hϕ ×Hϕ. So, by Riesz’s theorem, there exists an unique
positive hermitian operator T in L(Hϕ) such that, for every v1, v2 ∈ Hϕ,

〈Tv1, v2〉ϕ = ω(v1, v2).

In particular, for ϕµ, ϕν ∈ Vϕ,

〈Tϕµ, ϕν〉ϕ = ω(ϕµ, ϕν) = (ψ, ν∗ ∗ µ).

Consequently, for µ0 = δg , g ∈ G and ν0 = δe,

〈Tϕµ0 , ϕν0〉ϕ = 〈Tϕδg , ϕδe〉ϕ = (ψ, δ∗e ∗ δg) = ψ(g).

ANNALES DE L’INSTITUT FOURIER
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But, ϕδg = πϕ(g)ξϕ and ϕδe = ξϕ. Hence ψ(g) = 〈Tπϕ(g)ξϕ, ξϕ〉ϕ. The
operator T is also selfadjoint and positive. In fact, as ψ is of positive type,
for every g, h ∈ G, ψ(g−1h) = ψ(h−1g). Hence

〈Tπϕ(h)ξϕ, πϕ(g)ξϕ〉ϕ = 〈Tπϕ(g), πϕ(h)ξϕ〉ϕ,

and so
〈πϕ(h)ξϕ, T ∗πϕ(g)ξϕ〉ϕ = 〈πϕ(h)ξϕ, Tπϕ(g)〉ϕ.

Since Vϕ is dense in Hϕ,
T = T ∗.

The positivity of T follows from ω’s one. The operator T also commutes
with πϕ(g), for all g ∈ G. �

Next, we give a necessary and sufficient condition for the cone P\(G) to
be a lattice.

Lemma 2.7. — The cone A+ is a lattice if and only if the algebra A is
commutative.

Proof. — The proof is similar to the one given in ([7], Theorem III.2.4,
page 129). �

By Theorem 2.6 and this last lemma, we prove the following theorem,

Theorem 2.8. — Let K be a closed subgroup of a Hausdorff topological
group G. The cone P\(G) is a lattice if and only if, for every function ϕ of
this cone, the algebra A = πϕ(G)

′
is commutative.

Proof. — From Theorem 2.6, we deduce that, for every function ϕ ∈
P\(G), the face Γϕ is lineary isomorphic to the cone A+, which is a lattice
if and only if A is commutative. So, for every function ϕ ∈ P\(G), Γϕ is a
lattice if and only if A is commutative. �

Definition 2.9. — A pair (G,K), where G is a locally compact group
and K a compact subgroup of G, is said to be a Gelfand pair if the convo-
lution algebra of K-biinvariant integrable functions is commutative.

We will prove by using some elements of von Neumann algebra theory
that, in the case of a Gelfand pair (G,K), the algebra πϕ(G)

′
is commu-

tative, for all ϕ ∈ P\(G).

Proposition 2.10. — Let (G,K) be a Gelfand pair and P the orthog-
onal projection onto Hϕ

K defined by

P =
∫
K

πϕ(k) α(dk),

TOME 58 (2008), FASCICULE 5



1558 Marouane RABAOUI

where α is the normalized Haar measure of the subgroup K. Then P is an
element of πϕ(G)

′′
, and the algebra Pπϕ(G)

′′
P is commutative.

Proof. — Let us prove that P ∈ πϕ(G)
′′
. In fact, for every T ∈ πϕ(G)

′

and every v, w ∈ Hϕ,

〈PTv,w〉 = 〈πϕ(α)Tv,w〉 = 〈πϕ(α)v, T ∗w〉 = 〈TPv,w〉.

So, for every v in Hϕ, PTv = TPv. Hence P ∈ πϕ(G)
′′
. As (G,K) is a

Gelfand pair, for every µ, ν ∈ M0(G), the K-biinvariant measures α∗µ∗α
and α ∗ ν ∗ α commute. Thus, for every µ, ν ∈ M0(G),

Pπϕ(µ)Pπϕ(ν)P = Pπϕ(ν)Pπϕ(µ)P.

As πϕ(M0(G)) is a selfadjoint subalgebra containing the identity of L(Hϕ),
it is dense in πϕ(G)

′′
in the strong topology of operators ([3], Theorem 2

and Corollary 1, page 45). Hence, for every A, B ∈ πϕ(G)
′′
,

PAPBP = PBPAP.

Put S = PAP and T = PBP . The operators S and T are two arbitrary
elements of the algebra Pπϕ(G)

′′
P and they verify

ST = PAPPBP = PAPBP = PBPAP = TS.

It follows that the algebra Pπϕ(G)
′′
P is commutative. �

For an operator A of the von Neumann algebra πϕ(G)
′
, let us denote by

AP the restriction of the operator PA to Hϕ
K . Put

[πϕ(G)
′
]P = {AP , A ∈ πϕ(G)

′
}.

By ([3], Proposition 1, page 18), the algebras [πϕ(G)
′
]P and [πϕ(G)

′′
]P are

von Neumann algebras and they verify

([πϕ(G)
′′
]P )

′
= [πϕ(G)

′
]P .

Since ξϕ is a cyclic vector for the algebra πϕ(M0(G)), by ([4], Ap-
pendice A, A14), it is a separating vector for the von Neumann algebra
πϕ(M0(G))

′
= πϕ(G)

′
. Thus it is also separating for the von Neumann al-

gebra [πϕ(G)
′
]P . Hence it is cyclic for the von Neumann algebra [πϕ(G)

′′
]P .

By using the fact that every von Neumann algebra M which is commu-
tative and possesses a cyclic vector verifies M′

= M ([3], Corollaire 2, page
89), and by noticing that the algebra [πϕ(G)

′′
]P is nothing but Pπϕ(G)

′′
P ,

we obtain ([πϕ(G)
′′
]P )

′
= [πϕ(G)

′′
]P . Hence

[πϕ(G)
′
]P = [πϕ(G)

′′
]P .

Now, to get the commutativity of πϕ(G)
′
, it is sufficient to prove the fol-

lowing proposition,

ANNALES DE L’INSTITUT FOURIER
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Proposition 2.11. — Let (G,K) be a Gelfand pair. The commutant
πϕ(G)

′
, seen as a von Neumann algebra, is isomorphic to the algebra

[πϕ(G)
′
]P .

Proof. — Let Ψ : πϕ(G)
′ → [πϕ(G)

′
]P , A 7−→ AP . Ψ is well-defined, it

is also a homomorphism of algebras, since for every S, T ∈ πϕ(G)
′
,

Ψ(ST ) = [ST ]P = PSTP = PSPPTP = SPTP = Ψ(S)Ψ(T ),

Ψ(T ∗) = PT ∗P = P ∗T ∗P ∗ = (PTP )∗ = (TP )∗ = Ψ(T )∗.

It is evident that Ψ is onto by construction. Let us prove that it is one to
one. Let S ∈ πϕ(G)

′
such that Ψ(S) = 0. Then,

Ψ(S) = 0 ⇒ PSξϕ = 0 ⇒ SPξϕ = 0 ⇒ Sξϕ = 0.

Hence, for every g ∈ G, Sπϕ(g)ξϕ = πϕ(g)Sξϕ = 0. And since ξϕ is cyclic,
we get immediately S = 0. Therefore, Ψ is one to one. �

Theorem 2.12. — Let (G,K) be a Gelfand pair and ϕ a K-biinvariant
continuous function of positive type on G. Then, the algebra πϕ(G)

′
is

commutative.

Proof. — By the previous proposition, πϕ(G)
′

is isomporphic to
[πϕ(G)

′
]P . Also we know that [πϕ(G)

′
]P = [πϕ(G)

′′
]P = Pπϕ(G)

′′
P. The

result follows since the algebra Pπϕ(G)
′′
P is commutative. �

Corollary 2.13. — Let (G,K) be a Gelfand pair. Then, the cone
P\(G) is a lattice.

Proof. — By Theorem 2.8, P\(G) is a lattice if and only if, for every
element ϕ in this cone, the algebra πϕ(G)

′
is commutative, which is satisfied

in this case as shown by the previous theorem. Hence P\(G) is a lattice. �

We know that every function of positive type is bounded. Since G is a
locally compact topological group, P(G) can be seen as a subset of L∞(G)
for a left invariant Haar measure on G. We add, from now on, the condi-
tion that G is separable and we consider on P(G) the topology induced
by the weak-∗ topology σ(L∞(G), L1(G)), denoted by τ∗(L∞(G)). By the
Banach-Alaoglu theorem (cf. [18]), the unit ball of L∞(G) is compact in this
topology. In addition, P\61(G) considered as a subset of L∞(G), is closed
in this topology(cf. [18], [6]). Therefore, P\61(G) is compact. Furthermore,
the unit ball of L∞(G), for G separable, is metrisable in the weak-∗ topol-
ogy τ∗(L∞(G)) (cf. [4], [18]). Hence P\61(G) is metrisable. Thus P\61(G) is
convex, compact and metrisable in the topological space L∞(G) which is

TOME 58 (2008), FASCICULE 5



1560 Marouane RABAOUI

locally convex in the weak-∗ topology τ∗(L∞(G)). Furthermore, by Corol-
lary 1, the cone generated by P\61(G), namely P\(G), is a lattice. Therefore,
we get by applying Choquet’s theorem that every element ϕ ∈ P\(G) has
an integral representation :

ϕ(g) =
∫

Ext(P\
1(G))

ω(g)µ(dω).

This last formula constitutes Bochner-Godement’s theorem. It is evident
now that Choquet’s theorem is fundamental for the proof. Because of its
importance, we finish this section by giving its statement.

Theorem 2.14 (Choquet’s theorem, see [17] sections 3 and 10). —
Let U be a convex subset of a locally convex topological vector space E. If
U is compact and metrisable, then

(i) Ext(U) is a Borel subset of U .
(ii) For every a ∈ U , there exists a probability measure µ on Ext(U),

such that for all continuous linear form L on E,

L(a) =
∫
b∈Ext(U)

L(b)µ(db).

(iii) µ is unique if and only if the cone generated by U is a lattice.

3. A Bochner type theorem for Olshanski spherical pairs

Definition 3.1. — Let H be a Hausdorff topological group and M a
closed subgroup of H. The pair (H,M) is said to be spherical if, for every
irreducible unitary representation π of H on a Hilbert space H,

dim HM 6 1.

If H is locally compact, and M compact, then the pair (H,M) is spherical
if and only if it is a Gelfand pair.

Let
(
G(n),K(n)

)
n>1

be a sequence of Gelfand pairs such that G(n)
is a locally compact topological group which is in addition a closed sub-
group of G(n + 1). Also K(n) is a closed subgroup of K(n + 1) and
K(n) = K(n + 1) ∩ G(n). The family of Gelfand pairs

(
G(n),K(n)

)
n>1

,
equiped with the system of canonical continuous embeddings from G(i)
to G(j) with i 6 j , constitute an inductive countable system of topo-
logical groups (cf. [2]). Hence we may define the following inductive limit
groups : G =

⋃∞
n=1G(n) and K =

⋃∞
n=1K(n). The topology defined on G

is the inductive limit topology. It is the finest topology such that all the
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canonical embeddings from G(n) into G are continuous. Olshanski proved
that (G,K) is a spherical pair (cf. [8], [14]). Hence we can introduce the
following definition:

Definition 3.2. — Let
(
G(n),K(n)

)
n>1

be an increasing sequence of
Gelfand pairs as above. The inductive limit pair (G,K) is called an Ol-
shanski spherical pair.

The group G equipped with the inductive limit topology is Hausdorff.
But, such topology does not make G locally compact. Therefore we can
not directly apply Choquet’s theorem to P\(G) as in the classical case. In
order to solve this problem, we embed P\(G) in the cone of subprojective
systems :

Q :=

{
ϕ = {ϕ(i)}i ∈

∞∏
i=1

P\(G(i)) | Resi+1
i

(
ϕ(i+1)

)
� ϕ(i) i = 1, 2, ...

}
.

Resn+1
n is the restriction to G(n) of a function defined on G(n+ 1). Cho-

quet’s theory of integral representation applied to Q will give us a Bochner
type theorem for the spherical pairs of Olshanski. Let Resn be the restric-
tion to G(n) of a function defined on G, and put Pnm =

∏n
k=m P\(G(k)),

where 1 6 m 6 n 6 ∞.

Remark 3.3. — If G1 ⊂ G2 are two locally compact groups the set of
pairs {(ϕ,ψ) ∈ P(G1)×P(G2) | Res(ψ) = ϕ}, where Res is the restriction
to G1 of a function on G2, is not closed in general, and in some cases it
can be shown that it is dense in {(ϕ,ψ) ∈ P(G1)×P(G2) | Res(ψ) � ϕ}.

Next we will prove that Q is closed in P∞1 in the product topology
τ∗ =

∏∞
n=1 τ

∗(L∞(G(n))). To establish this, it is sufficient to prove that
the set

Rk =
{

(ϕ(k), ϕ(k+1)) ∈ Pk+1
k | Resk+1

k (ϕ(k+1)) � ϕ(k)
}

is closed in the topology τ∗(L∞(G(k)))× τ∗(L∞(G(k + 1))).
Let H be a locally compact group, α its left invariant Haar measure, and

M a compact subgroup of H such that (H,M) is a Gelfand pair.

Lemma 3.4. — For every function ϕ ∈ P\(H) and f ∈ L1(H)\ such
that ||f ||1 6 1, one has

f∗ ∗ ϕ ∗ f � ϕ.

Proof. — Let (πϕ,Hϕ) be the unitary representation associated to ϕ :

ϕ(h) = 〈πϕ(h)ξϕ, ξϕ〉ϕ (h ∈ H).
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Since (H,M) is a Gelfand pair, the operator πϕ(f) commutes, for every
h ∈ H, with πϕ(h), and

f∗ ∗ ϕ ∗ f(h) = 〈πϕ(h)πϕ(f)ξϕ, πϕ(f)ξϕ〉ϕ.

Therefore
N∑

i,j=1

f∗ ∗ ϕ ∗ f(h−1
j hi)cicj = ||

N∑
i=1

ciπ
ϕ(hi)πϕ(f)ξϕ||2ϕ

= ||πϕ(f)
N∑
i=1

ciπ
ϕ(hi)ξϕ||2ϕ

6 ||πϕ(f)||2||
N∑
i=1

ciπ
ϕ(hi)ξϕ||2ϕ

6 ||
N∑
i=1

ciϕ(hi)ξϕ||2ϕ

=
N∑

i,j=1

ϕ(h−1
j hi)cicj .

�

Under the same assumptions as Lemma 3.4, we prove the following
lemma,

Lemma 3.5. — The linear form L defined, for every bounded measure µ
on H, by

L(ϕ) =
∫
H×H

ϕ(y−1x)µ(dx)µ(dy)

is lower-semicontinuous on P\(H) in the weak-∗ topology τ∗(L∞(H)).

Proof. — Firstly, let us remark that L is positive on P\(H) and that if
µ = δ, then L(ϕ) = ϕ(e). We will prove that, for every constant C > 0, the
set

{ϕ ∈ P\(H) | L(ϕ) 6 C}
is closed. Let (ϕn) be a sequence of P\(H) that converges to ϕ, i.e. for
every f ∈ L1(H),

lim
n→∞

∫
H

ϕn(h)f(h)α(dh) =
∫
H

ϕ(h)f(h)α(dh).

Suppose that, for every n, L(ϕn) 6 C. We know that, for every bounded
measure µ and f ∈ L1(H)\, f ∗µ ∈ L1(H). Suppose ||f ||1 6 1. By hypoth-
esis, for every n,

µ∗ ∗ ϕn ∗ µ(e) 6 C.
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Therefore, by Lemma 3.4,

µ∗ ∗ f∗ ∗ ϕn ∗ f ∗ µ(e) 6 C,

and since

lim
n→∞

µ∗ ∗ f∗ ∗ ϕn ∗ f ∗ µ(e) = µ∗ ∗ f∗ ∗ ϕ ∗ f ∗ µ(e),

it follows that
µ∗ ∗ f∗ ∗ ϕ ∗ f ∗ µ(e) 6 C.

By considering an approximation of the identity (fk) : fk ∈ L1(H)\, fk > 0,∫
H

fk(h)α(dh) = 1,

and observing that for every continuous bounded function ψ :

lim
k→∞

∫
H

ψ(h)fk(h)α(dh) = ψ(e),

we deduce that
µ∗ ∗ ϕ ∗ µ(e) 6 C.

�

Proposition 3.6. — Let U be a closed unimodular subgroup of H, αU
its left invariant Haar measure and Res the application that for a function
on H associates its restriction to U . The set

{(φ, ψ) ∈ P\(H)× P\(U) | Res(φ) � ψ}

is closed.

Proof. — Let (φn, ψn) be a sequence in P\(H) × P\(U) that converges
to (φ, ψ), and suppose that, for every n and every function f ∈ L1(U),∫

U×U
φn(y−1x)f(x)f(y)αU (dx)αU (dy) 6∫

U×U
ψn(y−1x)f(x)f(y)αU (dx)αU (dy).

Let
C >

∫
U×U

ψ(y−1x)f(x)f(y)αU (dx)αU (dy).

There exists n0 such that, if n > n0∫
U×U

ψn(y−1x)f(x)f(y)αU (dx)αU (dy) 6 C,

and thus ∫
U×U

φn(y−1x)f(x)f(y)αU (dx)αU (dy) 6 C.
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Lemma 3.5 applied to the measure µ(dx) = f(x)αU (dx) gives∫
U×U

φ(y−1x)f(x)f(y)αU (dx)αU (dy) 6 C.

This being true for every constant C verifying

C >

∫
U×U

ψ(y−1x)f(x)f(y)αU (dx)αU (dy),

we can deduce that∫
U×U

φ(y−1x)f(x)f(y)αU (dx)αU (dy) 6∫
U×U

ψ(y−1x)f(x)f(y)αU (dx)αU (dy).

Therefore Res(φ) � ψ. It follows that the set

{(φ, ψ) ∈ P\(H)× P\(U) | Res(φ) � ψ}

is closed. �

Since, for all n, the pair (G(n),K(n)) is supposed to be a Gelfand pair,
the groups G(n) are all unimodular (see [6], Proposition I.1). Hence we
can apply the previous proposition in the case where H = G(k + 1) and
U = G(k). Then, one gets that Rk is closed, for every k, and hence Q is
closed in P∞1 . As a consequence, the set

Q61 :={
ϕ = {ϕ(i)}i ∈

∞∏
i=1

P\61(G(i))|Resi+1
i

(
ϕ(i+1)

)
� ϕ(i)i = 1, 2, . . .

}
,

is compact. In order to get the metrisability of Q61, it is sufficient to
suppose that all the G(n) are separable.

It remains to prove that the cone Q is a lattice in order to apply Cho-
quet’s theorem.

Let (πϕ,Hϕ, ξϕ) be the triplet associated to a function ϕ ∈ P\(G). We
are going to prove that the algebra πϕ(G)

′
is commutative. Since G(n) is

a subgroup of G, the representation πϕ of G remains a continuous unitary
representation of G(n) on Hϕ. Put Hϕ

n = V ect{πϕ(g)ξϕ , g ∈ G(n)}. It is
a G(n)-invariant closed subspace of Hϕ. Hence we may restrict, for every
g ∈ G(n), the operator πϕ(g) to Hϕ

n . We obtain a continuous unitary rep-
resentation of G(n) on Hϕ

n that will be denoted by πϕn .

Let Pn be the orthogonal projection onto Hϕ
n ,
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Lemma 3.7. —

(i)
∞⋃
n=1

Hϕ
n is dense in Hϕ.

(ii) Pn converges strongly to the identity I of Hϕ.

Proposition 3.8. — Let (G,K) be an Olshanski spherical pair. For
every ϕ ∈ P\(G), the commutant A = πϕ(G)

′
of the representation πϕ

which is associated to ϕ by the G.N.S. construction, is a commutative
algebra.

Proof. — Let B be an arbitrary operator of A. Then, for every g in G,
B commutes with πϕ(g). This is also true on G(n), for every n ∈ N∗. On
the other hand, for every n ∈ N∗, PnBPn which is an operator of L(Hϕ

n)
commutes with the representation πϕn of G(n) on Hϕ

n .
Since Hϕ

n is G(n)-invariant, for every g ∈ G(n), Pn commutes with πϕ(g).
Therefore, for every g ∈ G(n),

PnBPnπ
ϕ
n (g) = PnBπ

ϕ
n (g)Pn = Pnπ

ϕ
n (g)BPn = πϕn (g)PnBPn.

By Theorem 2.12, the algebra πϕn (G(n))
′

is commutative. So, for two op-
erators B1 and B2 of πϕ(G)

′
, and for every n ∈ N∗,

PnB1PnPnB2Pn = PnB2PnPnB1Pn,

PnB1PnB2Pn = PnB2PnB1Pn.

Since Kn ⊂ Kn+1, then HKn+1 ⊂ HKn
, and therefore

Pn+1 = PnPn+1 = Pn+1Pn.

Also, for every n,m > 1,

Pn+m = Pn+mPn = PnPn+m.

Hence, for every m,m′, n > 1,

Pn+mB1PnB2Pn+m′ = Pn+mB2PnB1Pn+m′ .

By using the fact that Pn converges strongly to I and by pushing m, m′ to
∞, one obtains

B1PnB2 = B2PnB1.

Finally, by pushing n to ∞, one gets

B1B2 = B2B1.

�

Theorem 3.9. — For an Olshanski spherical pair (G,K), the cone
P\(G) is a lattice.

TOME 58 (2008), FASCICULE 5



1566 Marouane RABAOUI

Proof. — By the previous proposition, the algebra A = πϕ(G)
′

is com-
mutative. Hence, by Theorem 2.8, the cone P\(G) is a lattice. �

Let us prove that Q is a lattice. We start by giving a decomposition of
the elements of Q.

Lemma 3.10. — Let H be a locally compact topological group having e
as unit, L a closed subgroup of H and (un)n a sequence of L-biinvariant
continuous functions of positive type on H.
(a) If

∞∑
n=1

un(e) <∞,

then the series
∑∞
n=1 un converges uniformly on H and its sum is a L-

biinvariant continuous function of positive type.
(b) Furthermore if, for n > 1,

n∑
k=1

uk � ϕ,

where ϕ is a L-biinvariant continuous function of positive type, then
∞∑
n=1

un � ϕ.

(c) If vn is another sequence such that vn � un, then
∞∑
n=1

vn �
∞∑
n=1

un.

Proposition 3.11. — For every subprojective system ϕ = {ϕ(k)}k in
Q, there exists a projective system Φ = {Φ(k)}k and functions ψ(k) in
P\(G(k)) such that, for every k,

(3.1) ϕ(k) = Φ(k) +
∞∑
j=0

Resk+jk (ψ(k+j)).

The functions Φ(k) and ψ(k) are unique.

Proof. — Let ϕ ∈ Q. Put, for every k > 1,

(3.2) ψ(k) = ϕ(k) −Resk+1
k (ϕ(k+1)).

By the definition of Q, for every k > 1, ψ(k) is a function of positive type
on G(k). By iteration, equality (3.2) gives, for every k > 1,

ϕ(k) = ψ(k) + Resk+1
k (ψ(k+1)) + . . .

+ Resk+n−1
k (ψ(k+n−1)) + Resk+nk (ϕ(k+n)).
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Put Ψ(k,n) =
∑n−1
j=0 Resk+jk (ψ(k+j)), then for every k > 1,

ϕ(k) = Ψ(k,n) + Resk+nk (ϕ(k+n)).

It follows that, for every n > 1, Ψ(k,n) � ϕ(k). This implies, by (b) of
Lemma 3.10, that the sequence {Ψ(k,n)}n converges uniformly on G(k) to
Ψ(k) ∈ P\(G(k)), where Ψ(k) =

∑∞
j=0 Resk+jk (ψ(k+j)). Hence the sequence

Resk+nk (ϕ(k+n)) converges uniformly on G(k). Let us denote by Φ(k) its
limit. Since Resk+1

k is continuous in the topology of uniform convergence
on G(k),

Φ(k) = lim
n→+∞

Resk+nk (ϕ(k+n)) = lim
n→+∞

Resk+1+n
k (ϕ(k+1+n))

= lim
n→+∞

(Resk+1
k ◦Resk+1+n

k+1 )(ϕ(k+1+n))

= Resk+1
k

(
lim

n→+∞
Resk+1+n

k+1 (ϕ(k+1+n))
)

= Resk+1
k (Φ(k+1)).

Then {Φ(k)}k>1 is a projective system. In order to prove the uniqueness,
let us suppose that, for every k > 1, ϕ(k) is given by another decomposition

ϕ(k) = Φ(k)
1 +

∞∑
j=0

Resk+jk (ψ(k+j)
1 ),

then

ψ(k) = ϕ(k) −Resk+1
k (ϕ(k+1))

= Φ(k)
1 +

∞∑
j=0

Resk+jk (ψ(k+j)
1 )

−Resk+1
k

(
Φ(k+1)

1 +
∞∑
j=0

Resk+1+j
k+1 (ψ(k+1+j)

1 )
)

=
∞∑
j=0

Resk+jk (ψ(k+j)
1 )−

∞∑
j=1

Resk+jk (ψ(k+j)
1 ) = ψ

(k)
1 .

�

Corollary 3.12. — Let ϕ1 = {ϕ(n)
1 }n and ϕ2 = {ϕ(n)

2 }n be two sub-
projective systems of Q such that ϕ1 ≪ ϕ2, in the sense that, for every n,
ϕ

(n)
1 � ϕ

(n)
2 . Then, for every n, Φ(n)

1 � Φ(n)
2 and ψ

(n)
1 � ψ

(n)
2 .

Proof. — We may write

ϕ2 = ϕ1 + ϕ0, with ϕ0 ∈ Q.
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By the uniqueness of the decomposition given by formula (3.1),

Φ2 = Φ1 + Φ0,

and for every n,
ψ

(n)
2 = ψ

(n)
1 + ψ

(n)
0 .

Since Φ(n)
0 and ψ

(n)
0 are in P\(G(n)), we can deduce that, for every n,

Φ(n)
1 � Φ(n)

2 and ψ
(n)
1 � ψ

(n)
2 . �

By Corollary 2.13, for every n > 1, P\(G(n)) is a lattice. Moreover,
by Theorem 3.9, P\(G) is a lattice. Using the previous decomposition, we
prove the following proposition,

Proposition 3.13. — The cone Q is a lattice.

Proof. — Let ϕ1 = {ϕ(n)
1 }n, ϕ2 = {ϕ(n)

2 }n be two subprojective systems
of Q. By Proposition 3.11,

ϕ
(n)
1 = Φ(n)

1 +
∞∑
j=0

Resn+j
n (ψ(n+j)

1 ),

ϕ
(n)
2 = Φ(n)

2 +
∞∑
j=0

Resn+j
n (ψ(n+j)

2 ).

Put Φ(n)
Min = Φ(n)

1 ∧ Φ(n)
2 and ψ

(n)
Min = ψ

(n)
1 ∧ ψ(n)

2 . Let ϕ = {ϕ(n)}n ∈ Q. If
ϕ ≪ ϕ1 and ϕ ≪ ϕ2, then by Corollary 3.12, Φ(n) � Φ(n)

1 , Φ(n) � Φ(n)
2 ,

and thus Φ(n) � Φ(n)
Min. Also ψ(n) � ψ

(n)
1 , ψ(n) � ψ

(n)
2 , which implies that

ψ(n) � ψ
(n)
Min. Since, for every n, ψ(n)

Min � ψ
(n)
1 , then by (c) of Lemma 3.10,∑∞

j=0 Resn+j
n (ψ(n+j)

Min ) converges in P\(G(n)) uniformly on G(n). We put
then, for every n,

ϕ
(n)
Min = Φ(n)

Min +
∞∑
j=0

Resn+j
n (ψ(n+j)

Min ).

We get, for every n, ϕ(n) � ϕ
(n)
Min, and so (ϕ1, ϕ2) has a greatest lower

bound ϕMin = {ϕ(n)
Min}n. Now, put for every n, Φ(n)

Max = Φ(n)
1 ∨ Φ(n)

2 , and
ψ

(n)
Max = ψ

(n)
1 ∨ ψ(n)

2 . Since, for every n, ψ(n)
Max � ψ

(n)
1 + ψ

(n)
2 , then by (c)

of Lemma 3.10, we can put, for every n,

ϕ
(n)
Max = Φ(n)

Max +
∞∑
j=0

Resn+j
n (ψ(n+j)

Max ).

Thus, (ϕ1, ϕ2) has a least upper bound ϕMax = {ϕ(n)
Max}n. As a conse-

quence, Q is a lattice. �
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Next, we will determine the set of extremal points of Q61. We need to
define, for n > 1, the following subset :

Pn = {ϕ ∈
∞∏
i=1

P\61(G(i)) | ϕ(i) = Resni
(
ϕ(n)

)
, for 1 6 i 6 n

and ϕ(i) = 0, for i > n+ 1},
where, for every i = 1, . . . , n− 1,

Resni = Resi+1
i ◦Resi+2

i+1 ◦ · · · ◦Resnn−1.

The set Pn, with finite n, consists of projective systems of finite order n
obtained via the following linear isomorphism :

ι : P\61(G(n)) → Pn

ϕ(n) 7−→ (Resn1 (ϕ(n)),Resn2 (ϕ(n)), . . . ,Resnn−1(ϕ
(n)), ϕ(n), 0, . . . ).

Since Resn+1
n (P\61(G(n + 1))) ⊂ P\61(G(n)), the set P\61(G) can be

identified with the projective limit of {P\61(G(n))}n>1 and an element ϕ in
P\61(G) determines a projective system {ϕ(n)} with ϕ(n) = Resn(ϕ). The
same holds for an element ω of the set E∞ of non zero extremal points of
P\61(G), i.e. E∞ = Ext(P\1(G)).

Let En denote the set of non zero extremal points of Pn. An element ϕ in
En is the image by the isomorphism ι of an element ϕ(n) ∈ Ext(P\1(G(n)).

Theorem 3.14. — The set of extremal points of Q61 consists of two
types of elements :

type ∞ : E∞, and type n : En,

and we have

(3.3) Ext(Q61) = {0} ∪ E∞ ∪
( ∞⋃
n=1

En
)
.

The sets E∞, En (n > 1) are disjoint.

Proof. — (a) Let us prove that every ϕ in En is extremal. Suppose that
ϕ = ϕ1 + ϕ2, ϕ1, ϕ2 ∈ Q61. Then, for every n,

ϕ(n) = ϕ
(n)
1 + ϕ

(n)
2 .

So, ϕ(n)
1 = λ1ϕ

(n), ϕ
(n)
2 = λ2ϕ

(n). On the other hand,

ϕ(n−1) = Resnn−1ϕ
(n) = ϕ

(n−1)
1 + ϕ

(n−1)
2

� λ1Resnn−1ϕ
(n) + λ2Resnn−1ϕ

(n) = Resnn−1ϕ
(n).
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Therefore

ϕ
(n−1)
1 = λ1Resnn−1ϕ

(n), ϕ
(n−1)
2 = λ2Resnn−1ϕ

(n),

and hence

ϕ1 = λ1ϕ, ϕ2 = λ2ϕ.

(b) Let us prove that ϕ ∈ E∞ is extremal. Suppose that ϕ = ϕ1 + ϕ2,
ϕ1, ϕ2 ∈ Q61. Since ϕ is a projective system, for every n, ψ(n) = 0. Thus,
ψ

(n)
1 = 0, ψ(n)

2 = 0, and hence ϕ1, ϕ2 ∈ P\1(G). Therefore

ϕ1 = λ1ϕ, ϕ2 = λ2ϕ.

(c) Let ϕ be a non zero extremal point of Q61, we can write

ϕ(n) = Φ(n) +
∞∑
j=0

Resn+j
n (ψ(n+j)),

it’s a decomposition into two elements of Q61:
First case : ψ(n) = 0, for every n, and so ϕ ∈ E∞.
Second case : Φ(n) = 0, for every n, and hence

ϕ = Φ + Ψ1 + Ψ2 + . . . ,

where

Ψ(j)
n = Resnj (ψ

(n)) if j 6 n,

= 0 if j > n.

As a result, there exists n0 such that ϕ = Ψn0 , with ψ(n0) ∈ Ext(P\1(G(n0))).
We can then conclude that ϕ ∈ En0 . �

Assuming all G(n) separable, we can now state a Bochner type theorem
for the corresponding Olshanski spherical pairs.

Theorem 3.15. — Let (G,K) be an Olshanski spherical pair defined as
inductive limit of an increasing sequence of Gelfand pairs (G(n),K(n))n,
with the assumption that all G(n) are separable. Then, for every function
ϕ ∈ P\(G), there exists, on the Borel set Ω = Ext(P\1(G)), a unique bounded
and positive measure µ such that

ϕ(g) =
∫

Ω

ω(g)µ(dω).

Proof. — The set Q61 being convex, compact and metrisable in Q, it
satisfies the hypothesis of Choquet’s theorem. Hence Ext(Q61) is a Borel
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set and every element ofQ61 can be represented via a probability measure ν
on Ext(Q61) such that, for every continuous linear form L on Q,

(3.4) L(q) =
∫

Ext(Q61)

L(p)ν(dp).

Moreover, asQ is a lattice (Proposition 3.13), by (iii) of Choquet’s theorem,
the measure ν is unique. Furthermore, we can deduce from formula (3.3)
that

Ω = Ext(Q61 ) \
( ∞⋃

n=1

En ∪ {0}
)
.

Hence Ω is a Borel set.
Let ϕ be an element of P\61(G). We know that ϕ determines a sequence

{ϕ(n)}n>1 where ϕ(n) = Resn(ϕ). Let us take, for L in (3.4), the linear
form

ϕ(n) 7→ (ϕ(n), f) =
∫
G(n)

ϕ(n)(h)f(h)αn(dh),

where f ∈ L1(G(n)) and αn is the left invariant Haar measure of G(n). By
considering, for every n, the approximation (fk) : fk ∈ L1(G(n)), fk > 0,∫

G(n)

fk(h)αn(dh) = 1,

and for every continuous bounded function ψ :

lim
k→∞

∫
G(n)

ψ(h)fk(h)αn(dh) = ψ(g),

we get that, for every n > 1,

ϕ(n)(g) =
∫

Ω

ω(g) ν(∞)(dω) +
∞∑
k=n

∫
En

ω(g) ν(k)(dω),

where ν(∞) (respectively {ν(k)}k>n), are the restrictions of ν to Ω (respec-
tively {Ek}k>n). Therefore we obtain, for g ∈ G(n),

ϕ(n)(g)− ϕ(n+1)(g) =
∫
En

ω(g) ν(n)(dω).

Since {ϕ(n)}n>1 is a projective system, for every g ∈ G(n) and every n > 1,∫
En

ω(g) ν(n)(dω) = 0.

As ω(e) = 1 we get, for every n > 1,

ν(n)(En) = 0.
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Hence ν is concentrated on E∞ = Ω. It follows that every element ϕ in
P\61(G) has the following integral representation :

ϕ(g) =
∫

Ω

ω(g)ν(∞)(dω), (g ∈ G).

Finally, every element ϕ in P\(G) can be uniquely written as ϕ(g) = λϕ0(g)
with ϕ0 in P\61(G) and λ = ϕ(e) > 0. Hence ϕ is represented via a mea-

sure µ equal to λν(∞)
0 , where ν(∞)

0 verifies

ϕ0(g) =
∫

Ω

ω(g)ν(∞)
0 (dω).

�

4. Remarks and open questions

(1) We do not know a topology making P\61(G) compact and enabling
in consequence a direct application of Choquet’s theorem without using Q.
T. Hirai and E. Hirai had studied this problem in [12].

(2) Given a generalized Gelfand pair, i.e. an Olshanski spherical pair,
one problem is to find the set of extremal points Ω. This is known in
several cases. Another problem is, given ϕ ∈ P\(G), to find the representing
measure µ.
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