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GRAPHS HAVING NO QUANTUM SYMMETRY

by Teodor BANICA, Julien BICHON & Gaëtan CHENEVIER

Abstract. — We consider circulant graphs having p vertices, with p prime. To
any such graph we associate a certain number k, that we call type of the graph.
We prove that for p � k the graph has no quantum symmetry, in the sense that
the quantum automorphism group reduces to the classical automorphism group.

Résumé. — On considère des graphes circulants ayant p sommets, avec p pre-
mier. A un tel graphe on associe un certain nombre k, qu’on appelle type du graphe.
On montre que pour p � k le graphe n’a pas de symétrie quantique, dans le sens
où son groupe quantique d’automorphismes est réduit à son groupe classique d’au-
tomorphismes.

Introduction

A remarkable fact, discovered by Wang in [18], is that the set {1, . . . , n}
has a quantum permutation group. For n = 1, 2, 3 this the usual symmetric
group Sn. However, starting from n = 4 the “quantum permutations” do
exist. They form a compact quantum group Qn, satisfying the axioms of
Woronowicz in [21].

The next step is to look at “simplest” subgroups of Qn. There are many
natural degrees of complexity for such a subgroup, and the notion that
emerged is that of quantum automorphism group of a vertex-transitive
graph. These graphs are those having the property that the usual automor-
phism group acts transitively on the set of vertices. We assume of course
that the number of vertices is n.

These quantum groups are studied in [9], [10] and [4], [3], then in [5], [6].
The motivation comes from certain combinatorial aspects of subfactors,

free probability, and statistical mechanical models. See [3], [5], [7].

Keywords: Quantum permutation group, circulant graph.
Math. classification: 16W30, 05C25, 20B25.
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A fascinating question here, whose origins go back to Wang’s paper [18],
is to decide whether a given graph has quantum symmetry or not. There
are basically two kinds of graphs where the answer is understood, namely:

(1) The n-element set Xn. This graph has n vertices, and no edges at
all.

(2) The n-cycle Cn. This graph has n vertices, n edges, and looks like
a cycle.

The graphs having no quantum symmetry are as follows:

(1) Xn, n < 4. This is proved in [18], by direct algebraic computation.
An explanation is proposed in [2], where the number n ∈ N is
interpreted as a Jones index. This is further refined in [3], where
Qn is shown to appear as Tannakian realisation of the Temperley-
Lieb planar algebra of index n, known to be degenerate in the index
range 1 6 n < 4.

(2) Cn, n 6= 4. This is proved in [4], by direct algebraic computation.
An explanation regarding C4 is proposed in [5]: this graph is excep-
tional in the series because it is the one having non-trivial discon-
nected complement. Indeed, the quantum symmetry group is the
same for a graph and for its complement, and duplication of graphs
corresponds to free wreath products, known from [10] to be highly
non-commutative operations.

Some other results on lack of quantum symmetry include verifications for
a number of cycles with chords, for a special graph called discrete torus,
and stability/not stability under various product operations. See [3], [5],
[6].

Although most such results have ad-hoc proofs, there is an idea emerging
from this work, namely that computations become simpler with n →∞.

In this paper we find an asymptotic result of non-quantum symmetry.
We consider graphs which are circulant, and have prime number of vertices:
that is, if p is the number of vertices, then Zp must act on the graph, and
p must be prime. To any such graph we associate a number k, that we call
type, and which measures in a certain sense the complexity of the graph
(as an example, for Cn we have k = 2). Our result is that a type k graph
having enough vertices has no quantum symmetry.

The proof uses a standard technique, gradually developed since Wang’s
paper [18], and pushed here one step forward, by combination with a Galois
theory argument. We should mention that the combination is done only
at the end: it is not clear how to include in the coaction formalism the
underlying arithmetics.

ANNALES DE L’INSTITUT FOURIER



GRAPHS HAVING NO QUANTUM SYMMETRY 957

We don’t know what happens when the number of vertices is not prime:

(1) Most ingredients have extensions to the general case, and it won’t
be surprising that some kind of asymptotic result holds here as well.
However, there are a number of obstructions to be overcome. These
seem to come from complexity of the usual automorphism group.
For a prime number of vertices this group is quite easy to describe,
as shown by Alspach in [1], but in general the situation is quite
complicated, as shown for instance by Klin and Pöschel in [17], or
by Dobson and Morris in [14].

(2) A vertex-transitive graph having a prime number of vertices is nec-
essary circulant. So, in order to extend our result, it is not clear
whether to remain or not in the realm of circulant graphs. More-
over, it would be interesting to switch at some point to higher com-
binatorial structures, describing arbitrary subgroups ofQn. In other
words, there is a lot of work to be done, and this paper should be
regarded as a first one on the subject.

We should probably say a word about the original motivating problems.
As explained in [4], [3], [7], quantum permutation groups are closely related
to the “2-box”, “spin model” and “meander” problems, discussed in [11],
[13], [15]. We think that the idea in this paper is new in the area – for
instance, it is not of topological nature – and it is our hope that further
developments of it, along the above lines, might be of help in connection
with these problems.

Finally, let us mention that the idea of letting n → ∞ is very familiar
in certain areas of representation theory, developed by Weingarten ([20]),
Biane ([8]), Collins ([12]) and many others. For quantum groups such meth-
ods are worked out in [7], but their relation with the present results is very
unclear.

The paper is organized as follows. Sections 1–2 are a quick introduction
to the problem, in 3 we fix some notations, and in 4–5 we prove the main
result.

Acknowledgements. We would like to express our gratitude to the NLS
research center in Paris and to the Institute for theoretical physics at Les
Houches, for their warm hospitality and support, at an early stage of this
project.
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1. Magic unitary matrices

In this section and the next two ones we present a few basic facts regard-
ing quantum permutation groups, along with some examples, explanations
and sketches of proofs. The material is listed according to an ad-hoc or-
dering, with the combinatorial side of the subject coming first. For further
reading, we recommend [3].

Let A be a C∗-algebra. That is, we have a complex algebra with a norm
and an involution, such that Cauchy sequences converge, and ||aa∗|| =
||a||2.

The basic examples are B(H), the algebra of bounded operators on a
Hilbert space H, and C(X), the algebra of continuous functions on a com-
pact space X.

In fact, any C∗-algebra is a subalgebra of some B(H), and any commuta-
tive C∗-algebra is of the form C(X). These are results of Gelfand-Naimark-
Segal and Gelfand, both related to the spectral theorem for self-adjoint
operators.

Definition 1.1. — Let A be a C∗-algebra.

(1) A projection is an element p ∈ A satisfying p2 = p = p∗.
(2) Two projections p, q ∈ A are called orthogonal when pq = 0.
(3) A partition of unity is a set of orthogonal projections, which sum

up to 1.

A projection in B(H) is an orthogonal projection π(K), where K ⊂ H

is a closed subspace. Orthogonality of projections corresponds to orthogo-
nality of subspaces, and partitions of unity correspond to decompositions
of H.

A projection in C(X) is a characteristic function χ(Y ), where Y ⊂ X

is an open and closed subset. Orthogonality of projections corresponds to
disjointness of subsets, and partitions of unity correspond to partitions
of X.

Definition 1.2. — A magic unitary is a square matrix u ∈ Mn(A), all
whose rows and columns are partitions of unity in A.

Such a matrix is indeed unitary, in the sense that we have uu∗ = u∗u = 1.
Over B(H) these are the matrices π(Kij) with Kij magic decomposition

of H, meaning that each row and column of K is a decomposition of H.
Over C(X) these are the matrices χ(Yij) with Yij magic partition of X,

meaning that each row and column of Y is a partition of X.

ANNALES DE L’INSTITUT FOURIER
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We are interested in the following example. Consider a finite graph X. In
this paper this means that we have a finite set of vertices, and certain pairs
of distinct vertices are connected by unoriented edges. We do not allow
multiple edges.

Definition 1.3. — The magic unitary of a finite graph X is given by

uij = χ{g ∈ G | g(j) = i}

where i, j are vertices of X, and G is the automorphism group of X.

This is by definition a V × V matrix over the algebra A = C(G), where
V is the vertex set. In case vertices are labeled 1, . . . , n, we can write
u ∈ Mn(A).

The fact that the characteristic functions uij form indeed a magic unitary
follows from the fact that the corresponding sets form a magic partition
of G.

We denote by d the adjacency matrix of X. This is a V ×V matrix, given
by dij = 1 if i, j are connected by an edge, and by dij = 0 if not.

We have the following presentation result.

Theorem 1.4. — The algebra A = C(G) is isomorphic to the universal
C∗-algebra generated by n2 elements uij , with the following relations:

(1) The matrix u = (uij) is a magic unitary.
(2) We have du = ud, where d is the adjacency matrix of X.
(3) The elements uij commute with each other.

Proof. — Let A′ be the universal algebra in the statement. That is, A′ is
the universal repelling object in the category of commutative C∗-algebras
generated by entries of a n × n magic unitary matrix u, subject to the
condition du = ud. The construction of such an object is standard, and we
have uniqueness up to isomorphism.

The magic unitary of X commutes with d, so we have a morphism p :
A′ → A. By applying Gelfand’s theorem, p comes from an inclusion i : G ⊂
G′, where G′ is the spectrum of A′.

By using the universal property of A′, we see that the formulae

∆(uij) =
∑

uik ⊗ ukj

ε(uij) = δij

S(uij) = uji

define morphisms of algebras. These must come from maps G′×G′, {.}, G′ →
G′, making G′ into a group, acting on X, and we get G = G′. See section 2
in [3] for missing details. �

TOME 57 (2007), FASCICULE 3
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2. Quantum permutation groups

Let X be a graph as in previous section. Its quantum automorphism
group is constructed by removing commutativity from Theorem 1.4 and its
proof.

Definition 2.1. — The Hopf algebra associated to X is the universal
C∗-algebra A generated by entries uij of a n×n magic unitary commuting
with d, with

∆(uij) =
∑

uik ⊗ ukj

ε(uij) = δij

S(uij) = uji

as comultiplication, counit and antipode maps.

The precise structure of A is that of a co-involutive unital Hopf C∗-
algebra of finite type. That is, A satisfies the axioms of Woronowicz in
[21], along with the extra axiom S2 = id. See [3], [16] for more details on
this subject.

For the purposes of this paper, let us just mention that we have the
formula

A = C(G)

where G is a compact quantum group. This quantum group doesn’t ex-
ist as a concrete object, but several tools from Woronowicz’s paper [21],
such as an analogue of the Peter-Weyl theory, are available for it, in the
form of functional analytic statements regarding its algebra of continuous
functions A.

Comparison of Theorem 1.4 and Definition 2.1 shows that we have a
morphism A → C(G). This can be thought of as coming from an inclusion
G ⊂ G.

Definition 2.2. — We say that X has no quantum symmetry if A =
C(G).

It is not clear at this point whether there exist graphs X which do have
quantum symmetry. Before getting into the subject, let us state the follow-
ing useful result.

Theorem 2.3. — The following are equivalent.

(1) X has no quantum symmetry.
(2) A is commutative.

ANNALES DE L’INSTITUT FOURIER
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(3) For u magic unitary, du = ud implies that uij commute with each
other.

Proof. — All equivalences are clear from definitions, and from the Gel-
fand theorem argument in proof of Theorem 1.4. �

The very first graphs to be investigated are the n-element sets Xn. Here
the incidency matrix is d = 0, so the above condition (3) is that for any
n × n magic unitary matrix u, the entries uij have to commute with each
other.

(1) The graph X2. This has no quantum symmetry, because a 2 × 2
magic unitary has to be of the form

up =
(

p 1− p

1− p p

)
with p projection, and entries of this matrix commute with each
other.

(2) The graph X3. This has no quantum symmetry either, as shown in
[18].

(3) The graph X4. This has quantum symmetry, because the matrix

upq =


p 1− p 0 0

1− p p 0 0
0 0 q 1− q

0 0 1− q q


is a magic unitary, whose entries don’t commute if pq 6= qp.

(4) The graph Xn, n > 5. This has quantum symmetry too, as one can
see by adding to upq a diagonal tail formed of 1’s.

The other series of graphs where complete results are available are the
n-cycles Cn. The situation here, already described in the introduction, is
as follows.

(1) The graph C2. This has no quantum symmetry, because X2 doesn’t.
(2) The graph C3. This has no quantum symmetry, because X3 doesn’t.
(3) The graph C4. This has quantum symmetry, because its adjacency

matrix

d =


0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0


written here according to the assignment of numbers 1324 to ver-
tices in a cyclic way, commutes with upq.

TOME 57 (2007), FASCICULE 3
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(4) The graph Cn, n > 5. This has no quantum symmetry, as shown in
[4].

Summarizing, the subtle results in these series are those regarding lack
of quantum symmetry of cycles Cn, with n = 3 and n > 5. In what follows
we present a general result, which applies in particular to Cp with p big
prime (in fact p > 7). This result will have the following consequences to
what has been said so far:

(1) As explained in the introduction, we hope to extend at some point
our techniques, as to apply to Cn with big n.

(2) As for Cn with small n, we won’t think about it for some time. This
is an exceptional graph, at least until the asymptotic area is well
understood.

Our last remark is about use of C∗-algebras. The lack of quantum sym-
metry can be characterized in fact in a purely algebraic manner. Indeed,
consider A0, the universal ∗-algebra generated by entries uij of a n × n

magic unitary matrix commuting with d. By using general theory from [16],
namely Theorem 27 and Proposition 32 in Chapter 11, we get a ∗-algebra
embedding with dense image A0 → A. This shows that A is commutative
if and only if A0 is.

3. Circulant graphs

A graph X having n vertices is called circulant if its automorphism group
contains a cycle of length n, and hence a copy of the cyclic group Zn.

This is the same as saying that vertices of X are n-th roots of unity,
edges are represented by certain segments, and the whole picture has the
property of being invariant under the 2π/n rotation centered at 0. Here
the rotation is either the clockwise or the counterclockwise one: the two
conditions are equivalent.

For the purposes of this paper, best is to assume that vertices of X are
elements of Zn, and i ∼ j (connection by an edge) implies i+ k ∼ j + k for
any k.

We denote by Z∗
n the group of invertible elements of the ring Zn.

Our study of circulant graphs is based on diagonalisation of correspond-
ing adjacency matrices. This is in turn related to certain arithmetic invari-
ants of the graph – an abelian group E and a number k – constructed in
the following way.

Definition 3.1. — Let X be a circulant graph on n vertices.

ANNALES DE L’INSTITUT FOURIER
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(1) The set S ⊂ Zn is given by i ∼ j ⇐⇒ j − i ∈ S.
(2) The group E ⊂ Z∗

n consists of elements a such that aS = S.
(3) The order of E is denoted k, and is called type of X.

The interest in k is that this is the good parameter measuring complexity
of the spectral theory of X. Calling it “type” might seem a bit unnatural
at this point; but the terminology will be justified by the main result in
this paper.

Here are a few basic examples and properties, ϕ being the Euler function:

(1) The type can be 2, 4, 6, 8, . . . This is because {±1} ⊂ E.
(2) Cn is of type 2. Indeed, we have S = {±1}, E = {±1}.
(3) Xn is of type ϕ(n). Indeed, here S = ∅, E = Z∗

n.

It is possible to make an extensive study of this notion, but we won’t
get into the subject. Let us just mention that the graphs 2C5, C10 studied
in [6] have the same E group, but the first one has quantum symmetry,
while the second one hasn’t. Here 2C5 is the disjoint union of two copies of
C5, and the fact that this graph has quantum symmetry comes from free
wreath product philosophy.

Consider the Hopf algebra A associated to X, as in previous section.

Definition 3.2. — The linear map α : Cn → Cn ⊗ A given by the
formula

α(ei) =
∑

ej ⊗ uji

where e1, . . . , en is the canonical basis of Cn, is called coaction of A.

It follows from the magic unitarity condition that α is a morphism of
algebras, which satisfies indeed the axioms of coactions. See [3] for details.

For the purposes of this paper, let us just mention that α appears as
functional analytic transpose of the action of G on the set Xn = {1, . . . , n}.
In other words, we have α(ϕ) = ϕ◦a, where a : Xn×G → Xn is the action
map, a(i, g) = g(i).

These general considerations are valid in fact for any graph. In what
follows we use the following simple fact, valid as well in the general case.

Theorem 3.3. — If F is an eigenspace of d then α(F ) ⊂ F ⊗A.

Proof. — Since u commutes with d, it commutes with the C∗-algebra
generated by d, and in particular with the projection π(F ). The relation
uπ(F ) = π(F )u can be translated in terms of α, and we get α(F ) ⊂ F ⊗A.
See section 2 in [3]. �

TOME 57 (2007), FASCICULE 3



964 Teodor BANICA & Julien BICHON & Gaëtan CHENEVIER

4. Spectral decomposition

In what follows X is a circulant graph having p vertices, with p prime.
We denote by d,A, α the associated adjacency matrix, Hopf algebra and

coaction, and by S, E, k the set, group and number in Definition 3.1.
We denote by ξ the column vector (1, w, w2, . . . , wp−1), where w = e2πi/p.

Lemma 4.1. — The eigenspaces of d are given by V0 = C1 and

Vx =
⊕
a∈E

C ξxa

with x ∈ Z∗
p. Moreover, we have Vx = Vy if and only if xE = yE.

Proof. — The matrix d being circulant, we have the formula

d(ξx) = f(x)ξx

where f : Zp → C is the following function:

f(x) =
∑
t∈S

wxt.

Let K = Q(w) and let H be the Galois group of the Galois extension
Q ⊂ K. It is well-known that we have a group isomorphism

Z∗
p −→ H

x 7−→ sx

with the automorphism sx given by the following formula:

sx(w) = wx.

Also, we know from a theorem of Dedekind that the family {sx | x ∈ Z∗
p}

is free in EndQ(K). Now for x, y ∈ Z∗
p consider the following operator:

L =
∑
t∈S

sxt −
∑
t∈S

syt ∈ EndQ(K).

We have L(w) = f(x)− f(y), and since L commutes with the action of
the abelian group H, we have

L = 0 ⇐⇒ L(w) = 0 ⇐⇒ f(x) = f(y)

and by linear independence of the family {sx | x ∈ Z∗
p} we get:

f(x) = f(y) ⇐⇒ xS = yS ⇐⇒ xE = yE.

It follows that d has precisely 1 + (p − 1)/k distinct eigenvalues, the
corresponding eigenspaces being those in the statement. �

ANNALES DE L’INSTITUT FOURIER
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Consider now a commutative ring (R,+, ·). We denote by R∗ the group
of invertibles, and we assume 2 ∈ R∗. A subgroup G ⊂ R∗ is called even if
−1 ∈ G.

Definition 4.2. — An even subgroup G ⊂ R∗ is called 2-maximal if

a− b = 2(c− d)

with a, b, c, d ∈ G implies a = ±b.

We call a = b, c = d trivial solutions, and a = −b = c − d hexagonal
solutions. The terminology comes from the following key example:

Consider the group G ⊂ C formed by k-th roots of unity, with k even.
We regard G as set of vertices of the regular k-gon. An equation of the
form a − b = 2(c − d) with a, b, c, d ∈ G says that the diagonals a − b and
c − d are parallel, and that the first one is twice as much as the second
one. But this can happen only when a, c, d, b are consecutive vertices of a
regular hexagon, and here we have a + b = 0.

This example is discussed in detail in next section.

Proposition 4.3. — Assume that R has the property 3 6= 0, and con-
sider a 2-maximal subgroup G ⊂ R∗.

(1) 2, 3 6∈ G.
(2) a + b = 2c with a, b, c ∈ G implies a = b = c.
(3) a + 2b = 3c with a, b, c ∈ G implies a = b = c.

Proof. — (1) This follows from the following formulae, which cannot hold
in G:

4− 2 = 2(2− 1)

3− (−1) = 2(3− 1).

Indeed, the first one would imply 4 = ±2, and the second one would
imply 3 = ±1. But from 2 ∈ R∗ and 3 6= 0 we get 2, 4, 6 6= 0, contradiction.

(2) We have a − b = 2(c − b). For a trivial solution we have a = b = c,
and for a hexagonal solution we have a + b = 0, hence c = 0, hence 0 ∈ G,
contradiction.

(3) We have a−c = 2(c−b). For a trivial solution we have a = b = c, and
for a hexagonal solution we have a + c = 0, hence b = −2a, hence 2 ∈ G,
contradiction. �

We use these facts several times in the proof below, by refering to them
as “2-maximality” properties, without special mention to Proposition 4.3.

Theorem 4.4. — If E ⊂ Zp is 2-maximal (p > 5) then X has no
quantum symmetry.

TOME 57 (2007), FASCICULE 3
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Proof. — We use Lemma 4.1, which ensures that V1, V2, V3 are eigen-
spaces of d. By 2-maximality of E, these three eigenspaces are different.

From eigenspace preservation in Theorem 3.3 we get formulae of the
following type, with ra, r′a, r′′a ∈ A:

α(ξ) =
∑
a∈E

ξa ⊗ ra

α(ξ2) =
∑
a∈E

ξ2a ⊗ r′a

α(ξ3) =
∑
a∈E

ξ3a ⊗ r′′a .

We take the square of the first relation, we compare with the formula of
α(ξ2), and we use 2-maximality:

α(ξ2) =

(∑
a∈E

ξa ⊗ ra

)2

=
∑

x

ξx ⊗

 ∑
a,b∈E

δa+b,x rarb


=

∑
c∈E

ξ2c ⊗

 ∑
a,b∈E

δa+b,2c rarb


=

∑
c∈E

ξ2c ⊗ r2
c .

We multiply this relation by the formula of α(ξ), we compare with the
formula of α(ξ3), and we use 2-maximality:

α(ξ3) =

(∑
a∈E

ξa ⊗ ra

)(∑
c∈E

ξ2c ⊗ r2
c

)

=
∑

x

ξx ⊗

 ∑
a,c∈E

δa+2c,x rar2
c


=

∑
b∈E

ξ3b ⊗

 ∑
a,c∈E

δa+2c,3b rar2
c


=

∑
b∈E

ξ3b ⊗ r3
b .

Summarizing, the three formulae in the beginning are in fact:

α(ξ) =
∑
a∈E

ξa ⊗ ra

ANNALES DE L’INSTITUT FOURIER
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α(ξ2) =
∑
a∈E

ξ2a ⊗ r2
a

α(ξ3) =
∑
a∈E

ξ3a ⊗ r3
a.

We claim now that for a 6= b, we have the following “key formula”:

rar3
b = 0.

Indeed, consider the following equality:(∑
a∈E

ξa ⊗ ra

)(∑
b∈E

ξ2b ⊗ r2
b

)
=
∑
c∈E

ξ3c ⊗ r3
c .

By eliminating all a = b terms, which produce the sum on the right, we
get: ∑{

ξa+2b ⊗ rar2
b | a, b ∈ E, a 6= b

}
= 0.

By taking the coefficient of ξx, with x arbitrary, we get:∑{
rar2

b | a, b ∈ E, a 6= b, a + 2b = x
}

= 0.

We fix now a, b ∈ E satisfying a 6= b. We know from 2-maximality that
the equation a + 2b = a′ + 2b′ with a′, b′ ∈ E has at most one non-trivial
solution, namely the hexagonal one, given by a′ = −a and b′ = a + b. Now
with x = a+2b, we get that the above equality is in fact one of the following
two equalities:

rar2
b = 0

rar2
b + r−ar2

a+b = 0.

In the first situation, we have rar3
b = 0 as claimed.

In the second situation, we proceed as follows. We know that a1 = b

and b1 = a + b are distinct elements of E. Consider now the equation
a1+2b1 = a′1+2b′1 with a′1, b

′
1 ∈ E. The hexagonal solution of this equation,

given by a′1 = −a1 and b′1 = a1 + b1, cannot appear: indeed, b′1 = a1 + b1

can be written as b′1 = a + 2b, and by 2-maximality we get b′1 = −a = b,
which contradicts a + b ∈ E.

Thus the equation a1 + 2b1 = a′1 + 2b′1 with a′1, b
′
1 ∈ E has only trivial

solutions, and with x = a1 + 2b1 in the above considerations we get:

ra1r
2
b1 = 0.

Now remember that this follows by identifying coefficients in α(ξ)α(ξ2) =
α(ξ3). The same method applies to the formula α(ξ2)α(ξ) = α(ξ3), and we
get:

r2
b1ra1 = 0.
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We have now all ingredients for finishing the proof of the key formula:

rar3
b = rar2

brb

= −r−ar2
a+brb

= −r−ar2
b1ra1

= 0.

We come back to the following formula, proved for s = 1, 2, 3:

α(ξs) =
∑
a∈E

ξsa ⊗ rs
a.

By using the key formula, we get by induction on s > 3 that this holds
in general:

α
(
ξ1+s

)
=

(∑
a∈E

ξa ⊗ ra

)(∑
b∈E

ξsb ⊗ rs
b

)
=

∑
a∈E

ξ(1+s)a ⊗ r1+s
a +

∑
a,b∈E, a6=b

ξa+sb ⊗ rars
b

=
∑
a∈E

ξ(1+s)a ⊗ r1+s
a .

In particular with s = p− 1 we get:

α(ξ−1) =
∑
a∈E

ξ−a ⊗ rp−1
a .

On the other hand, from ξ∗ = ξ−1 we get

α(ξ−1) =
∑
a∈E

ξ−a ⊗ r∗a

which gives r∗a = rp−1
a for any a. Now by using the key formula we get

(rarb)(rarb)∗ = rarbr
∗
b r∗a = rarp

b r∗a = (rar3
b )(rp−3

b r∗a) = 0

which gives rarb = 0. Thus we have rarb = rbra = 0.
On the other hand, A is generated by coefficients of α, which are in

turn powers of elements ra. It follows that A is commutative, and we are
done. �

5. The main result

Let k be an even number, and consider the group of k-th roots of unity
G = {1, ζ, . . . , ζk−1}, where ζ = e2πi/k. We use the Euler function ϕ.

Lemma 5.1. — G is 2-maximal in C.
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Proof. — Assume that we have a− b = 2(c− d) with a, b, c, d ∈ G. With
z = b/a and u = (c− d)/a, we have 1− z = 2u. Let n be the order of the
root of unity z. By [19], chap. 2, the Q(z)-norm N(1− z) of 1− z is ±1 if
n is not the power of a prime l, and ±l otherwise. Applying the Q(z)-norm
to 1− z = 2u, and using that u is an algebraic integer, we get

2ϕ(n) |N(1− z)

hence n 6 2, z = ±1, and we are done. �

Let p be a prime number.

Lemma 5.2. — For p > 6ϕ(k), any subgroup E ⊂ Z∗
p of order k is 2-

maximal.

Proof. — Consider the following set of complex numbers:

Σ = {a + 2b | a, b ∈ G}.

Let A = Z[ζ], recall that A is the ring of algebraic integers of Q(ζ),
and in particular a Dedekind ring. If p is any prime number such that k

divides p− 1, it is well-known that the ideal pA is a product P1 . . . Pϕ(k) of
prime ideals of A such that A/Pi ' Zp for each i. Choosing an i we get a
surjective ring morphism:

Φ : A → Zp.

Since p does not divide k, the polynomial

Xk − 1 =
k−1∏
i=0

(
X − Φ(ζ)i

)
has no multiple root in Zp, hence Φ(G) ⊂ Z∗

p is a cyclic subgroup of order k.
As Z∗

p is known to be a cyclic group, Φ(G) is actually the unique subgroup
of order k of Z∗

p, hence it coincides with the subgroup E in the statement.
We claim that for p as in the statement, the induced map Φ : Σ → Zp is

injective. Together with Lemma 5.1, this would prove the assertion.
So, assume Φ(x) = Φ(y). The Dedekind property gives an ideal Q ⊂ A

such that:
(x− y) = PiQ.

For I a nonzero ideal of A, let us denote by N(I) :=
∣∣A/I

∣∣ the norm
of I, and set also N(0) = 0. Recall that by the Dedekind property, N is
multiplicative with respect to the product of ideals in A and that for any
z ∈ A, the norm N(z) of the principal ideal zA coincides with the absolute
value of the following integer: ∏

s∈Gal (Q(ζ)/Q)

s(z).
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Applying norms to (x − y) = PiQ shows that N(Pi) = p divides the
integer N(x− y). Now with p as in the statement we have N(x− y) 6 p0

for any x, y ∈ Σ, so the induced map Φ : Σ → Zp is injective, and we are
done. �

Theorem 5.3. — A type k circulant graph having p � k vertices, with
p prime, has no quantum symmetry.

Proof. — This follows from Theorem 4.4 and Lemma 5.2, with p > 6ϕ(k).
�
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