ANNALES

DE

L’INSTITUT FOURIER

Marcia EDSON \& Luca Q. ZAMBONI
On the Number of Partitions of an Integer in the m-bonacci Base

Tome 56, $\mathrm{n}^{\mathrm{o}} 7$ (2006), p. 2271-2283.
http://aif.cedram.org/item?id=AIF_2006__56_7_2271_0

Abstract

© Association des Annales de l'institut Fourier, 2006, tous droits réservés.

L'accès aux articles de la revue «Annales de l'institut Fourier» (http://aif.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://aif.cedram.org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

ON THE NUMBER OF PARTITIONS OF AN INTEGER IN THE m-BONACCI BASE

by Marcia EDSON \& Luca Q. ZAMBONI

Abstract. - For each $m \geqslant 2$, we consider the m-bonacci numbers defined by $F_{k}=2^{k}$ for $0 \leqslant k \leqslant m-1$ and $F_{k}=F_{k-1}+F_{k-2}+\cdots+F_{k-m}$ for $k \geqslant m$. When $m=2$, these are the usual Fibonacci numbers. Every positive integer n may be expressed as a sum of distinct m-bonacci numbers in one or more different ways. Let $R_{m}(n)$ be the number of partitions of n as a sum of distinct m-bonacci numbers. Using a theorem of Fine and Wilf, we obtain a formula for $R_{m}(n)$ involving sums of binomial coefficients modulo 2 . In addition we show that this formula may be used to determine the number of partitions of n in more general numeration systems including generalized Ostrowski number systems in connection with Episturmian words.

Résumé. - Pour $m \geqslant 2$, on définit les nombres de m-bonacci $F_{k}=2^{k}$ pour $0 \leqslant k \leqslant m-1$ et $F_{k}=F_{k-1}+F_{k-2}+\cdots+F_{k-m}$ pour $k \geqslant m$. Dans le cas $m=2$, on retrouve les nombres de Fibonacci. Chaque entier positif n s'écrit comme une somme distincte de nombres de m-bonacci d'une ou plusieurs façons. Soit $R_{m}(n)$ le nombre de partitions de n en base m-bonacci. En utilisant un théorème de Fine et Wilf on déduit une formule pour $R_{m}(n)$ comme somme de coefficients binomiaux modulo 2. De plus, nous montrons que cette formule peut-être utilisée pour déterminer le nombre de partitions de n dans des systèmes généraux de numération incluant les systèmes de nombres d'Ostrowski généralisés associés aux suites episturmiennes.

1. Introduction and Preliminaries

For each $m \geqslant 2$, we define the m-bonacci numbers by $F_{k}=2^{k}$ for $0 \leqslant k \leqslant m-1$ and $F_{k}=F_{k-1}+F_{k-2}+\cdots+F_{k-m}$ for $k \geqslant m$. When $m=2$, these are the usual Fibonacci numbers. We denote by $\{0,1\}^{*}$ the set of all words $w=w_{1} w_{2} \cdots w_{k}$ with $w_{i} \in\{0,1\}$. Each positive integer n may be expressed as a sum of distinct m-bonacci in one or more different ways.

Keywords: Numeration systems, Fibonacci numbers, Fine and Wilf theorem, episturmian words.
Math. classification: 11B39, 11B50, 68R15.

That is we can write $n=\sum_{i=1}^{k} w_{i} F_{k-i}$ where $w_{i} \in\{0,1\}$ and $w_{1}=1$. We call the associated $\{0,1\}$-word $w_{1} w_{2} \cdots w_{k}$ a representation of n. One way of obtaining such a representation is by applying the "greedy algorithm". This gives rise to a representation of n of the form $w=w_{1} w_{2} \cdots w_{k}$ with the property that w does not contain m consecutive 1 's. Such a representation of n is necessarily unique and is called the m-Zeckendorff representation of n, denoted $Z_{m}(n)$ [13]. For example, taking $m=2$ and applying the greedy algorithm to $n=50$ we obtain $50=34+13+3=F_{7}+F_{5}+F_{2}$ which gives rise to the representation $Z_{2}(50)=10100100$. A $\{0,1\}$-word w beginning in 1 and having no occurrences of 1^{m} will be called a m-Zeckendorff word.

Other representations arise from the fact that an occurrence of 10^{m} in a given representation of n may be replaced by 01^{m} to obtain another representation of n, and conversely. Thus a number n has a unique representation in the m-bonacci base if and only if $Z_{m}(n)$ does not contain any occurrences of 0^{m}. For example, again taking $m=2$ and $n=50$ we obtain the following 6 representations (arranged in decreasing lexicographic order):

$$
\begin{gathered}
10100100 \\
10100011 \\
10011100 \\
10011011 \\
1111100 \\
1111011
\end{gathered}
$$

We are interested in the sequence $R_{m}(n)$ which counts the number of distinct partitions of n in the m-bonacci base. More precisely, given $n \in \mathbb{Z}^{>0}$ we set

$$
\Omega_{m}(n)=\left\{w=w_{1} w_{2} \cdots w_{k} \in\{0,1\}^{*} \mid w_{1}=1 \text { and } n=\sum_{i=1}^{k} w_{i} F_{k-i}\right\}
$$

and put $R_{m}(n)=\# \Omega_{m}(n)$. For $w \in \Omega_{m}(n)$ we will sometimes write $R_{m}(w)$ for $R_{m}(n)$. Also we let $R_{m}^{s}(w)$ denote the number of representations of n which are less or equal to w in the lexicographic order. As $Z_{m}(n)$ is the largest representation of n with respect to the lexicographic order, it follows that $R_{m}(n)=R^{\leqslant}\left(Z_{m}(n)\right)$.

In a 1968 paper L. Carlitz [3] studied the multiplicities of representations of n as sums of distinct Fibonacci numbers; he obtained recurrence relations for $R_{2}(n)$ and explicit formulae for $R_{2}(n)$ in the case $Z_{2}(n)$ contains 1,2 or 3 Fibonacci numbers. He states in the paper however that a general formula for the number of partitions of n in the Fibonacci base appears
to be very complicated. In [1] J. Berstel derives a formula for $R_{2}(n)$ as a product of 2×2 matrices (see Proposition 4.1 in [1]). Recently, P. Kocábová, Z. Masácová, and E. Pelantová [10] extended Berstel's result to $R_{m}(n)$ for all $m \geqslant 2$ again as a product of 2×2 matrices.

In this paper we give a formula for $R_{m}(n)$ involving sums of binomial coefficients modulo 2. Our proof makes use of the well known Fine and Wilf Theorem [4]. In order to state our main result, we first consider a special factorization of $Z_{m}(n)$: Either $Z_{m}(n)$ contains no occurrences of 0^{m} (in which case $R_{m}(n)=1$), or $Z_{m}(n)$ can be factored uniquely in the form

$$
Z_{m}(n)=V_{1} U_{1} V_{2} U_{2} \cdots V_{N} U_{N} W
$$

where

- $V_{1}, V_{2}, \ldots, V_{N}$ and W do not contain any occurrences of 0^{m}.
- 0^{m-1} is not a suffix of $V_{1}, V_{2}, \ldots, V_{N}$.
- Each U_{i} is of the form

$$
U_{i}=10^{m-1} x_{k} 0^{m-1} x_{k-1} \cdots 0^{m-1} x_{0} 0^{m}
$$

with $x_{i} \in\{0,1\}$.
We shall refer to this factorization as the principal factorization of $Z_{m}(n)$ and call the U_{i} indecomposable factors. We observe that in the special case of $m=2$, the factors V_{i} are empty. Each indecomposable factor U_{i} may be coded by a positive integer r_{i} whose base 2 expansion is $1 x_{k} x_{k-1} \cdots x_{0}$, in other words $r_{i}=1 \cdot 2^{k+1}+x_{k} \cdot 2^{k}+\cdots x_{1} \cdot 2+x_{0}$.
Given a positive integer r whose base 2 expansion is $1 x_{k} x_{k-1} \cdots x_{0}$, we set

$$
[r]=10^{m-1} x_{k} 0^{m-1} x_{k-1} \cdots 0^{m-1} x_{0} 0^{m}
$$

We now state our main result:
Theorem 1.1. - Let $m \geqslant 2$. Given a positive integer n, let $Z_{m}(n)=$ $V_{1} U_{1} V_{2} U_{2} \cdots V_{N} U_{N} W$ be the principal factorization of the m-Zeckendorff representation of n as defined above. Then the number of distinct partitions of n as sums of distinct m-bonacci numbers is given by

$$
R_{m}(n)=\prod_{i=1}^{N} \sum_{j=0}^{r_{i}}\binom{2 r_{i}-j}{j} \quad(\bmod 2)
$$

where $\left[r_{i}\right]=U_{i}$ for each $1 \leqslant i \leqslant N$.

2. Proof of Theorem 1.1

Let $Z_{m}(n)=V_{1} U_{1} V_{2} U_{2} \cdots V_{N} U_{N} W$ be the principal factorization of $Z_{m}(n)$ described above. Then the number of partitions of n is simply the product of the number of partitions of each indecomposable factor:

$$
\begin{equation*}
R_{m}(n)=\prod_{i=1}^{N} R_{m}\left(U_{i}\right) \tag{2.1}
\end{equation*}
$$

In fact, any representation of n as a sum of distinct m-bonacci numbers may be factored in the form

$$
V_{1} U_{1}^{\prime} V_{2} U_{2}^{\prime} \cdots V_{N} U_{N}^{\prime} W
$$

where for each $1 \leqslant i \leqslant N, U_{i}^{\prime}$ is an equivalent representation of U_{i}. To see this we first observe that since the V_{i} and W contain no 0^{m}, we have $R_{m}\left(V_{i}\right)=R_{m}(W)=1$. So the only way that V_{i} or W could change in an alternate representation of n would be as a result of a neighboring indecomposable factor. If V_{i} contains an occurrence of 1 , then since V_{i} does not end in 0^{m-1} the last occurrence of 1 in V_{i} can never be followed by 0^{m}. In other words the last 1 in V_{i} can never move into the U_{i} that follows. If V_{i} contains no occurrences of 1 , then $V_{i}=0^{r}$ with $r<m-1$. Since the indecomposable factor U_{i-1} preceding V_{i} ends in $K m$ many consecutive 0's (for some $K \geqslant 1$), any equivalent representation of U_{i-1} either ends in 0^{m} or in 1^{m}, and since V_{i} does not begin in 0^{m}, any representation of U_{i-1} terminating in 1^{m} will never be followed by 0^{m}. In other words, no 1 in U_{i-1} can ever move into V_{i} or in the following U_{i}. A similar argument applies to the indecomposable factor U_{N} preceding W.

Thus in view of (2.1) above, in order to prove Theorem 1.1, it remains to show that for each positive integer $r=1 \cdot 2^{k+1}+x_{k} \cdot 2^{k}+\cdots x_{1} \cdot 2+x_{0}$, we have

$$
\begin{equation*}
R_{m}([r])=\sum_{j=0}^{r}\binom{2 r-j}{j} \quad(\bmod 2) \tag{2.2}
\end{equation*}
$$

For each positive integer n there is a natural decomposition of the set $\Omega_{m}(n)$ of all partitions of n in the m-bonacci base: Let F be the largest m-bonacci number less or equal to n. We denote by $\Omega_{m}^{+}(n)$ the set of all partitions of n involving F and $\Omega_{m}^{-}(n)$ the set of all partitions of n not involving F, and set $R_{m}^{+}(n)=\# \Omega_{m}^{+}(n)$ and $R_{m}^{-}(n)=\# \Omega_{m}^{-}(n)$. Clearly

$$
R_{m}(n)=R_{m}^{+}(n)+R_{m}^{-}(n)
$$

We will make use of the following recursive relations:

Lemma 2.1. - Let $U=10^{m-1} x_{k} 0^{m-1} x_{k-1} \cdots 0^{m-1} x_{0} 0^{m}$ with $x_{i} \in$ $\{0,1\}$. Then

$$
\begin{aligned}
& R_{m}^{+}\left(10^{m-1} 10^{m-1} x_{k} 0^{m-1} x_{k-1} \cdots 0^{m-1} x_{0} 0^{m}\right)=R_{m}(U)=R_{m}^{+}(U)+R_{m}^{-}(U) \\
& R_{m}^{-}\left(10^{m-1} 10^{m-1} x_{k} 0^{m-1} x_{k-1} \cdots 0^{m-1} x_{0} 0^{m}\right)=R_{m}^{-}(U) \\
& R_{m}^{+}\left(10^{m-1} 00^{m-1} x_{k} 0^{m-1} x_{k-1} \cdots 0^{m-1} x_{0} 0^{m}\right)=R_{m}^{+}(U) \\
& R_{m}^{-}\left(10^{m-1} 00^{m-1} x_{k} 0^{m-1} x_{k-1} \cdots 0^{m-1} x_{0} 0^{m}\right)=R_{m}(U)=R_{m}^{+}(U)+R_{m}^{-}(U)
\end{aligned}
$$

Proof. - It is easy to see that $w \in \Omega_{m}^{+}\left(10^{m-1} U\right)$ if and only if w is of the form $w=10^{m-1} w^{\prime}$ for some $w^{\prime} \in \Omega_{m}(U)$. Whence $R_{m}^{+}\left(10^{m-1} U\right)=R_{m}(U)$. Similarly, $w \in \Omega_{m}^{-}\left(10^{m-1} U\right)$ if and only if w is of the form $w=01^{m} w^{\prime}$ for some $w^{\prime} \in \Omega_{m}^{-}(U)$. Whence $R_{m}^{-}\left(10^{m-1} U\right)=R_{m}^{-}(U)$. A similar argument applies to the remaining two identities.

Fix a positive integer $r=1 \cdot 2^{k+1}+x_{k} \cdot 2^{k}+\cdots x_{1} \cdot 2+x_{0}$. The above lemma can be used to compute $R_{m}([r])$ as follows: We construct a tower of $k+2$ levels $L_{0}, L_{1}, \cdots, L_{k+1}$, where each level L_{i} consists of an ordered pair (a, b) of positive integers. We start with level 0 by setting $L_{0}=(1,1)$. Then L_{i+1} is obtained from L_{i} according to the value of x_{i}. If $L_{i}=(a, b)$, then $L_{i+1}=(a, a+b)$ if $x_{i}=0$, and $L_{i+1}=(a+b, b)$ if $x_{i}=1$. It follows from the above Lemma that $L_{k+1}=\left(R_{m}^{+}([r]), R_{m}^{-}([r])\right)$. Hence $R_{m}([r])$ is the sum of the entries of level L_{k+1}.

By the well known Fine and Wilf Theorem [4], given a pair of relatively prime numbers (p, q), there exists a $\{0,1\}$-word w of length $p+q-2$ (unique up to isomorphism) having periods p and q, and if p and q are both greater than 1 , then this word contains both 0 's and 1 '; in other words $1=\operatorname{gcd}(p, q)$ is not a period. We call such a word a Fine and Wilf word relative to (p, q). Moreover it can be shown (see [12] for example) that if both p and q are greater than 1 , then the suffixes of w of lengths p and q begin in different symbols. We denote by $F W(p, q)$ the unique Fine and Wilf word relative to (p, q) with the property that its suffix of length p begins in 0 and its suffix of length q begins in 1 .

We now apply this to the ordered pair $(p, q)=\left(R_{m}^{+}([r]), R_{m}^{-}([r])\right)$. It is well known that $F W\left(R_{m}^{+}([r]), R_{m}^{-}([r])\right) 01$ is given explicitly by the following composition of morphisms:

$$
F W\left(R_{m}^{+}([r]), R_{m}^{-}([r])\right) 01=\tau_{x_{0}} \circ \tau_{x_{1}} \circ \cdots \circ \tau_{x_{k}}(01)
$$

where

$$
\begin{array}{lr}
\tau_{0}(0)=0 & \tau_{0}(1)=01 \\
\tau_{1}(0)=10 & \tau_{1}(1)=1
\end{array}
$$

(see for instance $[5,12]$).

Let

$$
\alpha(r)=\left|F W\left(R_{m}^{+}([r]), R_{m}^{-}([r])\right) 01\right|_{1}
$$

and

$$
\beta(r)=\left|F W\left(R_{m}^{+}([r]), R_{m}^{-}([r])\right) 01\right|_{0}
$$

in other words, $\alpha(r)$ is the number of occurrences of 1 in

$$
F W\left(R_{m}^{+}([r]), R_{m}^{-}([r])\right) 01
$$

and $\beta(r)$ the number of 0 's in

$$
F W\left(R_{m}^{+}([r]), R_{m}^{-}([r])\right) 01
$$

In summary:

$$
\begin{aligned}
R_{m}([r]) & =R_{m}^{+}([r])+R_{m}^{-}([r]) \\
& =R_{m}^{+}([r])+R_{m}^{-}([r])-2+2 \\
& =\left|F W\left(R_{m}^{+}([r]), R_{m}^{-}([r])\right)\right|+2 \\
& =\left|F W\left(R_{m}^{+}([r]), R_{m}^{-}([r])\right) 01\right| \\
& =\left|\tau_{x_{0}} \circ \tau_{x_{1}} \circ \cdots \circ \tau_{x_{k}}(01)\right| \\
& =\left|\tau_{x_{0}} \circ \tau_{x_{1}} \circ \cdots \circ \tau_{x_{k}}(01)\right|_{1}+\left|\tau_{x_{0}} \circ \tau_{x_{1}} \circ \cdots \circ \tau_{x_{k}}(01)\right|_{0} \\
& =\alpha(r)+\beta(r) \\
& =\left|\tau_{1} \circ \tau_{x_{0}} \circ \tau_{x_{1}} \circ \cdots \circ \tau_{x_{k}}(01)\right|_{1} \\
& =\alpha(2 r+1) .
\end{aligned}
$$

The key step in the proof of Theorem 1.1 is to replace above the sum of the periods $R_{m}^{+}([r])+R_{m}^{-}([r])$ of the Fine and Wilf word $F W\left(R_{m}^{+}([r]), R_{m}^{-}([r])\right)$ by the sum of the number of occurrences of 0's and 1's in $F W\left(R_{m}^{+}([r])\right.$, $\left.R_{m}^{-}([r])\right) 01$. The following basic identities are readily verified:

- $\alpha(1)=\beta(1)=1$.
- $\alpha(2 r)=\alpha(r)$.
- $\beta(2 r)=\alpha(r)+\beta(r)$.
- $\alpha(2 r+1)=\alpha(r)+\beta(r)$.
- $\beta(2 r+1)=\beta(r)$.
- $\beta(r)=\alpha(r+1)$.

Summarizing we have
Proposition 2.2. - Let $U=10^{m-1} x_{k} 0^{m-1} x_{k-1} \cdots 0^{m-1} x_{0} 0^{m}$ with $x_{i} \in\{0,1\}$. Let r be the number whose base 2 expansion is given by $1 x_{k} x_{k-1} \cdots x_{0}$. Then $R_{m}(U)=\alpha(2 r+1)$ where the sequence $\alpha(r)$ is defined recursively by:

- $\alpha(1)=1$
- $\alpha(2 r)=\alpha(r)$
- $\alpha(2 r+1)=\alpha(r)+\alpha(r+1)$.

We now consider a new function $\psi(r)$ defined by $\psi(1)=1$, and for $r \geqslant 1$

$$
\psi(r+1)=\sum_{j=0}^{2 j \leqslant r}\binom{r-j}{j} \quad(\bmod 2)
$$

We will show that $\psi(r)$ and $\alpha(r)$ satisfy the same recursive relations, namely: $\psi(2 r)=\psi(r)$ and $\psi(2 r+1)=\psi(r)+\psi(r+1)$. Thus $\alpha(r)=\psi(r)$ for each r thereby establishing formula (2.2).

We shall make use of the following lemma:
Lemma 2.3. - $\binom{n}{k}(\bmod 2)=\binom{2 n+1}{2 k}(\bmod 2)+\binom{2 n}{2 k+1}(\bmod 2)$.
Proof. - This follows immediately from the so-called Lucas' identities: $\binom{2 n}{2 k+1}=0(\bmod 2)$ for $0 \leqslant k \leqslant n-1$, and $\binom{n}{k}=\binom{2 n+1}{2 k}(\bmod 2)$ for $0 \leqslant k \leqslant n$.

Proposition 2.4. - For $r \geqslant 0$ we have $\psi(2 r+2)=\psi(r+1)$ and for $r \geqslant 1$ we have $\psi(2 r+1)=\psi(r)+\psi(r+1)$.

Proof. - By Lemma 2.3 we have

$$
\begin{aligned}
\psi(r+1) & =\sum_{j=0}^{2 j \leqslant r}\binom{r-j}{j} \quad(\bmod 2) \\
& =\sum_{j=0}^{2 j \leqslant r}\left(\binom{2 r-2 j+1}{2 j} \quad(\bmod 2)+\binom{2 r-2 j}{2 j+1} \quad(\bmod 2)\right) \\
& =\sum_{i=0}^{r}\binom{2 r+1-i}{i} \quad(\bmod 2) \\
& =\psi(2 r+2)
\end{aligned}
$$

As for the second recursive relation we have

$$
\begin{aligned}
\psi(2 r+1) & =\sum_{j=0}^{r}\binom{2 r-j}{j} \quad(\bmod 2) \\
& =\sum_{i=0}^{2 i \leqslant r}\binom{2 r-2 i}{2 i} \quad(\bmod 2)+\sum_{i=0}^{2 i \leqslant r-1}\binom{2 r-2 i-1}{2 i+1} \quad(\bmod 2)
\end{aligned}
$$

But

$$
\begin{aligned}
\binom{2 r-2 i}{2 i} \quad(\bmod 2) & =\frac{(2 r-2 i)!}{(2 i)!(2 r-4 i)!} \quad(\bmod 2) \\
& =\frac{(2 r-2 i+1)!}{(2 i)!(2 r-4 i+1)!} \quad(\bmod 2) \\
& =\binom{2 r-2 i+1}{2 i} \quad(\bmod 2) \\
& =\binom{r-i}{i} \quad(\bmod 2) \quad \text { by Lemma } 2.3
\end{aligned}
$$

Hence

$$
\sum_{i=0}^{2 i \leqslant r}\binom{2 r-2 i}{2 i} \quad(\bmod 2)=\sum_{i=0}^{2 i \leqslant r}\binom{r-i}{i} \quad(\bmod 2)=\psi(r+1)
$$

Similarly

$$
\begin{aligned}
\binom{2 r-2 i-1}{2 i+1} \quad(\bmod 2) & =\frac{(2 r-2 i-1)!}{(2 i+1)!(2 r-4 i-2)!} \quad(\bmod 2) \\
& =\frac{(2 r-2 i-1)!}{(2 i)!(2 r-4 i-1)!} \quad(\bmod 2) \\
& =\binom{2 r-2 i-1}{2 i} \quad(\bmod 2) \\
& =\binom{r-1-i}{i} \quad(\bmod 2) \quad \text { by Lemma } 2.3
\end{aligned}
$$

Hence

$$
\sum_{i=0}^{2 i \leqslant r-1}\binom{2 r-2 i-1}{2 i+1} \quad(\bmod 2)=\sum_{i=0}^{2 i \leqslant r-1}\binom{r-1-i}{i} \quad(\bmod 2)=\psi(r)
$$

It follows that $\psi(2 r+1)=\psi(r)+\psi(r+1)$.
Having established that $\alpha(r)=\psi(r)$ for each $r \geqslant 1$, we deduce that:
Corollary 2.5. - Let $U=10^{m-1} x_{k} 0^{m-1} x_{k-1} \cdots 0^{m-1} x_{0} 0^{m}$ with $x_{i} \in$ $\{0,1\}$. Let r be the number whose base 2 expansion is given by $1 x_{k} x_{k-1} \cdots x_{0}$. Then $R_{m}(U)=\sum_{j=0}^{r}\binom{2 r-j}{j}(\bmod 2)$.

This concludes our proof of Theorem 1.1.

3. Concluding Remarks

3.1. A formula for $R_{\underset{m}{s}}^{\lessgtr}(w)$

Our proof applies more generally to give a formula for $R_{m}^{\leqslant}(w)$ for each representation w of n. In other words, given $w \in \Omega_{m}(n)$, then either w does not contain any occurrences of 0^{m} (in which case $R_{m}^{\lessgtr}(w)=1$) or w may be factored in the form

$$
w=V_{1} U_{1} V_{2} U_{2} \cdots V_{N} U_{N} W
$$

where the V_{i} and W do not contain any occurrences of 0^{m} and the V_{i} do not end in 0^{m-1}, and where the U_{i} are of the form

$$
U_{i}=10^{m-1} x_{k} 0^{m-1} x_{k-1} \cdots 0^{m-1} x_{0} 0^{m}
$$

with $x_{i} \in\{0,1\}$. Each factor U_{i} is coded by a positive integer r_{i} whose base 2 expansion is $1 x_{k} x_{k-1} \cdots x_{0}$. It is easy to see that any representation of n less or equal to w may be factored in the form

$$
V_{1} U_{1}^{\prime} V_{2} U_{2}^{\prime} \cdots V_{N} U_{N}^{\prime} W
$$

where for each $1 \leqslant i \leqslant N, U_{i}^{\prime}$ is an equivalent representation of U_{i}. Hence $R_{m}^{\leqslant}(w)=\prod_{i=1}^{N} R_{m}\left(U_{i}\right)$ from which it follows that

$$
R_{m}^{\leqslant}(w)=\prod_{i=1}^{N} \sum_{j=0}^{r_{i}}\binom{2 r_{i}-j}{j} \quad(\bmod 2)
$$

3.2. Episturmian numeration systems

Let A be a finite non-empty set. Associated to an infinite word $\omega=$ $\omega_{1} \omega_{2} \omega_{3} \ldots \in A^{\mathbb{N}}$ is a non-decreasing sequence of positive integers $\mathcal{E}(\omega)=$ $E_{1}, E_{2}, E_{3}, \ldots$ defined recursively as follows: $E_{1}=1$, and for $k \geqslant 1$, the quantity E_{k+1} is defined by the following rule: If $\omega_{k+1} \neq \omega_{j}$ for each $1 \leqslant$ $j \leqslant k$, then set

$$
E_{k+1}=1+\sum_{j=1}^{k} E_{j}
$$

Otherwise let $\ell \leqslant k$ be the largest integer such that $\omega_{k+1}=\omega_{\ell}$, and set

$$
E_{k+1}=\sum_{j=\ell}^{k} E_{j}
$$

In particular we note that $E_{k+1}=E_{k}$ if and only if $\omega_{k+1}=\omega_{k}$.

Set $\mathcal{N}(\omega)=\left\{E_{k} \mid k \geqslant 1\right\}$. For $E \in \mathcal{N}(\omega)$ let $k \geqslant 1$ be such that $E=E_{k}$. We define $\sigma(E)=\omega_{k}$ and say that E is based at $\omega_{k} \in A$. We also define the quantity $\rho(E)$, which we call the multiplicity of E, by

$$
\rho(E)=\#\left\{i \geqslant 1 \mid E=E_{i}\right\} .
$$

We can write $\mathcal{N}(\omega)=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ where for each $i \geqslant 1$ we have $x_{i}<$ x_{i+1}. Thus we have that $\omega=\sigma\left(x_{1}\right)^{\rho\left(x_{1}\right)} \sigma\left(x_{2}\right)^{\rho\left(x_{2}\right)} \ldots$..

It can be verified that the set $\mathcal{N}(\omega)$ defines a numeration system (see [8]). More precisely, each positive integer n may be written as a sum of the form

$$
\begin{equation*}
n=m_{k} x_{k}+m_{k-1} x_{k-1}+\cdots+m_{1} x_{1} \tag{3.1}
\end{equation*}
$$

where for each $1 \leqslant i \leqslant k$ we have $0 \leqslant m_{i} \leqslant \rho\left(x_{i}\right)$ and $m_{k} \geqslant 1$. While such a representation of n is not necessarily unique, one way of obtaining such a representation is to use the "greedy algorithm". In this case we call the resulting representation the Zeckendorff representation of n and denote it $Z_{\omega}(n)$. We call the above numeration system a generalized Ostrowski system or an Episturmian numeration system. In fact, the quantities E_{i} are closely linked to the lengths of the palindromic prefixes of the characteristic Episturmian word associated to the directive sequence ω (see [6, 7, 8, 9]). In case $\# A=2$, this is known as the Ostrowski numeration system (see $[1,2,11])$. In case $A=\{1,2, \ldots, m\}$ and ω is the periodic sequence $\omega=$ $(1,2,3, \ldots, m,)^{\infty}$, then the resulting numeration system is the m-bonacci system defined earlier.

Given an infinite word $\omega=\omega_{1} \omega_{2} \omega_{3} \ldots \in A^{\mathbb{N}}$, we are interested in the number of distinct ways of writing each positive integer n as a sum of the form (3.1). More precisely, denoting by \hat{A} the set $\{\hat{a} \mid a \in A\}$, we set $R_{\omega}(n)=\# \Omega_{\omega}(n)$ where $\Omega_{\omega}(n)$ is the set of all expressions of the form

$$
\begin{align*}
& {\widehat{\sigma\left(x_{k}\right)}}^{m_{k}} \sigma\left(x_{k}\right)^{\rho\left(x_{k}\right)-m_{k}} \sigma{\widehat{\left(x_{k-1}\right)}}^{m_{k-1}} \tag{3.2}\\
& \quad \sigma\left(x_{k-1}\right)^{\rho\left(x_{k-1}\right)-m_{k-1}} \cdots{\widehat{\sigma\left(x_{1}\right)}}^{m_{1}} \sigma\left(x_{1}\right)^{\rho\left(x_{1}\right)-m_{1}}
\end{align*}
$$

in $(A \cup \hat{A})^{*}$, such that $n=m_{k} x_{k}+m_{k-1} x_{k-1}+\cdots+m_{1} x_{1}$ where $\mathcal{N}(\omega)=$ $\left\{x_{1}, x_{2}, x_{3}, \ldots \mid 1=x_{1}<x_{2}<x_{3} \ldots\right\}$ and where $0 \leqslant m_{i} \leqslant \rho\left(x_{i}\right)$ and $m_{k} \geqslant 1$. ${ }^{(1)}$ For $w \in \Omega_{\omega}(n)$ we sometimes write $R_{\omega}(w)$ for $R_{\omega}(n)$.

Just as in the previous section, we begin with a unique special factorization of the Zeckendorff representation of n. In this case, this factorization

[^0]was originally defined by Justin and Pirillo (see Theorem 2.7 in [8]):
$$
Z_{\omega}(n)=V_{1} U_{1} V_{2} U_{2} \cdots V_{N} U_{N} W
$$
where for each $1 \leqslant i \leqslant N$ we have that U_{i} is a a_{i}-based maximal semigood multiblock for some $a_{i} \in A$. Moreover any other representation of n may be factored in the form
$$
Z_{\omega}(n)=V_{1} U_{1}^{\prime} V_{2} U_{2}^{\prime} \cdots V_{N} U_{N}^{\prime} W
$$
where U_{i}^{\prime} is an equivalent representation of U_{i} (see Theorem 2.7 in [8]). Thus as before (see (2.1)) we have
$$
R_{\omega}(n)=\prod_{i=1}^{N} R_{\omega}\left(U_{i}\right)
$$

For each $1 \leqslant i \leqslant N$ the factor U_{i} corresponds to a sum of the form

$$
m_{K} x_{K}+m_{K-1} x_{K-1}+\cdots+m_{k} x_{k}
$$

for some $K>k$ with $m_{K} \neq 0$, and for each $K \geqslant j \geqslant k$ we have that if $m_{j} \neq 0$, then $\sigma\left(x_{j}\right)=a_{i}[8]$. In other words the only "accented" symbol occurring in U_{i} is a_{i}, i.e., $U_{i} \in\left(A \cup\left\{\hat{a_{i}}\right\}\right)^{*}$.

Associated to U_{i} is a $\{0,1\}$-word $\nu\left(U_{i}\right)=\nu_{K} \nu_{K-1} \ldots \nu_{k}$ where $\nu_{K}=10$, $\nu_{j}=\varepsilon$ (the empty word) if $\sigma\left(x_{j}\right) \neq a_{i}, \nu_{j}=10$ if $\sigma\left(x_{j}\right)=a_{i}$ and $m_{j}=$ $\rho\left(x_{j}\right), \nu_{j}=010$ if $\sigma\left(x_{j}\right)=a_{i}$ and $0<m_{j}<\rho\left(x_{j}\right)$ and $\nu_{j}=00$ if $\sigma\left(x_{j}\right)=a_{i}$ and $m_{j}=0$.

By comparing the matrix formulation given in Corollary 2.11 in [8] used to compute $R_{\omega}\left(U_{i}\right)$ with the matrix formulation given in Proposition 4.1 in [1], we leave it to the reader to verify the following:

Proposition 3.1. - $R_{\omega}\left(U_{i}\right)=R_{2}\left(\nu\left(U_{i}\right)\right)$.
In other words computing the multiplicities of representations in a generalized Ostrowski numeration system may be reduced to a computation of the multiplicities of representations in the Fibonacci base.

Example 3.2. - We consider the example originally started in Berstel's paper [1] and later revisited by Justin and Pirillo as Example 2.3 in [8] of the Ostrowski numeration system associated to the infinite word $\omega=$ $a, a, b, b, a, a, a, b, b, a, a, b, b, a, a, a, b, \ldots$ It is readily verified that

$$
\mathcal{N}(\omega)=\{1,3,7,24,55,134,323, \ldots\}
$$

$\sigma(1)=\sigma(7)=\sigma(55)=\sigma(323)=a, \sigma(3)=\sigma(24)=\sigma(134)=b$, and $\rho(1)=2, \rho(3)=2, \rho(7)=3, \rho(24)=2, \rho(55)=2, \rho(134)=2, \rho(323)=3$.

Applying the greedy algorithm we obtain the following representation of the number 660

$$
660=2(323)+0(134)+0(55)+0(24)+2(7)+0(3)+0(1)
$$

So $Z_{\omega}(660)=\hat{a} \hat{a} a b b a a b b \hat{a} \hat{a} a b b a a$. which is a semigood multiblock based at a. We deduce that

$$
\nu\left(Z_{\omega}(660)\right)=10 \cdot \varepsilon \cdot 00 \cdot \varepsilon \cdot 010 \cdot \varepsilon \cdot 00
$$

or simply $\nu\left(Z_{\omega}(660)\right)=100001000$.
Following the algorithm of Corollary 2.11 of [8] due to Justin and Pirillo, we obtain $q_{1}=2, q_{2}=4, p_{1}=2, p_{2}=2, c_{1}=c_{2}=1$, so that

$$
R_{\omega}(660)=(1,0)\left(\begin{array}{ll}
0 & 2 \\
0 & 3
\end{array}\right)\left(\begin{array}{ll}
0 & 2 \\
0 & 3
\end{array}\right)\binom{1}{1}=6
$$

In contrast, applying the algorithm in Proposition 4.1 of [1] due to Berstel to the Zeckendorff word $\nu\left(Z_{\omega}(660)\right)=100001000$, we obtain $d_{1}=4, d_{2}=3$ so that

$$
R_{2}\left(\nu\left(Z_{\omega}(660)\right)\right)=(1,1)\left(\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)\binom{1}{0}=6
$$

as required ${ }^{(2)}$

Acknowledgements

The second author was partially supported by a grant from the National Security Agency.

BIBLIOGRAPHY

[1] J. Berstel, "An exercise on Fibonacci representations, A tribute to Aldo de Luca", RAIRO, Theor. Inform. Appl. 35 (2002), p. 491-498.
[2] V. Berthé, "Autour du système de numération d'Ostrwoski", Bull. Belg. Math. Soc. Simon Stevin 8 (2001), p. 209-239, Journées Montoises d'Informatique Théorique (Marne-la-Vallée, 2000).
[3] L. Carlitz, "Fibonacci representations", Fibonacci Quarterly 6(4) (1968), p. 193220.
[4] N. Fine \& H. Wilf, "Uniqueness theorem for periodic functions", Proc. Amer. Math. Soc. 16 (1965), p. 109-114.
[5] O. Jenkinson \& L. Zamboni, "Characterizations of balanced words via orderings", Theoret. Comput. Sci. 310 (2004), p. 247-271.

[^1][6] J. Justin, "Algebraic combinatorics and Computer Science", chap. Episturmian words and morphisms (results and conjectures), p. 533-539, Springer Italia, Milan, 2001.
[7] J. Justin \& G. Pirillo, "Episturmian words and Episturmian morphisms", Theoret. Comput. Sci. 302 (2003), p. 1-34.
[8] -, "Episturmian words: shifts, morphisms and numeration systems", Internat. J. Found. Comput. Sci. 15 (2004), p. 329-348.
[9] J. Justin \& L. Vuillon, "Return words in Sturmian and Episturmian words", Theor. Inform. Appl. 34 (2000), p. 343-356.
[10] P. Kocábová, Z. Masácová \& E. Pelantová, "Ambiguity in the m-bonacci numeration system", preprint, 2004.
[11] A. Ostrowski, "Bemerkungen zur Theorie der Diophantischen Approximation I", Abh. Math. Sem. Hamburg 1 (1922), p. 77-98.
[12] R. Tijdeman \& L. Zamboni, "Fine and Wilf words for any periods", Indag. Math. (N.S.) 14 (2003), p. 135-147.
[13] E. Zeckendorff, "Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas", Bull. Soc. Royale Sci. Liège 42 (1972), p. 179-182.

Marcia EDSON \& Luca Q. ZAMBONI
University of North Texas
Department of Mathematics
PO Box 311430
Denton, TX 76203-1430 (USA)
mre0006@unt.edu
luca@unt.edu

[^0]: ${ }^{(1)}$ Our notation here differs somewhat from that of Justin and Pirillo in [8]. For instance, in [8] the authors use the notation \bar{a} for in lieu of our \hat{a}. Also instead of the expression (3.2), they consider the reverse of this word.

[^1]: ${ }^{(2)}$ In [1], Berstel computes $R_{\omega}(660)$ in a different way by using the matrix formulation of Proposition 5.1 in [1] which applies to an Ostrowski numeration system.

