

ANNALES

DE

L'INSTITUT FOURIER

Marcia EDSON & Luca Q. ZAMBONI

On the Number of Partitions of an Integer in the *m***-bonacci Base** Tome 56, n° 7 (2006), p. 2271-2283.

<http://aif.cedram.org/item?id=AIF_2006__56_7_2271_0>

© Association des Annales de l'institut Fourier, 2006, tous droits réservés.

L'accès aux articles de la revue « Annales de l'institut Fourier » (http://aif.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://aif.cedram.org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/

ON THE NUMBER OF PARTITIONS OF AN INTEGER IN THE *m*-BONACCI BASE

by Marcia EDSON & Luca Q. ZAMBONI

ABSTRACT. — For each $m \ge 2$, we consider the *m*-bonacci numbers defined by $F_k = 2^k$ for $0 \le k \le m-1$ and $F_k = F_{k-1} + F_{k-2} + \cdots + F_{k-m}$ for $k \ge m$. When m = 2, these are the usual Fibonacci numbers. Every positive integer *n* may be expressed as a sum of distinct *m*-bonacci numbers in one or more different ways. Let $R_m(n)$ be the number of partitions of *n* as a sum of distinct *m*-bonacci numbers. Using a theorem of Fine and Wilf, we obtain a formula for $R_m(n)$ involving sums of binomial coefficients modulo 2. In addition we show that this formula may be used to determine the number of partitions of *n* in more general numeration systems including generalized Ostrowski number systems in connection with Epistumian words.

RÉSUMÉ. — Pour $m \ge 2$, on définit les nombres de m-bonacci $F_k = 2^k$ pour $0 \le k \le m-1$ et $F_k = F_{k-1} + F_{k-2} + \cdots + F_{k-m}$ pour $k \ge m$. Dans le cas m=2, on retrouve les nombres de Fibonacci. Chaque entier positif n s'écrit comme une somme distincte de nombres de m-bonacci d'une ou plusieurs façons. Soit $R_m(n)$ le nombre de partitions de n en base m-bonacci. En utilisant un théorème de Fine et Wilf on déduit une formule pour $R_m(n)$ comme somme de coefficients binomiaux modulo 2. De plus, nous montrons que cette formule peut-être utilisée pour déterminer le nombre de partitions de n dans des systèmes généraux de numération incluant les systèmes de nombres d'Ostrowski généralisés associés aux suites episturmiennes.

1. Introduction and Preliminaries

For each $m \ge 2$, we define the *m*-bonacci numbers by $F_k = 2^k$ for $0 \le k \le m-1$ and $F_k = F_{k-1} + F_{k-2} + \cdots + F_{k-m}$ for $k \ge m$. When m = 2, these are the usual Fibonacci numbers. We denote by $\{0, 1\}^*$ the set of all words $w = w_1 w_2 \cdots w_k$ with $w_i \in \{0, 1\}$. Each positive integer *n* may be expressed as a sum of distinct *m*-bonacci in one or more different ways.

Keywords: Numeration systems, Fibonacci numbers, Fine and Wilf theorem, episturmian words.

Math. classification: 11B39, 11B50, 68R15.

That is we can write $n = \sum_{i=1}^{k} w_i F_{k-i}$ where $w_i \in \{0, 1\}$ and $w_1 = 1$. We call the associated $\{0, 1\}$ -word $w_1 w_2 \cdots w_k$ a representation of n. One way of obtaining such a representation is by applying the "greedy algorithm". This gives rise to a representation of n of the form $w = w_1 w_2 \cdots w_k$ with the property that w does not contain m consecutive 1's. Such a representation of n is necessarily unique and is called the m-Zeckendorff representation of n, denoted $Z_m(n)$ [13]. For example, taking m = 2 and applying the greedy algorithm to n = 50 we obtain $50 = 34 + 13 + 3 = F_7 + F_5 + F_2$ which gives rise to the representation $Z_2(50) = 10100100$. A $\{0, 1\}$ -word w beginning in 1 and having no occurrences of 1^m will be called a m-Zeckendorff word.

Other representations arise from the fact that an occurrence of 10^m in a given representation of n may be replaced by 01^m to obtain another representation of n, and conversely. Thus a number n has a unique representation in the m-bonacci base if and only if $Z_m(n)$ does not contain any occurrences of 0^m . For example, again taking m = 2 and n = 50 we obtain the following 6 representations (arranged in decreasing lexicographic order):

```
10100100
10100011
10011100
10011011
1111100
11111011
```

We are interested in the sequence $R_m(n)$ which counts the number of distinct partitions of n in the *m*-bonacci base. More precisely, given $n \in \mathbb{Z}^{>0}$ we set

$$\Omega_m(n) = \{ w = w_1 w_2 \cdots w_k \in \{0,1\}^* | w_1 = 1 \text{ and } n = \sum_{i=1}^k w_i F_{k-i} \}$$

and put $R_m(n) = \#\Omega_m(n)$. For $w \in \Omega_m(n)$ we will sometimes write $R_m(w)$ for $R_m(n)$. Also we let $R_m^{\leq}(w)$ denote the number of representations of nwhich are less or equal to w in the lexicographic order. As $Z_m(n)$ is the largest representation of n with respect to the lexicographic order, it follows that $R_m(n) = R^{\leq}(Z_m(n))$.

In a 1968 paper L. Carlitz [3] studied the multiplicities of representations of n as sums of distinct Fibonacci numbers; he obtained recurrence relations for $R_2(n)$ and explicit formulae for $R_2(n)$ in the case $Z_2(n)$ contains 1, 2 or 3 Fibonacci numbers. He states in the paper however that a general formula for the number of partitions of n in the Fibonacci base appears to be very complicated. In [1] J. Berstel derives a formula for $R_2(n)$ as a product of 2×2 matrices (see Proposition 4.1 in [1]). Recently, P. Kocábová, Z. Masácová, and E. Pelantová [10] extended Berstel's result to $R_m(n)$ for all $m \ge 2$ again as a product of 2×2 matrices.

In this paper we give a formula for $R_m(n)$ involving sums of binomial coefficients modulo 2. Our proof makes use of the well known Fine and Wilf Theorem [4]. In order to state our main result, we first consider a special factorization of $Z_m(n)$: Either $Z_m(n)$ contains no occurrences of 0^m (in which case $R_m(n) = 1$), or $Z_m(n)$ can be factored uniquely in the form

$$Z_m(n) = V_1 U_1 V_2 U_2 \cdots V_N U_N W$$

where

- V_1, V_2, \ldots, V_N and W do not contain any occurrences of 0^m .
- 0^{m-1} is not a suffix of V_1, V_2, \ldots, V_N .
- Each U_i is of the form

$$U_i = 10^{m-1} x_k 0^{m-1} x_{k-1} \cdots 0^{m-1} x_0 0^m$$

with $x_i \in \{0, 1\}$.

We shall refer to this factorization as the principal factorization of $Z_m(n)$ and call the U_i indecomposable factors. We observe that in the special case of m = 2, the factors V_i are empty. Each indecomposable factor U_i may be coded by a positive integer r_i whose base 2 expansion is $1x_kx_{k-1}\cdots x_0$, in other words $r_i = 1 \cdot 2^{k+1} + x_k \cdot 2^k + \cdots x_1 \cdot 2 + x_0$.

Given a positive integer r whose base 2 expansion is $1x_kx_{k-1}\cdots x_0$, we set

$$[r] = 10^{m-1} x_k 0^{m-1} x_{k-1} \cdots 0^{m-1} x_0 0^m.$$

We now state our main result:

THEOREM 1.1. — Let $m \ge 2$. Given a positive integer n, let $Z_m(n) = V_1 U_1 V_2 U_2 \cdots V_N U_N W$ be the principal factorization of the m-Zeckendorff representation of n as defined above. Then the number of distinct partitions of n as sums of distinct m-bonacci numbers is given by

$$R_m(n) = \prod_{i=1}^N \sum_{j=0}^{r_i} \binom{2r_i - j}{j} \pmod{2}$$

where $[r_i] = U_i$ for each $1 \leq i \leq N$.

2. Proof of Theorem 1.1

Let $Z_m(n) = V_1 U_1 V_2 U_2 \cdots V_N U_N W$ be the principal factorization of $Z_m(n)$ described above. Then the number of partitions of n is simply the product of the number of partitions of each indecomposable factor:

(2.1)
$$R_m(n) = \prod_{i=1}^N R_m(U_i).$$

In fact, any representation of n as a sum of distinct m-bonacci numbers may be factored in the form

$$V_1 U_1' V_2 U_2' \cdots V_N U_N' W$$

where for each $1 \leq i \leq N$, U'_i is an equivalent representation of U_i . To see this we first observe that since the V_i and W contain no 0^m , we have $R_m(V_i) = R_m(W) = 1$. So the only way that V_i or W could change in an alternate representation of n would be as a result of a neighboring indecomposable factor. If V_i contains an occurrence of 1, then since V_i does not end in 0^{m-1} the last occurrence of 1 in V_i can never be followed by 0^m . In other words the last 1 in V_i can never move into the U_i that follows. If V_i contains no occurrences of 1, then $V_i = 0^r$ with r < m - 1. Since the indecomposable factor U_{i-1} preceding V_i ends in Km many consecutive 0's (for some $K \ge 1$), any equivalent representation of U_{i-1} either ends in 0^m or in 1^m , and since V_i does not begin in 0^m . In other words, no 1 in U_{i-1} can ever move into V_i or in the following U_i . A similar argument applies to the indecomposable factor U_N preceding W.

Thus in view of (2.1) above, in order to prove Theorem 1.1, it remains to show that for each positive integer $r = 1 \cdot 2^{k+1} + x_k \cdot 2^k + \cdots + x_1 \cdot 2 + x_0$, we have

(2.2)
$$R_m([r]) = \sum_{j=0}^r \binom{2r-j}{j} \pmod{2}.$$

For each positive integer n there is a natural decomposition of the set $\Omega_m(n)$ of all partitions of n in the m-bonacci base: Let F be the largest m-bonacci number less or equal to n. We denote by $\Omega_m^+(n)$ the set of all partitions of n involving F and $\Omega_m^-(n)$ the set of all partitions of n not involving F, and set $R_m^+(n) = \# \Omega_m^+(n)$ and $R_m^-(n) = \# \Omega_m^-(n)$. Clearly

$$R_m(n) = R_m^+(n) + R_m^-(n).$$

We will make use of the following recursive relations:

LEMMA 2.1. — Let $U = 10^{m-1}x_k0^{m-1}x_{k-1}\cdots 0^{m-1}x_00^m$ with $x_i \in \{0,1\}$. Then $R_m^+(10^{m-1}10^{m-1}x_k0^{m-1}x_{k-1}\cdots 0^{m-1}x_00^m) = R_m(U) = R_m^+(U) + R_m^-(U)$ $R_m^-(10^{m-1}10^{m-1}x_k0^{m-1}x_{k-1}\cdots 0^{m-1}x_00^m) = R_m^-(U)$ $R_m^+(10^{m-1}00^{m-1}x_k0^{m-1}x_{k-1}\cdots 0^{m-1}x_00^m) = R_m^+(U)$ $R_m^-(10^{m-1}00^{m-1}x_k0^{m-1}x_{k-1}\cdots 0^{m-1}x_00^m) = R_m(U) = R_m^+(U) + R_m^-(U)$

Proof. — It is easy to see that $w \in \Omega_m^+(10^{m-1}U)$ if and only if w is of the form $w = 10^{m-1}w'$ for some $w' \in \Omega_m(U)$. Whence $R_m^+(10^{m-1}U) = R_m(U)$. Similarly, $w \in \Omega_m^-(10^{m-1}U)$ if and only if w is of the form $w = 01^m w'$ for some $w' \in \Omega_m^-(U)$. Whence $R_m^-(10^{m-1}U) = R_m^-(U)$. A similar argument applies to the remaining two identities.

Fix a positive integer $r = 1 \cdot 2^{k+1} + x_k \cdot 2^k + \cdots + x_1 \cdot 2 + x_0$. The above lemma can be used to compute $R_m([r])$ as follows: We construct a tower of k + 2 levels $L_0, L_1, \cdots, L_{k+1}$, where each level L_i consists of an ordered pair (a, b) of positive integers. We start with level 0 by setting $L_0 = (1, 1)$. Then L_{i+1} is obtained from L_i according to the value of x_i . If $L_i = (a, b)$, then $L_{i+1} = (a, a + b)$ if $x_i = 0$, and $L_{i+1} = (a + b, b)$ if $x_i = 1$. It follows from the above Lemma that $L_{k+1} = (R_m^+([r]), R_m^-([r]))$. Hence $R_m([r])$ is the sum of the entries of level L_{k+1} .

By the well known Fine and Wilf Theorem [4], given a pair of relatively prime numbers (p,q), there exists a $\{0,1\}$ -word w of length p+q-2 (unique up to isomorphism) having periods p and q, and if p and q are both greater than 1, then this word contains both 0's and 1'; in other words $1 = \gcd(p,q)$ is not a period. We call such a word a *Fine and Wilf word* relative to (p,q). Moreover it can be shown (see [12] for example) that if both p and q are greater than 1, then the suffixes of w of lengths p and q begin in different symbols. We denote by FW(p,q) the unique Fine and Wilf word relative to (p,q) with the property that its suffix of length p begins in 0 and its suffix of length q begins in 1.

We now apply this to the ordered pair $(p,q) = (R_m^+([r]), R_m^-([r]))$. It is well known that $FW(R_m^+([r]), R_m^-([r]))$ 01 is given explicitly by the following composition of morphisms:

$$FW(R_m^+([r]), R_m^-([r]))01 = \tau_{x_0} \circ \tau_{x_1} \circ \dots \circ \tau_{x_k}(01)$$

where

$$au_0(0) = 0$$
 $au_0(1) = 01$
 $au_1(0) = 10$ $au_1(1) = 1$

(see for instance [5, 12]).

Let

$$\alpha(r) = |FW(R_m^+([r]), R_m^-([r]))01|_1$$

and

$$\beta(r) = |FW(R_m^+([r]), R_m^-([r]))01|_0$$

in other words, $\alpha(r)$ is the number of occurrences of 1 in

 $FW(R_m^+([r]), R_m^-([r]))01$

and $\beta(r)$ the number of 0's in

$$FW(R_m^+([r]), R_m^-([r]))01$$

In summary:

$$R_{m}([r]) = R_{m}^{+}([r]) + R_{m}^{-}([r])$$

$$= R_{m}^{+}([r]) + R_{m}^{-}([r]) - 2 + 2$$

$$= |FW(R_{m}^{+}([r]), R_{m}^{-}([r]))| + 2$$

$$= |FW(R_{m}^{+}([r]), R_{m}^{-}([r]))01|$$

$$= |\tau_{x_{0}} \circ \tau_{x_{1}} \circ \cdots \circ \tau_{x_{k}}(01)|$$

$$= |\tau_{x_{0}} \circ \tau_{x_{1}} \circ \cdots \circ \tau_{x_{k}}(01)|_{1} + |\tau_{x_{0}} \circ \tau_{x_{1}} \circ \cdots \circ \tau_{x_{k}}(01)|_{0}$$

$$= \alpha(r) + \beta(r)$$

$$= |\tau_{1} \circ \tau_{x_{0}} \circ \tau_{x_{1}} \circ \cdots \circ \tau_{x_{k}}(01)|_{1}$$

$$= \alpha(2r + 1).$$

The key step in the proof of Theorem 1.1 is to replace above the sum of the periods $R_m^+([r]) + R_m^-([r])$ of the Fine and Wilf word $FW(R_m^+([r]), R_m^-([r]))$ by the sum of the number of occurrences of 0's and 1's in $FW(R_m^+([r]), R_m^-([r]))$ 01. The following basic identities are readily verified:

- $\alpha(1) = \beta(1) = 1.$
- $\alpha(2r) = \alpha(r)$.
- $\beta(2r) = \alpha(r) + \beta(r)$.
- $\alpha(2r+1) = \alpha(r) + \beta(r)$.
- $\beta(2r+1) = \beta(r)$.
- $\beta(r) = \alpha(r+1).$

Summarizing we have

PROPOSITION 2.2. — Let $U = 10^{m-1}x_k0^{m-1}x_{k-1}\cdots 0^{m-1}x_00^m$ with $x_i \in \{0,1\}$. Let r be the number whose base 2 expansion is given by $1x_kx_{k-1}\cdots x_0$. Then $R_m(U) = \alpha(2r+1)$ where the sequence $\alpha(r)$ is defined recursively by:

2276

- $\alpha(1) = 1$
- $\alpha(2r) = \alpha(r)$
- $\alpha(2r+1) = \alpha(r) + \alpha(r+1).$

We now consider a new function $\psi(r)$ defined by $\psi(1) = 1$, and for $r \ge 1$

$$\psi(r+1) = \sum_{j=0}^{2j \leqslant r} \binom{r-j}{j} \pmod{2}.$$

We will show that $\psi(r)$ and $\alpha(r)$ satisfy the same recursive relations, namely: $\psi(2r) = \psi(r)$ and $\psi(2r+1) = \psi(r) + \psi(r+1)$. Thus $\alpha(r) = \psi(r)$ for each r thereby establishing formula (2.2).

We shall make use of the following lemma:

LEMMA 2.3.
$$\binom{n}{k} \pmod{2} = \binom{2n+1}{2k} \pmod{2} + \binom{2n}{2k+1} \pmod{2}$$
.

Proof. — This follows immediately from the so-called Lucas' identities: $\binom{2n}{2k+1} = 0 \pmod{2}$ for $0 \leq k \leq n-1$, and $\binom{n}{k} = \binom{2n+1}{2k} \pmod{2}$ for $0 \leq k \leq n$.

PROPOSITION 2.4. — For $r \ge 0$ we have $\psi(2r+2) = \psi(r+1)$ and for $r \ge 1$ we have $\psi(2r+1) = \psi(r) + \psi(r+1)$.

Proof. — By Lemma 2.3 we have

$$\begin{split} \psi(r+1) &= \sum_{j=0}^{2j \leqslant r} \binom{r-j}{j} \pmod{2} \\ &= \sum_{j=0}^{2j \leqslant r} \left(\binom{2r-2j+1}{2j} \pmod{2} + \binom{2r-2j}{2j+1} \pmod{2} \right) \\ &= \sum_{i=0}^{r} \binom{2r+1-i}{i} \pmod{2} \\ &= \psi(2r+2). \end{split}$$

As for the second recursive relation we have

$$\psi(2r+1) = \sum_{j=0}^{r} \binom{2r-j}{j} \pmod{2}$$
$$= \sum_{i=0}^{2i \leqslant r} \binom{2r-2i}{2i} \pmod{2} + \sum_{i=0}^{2i \leqslant r-1} \binom{2r-2i-1}{2i+1} \pmod{2}$$

But

$$\binom{2r-2i}{2i} \pmod{2} = \frac{(2r-2i)!}{(2i)!(2r-4i)!} \pmod{2}$$
$$= \frac{(2r-2i+1)!}{(2i)!(2r-4i+1)!} \pmod{2}$$
$$= \binom{2r-2i+1}{2i} \pmod{2}$$
$$= \binom{r-i}{i} \pmod{2}$$
by Lemma 2.3.

Hence

$$\sum_{i=0}^{2i \leqslant r} \binom{2r-2i}{2i} \pmod{2} = \sum_{i=0}^{2i \leqslant r} \binom{r-i}{i} \pmod{2} = \psi(r+1).$$

Similarly

$$\binom{2r-2i-1}{2i+1} \pmod{2} = \frac{(2r-2i-1)!}{(2i+1)!(2r-4i-2)!} \pmod{2}$$
$$= \frac{(2r-2i-1)!}{(2i)!(2r-4i-1)!} \pmod{2}$$
$$= \binom{2r-2i-1}{2i} \pmod{2}$$
$$= \binom{r-1-i}{i} \pmod{2}$$
by Lemma 2.3.

Hence

$$\sum_{i=0}^{2i\leqslant r-1} \binom{2r-2i-1}{2i+1} \pmod{2} = \sum_{i=0}^{2i\leqslant r-1} \binom{r-1-i}{i} \pmod{2} = \psi(r).$$

It follows that $\psi(2r+1) = \psi(r) + \psi(r+1)$.

Having established that $\alpha(r) = \psi(r)$ for each $r \ge 1$, we deduce that:

COROLLARY 2.5. — Let $U = 10^{m-1}x_k0^{m-1}x_{k-1}\cdots 0^{m-1}x_00^m$ with $x_i \in \{0,1\}$. Let r be the number whose base 2 expansion is given by $1x_kx_{k-1}\cdots x_0$. Then $R_m(U) = \sum_{j=0}^r {2r-j \choose j} \pmod{2}$.

This concludes our proof of Theorem 1.1.

ANNALES DE L'INSTITUT FOURIER

3. Concluding Remarks

3.1. A formula for $R_m^{\leq}(w)$

Our proof applies more generally to give a formula for $R_m^{\leq}(w)$ for each representation w of n. In other words, given $w \in \Omega_m(n)$, then either w does not contain any occurrences of 0^m (in which case $R_m^{\leq}(w) = 1$) or w may be factored in the form

$$w = V_1 U_1 V_2 U_2 \cdots V_N U_N W$$

where the V_i and W do not contain any occurrences of 0^m and the V_i do not end in 0^{m-1} , and where the U_i are of the form

$$U_i = 10^{m-1} x_k 0^{m-1} x_{k-1} \cdots 0^{m-1} x_0 0^m$$

with $x_i \in \{0, 1\}$. Each factor U_i is coded by a positive integer r_i whose base 2 expansion is $1x_kx_{k-1}\cdots x_0$. It is easy to see that any representation of n less or equal to w may be factored in the form

$$V_1U_1'V_2U_2'\cdots V_NU_N'W$$

where for each $1 \leq i \leq N$, U'_i is an equivalent representation of U_i . Hence $R_m^{\leq}(w) = \prod_{i=1}^N R_m(U_i)$ from which it follows that

$$R_m^{\leq}(w) = \prod_{i=1}^N \sum_{j=0}^{r_i} \binom{2r_i - j}{j} \pmod{2}.$$

3.2. Episturmian numeration systems

Let A be a finite non-empty set. Associated to an infinite word $\omega = \omega_1 \omega_2 \omega_3 \ldots \in A^{\mathbb{N}}$ is a non-decreasing sequence of positive integers $\mathcal{E}(\omega) = E_1, E_2, E_3, \ldots$ defined recursively as follows: $E_1 = 1$, and for $k \ge 1$, the quantity E_{k+1} is defined by the following rule: If $\omega_{k+1} \ne \omega_j$ for each $1 \le j \le k$, then set

$$E_{k+1} = 1 + \sum_{j=1}^{k} E_j.$$

Otherwise let $\ell \leq k$ be the largest integer such that $\omega_{k+1} = \omega_{\ell}$, and set

$$E_{k+1} = \sum_{j=\ell}^{k} E_j.$$

In particular we note that $E_{k+1} = E_k$ if and only if $\omega_{k+1} = \omega_k$.

Set $\mathcal{N}(\omega) = \{E_k | k \ge 1\}$. For $E \in \mathcal{N}(\omega)$ let $k \ge 1$ be such that $E = E_k$. We define $\sigma(E) = \omega_k$ and say that E is *based* at $\omega_k \in A$. We also define the quantity $\rho(E)$, which we call the *multiplicity* of E, by

$$\rho(E) = \#\{i \ge 1 | E = E_i\}.$$

We can write $\mathcal{N}(\omega) = \{x_1, x_2, x_3, \ldots\}$ where for each $i \ge 1$ we have $x_i < x_{i+1}$. Thus we have that $\omega = \sigma(x_1)^{\rho(x_1)} \sigma(x_2)^{\rho(x_2)} \ldots$

It can be verified that the set $\mathcal{N}(\omega)$ defines a numeration system (see [8]). More precisely, each positive integer n may be written as a sum of the form

$$(3.1) n = m_k x_k + m_{k-1} x_{k-1} + \dots + m_1 x_1$$

where for each $1 \leq i \leq k$ we have $0 \leq m_i \leq \rho(x_i)$ and $m_k \geq 1$. While such a representation of n is not necessarily unique, one way of obtaining such a representation is to use the "greedy algorithm". In this case we call the resulting representation the Zeckendorff representation of n and denote it $Z_{\omega}(n)$. We call the above numeration system a generalized Ostrowski system or an Episturmian numeration system. In fact, the quantities E_i are closely linked to the lengths of the palindromic prefixes of the characteristic Episturmian word associated to the directive sequence ω (see [6, 7, 8, 9]). In case #A = 2, this is known as the Ostrowski numeration system (see [1, 2, 11]). In case $A = \{1, 2, \ldots, m\}$ and ω is the periodic sequence $\omega =$ $(1, 2, 3, \ldots, m,)^{\infty}$, then the resulting numeration system is the m-bonacci system defined earlier.

Given an infinite word $\omega = \omega_1 \omega_2 \omega_3 \ldots \in A^{\mathbb{N}}$, we are interested in the number of distinct ways of writing each positive integer n as a sum of the form (3.1). More precisely, denoting by \hat{A} the set $\{\hat{a} | a \in A\}$, we set $R_{\omega}(n) = \#\Omega_{\omega}(n)$ where $\Omega_{\omega}(n)$ is the set of all expressions of the form

(3.2)
$$\widehat{\sigma(x_k)}^{m_k} \sigma(x_k)^{\rho(x_k) - m_k} \widehat{\sigma(x_{k-1})}^{m_{k-1}} \\ \sigma(x_{k-1})^{\rho(x_{k-1}) - m_{k-1}} \cdots \widehat{\sigma(x_1)}^{m_1} \sigma(x_1)^{\rho(x_1) - m_1}$$

in $(A \cup \hat{A})^*$, such that $n = m_k x_k + m_{k-1} x_{k-1} + \dots + m_1 x_1$ where $\mathcal{N}(\omega) = \{x_1, x_2, x_3, \dots | 1 = x_1 < x_2 < x_3 \dots\}$ and where $0 \leq m_i \leq \rho(x_i)$ and $m_k \geq 1$.⁽¹⁾ For $w \in \Omega_{\omega}(n)$ we sometimes write $R_{\omega}(w)$ for $R_{\omega}(n)$.

Just as in the previous section, we begin with a unique special factorization of the Zeckendorff representation of n. In this case, this factorization

⁽¹⁾ Our notation here differs somewhat from that of Justin and Pirillo in [8]. For instance, in [8] the authors use the notation \bar{a} for in lieu of our \hat{a} . Also instead of the expression (3.2), they consider the reverse of this word.

was originally defined by Justin and Pirillo (see Theorem 2.7 in [8]):

$$Z_{\omega}(n) = V_1 U_1 V_2 U_2 \cdots V_N U_N W$$

where for each $1 \leq i \leq N$ we have that U_i is a a_i -based maximal semigood multiblock for some $a_i \in A$. Moreover any other representation of n may be factored in the form

$$Z_{\omega}(n) = V_1 U_1' V_2 U_2' \cdots V_N U_N' W$$

where U'_i is an equivalent representation of U_i (see Theorem 2.7 in [8]). Thus as before (see (2.1)) we have

$$R_{\omega}(n) = \prod_{i=1}^{N} R_{\omega}(U_i).$$

For each $1 \leq i \leq N$ the factor U_i corresponds to a sum of the form

$$m_K x_K + m_{K-1} x_{K-1} + \dots + m_k x_k$$

for some K > k with $m_K \neq 0$, and for each $K \ge j \ge k$ we have that if $m_j \neq 0$, then $\sigma(x_j) = a_i$ [8]. In other words the only "accented" symbol occurring in U_i is a_i , i.e., $U_i \in (A \cup \{\hat{a}_i\})^*$.

Associated to U_i is a $\{0, 1\}$ -word $\nu(U_i) = \nu_K \nu_{K-1} \dots \nu_k$ where $\nu_K = 10$, $\nu_j = \varepsilon$ (the empty word) if $\sigma(x_j) \neq a_i$, $\nu_j = 10$ if $\sigma(x_j) = a_i$ and $m_j = \rho(x_j)$, $\nu_j = 010$ if $\sigma(x_j) = a_i$ and $0 < m_j < \rho(x_j)$ and $\nu_j = 00$ if $\sigma(x_j) = a_i$ and $m_j = 0$.

By comparing the matrix formulation given in Corollary 2.11 in [8] used to compute $R_{\omega}(U_i)$ with the matrix formulation given in Proposition 4.1 in [1], we leave it to the reader to verify the following:

Proposition 3.1. — $R_{\omega}(U_i) = R_2(\nu(U_i)).$

In other words computing the multiplicities of representations in a generalized Ostrowski numeration system may be reduced to a computation of the multiplicities of representations in the Fibonacci base.

Example 3.2. — We consider the example originally started in Berstel's paper [1] and later revisited by Justin and Pirillo as Example 2.3 in [8] of the Ostrowski numeration system associated to the infinite word $\omega = a, a, b, b, a, a, a, b, b, a, a, a, b, b, a, a, a, b, \dots$ It is readily verified that

$$\mathcal{N}(\omega) = \{1, 3, 7, 24, 55, 134, 323, \ldots\},\$$

 $\begin{aligned} \sigma(1) &= \sigma(7) = \sigma(55) = \sigma(323) = a, \ \sigma(3) = \sigma(24) = \sigma(134) = b, \ \text{and} \\ \rho(1) &= 2, \ \rho(3) = 2, \ \rho(7) = 3, \ \rho(24) = 2, \ \rho(55) = 2, \ \rho(134) = 2, \ \rho(323) = 3. \end{aligned}$

Applying the greedy algorithm we obtain the following representation of the number 660

$$660 = 2(323) + 0(134) + 0(55) + 0(24) + 2(7) + 0(3) + 0(1).$$

So $Z_{\omega}(660) = \hat{a}\hat{a}abbaabb\hat{a}\hat{a}abbaa$, which is a semigood multiblock based at a. We deduce that

$$\nu(Z_{\omega}(660)) = 10 \cdot \varepsilon \cdot 00 \cdot \varepsilon \cdot 010 \cdot \varepsilon \cdot 00$$

or simply $\nu(Z_{\omega}(660)) = 100001000$.

Following the algorithm of Corollary 2.11 of [8] due to Justin and Pirillo, we obtain $q_1 = 2$, $q_2 = 4$, $p_1 = 2$, $p_2 = 2$, $c_1 = c_2 = 1$, so that

$$R_{\omega}(660) = (1,0) \begin{pmatrix} 0 & 2 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 6$$

In contrast, applying the algorithm in Proposition 4.1 of [1] due to Berstel to the Zeckendorff word $\nu(Z_{\omega}(660)) = 100001000$, we obtain $d_1 = 4, d_2 = 3$ so that

$$R_2(\nu(Z_{\omega}(660))) = (1,1) \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 6$$

as required⁽²⁾

Acknowledgements

The second author was partially supported by a grant from the National Security Agency.

BIBLIOGRAPHY

- J. BERSTEL, "An exercise on Fibonacci representations, A tribute to Aldo de Luca", RAIRO, Theor. Inform. Appl. 35 (2002), p. 491-498.
- [2] V. BERTHÉ, "Autour du système de numération d'Ostrwoski", Bull. Belg. Math. Soc. Simon Stevin 8 (2001), p. 209-239, Journées Montoises d'Informatique Théorique (Marne-la-Vallée, 2000).
- [3] L. CARLITZ, "Fibonacci representations", Fibonacci Quarterly 6(4) (1968), p. 193-220.
- [4] N. FINE & H. WILF, "Uniqueness theorem for periodic functions", Proc. Amer. Math. Soc. 16 (1965), p. 109-114.
- [5] O. JENKINSON & L. ZAMBONI, "Characterizations of balanced words via orderings", *Theoret. Comput. Sci.* 310 (2004), p. 247-271.

2282

⁽²⁾ In [1], Berstel computes R_{ω} (660) in a different way by using the matrix formulation of Proposition 5.1 in [1] which applies to an Ostrowski numeration system.

- [6] J. JUSTIN, "Algebraic combinatorics and Computer Science", chap. Episturmian words and morphisms (results and conjectures), p. 533-539, Springer Italia, Milan, 2001.
- [7] J. JUSTIN & G. PIRILLO, "Episturmian words and Episturmian morphisms", Theoret. Comput. Sci. 302 (2003), p. 1-34.
- [8] ——, "Episturmian words: shifts, morphisms and numeration systems", Internat. J. Found. Comput. Sci. 15 (2004), p. 329-348.
- [9] J. JUSTIN & L. VUILLON, "Return words in Sturmian and Episturmian words", Theor. Inform. Appl. 34 (2000), p. 343-356.
- [10] P. KOCÁBOVÁ, Z. MASÁCOVÁ & E. PELANTOVÁ, "Ambiguity in the *m*-bonacci numeration system", preprint, 2004.
- [11] A. OSTROWSKI, "Bemerkungen zur Theorie der Diophantischen Approximation I", Abh. Math. Sem. Hamburg 1 (1922), p. 77-98.
- [12] R. TIJDEMAN & L. ZAMBONI, "Fine and Wilf words for any periods", Indag. Math. (N.S.) 14 (2003), p. 135-147.
- [13] E. ZECKENDORFF, "Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas", Bull. Soc. Royale Sci. Liège 42 (1972), p. 179-182.

Marcia EDSON & Luca Q. ZAMBONI University of North Texas Department of Mathematics PO Box 311430 Denton, TX 76203-1430 (USA) mre0006@unt.edu luca@unt.edu