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ON THE NUMBER OF PARTITIONS OF AN INTEGER
IN THE m-BONACCI BASE

by Marcia EDSON & Luca Q. ZAMBONI

Abstract. — For each m > 2, we consider the m-bonacci numbers defined by
Fk = 2k for 0 6 k 6 m− 1 and Fk = Fk−1 + Fk−2 + · · ·+ Fk−m for k > m. When
m = 2, these are the usual Fibonacci numbers. Every positive integer n may be
expressed as a sum of distinct m-bonacci numbers in one or more different ways. Let
Rm(n) be the number of partitions of n as a sum of distinct m-bonacci numbers.
Using a theorem of Fine and Wilf, we obtain a formula for Rm(n) involving sums of
binomial coefficients modulo 2. In addition we show that this formula may be used
to determine the number of partitions of n in more general numeration systems
including generalized Ostrowski number systems in connection with Episturmian
words.

Résumé. — Pour m > 2, on définit les nombres de m-bonacci Fk = 2k pour
0 6 k 6 m− 1 et Fk = Fk−1 +Fk−2 + · · ·+Fk−m pour k > m. Dans le cas m = 2,
on retrouve les nombres de Fibonacci. Chaque entier positif n s’écrit comme une
somme distincte de nombres de m-bonacci d’une ou plusieurs façons. Soit Rm(n)
le nombre de partitions de n en base m-bonacci. En utilisant un théorème de Fine
et Wilf on déduit une formule pour Rm(n) comme somme de coefficients bino-
miaux modulo 2. De plus, nous montrons que cette formule peut-être utilisée pour
déterminer le nombre de partitions de n dans des systèmes généraux de numéra-
tion incluant les systèmes de nombres d’Ostrowski généralisés associés aux suites
episturmiennes.

1. Introduction and Preliminaries

For each m > 2, we define the m-bonacci numbers by Fk = 2k for
0 6 k 6 m − 1 and Fk = Fk−1 + Fk−2 + · · · + Fk−m for k > m. When
m = 2, these are the usual Fibonacci numbers. We denote by {0, 1}∗ the set
of all words w = w1w2 · · ·wk with wi ∈ {0, 1}. Each positive integer n may
be expressed as a sum of distinct m-bonacci in one or more different ways.

Keywords: Numeration systems, Fibonacci numbers, Fine and Wilf theorem, episturmian
words.
Math. classification: 11B39, 11B50, 68R15.
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That is we can write n =
∑k

i=1 wiFk−i where wi ∈ {0, 1} and w1 = 1. We
call the associated {0, 1}-word w1w2 · · ·wk a representation of n. One way
of obtaining such a representation is by applying the “greedy algorithm”.
This gives rise to a representation of n of the form w = w1w2 · · ·wk with the
property that w does not contain m consecutive 1’s. Such a representation
of n is necessarily unique and is called the m-Zeckendorff representation of
n, denoted Zm(n) [13]. For example, taking m = 2 and applying the greedy
algorithm to n = 50 we obtain 50 = 34+13+3 = F7 +F5 +F2 which gives
rise to the representation Z2(50) = 10100100. A {0, 1}-word w beginning
in 1 and having no occurrences of 1m will be called a m-Zeckendorff word.

Other representations arise from the fact that an occurrence of 10m in
a given representation of n may be replaced by 01m to obtain another
representation of n, and conversely. Thus a number n has a unique repre-
sentation in the m-bonacci base if and only if Zm(n) does not contain any
occurrences of 0m. For example, again taking m = 2 and n = 50 we ob-
tain the following 6 representations (arranged in decreasing lexicographic
order):

10100100
10100011
10011100
10011011
1111100
1111011

We are interested in the sequence Rm(n) which counts the number of
distinct partitions of n in them-bonacci base. More precisely, given n ∈ Z>0

we set

Ωm(n) = {w = w1w2 · · ·wk ∈ {0, 1}∗ |w1 = 1 and n =
k∑

i=1

wiFk−i}

and put Rm(n) = #Ωm(n). For w ∈ Ωm(n) we will sometimes write Rm(w)
for Rm(n). Also we let R6

m(w) denote the number of representations of n
which are less or equal to w in the lexicographic order. As Zm(n) is the
largest representation of n with respect to the lexicographic order, it follows
that Rm(n) = R6(Zm(n)).

In a 1968 paper L. Carlitz [3] studied the multiplicities of representations
of n as sums of distinct Fibonacci numbers; he obtained recurrence relations
for R2(n) and explicit formulae for R2(n) in the case Z2(n) contains 1, 2
or 3 Fibonacci numbers. He states in the paper however that a general
formula for the number of partitions of n in the Fibonacci base appears

ANNALES DE L’INSTITUT FOURIER
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to be very complicated. In [1] J. Berstel derives a formula for R2(n) as a
product of 2×2 matrices (see Proposition 4.1 in [1]). Recently, P. Kocábová,
Z. Masácová, and E. Pelantová [10] extended Berstel’s result to Rm(n) for
all m > 2 again as a product of 2× 2 matrices.

In this paper we give a formula for Rm(n) involving sums of binomial
coefficients modulo 2. Our proof makes use of the well known Fine and Wilf
Theorem [4]. In order to state our main result, we first consider a special
factorization of Zm(n) : Either Zm(n) contains no occurrences of 0m (in
which case Rm(n) = 1), or Zm(n) can be factored uniquely in the form

Zm(n) = V1U1V2U2 · · ·VNUNW

where

• V1, V2, . . . , VN and W do not contain any occurrences of 0m.

• 0m−1 is not a suffix of V1, V2, . . . , VN .

• Each Ui is of the form

Ui = 10m−1xk0m−1xk−1 · · · 0m−1x00m

with xi ∈ {0, 1}.

We shall refer to this factorization as the principal factorization of Zm(n)
and call the Ui indecomposable factors. We observe that in the special case
of m = 2, the factors Vi are empty. Each indecomposable factor Ui may be
coded by a positive integer ri whose base 2 expansion is 1xkxk−1 · · ·x0, in
other words ri = 1 · 2k+1 + xk · 2k + · · ·x1 · 2 + x0.
Given a positive integer r whose base 2 expansion is 1xkxk−1 · · ·x0, we set

[r] = 10m−1xk0m−1xk−1 · · · 0m−1x00m.

We now state our main result:

Theorem 1.1. — Let m > 2. Given a positive integer n, let Zm(n) =
V1U1V2U2 · · ·VNUNW be the principal factorization of the m-Zeckendorff
representation of n as defined above. Then the number of distinct partitions
of n as sums of distinct m-bonacci numbers is given by

Rm(n) =
N∏

i=1

ri∑
j=0

(
2ri − j

j

)
(mod 2)

where [ri] = Ui for each 1 6 i 6 N.

TOME 56 (2006), FASCICULE 7
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2. Proof of Theorem 1.1

Let Zm(n) = V1U1V2U2 · · ·VNUNW be the principal factorization of
Zm(n) described above. Then the number of partitions of n is simply the
product of the number of partitions of each indecomposable factor:

(2.1) Rm(n) =
N∏

i=1

Rm(Ui).

In fact, any representation of n as a sum of distinct m-bonacci numbers
may be factored in the form

V1U
′
1V2U

′
2 · · ·VNU

′
NW

where for each 1 6 i 6 N, U ′i is an equivalent representation of Ui. To
see this we first observe that since the Vi and W contain no 0m, we have
Rm(Vi) = Rm(W ) = 1. So the only way that Vi or W could change in
an alternate representation of n would be as a result of a neighboring
indecomposable factor. If Vi contains an occurrence of 1, then since Vi does
not end in 0m−1 the last occurrence of 1 in Vi can never be followed by 0m.

In other words the last 1 in Vi can never move into the Ui that follows. If
Vi contains no occurrences of 1, then Vi = 0r with r < m − 1. Since the
indecomposable factor Ui−1 preceding Vi ends in Km many consecutive
0’s (for some K > 1), any equivalent representation of Ui−1 either ends
in 0m or in 1m, and since Vi does not begin in 0m, any representation of
Ui−1 terminating in 1m will never be followed by 0m. In other words, no 1
in Ui−1 can ever move into Vi or in the following Ui. A similar argument
applies to the indecomposable factor UN preceding W.

Thus in view of (2.1) above, in order to prove Theorem 1.1, it remains
to show that for each positive integer r = 1 · 2k+1 + xk · 2k + · · ·x1 · 2 + x0,

we have

(2.2) Rm([r]) =
r∑

j=0

(
2r − j

j

)
(mod 2).

For each positive integer n there is a natural decomposition of the set
Ωm(n) of all partitions of n in the m-bonacci base: Let F be the largest
m-bonacci number less or equal to n. We denote by Ω+

m(n) the set of all
partitions of n involving F and Ω−m(n) the set of all partitions of n not
involving F, and set R+

m(n) = # Ω+
m(n) and R−m(n) = # Ω−m(n). Clearly

Rm(n) = R+
m(n) +R−m(n).

We will make use of the following recursive relations:

ANNALES DE L’INSTITUT FOURIER
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Lemma 2.1. — Let U = 10m−1xk0m−1xk−1 · · · 0m−1x00m with xi ∈
{0, 1}. Then

R+
m(10m−110m−1xk0m−1xk−1 · · · 0m−1x00

m) = Rm(U) = R+
m(U) + R−m(U)

R−m(10m−110m−1xk0m−1xk−1 · · · 0m−1x00
m) = R−m(U)

R+
m(10m−100m−1xk0m−1xk−1 · · · 0m−1x00

m) = R+
m(U)

R−m(10m−100m−1xk0m−1xk−1 · · · 0m−1x00
m) = Rm(U) = R+

m(U) + R−m(U)

Proof. — It is easy to see that w ∈ Ω+
m(10m−1U) if and only if w is of the

form w = 10m−1w′ for some w′ ∈ Ωm(U). Whence R+
m(10m−1U) = Rm(U).

Similarly, w ∈ Ω−m(10m−1U) if and only if w is of the form w = 01mw′ for
some w′ ∈ Ω−m(U). Whence R−m(10m−1U) = R−m(U). A similar argument
applies to the remaining two identities. �

Fix a positive integer r = 1 · 2k+1 + xk · 2k + · · ·x1 · 2 + x0. The above
lemma can be used to compute Rm([r]) as follows: We construct a tower
of k+ 2 levels L0, L1, · · · , Lk+1, where each level Li consists of an ordered
pair (a, b) of positive integers. We start with level 0 by setting L0 = (1, 1).
Then Li+1 is obtained from Li according to the value of xi. If Li = (a, b),
then Li+1 = (a, a + b) if xi = 0, and Li+1 = (a + b, b) if xi = 1. It follows
from the above Lemma that Lk+1 = (R+

m([r]), R−m([r])). Hence Rm([r]) is
the sum of the entries of level Lk+1.

By the well known Fine and Wilf Theorem [4], given a pair of relatively
prime numbers (p, q), there exists a {0, 1}-word w of length p+q−2 (unique
up to isomorphism) having periods p and q, and if p and q are both greater
than 1, then this word contains both 0’s and 1’; in other words 1 = gcd(p, q)
is not a period. We call such a word a Fine and Wilf word relative to (p, q).
Moreover it can be shown (see [12] for example) that if both p and q are
greater than 1, then the suffixes of w of lengths p and q begin in different
symbols. We denote by FW (p, q) the unique Fine and Wilf word relative
to (p, q) with the property that its suffix of length p begins in 0 and its
suffix of length q begins in 1.

We now apply this to the ordered pair (p, q) = (R+
m([r]), R−m([r])). It is

well known that FW (R+
m([r]), R−m([r]))01 is given explicitly by the following

composition of morphisms:

FW (R+
m([r]), R−m([r]))01 = τx0 ◦ τx1 ◦ · · · ◦ τxk

(01)

where

τ0(0) = 0 τ0(1) = 01

τ1(0) = 10 τ1(1) = 1

(see for instance [5, 12]).

TOME 56 (2006), FASCICULE 7
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Let
α(r) = |FW (R+

m([r]), R−m([r]))01|1
and

β(r) = |FW (R+
m([r]), R−m([r]))01|0

in other words, α(r) is the number of occurrences of 1 in

FW (R+
m([r]), R−m([r]))01

and β(r) the number of 0’s in

FW (R+
m([r]), R−m([r]))01.

In summary:

Rm([r]) = R+
m([r]) +R−m([r])

= R+
m([r]) +R−m([r])− 2 + 2

= |FW (R+
m([r]), R−m([r]))|+ 2

= |FW (R+
m([r]), R−m([r]))01|

= |τx0 ◦ τx1 ◦ · · · ◦ τxk
(01)|

= |τx0 ◦ τx1 ◦ · · · ◦ τxk
(01)|1 + |τx0 ◦ τx1 ◦ · · · ◦ τxk

(01)|0
= α(r) + β(r)

= |τ1 ◦ τx0 ◦ τx1 ◦ · · · ◦ τxk
(01)|1

= α(2r + 1).

The key step in the proof of Theorem 1.1 is to replace above the sum of the
periods R+

m([r])+R−m([r]) of the Fine and Wilf word FW (R+
m([r]), R−m([r]))

by the sum of the number of occurrences of 0’s and 1’s in FW (R+
m([r]),

R−m([r]))01. The following basic identities are readily verified:
• α(1) = β(1) = 1.
• α(2r) = α(r).
• β(2r) = α(r) + β(r).
• α(2r + 1) = α(r) + β(r).
• β(2r + 1) = β(r).
• β(r) = α(r + 1).

Summarizing we have

Proposition 2.2. — Let U = 10m−1xk0m−1xk−1 · · · 0m−1x00m with
xi ∈ {0, 1}. Let r be the number whose base 2 expansion is given by
1xkxk−1 · · ·x0. Then Rm(U) = α(2r+1) where the sequence α(r) is defined
recursively by:

ANNALES DE L’INSTITUT FOURIER



PARTITIONS IN THE m-BONACCI BASE 2277

• α(1) = 1
• α(2r) = α(r)
• α(2r + 1) = α(r) + α(r + 1).

We now consider a new function ψ(r) defined by ψ(1) = 1, and for r > 1

ψ(r + 1) =
2j6r∑
j=0

(
r − j

j

)
(mod 2).

We will show that ψ(r) and α(r) satisfy the same recursive relations,
namely: ψ(2r) = ψ(r) and ψ(2r + 1) = ψ(r) + ψ(r + 1). Thus α(r) = ψ(r)
for each r thereby establishing formula (2.2).

We shall make use of the following lemma:

Lemma 2.3. —
(
n
k

)
(mod 2) =

(
2n+1
2k

)
(mod 2) +

(
2n

2k+1

)
(mod 2).

Proof. — This follows immediately from the so-called Lucas’ identities:(
2n

2k+1

)
= 0 (mod 2) for 0 6 k 6 n − 1, and

(
n
k

)
=

(
2n+1
2k

)
(mod 2) for

0 6 k 6 n. �

Proposition 2.4. — For r > 0 we have ψ(2r + 2) = ψ(r + 1) and for
r > 1 we have ψ(2r + 1) = ψ(r) + ψ(r + 1).

Proof. — By Lemma 2.3 we have

ψ(r + 1) =
2j6r∑
j=0

(
r − j

j

)
(mod 2)

=
2j6r∑
j=0

((
2r − 2j + 1

2j

)
(mod 2) +

(
2r − 2j
2j + 1

)
(mod 2)

)

=
r∑

i=0

(
2r + 1− i

i

)
(mod 2)

= ψ(2r + 2).

As for the second recursive relation we have

ψ(2r + 1) =
r∑

j=0

(
2r − j

j

)
(mod 2)

=
2i6r∑
i=0

(
2r − 2i

2i

)
(mod 2) +

2i6r−1∑
i=0

(
2r − 2i− 1

2i+ 1

)
(mod 2)

TOME 56 (2006), FASCICULE 7
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But (
2r − 2i

2i

)
(mod 2) =

(2r − 2i)!
(2i)!(2r − 4i)!

(mod 2)

=
(2r − 2i+ 1)!

(2i)!(2r − 4i+ 1)!
(mod 2)

=
(

2r − 2i+ 1
2i

)
(mod 2)

=
(
r − i

i

)
(mod 2) by Lemma 2.3.

Hence

2i6r∑
i=0

(
2r − 2i

2i

)
(mod 2) =

2i6r∑
i=0

(
r − i

i

)
(mod 2) = ψ(r + 1).

Similarly

(
2r − 2i− 1

2i+ 1

)
(mod 2) =

(2r − 2i− 1)!
(2i+ 1)!(2r − 4i− 2)!

(mod 2)

=
(2r − 2i− 1)!

(2i)!(2r − 4i− 1)!
(mod 2)

=
(

2r − 2i− 1
2i

)
(mod 2)

=
(
r − 1− i

i

)
(mod 2) by Lemma 2.3.

Hence

2i6r−1∑
i=0

(
2r − 2i− 1

2i+ 1

)
(mod 2) =

2i6r−1∑
i=0

(
r − 1− i

i

)
(mod 2) = ψ(r).

It follows that ψ(2r + 1) = ψ(r) + ψ(r + 1). �

Having established that α(r) = ψ(r) for each r > 1, we deduce that:

Corollary 2.5. — Let U = 10m−1xk0m−1xk−1 · · · 0m−1x00m with xi ∈
{0, 1}. Let r be the number whose base 2 expansion is given by 1xkxk−1 · · ·x0.

Then Rm(U) =
∑r

j=0

(
2r−j

j

)
(mod 2).

This concludes our proof of Theorem 1.1.
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3. Concluding Remarks

3.1. A formula for R6
m(w)

Our proof applies more generally to give a formula for R6
m(w) for each

representation w of n. In other words, given w ∈ Ωm(n), then either w does
not contain any occurrences of 0m (in which case R6

m(w) = 1) or w may
be factored in the form

w = V1U1V2U2 · · ·VNUNW

where the Vi and W do not contain any occurrences of 0m and the Vi do
not end in 0m−1, and where the Ui are of the form

Ui = 10m−1xk0m−1xk−1 · · · 0m−1x00m

with xi ∈ {0, 1}. Each factor Ui is coded by a positive integer ri whose base
2 expansion is 1xkxk−1 · · ·x0. It is easy to see that any representation of n
less or equal to w may be factored in the form

V1U
′
1V2U

′
2 · · ·VNU

′
NW

where for each 1 6 i 6 N, U ′i is an equivalent representation of Ui. Hence
R6

m(w) =
∏N

i=1Rm(Ui) from which it follows that

R6
m(w) =

N∏
i=1

ri∑
j=0

(
2ri − j

j

)
(mod 2).

3.2. Episturmian numeration systems

Let A be a finite non-empty set. Associated to an infinite word ω =
ω1ω2ω3 . . . ∈ AN is a non-decreasing sequence of positive integers E(ω) =
E1, E2, E3, . . . defined recursively as follows: E1 = 1, and for k > 1, the
quantity Ek+1 is defined by the following rule: If ωk+1 6= ωj for each 1 6
j 6 k, then set

Ek+1 = 1 +
k∑

j=1

Ej .

Otherwise let ` 6 k be the largest integer such that ωk+1 = ω`, and set

Ek+1 =
k∑

j=`

Ej .

In particular we note that Ek+1 = Ek if and only if ωk+1 = ωk.

TOME 56 (2006), FASCICULE 7



2280 Marcia EDSON & Luca Q. ZAMBONI

Set N (ω) = {Ek|k > 1}. For E ∈ N (ω) let k > 1 be such that E = Ek.

We define σ(E) = ωk and say that E is based at ωk ∈ A. We also define
the quantity ρ(E), which we call the multiplicity of E, by

ρ(E) = #{i > 1|E = Ei}.

We can write N (ω) = {x1, x2, x3, . . .} where for each i > 1 we have xi <

xi+1. Thus we have that ω = σ(x1)ρ(x1)σ(x2)ρ(x2) . . ..
It can be verified that the set N (ω) defines a numeration system (see

[8]). More precisely, each positive integer n may be written as a sum of the
form

(3.1) n = mkxk +mk−1xk−1 + · · ·+m1x1

where for each 1 6 i 6 k we have 0 6 mi 6 ρ(xi) and mk > 1. While
such a representation of n is not necessarily unique, one way of obtaining
such a representation is to use the “greedy algorithm”. In this case we call
the resulting representation the Zeckendorff representation of n and denote
it Zω(n). We call the above numeration system a generalized Ostrowski
system or an Episturmian numeration system. In fact, the quantities Ei are
closely linked to the lengths of the palindromic prefixes of the characteristic
Episturmian word associated to the directive sequence ω (see [6, 7, 8, 9]).
In case #A = 2, this is known as the Ostrowski numeration system (see
[1, 2, 11]). In case A = {1, 2, . . . ,m} and ω is the periodic sequence ω =
(1, 2, 3, . . . ,m, )∞, then the resulting numeration system is the m-bonacci
system defined earlier.

Given an infinite word ω = ω1ω2ω3 . . . ∈ AN, we are interested in the
number of distinct ways of writing each positive integer n as a sum of
the form (3.1). More precisely, denoting by Â the set {â|a ∈ A}, we set
Rω(n) = #Ωω(n) where Ωω(n) is the set of all expressions of the form

(3.2) σ̂(xk)
mk

σ(xk)ρ(xk)−mk ̂σ(xk−1)
mk−1

σ(xk−1)ρ(xk−1)−mk−1 · · · σ̂(x1)
m1

σ(x1)ρ(x1)−m1

in (A∪ Â)∗, such that n = mkxk +mk−1xk−1 + · · ·+m1x1 where N (ω) =
{x1, x2, x3, . . . |1 = x1 < x2 < x3 . . .} and where 0 6 mi 6 ρ(xi) and
mk > 1.(1) For w ∈ Ωω(n) we sometimes write Rω(w) for Rω(n).

Just as in the previous section, we begin with a unique special factoriza-
tion of the Zeckendorff representation of n. In this case, this factorization

(1) Our notation here differs somewhat from that of Justin and Pirillo in [8]. For instance,
in [8] the authors use the notation ā for in lieu of our â. Also instead of the expression
(3.2), they consider the reverse of this word.

ANNALES DE L’INSTITUT FOURIER
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was originally defined by Justin and Pirillo (see Theorem 2.7 in [8]):

Zω(n) = V1U1V2U2 · · ·VNUNW

where for each 1 6 i 6 N we have that Ui is a ai-based maximal semigood
multiblock for some ai ∈ A. Moreover any other representation of n may be
factored in the form

Zω(n) = V1U
′
1V2U

′
2 · · ·VNU

′
NW

where U ′i is an equivalent representation of Ui (see Theorem 2.7 in [8]).
Thus as before (see (2.1)) we have

Rω(n) =
N∏

i=1

Rω(Ui).

For each 1 6 i 6 N the factor Ui corresponds to a sum of the form

mKxK +mK−1xK−1 + · · ·+mkxk

for some K > k with mK 6= 0, and for each K > j > k we have that if
mj 6= 0, then σ(xj) = ai [8]. In other words the only “accented” symbol
occurring in Ui is ai, i.e., Ui ∈ (A ∪ {âi})∗.

Associated to Ui is a {0, 1}-word ν(Ui) = νKνK−1 . . . νk where νK = 10,
νj = ε (the empty word) if σ(xj) 6= ai, νj = 10 if σ(xj) = ai and mj =
ρ(xj), νj = 010 if σ(xj) = ai and 0 < mj < ρ(xj) and νj = 00 if σ(xj) = ai

and mj = 0.
By comparing the matrix formulation given in Corollary 2.11 in [8] used

to compute Rω(Ui) with the matrix formulation given in Proposition 4.1
in [1], we leave it to the reader to verify the following:

Proposition 3.1. — Rω(Ui) = R2(ν(Ui)).

In other words computing the multiplicities of representations in a gener-
alized Ostrowski numeration system may be reduced to a computation of
the multiplicities of representations in the Fibonacci base.

Example 3.2. — We consider the example originally started in Berstel’s
paper [1] and later revisited by Justin and Pirillo as Example 2.3 in [8]
of the Ostrowski numeration system associated to the infinite word ω =
a, a, b, b, a, a, a, b, b, a, a, b, b, a, a, a, b, . . . . It is readily verified that

N (ω) = {1, 3, 7, 24, 55, 134, 323, . . .},

σ(1) = σ(7) = σ(55) = σ(323) = a, σ(3) = σ(24) = σ(134) = b, and
ρ(1) = 2, ρ(3) = 2, ρ(7) = 3, ρ(24) = 2, ρ(55) = 2, ρ(134) = 2, ρ(323) = 3.
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Applying the greedy algorithm we obtain the following representation of
the number 660

660 = 2(323) + 0(134) + 0(55) + 0(24) + 2(7) + 0(3) + 0(1).

So Zω(660) = ââabbaabbââabbaa. which is a semigood multiblock based at
a. We deduce that

ν(Zω(660)) = 10 · ε · 00 · ε · 010 · ε · 00

or simply ν(Zω(660)) = 100001000.
Following the algorithm of Corollary 2.11 of [8] due to Justin and Pirillo,

we obtain q1 = 2, q2 = 4, p1 = 2, p2 = 2, c1 = c2 = 1, so that

Rω(660) = (1, 0)
(

0 2
0 3

) (
0 2
0 3

) (
1
1

)
= 6

In contrast, applying the algorithm in Proposition 4.1 of [1] due to Berstel
to the Zeckendorff word ν(Zω(660)) = 100001000, we obtain d1 = 4, d2 = 3
so that

R2(ν(Zω(660))) = (1, 1)
(

1 1
2 2

) (
1 1
1 2

) (
1
0

)
= 6

as required(2)
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