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A GENERALIZATION OF LEVEL-RAISING
CONGRUENCES FOR ALGEBRAIC MODULAR FORMS

by Claus MAZANTI SORENSEN

ABSTRACT. — In this paper, we extend the results of Ribet and Taylor on
level-raising for algebraic modular forms on the multiplicative group of a definite
quaternion algebra over a totally real field F. We do this for automorphic repre-
sentations of an arbitrary reductive group G over F', which is compact at infinity.
In the special case where G is an inner form of GSp(4) over Q, we use this to pro-
duce congruences between Saito-Kurokawa forms and forms with a generic local
component.

RESUME. — Dans cet article, on étend des résultats d’augmentation du niveau
de Ribet et Taylor, au cas de formes modulaires algébriques pour une algebre
a division sur un corps totalement réel F. On travaille avec des représentations
automorphes d’un groupe réductif G sur F', compact a l'infini. Dans le cas parti-
culier olt G est une forme intérieure de GSp(4) sur Q, on utilise ces résultats pour
construire des congruences entre des formes de Saito-Kurokawa et des formes avec
des composantes locales génériques.

1. Introduction

In this paper, we will prove a generalization of the following theorem of
Ribet [13]:

THEOREM 1.1. — Let f € S3(T'0(N)) be an eigenform, and let A|¢ be a
finite place of Q such that £ > 5 and f is not congruent to an Eisenstein
series modulo \. If ¢ t N{ is a prime number such that ¢ 1 1+ q and the
following condition is satisfied,

ag(f)* = (1 +¢)* (mod ),

then there exists a q-new eigenform f € S2(To(Ngq)) congruent to f mod-
ulo \.

Keywords: Level-raising, algebraic modular forms.
Math. classification: 11F33, 11F70.



1736 Claus MAZANTI SORENSEN

Two eigenforms f and f are said to be congruent modulo A if their
Hecke eigenvalues are congruent for almost all primes, that is, if a,(f) =
ap(f) (mod \) for almost all p. The proof of this theorem can be reduced,
via the Jacquet-Langlands correspondence, to the corresponding statement
for D* where D is a definite quaternion algebra over Q.

Our goal in this paper is to prove that an automorphic form of Saito-
Kurokawa type is congruent to an automorphic form which is not of Saito-
Kurokawa type. Since functorialty is not yet available, we are considering
an inner form G of PGSp(4)/Q such that G(R) is compact. By a form on
G ~ SO(5) of Saito-Kurokawa type we mean a theta lift from éf(Q) We
achieve this goal as a result of Theorem 9.3 below.

We apply some of the ideas and methods of [18] and [19]. The level-
raising part of Taylor’s proof carries over to a much more general setup.
Namely, the following: We let F' denote a totally real number field with
adeles A = F,, x A®° and let G be a connected reductive F-group such that
Gl = Go NG(A)! is compact and G is simple and simply connected.
When F # Q, this just means that G, is compact. However, when F =
Q and Zg is split, it suffices that G is compact. There are plenty of
such groups. In fact, any split simple F-group not of type A, (n > 2),
Dy, 41 or Eg has infinitely many inner forms which are compact at infinity.
Throughout, we fix a Haar measure p = ®u, on G(A>). It is convenient
to state our results using the following notion of congruence. As K varies
over the compact open subgroups of G(A*), the centers Z(Hg,z) of the
Hecke algebras form an inverse system. To an automorphic representation
7 of G(A) we associate the character

Nr: liLnZ(HKZ) —C

such that n, = n,x o pry for every compact open subgroup K such that
7% £ 0. If ) is a finite place of Q, we say that 7 and 7 are congruent modulo
A if their characters are. We write 7 = 7 (mod A). A similar notion makes
sense locally, and then 7 = 7 (mod ) if and only if 7, = 7, (mod A) for all
finite v. Moreover, when both 7, and 7, are unramified, 7, = m, (mod \)
simply means the Satake parameters are congruent. Before we can state
the main theorem, we need the following definition.

DEFINITION 1.2. — Let m be an automorphic representation of G(A)
such that mo = 1. We say that © is abelian modulo X, a finite place of Q,
if there exists an automorphic character y of G(A) with x = 1 such that
7 =x (mod \).

ANNALES DE L’INSTITUT FOURIER



LEVEL-RAISING CONGRUENCES 1737

This is the analogue of the notion Eisenstein modulo A in [6, p. 1269].
Since G is anisotropic in our setup, there are no cusps and we prefer the
terminology abelian modulo A. The following theorem is in some sense the
main result of this paper.

THEOREM 1.3. — Let m = ®m, be an automorphic representation of
G(A) such that mo, = 1, and let A\|¢ be a finite place of Q such that 7
is non-abelian modulo A. Suppose w is a finite place of F where m,, is
unramified and

Tw = 1 (mod ).

Let K,, C G, be a hyperspecial subgroup and let J,, = K, N K., be
a parahoric subgroup, where K, is another maximal compact subgroup.
Suppose £ t [K! : Jy,]. Then there exists an automorphic representation
T = @7, of G(A) with T =1,

o 7w £ 7lu 4 gl

e 7= (mod ).

This theorem has no content unless 7w = 7w + T ». There is a more
precise version later in this paper. If G4 has rank one, J,, is an Iwahori
subgroup and one can conclude that 75+ = 0 but #J» # 0. This was first
proved by Bellaiche in his thesis [1], using the ideas of Clozel [6]. By a
theorem of Serre, [16], the eigensystem of a modular form mod ¢ comes
from an algebraic modular form mod ¢ on D*, where D/Q now is the
quaternion algebra with ramification locus {oo,¢}. Combining this result
with the Jacquet-Langlands correspondence yields the result of Ribet after
stripping powers of ¢ from the level.

There is another proof of Ribet’s theorem relying on the so-called Ihara
lemma. It states that for ¢ ¥ N¢, the degeneracy maps Xo(N¢q) = Xo(N)
induce an injection

Hl(XO(N)vzf)eaz - HI(XO(Nq)aZE)

with torsion-free cokernel. The proof of this lemma reduces to the congru-
ence subgroup property of the group SL2(Z[1/q]). In our case we are looking
at functions on a finite set, and the analogue of the IThara lemma can be
proved by imitating the combinatorial argument of Taylor [18, p. 274] in
the diagonal weight 2 case. See section 5.3 below.

We mention a few applications of our main theorem. First, let E/Q be
an imaginary quadratic extension and let G* = U(2,1) be the quasi-split
unitary Q-group in 3 variables split over E. Let G = U(3) be an inner form
of G* such that G, is compact. For primes ¢ inert in E, the semisimple

TOME 56 (2006), FASCICULE 6
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rank of G(Q,) is one and we recover the result of Clozel [6]. In the split
case we obtain the following as a corollary:

THEOREM 1.4. — Let m = ®m, be an automorphic representation of
G(A) with s, = 1, and let \|¢ be a finite place of Q such that 7 is non-
abelian modulo X. Suppose q # { is a prime, split in E, such that m, is
unramified and £1 1 + q + ¢?. If moreover, for q|q,

trg = (q 1 q*l) (mod M),

then there exists an automorphic representation @ = ®7, of G(A) with
Too = 1 such that
e T, is generic and 7?;]“ # 0, where J; is any maximal proper para-
horic,
e T=m (mod \).

We cannot prove by our methods that 7, is ramified. On the other hand,
Bellaiche has a result in his thesis in the split case, [1, p. 218], proving
that 7, is ramified under the additional assumption that 7 occurs with
multiplicity one (and discarding finitely many primes ¢). We classify the
Iwahori-spherical representations of GL(3) and compute the dimensions of
their parahoric fixed spaces. This allows us to conclude that 7, is either a
full unramified principal series or induced from a Steinberg representation.

It seems very likely that our method and corollary can be extended to
allow 7, # 1, but we have chosen not to do it here for the sake of brevity.
In that case it would follow that if 7 is endoscopic abelian (that is, nearly
equivalent to a weak transfer of a character of an endoscopic group), then
it is congruent to a © which is not endoscopic abelian. This is true even for
U(n), for all n > 2. For n = 3 this phenomenon has been applied to the
Bloch-Kato conjecture for certain Hecke characters of E by Bellaiche [1].

In our second application, we let G be an inner form of Gsp(4) such that
G (R) is compact. Concretely, G = GSpin(f) for some definite quadratic
form f in 5 variables over Q. In this situation, our main theorem yields the
following:

THEOREM 1.5. — Let m = ®m, be an automorphic representation of
G(A) with T, = 1, and et \|{ be a finite place of Q such that 7 is non-
abelian modulo \. Suppose q # ¢ is a prime such that m, is unramified. If
the Hecke matrix satisfies

1
tr @32 = ( qu ) (mod ),
q3

ANNALES DE L’INSTITUT FOURIER
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then there exists an automorphic representation ©# = ®7, of G(A) with
o = 1 such that

e T4 is generic and ﬁg" # 0, where J, is the Klingen parahoric,

e 7= (mod A).

By the Klingen parahoric, we mean the inverse image of the standard
Klingen parabolic in Gsp(4,F,). Briefly, the proof relies on the computa-
tions of Ralf Schmidt [15]. If m(7) = 1, Bellaiche’s methods seem to apply
and one can probably show that 7, is induced from a twisted Steinberg rep-
resentation on the standard Klingen-Levi. It is known that Saito-Kurokawa
lifts (that is, theta lifts from éi(?)) are locally non-generic. Therefore, if
7 is of Saito-Kurokawa type, it is congruent to a 7 which is not of Saito-
Kurokawa type. Our interest in it stems from our desire to apply it to the
Bloch-Kato conjecture for the motives attached to classical modular forms,
and we plan to study this in a sequel paper. In particular, we hope to es-
tablish a mod ¢ analogue of a result of Skinner and Urban [17], which is
valid for all (not necessarily ordinary) modular forms of classical weight at
least 4.

This work forms part of my doctoral dissertation at the California Insti-
tute of Technology. I would like to acknowledge the impact of the ideas of
Ribet, Taylor, Clozel and Bellaiche.

2. The abstract setup and Taylor’s lemma
2.1. The abstract setup

In this section, we fix a subring @ C C and denote by L C C its field
of fractions. Let H be a commutative C-algebra. We do not require H to
be of finite dimension. However, we assume H comes equipped with an
involution ¢ — ¢V. Here, by involution we mean a C-linear automorphism
of order two. Moreover, we fix an O-order Hp C H preserved by V (by an
O-order we mean an O-subalgebra which is the O-span of a C-basis for H).
Then we look at a triple (V,{—, =)y, Vo) consisting of the following data:

e V is a finite-dimensional C-space with an action ry : H — End¢(V),
e (— —)y is anon-degenerate, symmetric, C-bilinear form VxV — C,
o Vo C V is an O-lattice (that is, the O-span of a C-basis).

We impose the following compatibility conditions between these data:
e 1y (¢Y) is the adjoint of ry (¢) with respect to (—, —)v,
e Vo C V is preserved by the order Ho C H,

TOME 56 (2006), FASCICULE 6
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e Vo/(VonVy) and V¥ /(Vo NVY) are torsion O-modules.

Here Vy = {v € V: (v,Vo)y C O} is the dual lattice of Vo in V. Choose
nonzero annihilators Ay and By in O of the torsion modules above, that
is, such that

AV<V(9,V(9>V C O and <U, V@)V C O = Byv e Vp.

Now let (U,(—, —)u,Up) be another such triple and choose annihilators
Ay and By for it as above. Suppose we are given a map 6: U — V', which
is H-linear, and in addition has the following properties:

o U = ker(§) @ ker(8)*,

e V =1im(6) ®im(5)*,

e §(Up) C Vo Nd(U), and the quotient is killed by C € O — {0}.

We consider its adjoint map §¥: V' — U defined in the obvious way. Let

Vold — im(§) and V"V = im(§)*. These are H-stable subspaces of V, and
by assumption we have an orthogonal decomposition V = Vold g ynew,

DEFINITION 2.1. — Let V84 = Vo NV and VAW = Vi N V1ew,

These Hp-stable submodules of Vy span VO and Vrew respectively.
They are orthogonal, but their sum is not always all of Vin. Note that
§(Uo) C V84 and CVEY € §(Up) by assumption. Now we look at the quo-
tients of T, the image of Hp in Endp(Ve), cut out by these submodules:

TO! C Endo(VEY) and TEHY C Ende(VE™Y)

denote the images of Hp. Clearly we have natural surjective maps Ty —
T and To — TY given by restriction, and Te acts faithfully on Vop.

2.2. An extension of Taylor’s lemma

Note that T acts naturally on U}, = Up N ker(§)*. Moreover, one can
easily check that the action factors through ']I“()Qld. By a congruence module
we mean a To-module, such that the action factors through both T3¢ and
T™. The following lemma was stated for O = Z, trivial annihilators, and
injective § in [19, p. 331].

LEMMA 2.2. — U, /(U, N E716Y6(Uo)) is a congruence module for
E = AyByC2.

Proof. — Suppose ¢ € Hp acts trivially on V5°". We must show that
E¢ maps U, into ¥0(Up). Note first that ¢V also acts trivially on V5V,

ANNALES DE L’INSTITUT FOURIER
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so it maps Vp into V84 Now let u = §¥(v) € Up for some v € V°!4. Note
that

ApClv, V8N € Au(v,8(Uo))v C Ay (u,Uo)u C O,
so AyC{¢pv,Vo)y C O, and hence Ay By C(¢v) € V9. We deduce that
AUBVc2(¢U) € 5(U(9),

and we get the result by applying §V to this: E(¢u) € §V6(Up). O
As in [19, p. 331], we have the following useful corollary:

COROLLARY 2.3. — Let O = Op, be the ring of integers of a number
field L C C. Suppose u € Up —{0} is an eigenvector for Hp, with character
n: Ho — O. Assume:

o E(Lun (Up + kerd)) C Ou, for some nonzero ideal £ C O,
e 0Vd(u) € mUp, for some nonzero m € O.

Then n induces a homomorphism THY — O/(O N mE~'E™Y), where

E = Ay ByC2.

We remark that m = 0 = wu € kerd. If we factor the fractional ideal
ONmE~*&1 into prime powers and project further, we get the following:
For every (nonzero) prime ideal A C O there is a homomorphism

ToY — O/\"
induced by 7, where n is a non-negative integer satisfying the inequality
n = vx(m) — vaA(E) — v (€).

Here we should think of vy(m) as the main term, and the other two as
controllable error terms. In our applications we want to show that the
right-hand-side is positive.

3. Compactness at infinity

Let F be a totally real number field, and let co be the set of archimedean
places. We denote the ring of adeles by A = Ap = F, x A°°. We consider
a connected reductive F-group G, and let A = Ag denote the F-split
component of its center Z = Zg. Each F-rational character y € X*(G)p
gives a continuous homomorphism G(A) — R* by composing with the
idele norm, and we define

G(A)' ={g e G(A): [x(9)] = 1,Vx € X*(G)Fr}.

TOME 56 (2006), FASCICULE 6
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It is known to be unimodular. By the product formula, G(F) is a discrete
subgroup of G(A)*, and the quotient G(F)\G(A)! has finite volume. More-
over, this quotient is compact if and only if G2¢ is anisotropic. Later, we are
naturally led to studying groups for which GL, = G, N G(A)! is compact.

PROPOSITION 3.1. — GL_ is compact if and only if one of the following
holds:
e (G, is compact,
e F=Q,rkgZ =r1kg Z, and G is compact.

Proof. — Suppose first that G is compact. We may assume that A # 1
(otherwise G = GL_ is compact). Choosing a basis for X*(A), we see that
(with r = dim A)

Al ~{z e FL: H |y |0 = l}r.
vEO

Therefore {x € FZ: Hv|oo |zy]s = 1} is compact, and we conclude that
F has a unique infinite place. That is, F' = Q. If rkg Z < rkg Z, the Q-
anisotropic component A’ is not R-anisotropic. The converse is clear. [

4. Hecke algebras and algebraic modular forms
4.1. Hecke algebras

From now on we fix a totally real number field F, and a connected
reductive F-group G, not a torus, such that G, is compact. We consider the
locally profinite group of finite adeles G(A*), and choose a Haar measure
= ®, on it once and for all. We consider the vector space of all locally
constant compactly supported C-valued functions

H=H(G(AY)) = CZ(G(A%),C).

This becomes an associative C-algebra, without neutral element, under
p-convolution. There is a canonical involution on H defined by ¢V (z) =
¢(x~1). This is an anti-automorphism. If K C G(A>) is a compact open
subgroup,

ex = u(K) 'xx €H
is an idempotent. This is a neutral element in the subalgebra of K-
biinvariant compactly supported functions:

Hi = H(G(A®), K) = Co(G(A®)//K,C) = ex x H * ex.

ANNALES DE L’INSTITUT FOURIER
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Clearly V preserves Hg. In addition, there is a canonical Z-order Hg 7 C
H i consisting of all u(K)~'Z-valued functions. As a ring, H z is isomor-
phic to C.(G(A*)//K,Z) endowed with the K-normalized convolution. If
R is a commutative ring, with neutral element, we then define

Hrk,r = R®z Hkz-

The algebras Hy are not always commutative. However, by a result of
Bernstein [2], Hk is a finite module over its center Z(H). Now, suppose
J C K is a (proper) compact open subgroup. Then obviously Hx C H.
However, H is not a subring since ex # e;. There is a natural retraction
H; — Hg defined by ¢ — ex x ¢ x ex. It does map e; — ek, but does
not preserve x unless we restrict it to the centralizer Zy,(ex). Clearly,
Zn,(Hk) maps to the center Z(Hg ). In particular,

ZHj) — Z(Hk), ¢ ¢xekx = ek %o,

gives a canonical homomorphism of algebras. It maps Z(H, z) into Z(Hk z).

4.2. Algebraic modular forms

Note that G(F) C G(A™) is a discrete subgroup. We consider the Hilbert
space of L?-functions on the quotient, L?(G(F)\G(A>)). There is a unitary
representation r of G(A®) on this space given by right translations. We
consider the smooth vectors,

A= LX(GF)\G(A%))™ = C*(G(F)\G(A™),C),

consisting of locally constant functions. This is an admissible representa-
tion:

A=JAk, where Ax ~C(G(F)\G(A™)/K,C),

and K runs over all compact open subgroups of G(A>). Therefore, the
Hecke algebra H acts on A in the usual way. We have the following com-
patibility between this action and the inner product:

(r(®)f.9) = (f,r(¢")g)-
For a compact open subgroup K C G(A*), the space of K-invariants
Ax ~ C(G(F)\G(A®)/K,C) =r(ek)A

is finite-dimensional. Indeed the double coset space X = G(F)\G(A>)/K
is finite. Functions in Ak are examples of algebraic modular forms. Clearly,

TOME 56 (2006), FASCICULE 6
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Hyi acts on Ak, and the order Hyg z preserves the lattice of Z-valued
functions:
Az =C(G(F)\GA®)/K,Z) C Ak.

For a commutative ring R we let Ax rp = R®z Ak z. The R-algebra Hx r
acts on this module, and we let Tk r denote the image of the center
Z(Hk,r) in Endg Ak r. Hence Tk r is a commutative R-algebra. Now,
suppose J C K is a (proper) compact open subgroup. Then Ax C Ay,
and the canonical homomorphism Z(H;r) — Z(Hxk,r) descends to the
restriction map Tjr — Tk g.

4.3. Pairings

We define a pairing on Ak as follows. Here (—, —) denotes the Petersson
inner product.

DEFINITION 4.1. — For f,g € Ak, we define a symmetric bilinear form
by
(f,9)x =nE)(f,9) = Y fl@)g(@)|G(F)N"K|™",
r€EX K
where we use the notation *K = xKz~!.

The factors |G(F)N K |~! are missing in [18] and [19]. If K is sufficiently
small, for example if K =[], __ K, and some K, is torsion-free (this is the
case if K, is a sufficiently deep principal congruence subgroup), then indeed
G(F)N*K = 1. For ¢ € Hi and f,g € Ax we have the compatibility
relation

(r(e)f, 90k = {f,r(6")9)k-

Next we have to show the quotient Ax o/ Aj o is torsion and find a good
annihilator A . The fact that it is torsion is immediate: It is killed by the
positive integer
II 16PNk,
reEX K
This is 1 if K is sufficiently small in the sense above.

LEMMA 4.2. — Let K =[], K, C G(A*) be a decomposable com-
pact open subgroup, and let £ be a prime number. Suppose £ t |K,| for
some v < oo. Then there exists a positive integer Ak, not divisible by £,
such that

Ax(Ak,0,Ak0)k C O.

ANNALES DE L’INSTITUT FOURIER
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NProof. — Choose some torsion-free subgroup IN(U C K, and let K =
K,K". Then

Mz oA o)k €O
as we have observed above. Therefore, for f,g € Ax o C A;{— o e have
(Ko KJ(f,9)x = (f.9)5 € O.
We then take Agx = [K,: K,]. This is not divisible by /. O

Note that ¢ { |K,| if K, is torsion-free and v 1 . For large ¢ this is
automatic:

LEMMA 4.3. — Suppose there exists an F-embedding G — GL(n). Let
K = [],co0 Ku be arbitrary and let £ > [F': Qn + 1 be a prime number.
Then ¢ 1 |K,| holds for infinitely many places v.

Proof. — K, embeds into a conjugate of GL(n,0,). Therefore |K,| di-

vides
n

| GL(n, 0,)| = p™ [ [ (" = D).
i=1
Assume ¢ divides |K,| for almost all v. Then p has order at most [F': Q|n
in (Z/£)* for almost all primes p. Now, (Z/¢)* is cyclic of order £ — 1, so by
Dirichlet’s theorem on primes in arithmetic progressions we conclude that
(< [F:Qn+1. O

5. Parahoric level structure and the concrete setup
5.1. Parahoric subgroups

From now on we assume for simplicity that G9°" is simple (that is, it has
no nontrivial connected normal subgroups). Moreover, we fix a compact
open subgroup

K =[] K. C G(A™).
v<o0o
It is known that K, C G, is a hyperspecial maximal compact subgroup for
almost all places v, that is, K, = G(OF,) for a smooth affine group scheme
G of finite type over O, with generic fiber G. Such exist precisely when
G, is unramified. Let us look at a fixed finite place w of F' where K, is
hyperspecial. Then write K = K,, K", where

K" =[] K. c G(A™").
vFEW

TOME 56 (2006), FASCICULE 6



1746 Claus MAZANTI SORENSEN

Let B,, denote the reduced Bruhat-Tits building of G, (that is, the building
of G31). We have assumed G9 is simple, so B, is a simplicial complex.
Let « € B, be the vertex fixed by K,,, and let (z,2’) be an edge in the
building. Then consider the maximal compact subgroup K|, C G,, fixing
the vertex 2, and the parahoric subgroup J,, = K,, N K/, associated with
the edge (z,z). Let K/ = K/ K" and J = J, K" be the corresponding
subgroups of G(A*).

LEMMA 5.1. — (K, K],) = GY := {g€G.: [x(9)] = 1,VX€X*(G)F, }-
Proof. — This follows from Bruhat-Tits theory. O

Note that G € GY € GL, = G, NG(A)L.

5.2. The concrete setup

Now we want to apply our general results in the following setup: Let
L C C be a number field, and let O = Op, be its ring of integers. We
let H = Z(Hy). This is a commutative C-algebra, and it comes with the
involution defined by ¢V (z) = ¢(xz~1). V = Ay is a finite-dimensional C-
space on which Z(H ) acts. The order Z(H s ) preserves the lattice Vo =
Ajo. The space V comes with the bilinear form (—, —) ;. The compatibility
conditions between these data are satisfied. Let U = Ax ® Ag+. Then
Z(Hy) acts on this space via the natural maps to Z(Hg) and Z(Hg).
The lattice Up = Ax,0 & Axr,0 is preserved by Z(H o). The bilinear
form on U is given by the sum (—, —)x @ (—, =) x/. The degeneracy map §
is given by

0: A © Ak s AJ,
which is clearly Z(H y)-linear. Obviously, ker(d) consists of all pairs (f, — f),
where

feAx N Ag = {G K* — invariant functions f € A}.

The decompositions U = ker(d) @ ker(§)* and V = im(d) @ im(6)* are im-
mediate because of the relation between the pairings and the inner product.

5.3. The combinatorial Thara lemma

The proof of the following lemma is a straightforward generalization of
[18, p. 274]:

ANNALES DE L’INSTITUT FOURIER
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LEMMA 5.2. — Aj0oN§(Ax & Ax') = 6(Ar,0 ® Ak 0).

Proof. — Let us first set up some machinery for the proof. We define an
equivalence relation on X ; by saying that ,y € X; are equivalent (z ~ y)
if and only if

3 chain x = xq, ..., x4 = y such that
Vi: m(x;) = m(wip1) or ' (x;) = 7' (z441)-
This gives a partition of X; into equivalence classes X § For each j, we
fix a representative y/ € X”. Correspondingly, we have a radius function
d: Xj — Zxo defined as follows: Given x € X, there is a unique j such
that # ~ y/. Then d(x) is the minimal length of a chain connecting x to

y7. Now, suppose g = 0(f, f') € Aj o for some f € Ak and [’ € Ag/. We
want to show g € 0(Ax,0 ® Ax’.0).

CLAIM. — We may assume that f(n(y’)) =0 for all j.

To see this, note that Xx = I_|7r(X§) and X = LI7T'(X§). We then
define f € Ag such that flr(X?}) = f(n(’)), and f' € Ag+ such that
fl7'(X%) = f(w(y’)). Then

g=0f-f.f'+1)
and (f — f)(7(y?)) = 0 for all j. This proves the claim, so from now on

assume that f(m(y’)) = 0 for all j. By induction on m > 0, we now prove
the following;:

Vo € X; with d(z) =m: f(r(x)) € O and f'(7'(z)) € O.

This is sufficient, for then f € A o and f' € Ax/ 0. Note that f(w(x)) €
O if and only if f'(n'(z)) € O. The start m = 0 is essentially just our
assumption, so assume the statement is true for m — 1 > 0 and consider
x € Xy with d(xz) = m. Let

T =20, X1,y Ty = Y

be a chain of minimal length. Then 2’ = 21 € X; has d(z') = m — 1, so
by induction f(w(z’)) € O and f'(7'(z')) € O. However, 7(z) = w(a’) or
7' (z) = 7'(2'). In either case we get the statement for . O
6. Applying the abstract theory
6.1. Computing §V4

To apply the abstract theory it is necessary to compute V4§ explicitly.
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LEMMA 6.1. — The endomorphism V¢ is given by the 2 X 2 matrix

Ve [K:J] [K: Jle
0 6_([K/:J]6K/ [K/:Jf{>’

Proof. — §V§ is an endomorphism of Ax @ Ak, and we write is as
06 =(24),

where b: Ag: — Ak and so on. Using the definition it is not hard to see
that

<a.f7g>K = <fag>.] = [K ‘]]<f7g>K

for all f,g € Agk. In particular, a = [K: J]. In the same way one computes
b, c and d. O

6.2. The main lemma

In our situation, Corollary 2.3 gives the following crucial lemma.

LEMMA 6.2. — Let f € Ax o be an eigenform for Z(H g o) with char-
acter ny: T,o — O. Assume [ is not G -invariant modulo \|¢, where {
satisfies the following:

There exists at least two places v such that £ { |K,|.

new

Then the reduction of ny modulo \" factors through T7% when
ox(nplex,x) = K J|E": J]) = oa([K": J]) = n,
where we introduce the notation ex g+ = [K: J|[K': J|(ex x ek’ * ex) €
Z(Hkz).
Proof. — To produce an eigenvector in Up = Ag 0 ® Ak’ 0, we take
f= K" J)(f.~r(ex))) € Ax.o © Axo-

The factor [K’: J] is included since r(eg-) f does not necessarily take values

—

in O. Clearly, f is an eigenvector for Z(H, ), and its character is the
composite

nf Z(Hjo0) — Z(Hk,0) 2 o.
Using the explicit formula for 6VJ in Lemma 6.1 above, it follows that
8Y3(f) = (np(ex.xr) — [K: JIK': J])(—F.0).
Now, since (—f,0) € Up, in Corollary 2.3 we can take
m=ns(exx)— [K: JI[K': J] €O
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as long as this is nonzero. However, note that f must belong to the kernel
of § if m = 0. Hence f must be invariant under the group G2 (say, on the
right). Now, let

F={zelL:af € Axo + Ax N Ak }.

This is clearly an O-submodule of L containing O. Obviously, F = L if
f € Ak N Ag:. However, f is not G -invariant, so F is a fractional ideal.
To see this note that

A (f,9)kF CO

for every g € A0 N (Ax NAg)*. These g span (Ax N Ax+)* so f must
belong to A N Ak if (f,9)x = 0 for all such g. Now, the nonzero ideal
& = F~! satisfies:

E(LfN(Ako +Ax NAg)) C OF.
Therefore, &€ = [K': J ]g satisfies the primitivity condition in Corollary 2.3:
E(L]?ﬁ (.AK7O S .AK/,@ + keré)) C Of

Suppose A C O is a maximal ideal such that vy(£) # 0. Then A\=! C F. It
follows that f € AM(Ak,0 +Ax NAg/), and hence the reduction f € Ax r,
is GO -invariant. Since £ { | K,| holds for at least one v # w, by assumption,
we can find Ax and Ak indivisible by ¢ according to Lemma 4.2. Note
also that we can take C' =1 by Lemma 5.2. a

7. Semisimplicity
7.1. Automorphic representations and the decomposition of Ax

Henceforth assume G9°¢* is simple and simply connected. There is an
admissible representation of G(A*°) on the space

A= C®(G(F)\G(A®),C)

given by right translations. For a compact open subgroup K C G(A*°), we
look at the Hpg-module of K-invariants Ag. Recall that an automorphic
representation of G(A) is an irreducible representation 7 of G(A) (on some
Hilbert space) such that

Homg(ay: (m, L (GP)\G(A)")) # 0.
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We let m(m) denote the dimension of this space. We then have an isomor-
phism,
Ag =~ @ m(m)m,
7€M unic (G(A)): Too=1
On the right we have a finite direct sum over the automorphic representa-
tions 7 of G(A) such that mo, = 1 and 7% # 0. These 7 are automatically
unitary.

7.2. Semisimplicity in characteristic zero

It is known that each 7% is a simple module over Hy, and hence Ag is
semisimple. Moreover, by Schur’s lemma, the center Z(H ) acts on 7% by a
C-algebra homomorphism 7, x : Z(Hy) — C. For a character n: Z(Hg) —
C, we denote by Ak (n) the n-isotypic component. That is, the eigenspace

Ax(n) = {f € Ax:r(¢)f =n(d)f.V¢ € Z(Hk)}.

Then there is a direct sum decomposition Ax = @, Ax(n). Clearly,
Ak (n) # 0 if and only if n = n,x for some 7. The image Tx C End Ag of
the center Z(H ) is a commutative semisimple C-algebra, that is, a direct
product of copies of C.

LEMMA 7.1. — The eigenspace Ag (n) is nonzero if and only if n factors
through Tg.

Proof. — Obviously, n factors if Ak (n) # 0. Conversely, suppose 7 fac-
tors and look at its kernel m = ker(n) C Tx. This is a maximal ideal.
Since Tg acts faithfully on Ak, which is finite-dimensional, m belongs to
the support of Ag. By the theory of associated primes, m contains a prime
ideal of the form Annrt, (f) with f € Ax. All primes are maximal in Tg,
so in fact m = Anng, (f). Clearly m contains T — n(T") for every T € Tk,
so f € Ak (n), and f must be nonzero as m # Tk. O

Now, consider the Hx g-module Ak g, and the image Tk g of the center
Z(Hgk,g) in the endomorphism algebra Endg Ak g. Tk g can be viewed
as a subring of Tx ~ C ®g Tk,g. We deduce that Tk g is a reduced
commutative finite-dimensional Q-algebra, that is, a product of number
fields by Nakayama’s lemma:

TK’Q':L1X"'XL7:.

Visibly, Tk g is a semisimple Q-algebra. The L; occurring in Tg g are
totally real or CM.
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7.3. Semisimplicity in positive characteristic

Now let R be a field of characteristic p > 0. We are interested in when
Ak g is a semisimple module over Z(H g, r). As we have seen, this means
that Tk g is a semisimple R-algebra. We have Tk rp ~ R ®r, Tk ,, 80
equivalently, when is Tg r, semisimple? There is always a surjective homo-
morphism

§:F,Qz2Tkz —» Tk,
Indeed the image of F, ®z Tk z in Endr, Ax r, equals the image of F, ®z
Z(Hx z). However, the natural map from this last algebra to Z(Hxr,) is
surjective. Let

PJTKZ = {T S TK,Q: T(.AK,Z) (@ AK,Z}-
This is a finite free Z-module containing Tk 7 as a subgroup of finite index.

LEMMA 7.2. — The kernel ker(§) is nilpotent. It is trivial if and only if
1 Tkz: Trzl

Proof. — Tt is enough to show that every element in ker(&) is nilpotent.
Under the identification F,, ®7 Tr 7z ~ Tk z/pTk z, the kernel ker(§) cor-
responds to the ideal

(Trz NPTk z)/PTr 2.
Let T € Ty ﬁpﬁ‘Kyz. Obviously, TKZ is integral over Z, so there is an
equation

P ')+ ana(p ')+ +ar(pT ' T) +apg =0

for certain a; € Z. Multiplying by p™ we see that T" € pTk z. For the last
assertion, note that ker(¢§) = 0 if and only if F, ®z Tk z — F, ®z P]Affaz is
injective. 0

In particular, ker(¢) is contained in the Jacobson radical. We let Tk 7
denote the integral closure of Z in T g. It contains T K,z as a subgroup of
finite index.

LEMMA 7.3. — p'fAKZ = [TK’ZZ ']TK,Z] Hz ALi/Q = TK,]FP is semisim-
ple.

Proof. — Note first that F, ®z 'ﬁ‘K)Z ~T, ®zTr z since pf [Tk z: 'E‘K,Z].
Now,

IFp 294 TK,Z ~ HOLi/pOLi = HHOLi/pa

i oplp
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since p is unramified in every L; occurring in T g. There is an embedding,

Txr, ~Tkz/(TkzN p;]fK,Z) — ﬁ‘K,Z/pﬁ‘K,Z ~TF,®z ﬁ‘K,Za
and it follows that Tk r, is semisimple. O

The converse holds at least for p ¢ [TNI‘KZ: Tk z] (that is, when £ is injec-
tive).

7.4. The simple modules

Let R be a perfect field of characteristic p > 0. Up to isomorphism, the
simple Z(H g, r)-modules are given by an extension R'/R with an action
given by a surjective R-algebra homomorphism n: Z(Hk.gr) - R'. If n is
a submodule of Ak g, the extension R'/R is finite and n factors through
Tg.r- If pt Ag, there exists a finite extension L/R such that we have a
direct sum decomposition

Ak = @ Ag. (1),
7

This is still true when p|Ag, provided Ag (1) denotes the generalized
eigenspace:

Ag(n) ={f € Ax.L: V¢ € Z(Hk,L), (r(¢)—n(¢))" f = 0 for some n>1}.
Observe the following:

LEMMA 7.4. — Let R be a field, and choose a finite extension L/R as
above. Then let L' /L be an arbitrary extension. Suppose n': Z(Hg, ') —
L’ occurs in Ak 1. Then ¥ = 1®@n for some character n: Z(Hk ) — L
occurring in Ak 1. Moreover,

Ag,(1®@n) ~ L' @ Ak L(n),
son and 1’ =1 ® n occur with the same multiplicity.

Proof. — Both Ak, 1, and Ak, - ~ L' ®, Ak, have decompositions into
direct sums of generalized eigenspaces. Under this isomorphism, L' ®p,
Ak 1 (n) — Ak /(1 ® n). Therefore, every 7' occurring in Ak, - must
come from an 7, and the above injection must be an isomorphism. |

Let us apply these results to R = Q. We conclude that there exists a
number field L/Q such that Ag 1, is a direct sum of eigenspaces for charac-
ters Z(Hg,r) — L. Furthermore, if n: Z(Hg) — C is a character such that
A (n) # 0, then 7 restricts to a Q-algebra homomorphism Z(Hg o) — L
occurring in Ag 1. In addition, since Z(Hg z) preserves Ak o, , n even
restricts to a ring homomorphism Z(Hg z) — Of occurring in Ak 0, -
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8. End of the proof
8.1. Invariance modulo )\

The following is a more refined version of the notion abelian modulo A.

DEFINITION 8.1. — Let m be an automorphic representation of G(A)
such that mo, = 1. We say that w is abelian modulo A relative to K if
7 # 0 and there exists an automorphic character x of G(A), trivial on
G K, such that n,x(¢) = ny(¢) (mod N), Vo € Z(Hk 7).

If this does not hold, we can find eigenforms in 7% to which our main
lemma applies:

LEMMA 8.2. — Let 7 be an automorphic representation of G(A) such
that mo, = 1. If 7w is non-abelian modulo X relative to K, then the eigenspace
A% 5(77) contains no nonzero G4 -invariant functions, where w is a place
such that K,, is hyperspecial.

Proof. — Choose a number field L/Q such that Ak 1, is a direct sum of
eigenspaces and let O = Op. Denote by

N=nx: Z(Hrgz) — O

the character giving the action on 7% . As we have observed above it occurs
in Ag,0, that is, there exists an eigenform 0 # f € Ag o with ny = 7.
We consider a finite place A\|[¢ of Q, and a finite place w of F such that G,
is unramified. Let f = 1 ® f € Agy be the reduction modulo A, where
F = O/AN 0O is a finite extension of F,. By scaling f, we can assume
that f # 0. Let us assume f is G invariant. Now, G4 is simple, simply
connected and G4 is noncompact. By the strong approximation theorem,
f is in fact G4°T(A%®)-invariant. There is a short exact sequence

1 — G (A®) — G(A®) & G*P(A>) — 1.

It follows that f lives on G*”(A>). More precisely, there exists a unique
function f: G®P(A*) — F such that f = f ov. It fits into the diagram

Xi = GFN\G(A®)/K — = F

Y = v(G)\G*(A%®) /v(K)

If R is a ring we denote by A"}g r the module of R-valued functions on Y.
Pulling back via v, identifies AE}?, g With an H g r-submodule of Ag r. Then
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0#£fe A";;ﬁf (77). By the Deligne-Serre lifting lemma (that is, Lemme 6.11
in their paper [7, p. 522]) we can lift 7 to characteristic zero: There exists
an eigenform 0 # f' € .Ai%}’,LA such that its character n': Z(Hgz) — Ox
reduces to 7 modulo AN O. From the results of the previous section we see
that in fact 7 maps into O, and it occurs in A%, (and therefore in A%).
However, A?I‘? is just the space of C-valued functions on the finite abelian
group Y, so the characters form a basis. We conclude that there exists a

character x such that n(¢) =n,(¢) (mod A) for all ¢ € Z(Hgkz). O

8.2. Proof of the main theorem

We can now prove the more precise version of Theorem 1.3 alluded to in
the introduction.

THEOREM 8.3. — Let K = [[, .. Ky C G(A*>) be a compact open
subgroup. Let M| be a finite place of Q such that there exists at least two
finite places v where £ { |K,| (this is automatic if £ > [F: Qn + 1). Let
m = ®m, be an automorphic representation of G(A) such that o, = 1
and 5% # 0. Assume 7 is non-abelian modulo )\ relative to K. Let w be a
finite place of F such that K,, is hyperspecial, and let J,, = K,, N K], be a
parahoric subgroup, where K, # K,, is maximal compact. Let J = J, K"
and K' = K| K™. Suppose ¢t [K': J] and

Nex(ex, k) = mler k) (mod A),

where
ex = [K: JI[K': J)(ekx * e *ex) € Z(Hik ).
Then there exists an automorphic representation © = @, of G(A) such
that 7o = 1 and 75" # 0 satisfying the following:
o 7w £ Ko 4 71 and
o 15(8) = nx e % 6) (mod A), for all 6 € Z(H,z).

Proof. — The reduction 77,x modulo AN O factors through T5%" by the
main lemma (Lemma 6.2). That is, there exists a character n': Z(Hyz) —
F factoring through T5%" such that 1'(¢) = n,x (ex * ¢) (mod A) for all
¢ € Z(Hjz). As above, there is a surjective homomorphism with nilpotent
kernel

Fr®z TI}?ZW —» Tf}?ﬂ.
new

Thus i’ gives rise to a character T Jr — F, also denoted by 7. By a
standard argument (used above in section 7.2), there is an eigenform f’ €
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5% with character 7). Now we apply the Deligne-Serre lifting lemma, [7,
p- 522], to the finite free module A5 where O, is the completion of O
at AN O. It gives the existence of a character 7: 57 — (5>\ occurring
in .A;e% and reducing to ', where O, is the ring of integers in a finite

NN

extension of Ly. Since T4’ preserves the lattice AJ%Y, the values 7j(¢) all
lie in the ring of integers of some number field, O;. We deduce that there

exists a character 7: Z(H;z) — Oj, occurring in A5™", such that
11(9) = 1 (exc x @) (mod A)
for all ¢ € Z(Hz). From the decomposition of A; in terms of automor-

phic representations, it follows that the newspace A" has the following
description:

AV~ P m(m) (77 /(75 + 7KY),
mE€lunit (G(A)): Too=1

as Z(H j)-modules. The center Z(Hs) acts on the quotient 77 /(7 + 7X")
by the character n,s. We conclude that there exists an automorphic repre-
sentation 7 of G(A) with 7o = 1 and 7/ # 75 4+ 7K', such that ;s = 7.
In particular,

129(6) = ek (exc % @) (mod )
for all ¢ € Z(Hz). This finishes the proof O

9. Applications
9.1. The rank one situation

When the F,-rank of G is one, the condition 7Jw # 7w + 7w forces
Ty to be ramified:

COROLLARY 9.1. — With notation as above, let w be a finite place
of F such that K, is hyperspecial and the F,-rank of G is one. Let
I, = K, N K|, be an Iwahori subgroup, where K|, is maximal compact.
Let I = I,K" and K' = K| K". Suppose (1 [K': I] and

Nex (ex, k) = m(er k) (mod A),

with eg g as in Theorem 8.3. Then there exists an automorphic represen-
tation © = @7, of G(A) such that 7, = 1 and #5" # 0 satisfying the
following properties:

o 7lv 20 and 7Kv =0,
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o 1z:1(P) =Ny (ex @) (mod N), for all ¢ € Z(Hyz).

This corollary is a slight generalization of Bellaiche’s [1, Theorem 1.4.6,
p. 215]: Tt gives results modulo arbitrary A|¢, the level-raising condition
is weaker, and we get information about the action of the center of the
Iwahori-Hecke algebra on 7lv. Bellaiche’s proof is different. He uses re-
sults of Lazarus and Vigneras from modular representation theory, such
as the computation of the composition series of universal modules. With
his stronger level-raising condition, 7,x (¢) = n1(¢) for all € H,,, one
can conclude that 7, is the actual Steinberg representation of G,,, see [1,
p. 221].

9.2. U(3) - the split case

In this subsection, we let E/Q denote an imaginary quadratic extension
of Q, even though much of what we have to say is true for CM extensions.
We consider the quasi-split unitary Q-group in 3 variables, G* = U(2, 1),
split over E. We let G = U(3) be an arbitrary inner form of G* such that
G is compact. Such exist since F is imaginary. The rank is odd, so we
may even assume G is quasi-split at all finite primes, but we do not need
that here. Now, we will focus on primes ¢ split in E. First, we make some
remarks on the parahoric subgroups of GL3(Eq) ~ GL3(Qq). There is the
hyperspecial maximal compact subgroup K = GL3(Z,), and the Iwahori
subgroup

I={geK:g= (ggz) (mod ¢)}.
There is only one GL3(Qq)-conjugacy class of maximal proper parahorics.
We take

J:{geK:gz(gga(mod Q)y=Knpu 'Ky,

i ("),

as a representative. The following is a slightly stronger version of Theo-

where

rem 1.4.

THEOREM 9.2. — Let m = ®m, be an automorphic representation of
G(A) with mo, = 1. Let A{ be a finite place of Q such that m is non-
abelian modulo A. Choose a compact open subgroup K = [[ K, C G(A*>)
such that 7 # 0. If ¢ < 3, or we are in the situation where E = Q(y/—7)
and ¢ =7, assume £ 1 | K| for at least two primes p. Let ¢ # { be a prime,
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split in E, such that K, is hyperspecial. If {11+ q + ¢*, and the following
is satisfied

where q|q, then there exists an automorphic representation © = ®7%, of
G(A) with 7o, = 1 and 75" # 0 satisfying the following conditions,

e 7, is either an irreducible unramified principal series or induced
from a Steinberg representation. In particular 7, is generic, not L2,

_J
and g # 0,

o 1:5(9) = nyx(ex x @) (mod N), for all ¢ € Z(Hyyz), where J =
J K.

Proof. — We first need to classify all the Iwahori-spherical representa-
tions of GL3(Qyq). It is a theorem of Borel and Casselman that these are
precisely the constituents of unramified principal series. Using the theory
developed by Bernstein and Zelevinsky, nicely summarized in [9], we obtain

the following table: v = | - | is the absolute value,
l ‘ ‘ constituent of ‘ representation ‘ unitary ‘tempered‘ L? ‘ generic ‘
I X1 X X2 X X3 X1 X X2 X X3 below Ixi| =1 .
II | a [xiv'2xxir ™ 2xx2 | x1 Stane) Xx2 | Ixil=1 | [xil =1 .
b x1x5 - # vE/? X1larz) X x2 | Ixil =1
IO | a | xwxxxxy ' X StaL(s) IxXI=1 | IxI=1 | Ix|=1 .
b XVP
c xVaq
d X1laL(s) [x| =1

Table A: Iwahori-spherical representations of GL(3)

The irreducible representation x1 X x2 X X2 in group I is unitary if and
only if either all the x; are unitary, or, X1X2—1 =v*with 0 < a < 1
and ys unitary (after a permutation). In the table, P and @ denote the
parabolics of G = GL3(Q,) of type (2,1) and (1, 2) respectively. Moreover,
Vp = C*°(P\G)/C and Vq, is defined similarly. They are not unitary, and
therefore irrelevant for the theory of automorphic forms. Next, we list the
dimensions of their parahoric fixed spaces:
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’ ‘ ‘ representation remarks ‘ K ‘ J ‘ 1 ‘
1 X1 X X2 X X3 11316
11 a | X1 StGL(2> X X2 0 13

b | x1laLe) X X2 1123
III | a X Star(s) 01011
b xVp not unitary | 0 | 1 | 2
c xVo not unitary | 0 [ 1 | 2
d x1lcLes) irrelevant 1|11

Table B: Dimensions of the parahoric fixed spaces

To compute these dimensions, we use the following observation: If P
is parabolic and J is parahoric, a choice of representatives g € P\G/J
determines an isomorphism

Indg(T)Jz @ Tpngg—l,

geP\G/J

for every representation 7 of a Levi factor Mp. In particular, if P = B is the
Borel subgroup and 7 is an unramified character, the dimension of Ind$ (7)”’
equals the number of double cosets |B\G/J|. With this information, the
proof proceeds as follows: Our main theorem gives us an automorphlc rep-

resentation 7 congruent to 7 (modulo ) such that 757 # 7o 7 + 7, K. Since
Tq must be unitary, we see from table B that it is of type I or Ila. Then,
from table A, we derive that 7, is generic and not L?. Finally, note that
there is a bijection K/J ~ GL3(F,)/P, so [K: J] =1+ q+ ¢ O

Remark. — This corollary has no content unless 7, is induced from
the determinant (type IIb), that is, unramified and non-generic (and not
1-dimensional), which is the case for the endoscopic lifts from U(2) x U(1)
considered in [1, p. 250]. In fact, the results we get for U(n) indicate that
an endoscopic abelian lift 7 is congruent to a @ which is not endoscopic
abelian. In his thesis [1, p. 218], Bellaiche also has a result in the split
case. Apparently, if you only allow ¢ outside a finite set and 7 occurs with
multiplicity 1, then you can obtain a 7 with 7, ramified. Hence, from our
analysis, 7, is induced from Steinberg. It looks like the preceding corollary
is related to the n = 3 case of conjecture 5.3 in [19, p. 35|, providing an
analogue of Thara’s lemma, and to the work of Mann [11]. We also note that
automorphic representations of unitary groups with a generic component
at a split prime, come up naturally in the proof of the local Langlands
correspondence for GL(n) [8].
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9.3. Gsp(4)

In this subsection we view Gsp(4) as an algebraic Q-subgroup of GL(4)
by realizing it with respect to the standard skew-diagonal symplectic form.
With this choice, the set of upper triangular matrices form a Borel subgroup
B = TU. There are two maximal parabolic subgroups containing B, namely
the Siegel parabolic

PMpD(Np{(gyrg1>(11§$>}a
1

where g denotes the skew-transpose, and the Klingen parabolic

QzMQxNQZ{(VQVldetg)<1f1‘f> (1111)}

We consider an inner form G of Gsp(4) such that G9*(R) is compact.
Concretely we have G = GSpin(f), where f is some definite quadratic
form in 5 variables over Q. Now, let us first describe the parahoric sub-
groups of Gsp,(Q,). There is the hyperspecial maximal compact subgroup
K, = Gspy(Z,), and the Iwahori subgroup I, consisting of elements in K,
with upper triangular reduction mod g¢. Similarly, P and @ define (non-
conjugate) parahoric subgroups J; and J; called the Siegel parahoric and
the Klingen parahoric respectively. One can easily check that we have the
identity,

1
Ji = KqNhKsh™", where h = (q 1).
q

However, J, = K, N K, where K/ is the non-special maximal compact
subgroup containing I,. It is called the paramodular group. Since P and
Q@ are not associated parabolics, the classification of the Iwahori-spherical
representations of Gsp,(Q,) is much more complicated than for GL3(Q,).
Fortunately, this has been done by Ralf Schmidt. The tables we need are
Table 1 and Table 3 in the forthcoming paper [15]. With the permission of
Ralf Schmidt, we have reproduced the information we need in Appendix B
as Table C an Table D. We use the notation from this appendix below. If &
has a Galois representation p.  (for example, if it transfers to a cuspidal
representation II of Gsp(4) with I, in the discrete series, see [10], [20]),
then pr »(Fr,) and tr @v|-s/2 have the same eigenvalues. In this case, 7 is
abelian modulo X if some twist of p, » has the form 1 & &, ® @7 & 7. We
obtain the following strengthening of Theorem 1.5.

THEOREM 9.3. — Let m = ®mn, be an automorphic representation of
G(A) with 7o, = 1. Let M{ be a finite place of Q such that m is non-
abelian modulo A. Choose a compact open subgroup K = [[ K, such that
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7 £ 0. If ¢ < 5 assume ( { |K,| for at least two primes p. Let ¢ # { be a
prime such that K is hyperspecial. Suppose

1
q
L o3z = ( 7 3) (mod A).
q

Then there exists an automorphic representation @ = ®, of G(A) with
Too = 1 and 7K £ 0 satisfying the following conditions,
e 7, is generic and Klingen-spherical,
o 1:5(¢) = nax(ex x @) (mod N), for all ¢ € Z(Hyz), where J =
J KA.
Moreover, if in addition ¢* # 1 (mod ¢), &, must be of type I, Ila or
1]a.

Proof. — We apply the main theorem (Theorem 8.3) to the Klingen
parahoric J,. An easy computation shows that [K}: J,] = ¢. We get an
automorphic representation 7, congruent to m modulo A, such that the
component at ¢ satisfies the identity:

’
~J ~K ~ Ky
Ty # T+ g

In particular, fquq # 0. We must have that ﬁf N ﬁf T 0, for otherwise
dim7, = 1 and therefore 7 is one-dimensional by the strong approxima-
tion theorem. However, 7 is assumed to be non-abelian modulo A. Thus,
equivalently we have
dim 777 > dim 750 + dim 7y .

From Schmidt’s tables, [15, p. 16], (that is, Table D in Appendix B), we
deduce that this inequality is satisfied precisely when 7, is of type I, IIa,
IITa, IVDb, IVc, Va or VIa. However, those representations of type IVb and
IVc are not unitary and can therefore be ruled out immediately. We are
then left with the possible types I, IIa, Illa, Va and VIa. Then, from the
tables [15, p. 9], (Table C in Appendix B), we read off that 7, is generic.
Indeed all the representations of type Xa are generic, for X arbitrary.

Now, let us show that the types Va and VIa can also be ruled out if
we assume ¢ # 1 (mod £). Suppose first that 7, is of type Va, that is,
the unique subrepresentation of some | - |£y x & X | - |~*/2¢ where &, has
order two, see [15, p. 7] for an explanation of the notation. By the main
theorem, the center of the Klingen-Hecke algebra Z(H s, z) acts on ﬁ;]q by
a character 74 satisfying the congruence

1174 (¢) = 11, Ko (er, * ¢) = mlex, x ¢) (mod N),
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for all ¢ € Z(H,,z). We get immediately that the analogous statement
is also true for the center of the Iwahori-Hecke algebra Z(H;y, z). This,
however, acts by a character on the Iwahori-fixed vectors in the principal
series | - |€&o x & x | - |7Y/20 (for it has an unramified Langlands quotient,
so is generated by any nonzero K,-fixed vector). Hence, Z(Hy, z) acts on
every constituent of this principal series by the same character n.1q- In

particular, the action of the spherical Hecke algebra Hy,z ~ Z (73(1%2)
on the K -fixed vectors of the unramified quotient (type Vd) is given by a
character congruent to n7. In terms of their Satake parameters we therefore
must have (modulo the action of the Weyl group):

qfl/ZU(q) q—3/2

a ?€0(q) -1z

q
q"/?¢00(q) q/?
7?0 (q) q

(mod \).

Since &(q) = —1 we conclude that ¢ = —1 or ¢> = —1 modulo £. Secondly,
assume 74 is of type VIa, that is, the unique irreducible subrepresentation
of some |-| x 1% |-|7'/20. Then, by the argument above, we conclude that
the unramified quotient of this principal series must be congruent to 1.
That is, in terms of their Satake parameters:

a ?0(q) q 32

,1/20_ —1/2
! v a0 (q) = ! q'/? (mod A).

q"?a(q) q
It follows that ¢ = 1. The types I, ITa and IIla cannot be excluded, even
if m has trivial central character. O

Remark. — There exists ¢ with ¢* # 1 (mod ¢) precisely when ¢ > 7.
In this case 7, is an unramified principal series (type I) or induced from a
twisted Steinberg representation x Star2) XX’ or x % X' Stgr(2) (type Ila
and IITa respectively). If one can show that 7, is para-ramified, meaning
that 7, has no nonzero K-fixed vectors, one can conclude that it is of
type IIla and therefore induced from a twisted Steinberg representation on
the Klingen-Levi. It seems possible to prove this if m(w) = 1, using the
methods of [1] and [6]. We hope to return to this point in another paper.
The result above only gives non-trivial congruences if 7, is non-generic.
If 7 is of Saito-Kurokawa type (that is, a theta-lift from the §I:(2)), it is
locally non-generic, and we get a 7 congruent to m which is not of Saito-
Kurokawa type. If we know 7, is of type Illa, we can apply this strategy
to the Bloch-Kato conjecture for the motives attached to classical modular
forms of weight (at least) 4, using the methods of [1]. We should note that
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if we choose to work with the Siegel-parahoric J;, we can only conclude
that 7, is generic or a Saito-Kurokawa lift.

Appendix A. Congruent representations

The compact open subgroups K C G(A*) form a directed set by op-
posite inclusion, that is K < J & K D J. Let R be a commutative
ring. As K varies over the compact open subgroups, the centers Z(Hg r)
form an inverse system of R-algebras with respect to the canonical maps
Z(Hk,r) < Z(Hyr) when K D J. Let

Zaa=),r = ImZ(Hk Rr).
In this limit, it is enough to let K run through a neighborhood basis at

the identity. Thus Zg(se), g is a commutative R-algebra, and it comes with
projections (K D J)

Zah*),R

Z(Hk,R) Z(HjR)

e *p—¢

All we have said makes sense for any locally profinite group, so in par-
ticular we have local analogues Z¢g, r for each finite place v. If 1 = ®pu,,
it follows that

ZG(A=),R ~ ® Za,,R;
<00

a restricted tensor product. Indeed the decomposable groups K = [[ K,
form a cofinal system. It remains to determine the algebras Z¢, gr. By [5,
p. 14], there exists a neighborhood basis at 1 consisting of compact open
subgroups K, C G, with Iwahori factorization with respect to a fixed
minimal parabolic. If G, is unramified, for such a K, the canonical map
Z(Hk, r) — Hzf’g to the spherical Hecke algebra at v is an isomorphism
[3], [4]. This is a well-known result due to Bernstein when K, is an actual
Iwahori subgroup. Therefore,

G, unramified = Z¢ g ~ Hff]}%.
The reason for introducing these objects is the following: Let 7 = ®m,
be an irreducible admissible representation of G(A). Then there exists a

unique character

vy

N Zaae=),z — C,
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such that 7, = n,x o pry for every K such that 7 # 0. Uniqueness is
clear, and the existence reduces to showing that 1,s(¢) = n.x(ex * @)
for K D J when 7% # 0. Similarly, we have characters 7,, locally, and
Ne = ®@Ny, under the isomorphism above. If 7 is automorphic and 7o, = 1,
the character n, maps into the ring of integers of some number field. Our
work suggests the following definition:

DEFINITION A.l. — Let w and 7 be automorphic representations of
G(A), both trivial at infinity, and let A be a finite place of Q. Then we say
that m and T are congruent modulo A\, and we write # = (mod M), if for
all ¢ € Zgp~),z we have

1N7(¢) = Nx(4) (mod A).

Analogously, it makes sense to say the local components 7, and m, are
congruent. Then # = 7 (mod A) if and only 7, = m, (mod A) for all v < cc.
This is the kind of local-global compatibility aimed for in Parson’s thesis
[12]. Parson has another definition of being congruent. We do not know
how the two definitions are related. Note also that if 7, and m, are both
unramified, then 7, = 7, (mod A\) means that the Satake parameters are
congruent as it should. With these definitions, our results translate into
those stated in the introduction.

Appendix B. Iwahori-spherical representations of Gsp(4)

In this appendix we reproduce parts of Table 1 and Table 3 in [15]. We
are grateful to Ralf Schmidt for his permission to do so. We stress that
the tables in [15] contain more information than what is listed here (such
as Atkin-Lehner eigenvalues and signs of e-factors). Below, we employ the
notation of [14]. Thus v denotes the normalized absolute value of a non-
archimedean local field. If x1, x2 and ¢ are unramified characters, we recall
that x1 X x2 X o denotes the principal series of Gsp(4) obtained from

T > diag(z,y, 2y~ ", 227 ") = x1(2)x2(y)o(z) € C*

by normalized induction. Similarly, if 7 is a representation of GL(2), we
denote by m x o and ¢ x 7 the representations of Gsp(4) induced from
diag(X, 2" X 1) — 7(X)o(2) and diag(z, X,z ' det X) — o(z)m(X) res-
pectively. By L((—)) we mean the unique irreducible quotient (the Lang-
lands quotient) when it exists. The representations 7(S,v~'/2¢) and
7(T, 1/_1/20) are the constituents of 1 x o Stgy,(2). They are occasionally
called limit of discrete series. & is the non-trivial unramified quadratic
character.
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l [ [ constituent of [ representation [ tempered [Lzl generic
I X1 X X2 X O X1 X X2 X o Ixi|l = ol =1 .
I | a|v2xxv=12xxp X Stgr(2) Xo x| =lo]l =1 .
b | x? ¢ {vEvE) XlaLe) X o

Il | a | x xvxv— 20, X ¥ o StgL(2) x| =lo| =1 °
b x ¢ {1,v%?} X X olgL(a)

IV |al| v2xvxv= 3% 0 Stasp(4) . . .
b L((v*,v "o StaL(2)))
c L((l/3 2 Star(2), ¥ ° 2cr))
d TlGsp(4)

V | a|vé x &0 xv™1/2%g 5([€0, vEo], v 1 2%0) ° ° .
bl &=1¢8#1 | L(v&StcLe, v ?0))
c L((v'?&0 StaL(ay, Eov /70))
d L((v€o, &0 x v 20))

VI | a vx1xv Y3 (S, v 1%0) . °
b (T,v"?0) .
c L((v'Z Star(z), v "%0))
d L((v,1 x v~ 1%0g))

Table C: Iwahori-spherical representations of Gsp(4)

In the following table, our notation is different from [15]. Recall that in
our setup K is hyperspecial, K’ is paramodular, J is the Klingen parahoric,
J' the Siegel parahoric and I is the Iwahori subgroup of Gsp(4).

<

’ ‘ ‘ representation remarks ‘ K ‘ K’ ‘ J ‘
2

I X1 X X2 XOo
11

X StarLe) Xo
Xlare) X o
X X 0 StaLe)
X X olgL(2)

o Stasp(4)
L((v*, v "o Stare))) not unitary

11T

v

L((v** Star(z), v*?0)) not unitary

olaspa) irrelevant
5([€o, v&ol, v ?0)
L((V1/2£o Star(2), u71/20))
L((v'/?& StaLizy, éov™ '/ 0))
L((v&0,& x v~ ?0))
7(S,v™%0)
7(T, lfl/za)
L((v'/? Stgrz), v /?0))
L((v,1 x v~ 120))

Table D: Dimensions of the parahoric fixed spaces

VI

(=} Rl Nl i el Nl Nl i L=l k=1 K= R ol NN Nl Neal i

Q0 T |0 T |0 T Y |T e |T e

e B E=R K= KR R Nl Nl Il il Nl el B N Ren N TN

[CY =Y R ==Y iy iy iy g iy I =1 I R I R S
NIO|FR|FR|INRFR[FRO[F|FINO|N[N| W] ]| &
W[ WININ|IN NN R W[W R0~

—_
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