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CHERN CLASSES OF REDUCTIVE GROUPS
AND AN ADJUNCTION FORMULA

by Valentina KIRITCHENKO

ABSTRACT. — In this paper, I construct noncompact analogs of the Chern
classes for equivariant vector bundles over complex reductive groups. For the tan-
gent bundle, these Chern classes yield an adjunction formula for the (topological)
Euler characteristic of complete intersections in reductive groups. In the case where
a complete intersection is a curve, this formula gives an explicit answer for the Eu-
ler characteristic and the genus of the curve. I also prove that the higher Chern
classes vanish. The first and the last nontrivial Chern classes are described explic-
itly. An extension of these results to the setting of spherical homogeneous spaces
is outlined.

RESUME. — Dans cet article, je construis I’analogue non compact des classes de
Chern pour des fibrés vectoriel équivariants au-dessus de groupes réductifs com-
plexes. Pour le fibré tangent, ces classes de Chern produisent une formule d’adjonc-
tion pour la caractéristique d’Euler (topologique) d’intersections complétes dans
des groupes réductifs. Dans le cas d’une intersection compléte qui est une courbe,
cette formule donne une réponse explicite pour la caractéristique d’Euler et le
genre de la courbe. Je démontre également que les classes de Chern supérieures
sont nulles. La premiere et la derniere classe de Chern non nulle sont décrites ex-
plicitement. J’esquisse également une extension de ces résultats dans le cadre des
espaces homogenes sphériques.

1. Introduction and main results

Let G be a connected complex reductive group. Consider a faithful finite-
dimensional representation 7 : G — GL(V) on a complex vector space
V. Let H C End(V) be a generic affine hyperplane. The hypersurface
7~ Y7(G) N H) C G is called a hyperplane section corresponding to the
representation 7. The problem underlying this paper is how to find the
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1226 Valentina KIRITCHENKO

Euler characteristic of a hyperplane section or, more generally, of the com-
plete intersection of several hyperplane sections corresponding to different
representations.

The motivation to study such question comes from the case where the
group G = (C*)" is a complex torus. In this case, D. Bernstein, A. Khovan-
skii and A. Kouchnirenko found an explicit and very beautiful answer in
terms of the weight polytopes of representations (see [18]). E.g. the Euler
characteristic x () of a hyperplane section corresponding to the representa-
tion 7 is equal to (—1)™ times the normalized volume of the weight polytope
of w. The proof uses an explicit relation between the Euler characteristic
x(7) and the degree of the affine subvariety 7(G) in End(V):

(L1) x(x) = (~1)" " deg 7(G).

The degree is defined as usual. Namely, the degree of an affine subvari-
ety X C CV equals to the number of the intersection points of X with
a generic affine subspace in CV of complementary dimension. For the de-
gree deg 7(G) (that can also be interpreted as the self-intersection index
of a hyperplane section corresponding to the representation 7) there is an
explicit formula proved by Kouchnirenko. Later D. Bernstein, and Khovan-
skii found an analogous formula for the intersection index of hyperplane
sections corresponding to different representations.

How to extend these results to the case of arbitrary reductive groups?
It turned out that the formulas for the intersection indices of several hy-
perplane sections can be generalized to reductive groups and, more gener-
ally, to spherical homogeneous spaces. For reductive groups, this was done
by B. Kazarnovskii [17]. Later, M. Brion established an analogous result
for all spherical homogeneous spaces [4]. For reductive groups, the Brion-
Kazarnovskii theorem allows to compute explicitly the intersection index
of n generic hyperplane sections corresponding to different representations.
The precise definition of the intersection index is given in Section 2.

However, when G is an arbitrary reductive group, it is no longer true
that y(m) = (=1)""!deg m(G). K. Kaveh computed explicitly y(7) and
deg 7(G) for all representations 7 of SLy(C). His computation shows that,
in general, there is a discrepancy between these two numbers. Kaveh also
listed some special representations of reductive groups, for which these
numbers still coincide [16].

In this paper, I will present a formula that, in particular, generalizes
formula (1.1) to the case of arbitrary reductive groups. To do this I will
construct algebraic subvarieties S; C G, whose degrees fill the gap between
the Euler characteristic and the degree. My construction is similar to one
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CHERN CLASSES OF REDUCTIVE GROUPS 1227

of the classical constructions of the Chern classes of a vector bundle in the
compact setting (Subsection 3.1). The subvarieties S; can be thought of
as Chern classes of the tangent bundle of G. I will also construct Chern
classes of more general equivariant vector bundles over G (Subsection 3.2).
These Chern classes are in many aspects similar to the usual Chern classes
of compact manifolds. There is an analog of the cohomology ring for G,
where the Chern classes of equivariant bundles live. This analog is the
ring of conditions constructed by C. De Concini and C. Procesi [10, 8](see
Section 2 for a reminder). It is useful in solving enumerative problems. In
particular, the intersection product in this ring is well-defined.

I now formulate the main results. Denote by n and k the dimension
and the rank of G, respectively. Recall that the rank is the dimension of
a maximal torus in G. Denote by [S1],...,[Sn] the Chern classes of the
tangent bundle of G as elements of the ring of conditions, and denote by
S1,..., S, subvarieties representing these classes. In the case of the tangent
bundle, it turns out (see Lemma 3.8) that the the higher Chern classes
[Sn—k+1]y- -+, [Sn] vanish. E.g. if G is a torus, then all Chern classes [S;]
vanish.

Let Hy,..., H,, be a generic collection of m hyperplane sections cor-
responding to faithful representations m1,..., m,, of the group G (for the
precise meaning of “generic” see Subsection 4.3). Then the following theo-
rem holds.

THEOREM 1.1. — The Euler characteristic of the complete intersection
HyNn...N H,, is equal to the term of degree n in the expansion of the
following product:

(1 +S1+...+ Sn,k) H Hl(l + Hi)_l.
i=1
The product in this formula is the intersection product in the ring of con-
ditions.

This is very similar to the classical adjunction formula in the compact
setting.

In particular, the Euler characteristic of just one hyperplane section cor-
responding to a representation 7 is equal to the following alternating sum.
Put Sy = G. Then

n—k

x(m) = 3 (1) deg (S)).

i=0
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1228 Valentina KIRITCHENKO

The latter formula may have applications in the theory of generalized hy-
pergeometric equations. In the torus case, I. Gelfand, M. Kapranov and
A. Zelevinsky showed that the Euler characteristic x () gives the number
of integral solutions of the generalized hypergeometric system associated
with the representation m [13]. A similar system can be associated with
the representation 7 of any reductive group [15]. In the reductive case,
the number of integral solutions of such a system is also likely to coincide
with (7).

The proof of Theorem 1.1 is similar to the proof by Khovanskii [18] in
the torus case. Namely, Theorem 1.1 follows from the adjunction formula
applied to the closure of a complete intersection in a suitable regular com-
pactification of G (see Subsection 4.3). The key ingredient is a description
of the tangent bundles of regular compactifications due to Ehlers [11] and
Brion [5]. This description is outlined in Subsection 4.2.

The remaining problem is to describe the Chern classes [S1], ..., [Sn—k]
so that their intersection indices with hyperplane sections may be com-
puted explicitly. So far there is such a description for the first and the last
Chern classes (see Subsection 3.3). Namely, [S1] is the class of a generic
hyperplane section corresponding to the irreducible representation with
the highest weight 2p. Here p is the sum of all fundamental weights of
G. This description follows from a result of A. Rittatore [25] concerning
the first Chern class of reductive group compactifications. The last Chern
class [S,,—] is up to a scalar multiple the class of a maximal torus in G.
There is a hope that the intersection indices of other Chern classes S; with
hyperplane sections can also be computed using a formula similar to the
Brion-Kazarnovskii formula.

If a complete intersection is a curve, i.e., m = n — 1, then the formula
of Theorem 1.1 involves only the first Chern class [S7]. In this case, the
computation of [S1] together with the Brion-Kazarnovskii formula allows
us to compute explicitly the Euler characteristic and the genus of a curve
in G in terms of the weight polytopes of 71, ..., 7, (see Corollaries 4.9 and
4.10, Subsection 4.3). Note that these two numbers completely describe the
topological type of a curve.

Most of the constructions and results of this paper can be extended
without any change to the case of arbitrary spherical homogeneous spaces.
This is discussed in Section 5.

I am very grateful to Mikhail Kapranov and Askold Khovanskii for nu-
merous stimulating discussions and suggestions. I would like to thank Ki-
umars Kaveh for useful discussions and Michel Brion for valuable remarks
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on the first version of this paper. I am also grateful to the referee for many
useful remarks and comments.

Part of the results of this paper were included into my PhD thesis at the
University of Toronto [19].

Throughout this paper, whenever a group action is mentioned, it is al-
ways assumed that a complex algebraic group acts on a complex algebraic
variety by algebraic automorphisms. In particular, by a homogeneous space
for a group I will always mean the quotient of the group by some closed
algebraic subgroup.

The following remarks concern notations. In this paper, the term equi-
variant (e.g. equivariant compactification, bundle, etc.) will always mean
equivariant under the action of the doubled group G x G, unless other-
wise stated. The Lie algebra of G is denoted by g. I also fix an embedding
G C GL(W) for some vector space W. Then for g € G and A € g, notation
Ag and gA mean the product of linear operators in End(W).

2. Equivariant compactifications and the ring of conditions

This section contains some well-known notions and theorems, which will
be used in the sequel. First, I define the notion of spherical action and
describe equivariant compactifications of reductive groups following [9], [15]
and [26]. Then I state Kleiman’s transversality theorem [20] and recall the
definition of the ring of conditions [10, 8].

Spherical action. Reductive groups are partial cases of more general
spherical homogeneous spaces. They are defined as follows. Let G be a
connected complex reductive group, and let M be a homogeneous space
under G. The action of G on M is called spherical, if a Borel subgroup of
G has an open dense orbit in M. In this case, the homogeneous space M is
also called spherical. An important and very useful property, which char-
acterizes a spherical homogeneous space M, is that any compactification
of M equivariant under the action of G contains only a finite number of
orbits [21].

There is a natural action of the group G x G on G by left and right mul-
tiplications. Namely, an element (g1,92) € G X G maps an element g € G
to 91995 ! This action is spherical as follows from the Bruhat decomposi-
tion of G with respect to some Borel subgroup. Thus the group G can be
considered as a spherical homogeneous space of the doubled group G x G
with respect to this action. For any representation = : G — GL(V) this
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1230 Valentina KIRITCHENKO

action can be extended straightforwardly to the action of 7(G) x 7(G) on
the whole End(V') by left and right multiplications. I will call such actions
standard.

Equivariant compactifications. With any representation 7 one can
associate the following compactification of 7(G). Take the projectivization
P(n(GQ)) of 7(G) (i.e., the set of all lines in End (V') passing through a point
of 7(G) and the origin), and then take its closure in P(End(V')). We obtain
a projective variety X, C P(End(V')) with a natural action of G x G coming
from the standard action of 7(G) X 7(G) on End(V'). Below I will list some
important properties of this variety.

Assume that P(7(G)) is isomorphic to G. Fix a maximal torus T C G.
Let L7 be its character lattice. Consider all weights of the representation 7,
i.e., all characters of the maximal torus T" occurring in 7. Take their convex
hull P, in Ly ® R. Then it is easy to see that P is a polytope invariant
under the action of the Weyl group of G. It is called the weight polytope
of the representation w. The polytope P, contains information about the
compactification X .

THEOREM 2.1.

1) ([26], Proposition 8) The subvariety X, consists of a finite number
of G x G-orbits. These orbits are in one-to-one correspondence with the
orbits of the Weyl group acting on the faces of the polytope Py.

2) Let o be another representation of G. The normalizations of subvari-
eties X and X, are isomorphic if and only if the normal fans corresponding
to the polytopes X, and X, coincide. If the first fan is a subdivision of the
second, then there exists an equivariant map from the normalization of X
to X,, and vice versa.

The second part of Theorem 2.1 follows from the general theory of spher-
ical varieties (see [21], Theorem 5.1) combined with the description of com-
pactifications X via colored fans (see [26], Sections 7, 8).

In particular, suppose that the group G is of adjoint type, i.e., the center
of G is trivial. Let m be an irreducible representation of G with a strictly
dominant highest weight. It is proved in [9] that the corresponding com-
pactification X, of the group G is always smooth and, hence, does not
depend on the choice of a highest weight. Indeed, the normal fan of the
weight polytope P, coincides with the fan of the Weyl chambers and their
faces, so the second part of Theorem 2.1 applies. This compactification is
called the wonderful compactification and is denoted by Xcan. It was intro-
duced by De Concini and Procesi [9]. The boundary divisor Xc., ~ G is a
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divisor with normal crossings. There are k orbits Oy, ..., Oy of codimension
one in X¢,,. The other orbits are obtained as the intersections of the clo-
sures Oy, ..., O. More precisely, to any subset {i1,4s,...,5,} C {1,...,k}
there corresponds an orbit O;, N0;, N...NO;, of codimension m. So the
number of orbits equals to 2¥. There is a unique closed orbit O; N...N Oy,
which is isomorphic to the product of two flag varieties G/B x G/B. Here
B is a Borel subgroup of G.

Compactifications of a reductive group arising from its representations
are examples of more general equivariant compactifications of the group.
A compact complex algebraic variety with an action of G x G is called
an equivariant compactification of G if it satisfies the following conditions.
First, it contains an open dense orbit isomorphic to G. Second, the action
of G x G on this open orbit coincides with the standard action by left and
right multiplications.

The ring of conditions. The following theorem gives a tool to define
the intersection index on a noncompact group, or more generally, on a
homogeneous space. Recall that two irreducible algebraic subvarieties Y;
and Y5 of an algebraic variety X are said to have proper intersection if
either their intersection Y3 N Y5 is empty or all irreducible components of
Y1 N'Y;5 have dimension dim Y; + dim Y5 — dim X.

THEOREM 2.2 (Kleiman’s transversality theorem, [20]). — Let H be a
connected algebraic group, and let M be a homogeneous space under H.
Take two algebraic subvarieties X,Y C M. Denote by gX the left translate
of X by an element g € H. There exists an open dense subset of H such
that for all elements g from this subset the intersection gX NY is proper.
If X and Y are smooth, then gX NY is transverse for general g € H.

In particular, if X and Y have complementary dimensions (but are not
necessarily smooth), then for almost all g the translate gX intersects Y
transversally at a finite number of points, and this number does not depend
on g.

If X and Y have complementary dimensions, define the intersection index
(X,Y) as the number #(gX NY) of the intersection points for a generic g €
H. If one is interested in solving enumerative problems, then it is natural
to consider algebraic subvarieties of M up to the following equivalence.
Two subvarieties X1, Xs of the same dimension are equivalent if and only if
for any subvariety Y of complementary dimension the intersection indices
(X1,Y) and (X»,Y) coincide. This relation is similar to the numerical
equivalence in algebraic geometry (see [12], Chapter 19). Consider all formal
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1232 Valentina KIRITCHENKO

linear combinations of algebraic subvarieties of M modulo this equivalence
relation. Then the resulting group C*(M) is called the group of conditions
of M.

One can define an intersection product of two subvarieties X, Y C M by
setting X - Y = gX NY, where g € G is generic. However, the intersection
product sometimes is not well-defined on the group of conditions (see [10]
for a counterexample). A remarkable fact is that for spherical homogeneous
spaces the intersection product is well-defined, i.e., if one takes different
representatives of the same classes, then the class of their product will
be the same [10, 8]. The corresponding ring C*(M) is called the ring of
conditions.

In particular, the group of conditions C*(G) of a reductive group is a ring.
De Concini and Procesi related the ring of conditions to the cohomology
rings of equivariant compactifications as follows. Consider the set S of all
smooth equivariant compactifications of the group G. This set has a natural
partial order. Namely, a compactification X, is greater than X if X, lies
over X, i.e., if there exists a map X, — X, commuting with the action of
G x G. Clearly, such a map is unique, and it induces a map of cohomology
rings H*(X,) — H*(X,).

THEOREM 2.3 ([10, 8]). — The ring of conditions C*(G) is isomorphic
to the direct limit over the set S of the cohomology rings H*(X).

De Concini and Procesi proved this theorem in [10] for symmetric spaces.
In [8] De Concini noted that their arguments go verbatim for arbitrary
spherical homogeneous spaces.

3. Chern classes of reductive groups
3.1. Preliminaries

Reminder about the classical Chern classes. In this paragraph, I
will recall one of the classical definitions of the Chern classes, which I will
use in the sequel. For more details see [14].

Let M be a compact complex manifold, and let E be a vector bundle
of rank d over M. Consider d global sections s1,...,sq of E that are C°°-
smooth. Define their i-th degeneracy locus as the set of all points = €
M such that the vectors s1(z),...,S4—;+1(x) are linearly dependent. The
homology class of the i-th degeneracy locus is the same for all generic
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choices of the sections s1(x), ..., sq(x) [14]. It is called the i-th Chern class
of E.

In what follows, I will only consider complex vector bundles that have
plenty of algebraic global sections (so that in the definition of the Chern
classes, it will be possible to take only algebraic global sections instead of
C*°-smooth ones).

In particular, there is the following way to choose generic global sections.
Let I'(E) be a finite-dimensional subspace in the space of all global C*°-
smooth sections of the bundle E. Suppose that at each point z € M the
sections of I'(E) span the fiber of E at the point z. Then there is an open
dense subset U in T'(E)? such that for any collection of global sections
($1,...,84) C U their i-th degeneracy locus is a representative of the i-th
Chern class of E.

I will also use the following classical construction that associates with the
subspace I'( E') a map from the variety M to a Grassmannian. Denote by N
the dimension of I'(E). Let G(IN —d, N) be the Grassmannian of subspaces
of dimension (N —d) in T'(E). One can map M to G(N —d, N) by assigning
to each point © € M the subspace of all sections from I'(E) that vanish
at x. By construction of the map the vector bundle E coincides with the
pull-back of the tautological quotient vector bundle over the Grassmannian
G(N—d, N). Recall that the tautological quotient vector bundle over G(N —
d, N) is the quotient of two bundles. The first one is the trivial vector bundle
whose fibers are isomorphic to T'(E), and the second is the tautological
vector bundle whose fiber at a point A € G(N — d, N) is isomorphic to the
corresponding subspace A of dimension N — d in I'(E).

Using the definition of the Chern classes given above, it is easy to check
that the i-th Chern class of the tautological quotient vector bundle is the
homology class of the following Schubert cycle. Let A € ... C A C I'(E)
be a partial flag such that dim A/ = j. In the sequel, by a partial flag
I will always mean a partial flag of this type. The i-th Schubert cycle C;
corresponding to such a flag consists of all points A € G(N — d, N) such
that the subspaces A and A?~**! have nonzero intersection.

The following proposition relates the Schubert cycles C; to the Chern
classes of F.

ProposITION 3.1 ([14]). — Let p : M — G(N — d,N) be the map
constructed above, and let C; be the i-th Schubert cycle corresponding to
a generic partial flag in T'(E). Then the i-th Chern class of E coincides
with the homology class of the inverse image of C; under the map p:

ci(E) = [p~H(Cy)).
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In particular, this proposition allows to relate the definition of the Chern
classes via degeneracy loci to other classical definitions.

In the sequel, the following statement will be used. For any algebraic
subvariety X C G(N — d, N), a partial flag can be chosen in such a way
that the corresponding Schubert cycle C; has proper intersection with X.
This follows from Kleiman’s transversality theorem, since the Grassman-
nian G(N—d, N) can be regarded as a homogeneous space under the natural
action of the group GLy. Then any left translate of a Schubert cycle C; is
again a Schubert cycle of the same type.

Equivariant vector bundles. In this paragraph, I will recall the defi-
nition and some well-known properties of equivariant vector bundles.

Let E be a vector bundle of rank d over G. Denote by V, C E the fiber
of E lying over an element g € G. Assume that the standard action of
G x G on G can be extended linearly to E. More precisely, there exists
a homomorphism A : G x G — Aut(FE) such that A(gi, g2) restricted to
the fiber V; is a linear operator from V; to ‘/glggz—l. If these conditions
are satisfied, then the vector bundle FE is said to be equivariant under the
action of G x G.

Two equivariant vector bundles E; and Fs are equivalent if there exists
an isomorphism between F; and FE5 that is compatible with the structure
of fiber bundle and with the action of G x G. The following simple and
well-known proposition describes equivariant vector bundles on G up to
this equivalence relation.

PRrROPOSITION 3.2. — The equivalence classes of equivariant vector bun-
dles of rank d are in one-to-one correspondence with the linear representa-
tions of G of dimension d.

Indeed, with each representation 7w : G — V one can associate a bundle
FE isomorphic to G x V' with the following action of G x G-

A(g1,92) : (9,v) — (91995 ", 7(g1)v).

Then A(g, g~ 1) stabilizes the identity element e € G and acts on the fiber
V. =V by means of the operator 7(g).

E.g. the adjoint representation of G on the Lie algebra g = T G, corre-
sponds to the tangent bundle T G on G. This example will be important
in the sequel.

Among all algebraic global sections of an equivariant bundle E there
are two distinguished subspaces, namely, the subspaces of left- and right-
invariant sections. They consist of sections that are invariant under the
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action of the subgroups G x e and e x G, respectively. Both spaces can be
canonically identified with the vector space V. Indeed, any vector X € V
defines a right-invariant section v,.(g) = (g, X). Then it is easy to see that
any left-invariant section v; is given by the formula v;(g) = (g,7(g9)Y") for
YeV.

Denote by I'(E) the space of all global sections of E that are obtained
as sums of left- and right-invariant sections. Let us find the dimension of
the vector space I'(E). Clearly, if the representation m does not contain
any trivial sub-representations, then I'(E) is canonically isomorphic to the
direct sum of two copies of V. Otherwise, let C C V be the maximal trivial
sub-representation. Embed C to V@V diagonally, i.e., v € C goes to (v, v).
It is easy to see that I'(E) as a G-module is isomorphic to the quotient space
(V@ V)/C. Denote by c the dimension of C. Then the dimension of I'(E)
is equal to 2d — c.

3.2. Chern classes with values in the ring of conditions

In this subsection, I define Chern classes of equivariant vector bundles
over G. These Chern classes are elements of the ring of conditions C*(G).
Unlike the usual Chern classes in the compact situation, they measure
the complexity of the action of G x G but not the topological complexity
(topologically any G x G-equivariant vector bundle over G is trivial). While
the definition of these classes does not use any compactification it turns out
that they are related to the usual Chern classes of certain vector bundles
over equivariant compactifications of G.

Throughout this subsection, E denotes the equivariant vector bundle
over G of rank d corresponding to a representation 7 : G — GL(V). In
the subsequent sections, I will only use the Chern classes of the tangent
bundle.

Definition of the Chern classes. An equivariant vector bundle E
has a special class I'(E) of algebraic global sections. It consists of all global
sections that can be represented as sums of left- and right-invariant sections.

Example. — If E = TG is the tangent bundle, then T'(E) is a very
natural class of global sections. It consists of all vector fields coming from
the standard action of G x G on G. Namely, with any element (X,Y) € gdbg
one can associate a vector field v € T'(F) as follows:

v(x) d

== [ Xze ] = Xa — 2V,

t=0
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1236 Valentina KIRITCHENKO

This example suggests that one represent elements of I'(E) not as sums
but as differences of left- and right-invariant sections.

The space I'(E) can be employed to define Chern classes of E as usual.
Take d generic sections vy,...,v4 € T'(E). Then the i-th Chern class is
the i-th degeneracy locus of these sections. More precisely, the i-th Chern
class S;(E) C G consists of all points g € G such that the first d — i + 1
sections v1(g), . ..,v4—i+1(g) taken at g are linearly dependent. This defi-
nition almost repeats one of the classical definitions of the Chern classes in
the compact setting (see Subsection 3.1). The only difference is that global
sections used in this definition are not generic in the space of all sections.
They are generic sections of the special subspace I'(E). If one drops this
restriction and applies the same definition, then the result will be trivial,
since the bundle FE is topologically trivial. In some sense, the Chern classes
will sit at infinity in this case (the precise meaning will become clear from
the second part of this subsection). The purpose of my definition is to pull
them back to the finite part.

Thus for each i = 1,...,d we get a family S;(E) of algebraic subvarieties
S;(E) parameterized by collections of d — i+ 1 elements from I'(E). In the
compact situation, all generic members of an analogous family represent the
same class in the cohomology ring. The same is true here, if one uses the
ring of conditions as an analog of the cohomology ring in the noncompact
setting.

LEMMA 3.3. — For all collections vy, .. .,v4—;+1 belonging to some open
dense subset of (T'(E))4~*+1 the class of the corresponding subvariety S;(E)
in the ring of conditions C*(G) is the same.

The lemma implies that the family S;(F) parameterized by elements of
(D(E))?~*! provides a well-defined class [S;(E)] in the ring of conditions
C*(G).

DEFINITION 3.4. — The class [S;(E)] € C*(G) defined by the family
Si(F) is called the i-th Chern class of a vector bundle E with value in the
ring of conditions.

Before proving the lemma let me give another description of the Chern
classes [S;(E)].

Maps to Grassmannians. In this paragraph, I apply the classical con-
struction discussed in Subsection 3.1 to define a map from the group G
to the Grassmannian G(d — ¢,T'(F)) of subspaces of dimension (d — ¢) in
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the space I'(E). Recall that c¢ is the dimension of the maximal trivial sub-
representation of V', and the dimension of I'(F) is 2d — ¢ (see the end of
Subsection 3.1).

Note that the global sections from the subspace I'(E) span the fiber of
FE at each point of G. Hence, one can define a map ¢p from G to the
Grassmannian G(d — ¢,['(E)) as follows. A point g € G gets mapped to
the subspace Ay, C I'(E) spanned by all global sections that vanish at g.
Clearly, the dimension of A, equals to (dim I'(E) — d) = (d — ¢) for all
g € G. We get the map

op:G—G(d—-cT(E)); ¢rp:g—Ag

The subspace A4 can be alternatively described using the graph of the op-
erator m(g) in V@V . Namely, it is easy to check that A, = {(X, 7(¢)X), X €
V'}/C. Then pg comes from the natural map assigning to the operator 7 (g)
on V its graphin V@ V.

Clearly, the pull-back of the tautological quotient vector bundle over
G(d,T'(E)) is isomorphic to E. Hence, the Chern class S;(F) constructed
via elements vy, ..., v is the inverse image of the Schubert cycle C; corre-
sponding to the partial flag (v1) C (v1,v2) C ... C (v1,...,vq) CT(E) (see
Subsection 3.1). Here (v1,...,v;) denotes the subspace of I'(E') spanned by
the vectors vy,...,v;.

Remark 3.5. — This gives the following equivalent definition of S;(E).
The Chern class S;(F) consists of all elements g € G such that the graph
of the operator 7(g) in V @ V has a nontrivial intersection with a generic
subspace of dimensiond —¢+1in Ve V.

In particular, if the representation m : G — GL(V') corresponding to a
vector bundle F has a nontrivial kernel, then the S;(E) are invariant under
left and right multiplications by the elements of the kernel (since this is
already true for the preimage ;' (A) of any point A € ¢r(G)). E.g. the
Chern classes S;(T G) are invariant under multiplication by the elements
of the center of G.

We can now relate the Chern classes S;(E) to the usual Chern classes of
a vector bundle over a compact variety.

Denote by X the closure of ¢ g(G) in the Grassmannian G(d—¢,I'(E)),
and denote by E'x the restriction of the tautological quotient vector bundle
to Xpg. We get a vector bundle on a compact variety. The i-th Chern class
of Ex is the homology class of C; N Xg for a generic Schubert cycle C;
(see Proposition 3.1). By Kleiman’s transversality theorem applied to the
Grassmannian G(d—c¢,T'(E)) (see Subsection 3.1), a generic Schubert cycle
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C; has a proper intersection with the boundary divisor Xg\ ¢g(G). Hence,
there is the following relation between the Chern classes of Ex and generic
members of the family S;(E).

PROPOSITION 3.6. — For a generic S;(E) the homology class of the
closure of pg(S;(F)) in Xg coincides with the i-th Chern class of Ex.

Thus the Chern classes [S;(F)] can be described via the usual Chern
classes of the bundle E'x over the compactification Xg.

Let us study the variety Xg in more detail. It is a G x G-equivariant
compactification of the group ¢g(G). Indeed, the action of G x G on
¢r(G) can be extended to the Grassmannian G(d,T'(E)) as follows. Iden-
tify T'(E) with (V @ V)/C (see the end of Subsection 3.1). The doubled
group G X G acts on V & V by means of the representation 7 & , i.e.,
(91,92)(v1,v2) = (g1v1,g2v2) for g1,92 € G,v1,v2 € V. The subspace
C C V @V is invariant under this action. Hence, the group G x G acts
on I'(E). This action provides an action of G x G on the Grassmannian
G(d — ¢,T'(E)). Clearly, the subvariety X is invariant under this action.

Example 1 (Demazure embedding). — Let G be a group of adjoint
type, and let ™ be its adjoint representation on the Lie algebra g. The
corresponding vector bundle E coincides with the tangent bundle of G. The
corresponding map ¢g : G — G(n,g @ g) coincides with the embedding
constructed by Demazure [9]. The Demazure map takes an element g € G
to the Lie subalgebra g, = {(¢9X¢ ', X),X € g} C g & g. Clearly, the
Demazure map provides an embedding of G into G(n,g ® g).

It is easy to check that the Lie subalgebra g, is the Lie algebra of the
stabilizer of an element g € G under the standard action of G x G. Thus for
any A € g4 the corresponding vector field vanishes at g, and the Demazure
embedding coincides with ¢g. The compactification Xg in this case is
isomorphic to the wonderful compactification X¢a, of the group G [9]. In
particular, it is smooth.

DEFINITION 3.7. — Let G and E be as in Example 1. The restriction
of the tautological quotient vector bundle to Xp ~ Xca, is called the
Demazure bundle and is denoted by Vi ay.

If F is the tangent bundle, then Proposition 3.6 implies that the Chern
class S;(E) is the inverse image of the usual i-th Chern class of the De-
mazure bundle. The Demazure bundle is considered in [5], where it is re-
lated to the tangent bundles of regular compactifications of the group G.

Example 2.
a) Let G be GL(V) and let 7 be its tautological representation on the
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space V of dimension d. Then ¢g is an embedding of GL(V) into the
Grassmannian G(d, 2d). Notice that the dimensions of both varieties are
the same. Hence, the compactification Xg coincides with G(d, 2d).

b) Take SL(V) instead of GL(V) in the previous example. Its compact-
ification Xg is a hypersurface in the Grassmannian G(d, 2d) which can be
described as a hyperplane section of the Grassmannian in the Pliicker em-
bedding. Consider the Pliicker embedding p : G(d, 2d) — P(A%(V; @ Va)),
where V7 and V, are two copies of V. Then p(Xg) is a special hyper-
plane section of p(G(d,2d)). Namely, the decomposition Vi @ V, yields a
decomposition of A%(V; @V3) into a direct sum. This sum contains two one-
dimensional components p(V;) and p(V2) (which are considered as lines in
A4V, @ V3)). In particular, for any vector in A%(Vy @ Va) it makes sense
to speak of its projections to p(V7) and p(V3). On Vi and Va there are
two special n-forms, preserved by SL(V'). These forms give rise to two 1-
forms [; and Il on p(V;) and p(Va), respectively. Consider the hyperplane
H in Ad(V1 @ V4) consisting of all vectors v such that the functionals Iy
and Iy take the same values on the projections of v to p(Vy) and p(V2),
respectively. Then it is easy to check that p(Xg) = p(G(d,2d)) NP(H).

In the next section, I will be concerned with the case when E = TG is
the tangent bundle. In this case, the vector bundle Ex is closely related
to the tangent bundles of regular compactifications of the group G. Let us
discuss this case in more detail.

Example 3. — This example is a slightly more general version of Exam-
ple 1. Let g = g’ @c¢ be the decomposition of the Lie algebra g into the direct
sum of the semisimple and the central subalgebras, respectively. Denote by
¢ the dimension of the center ¢. Let £ = T G be the tangent bundle on G.
Then ¢r maps G to the Grassmannian G(n — ¢, (g & g)/c). It is easy to
show that the image of the map ¢g coincides with the adjoint group of G
and the image contains only subspaces that belong to (g’ ®g') C (gD g)/c.
Comparing this with Example 1, one can easily see that X is isomorphic
to the wonderful compactification X,y of the adjoint group of G.

In this case, the bundle Ex is the direct sum of the Demazure bundle and
the trivial vector bundle of rank c¢. Indeed, for any subspace A, € Xg ~
Xean C G(n—¢,T'(E)) its intersection with the subspace ¢~ = {(¢, —c),c €
¢} C T'(E) is trivial. Hence, the quotient space I'(E) /A, coincides with the
direct sum ((g' ® g’')/A) B .

Proof of Lemma 3.3. The proof of Lemma 3.3 relies on the following
fact. Let Y7 and Y5 be two subvarieties of codimension ¢ in the group G.
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Using Kleiman’s transversality theorem and continuity arguments, it is easy
to show that Y7 and Y5 represent the same class in the ring of conditions
C*(G) if there exists an equivariant compactification X of the group G
such that the closures of Y7,Y5 in X have proper intersections with all
G x G-orbits (see [10] for the proof).

In particular, to prove Lemma 3.3 it is enough to produce an equivariant
compactification X such that the closure of a generic S;(F) has proper
intersections with all G x G-orbits in X. I claim that the compactification
X discussed in the previous paragraph (see Proposition 3.6) satisfies this
condition.

Indeed, the closure of any S;(E) in Xg coincides with the intersection
of X with the Schubert cycle C; corresponding to a partial flag in T'(E).
By Kleiman’s transversality theorem applied to the Grassmannian G(d —
¢, T'(E)) (see Subsection 3.1), a partial flag can be chosen in such a way that
the corresponding Schubert cycle has proper intersections with all G x G-
orbits in X g. All partial flags with such property form an open dense subset
in the space of all partial flags. Hence, for generic flags the corresponding
subvarieties S; represent the same class in the ring of conditions.

In the sequel, S;(F) will denote any subvariety of the family S;(F) whose
class in the ring of conditions coincides with the Chern class [S;(E)].

Remark. — Recall that the ring of conditions C*(G) can be identified
with the direct limit of cohomology rings of equivariant compactifications
of G (see Theorem 2.3). It follows that under this identification the Chern
class [S;(E)] € C*(G) corresponds to an element in the cohomology ring of
the compactification Xg. In particular for an adjoint group G, the Chern
class [S;(T X)] of the tangent bundle corresponds to some cohomology class
of the wonderful compactification of G.

Properties of the Chern classes of reductive groups. The next
lemma computes the dimensions of the Chern classes. It also shows that if
G acts on V without an open dense orbit, then the higher Chern classes
automatically vanish.

For any representation 7 : G — GL(V), there exists an open dense G-
invariant subset in V' such that the stabilizers of any two elements from this
subset are conjugate subgroups of G (see [24]). In particular, all elements
from this subset have isomorphic G-orbits. Such orbits are called principal.
Denote by d(w) the dimension of a principal orbit of G in V. If G has an
open dense orbit in V, then d(7) = d. In my main example, when 7 is the
adjoint representation, d(7) = n — k.
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LEMMA 3.8. — Ifi > d(w), then S;(FE) is empty, and if i < d(m) then
the dimension of S;(FE) is equal to n — 1.

Proof. — Recall that S;(F) is the inverse image of C; under the map
vg:G— G(d—c,T'(E)). Here C; is the i-th Schubert cycle corresponding
to a generic partial flag in I'(E). The codimension of C; in the Grass-
mannian G(d — ¢,I'(E)) is equal to i. Hence, by Kleiman’s transversality
theorem applied to G(d — ¢,I'(E)) (see Subsection 3.1), the intersection
C; N ¢gr(G) is either empty or proper and has codimension i in ¢g(G).
Then S;(E) = ¢ (Ci N pr(G)) is either empty or has codimension i in
G, because all fibers of the map ¢g are isomorphic to each other (each of
them is isomorphic to the kernel of 7). It remains to find out all ¢ for which
S;(E) is empty.

By Remark 3.5, the Chern class S;(E) consists of all elements g € G such
that the graph I'y = {(v,7(g)v),v € V} CV &V of m(g) has a nontrivial
intersection with a generic subspace A~**! of dimension d—i+1in VaV.
For all g € S;(E) \ Si+1(E) the intersection I'; N A?~+1 has dimension
1. Indeed, if dim(I', N A?=+1) > 2, then dim(I'y N A9~%) > 1 (since the
subspace A~ C A?~"*! has codimension one in A%~**1) and g belongs to
Si+1(F). Hence, there is a well-defined map

p:Si(B) N Sip1(E) » P(DNATHY), p:ges P(T, NATTHY),

Here D C V @V is the union of all graphs I'y for g € G. In particular, the
Chern class S;(E) is nonempty if and only if P(D N A%~*+1) is nonempty.

We now estimate the dimension of D N A%+, Since D is not a variety,
it is more convenient to take its Zariski closure D. The subvariety D is the
closure of the image of the following morphism:

F:GxV —=VxV; F:(gv) (v,7(g)v).

The source space G x V is an irreducible variety of dimension n+d, and the
general fibers of F' are isomorphic to the principal stabilizers, of dimension
n — d(r). Hence dim D = d + d(r), that is, D has codimension d — d(r).
Next, observe that D is a constructible set, invariant under scalar mul-
tiplication. Hence it contains a dense open subset (also invariant under
scalar multiplication) of the irreducible variety D. Thus a general vector
space A1 satisfies dim(D N A1) = d(n) — i+ 1, if i < d(7), and
D N A%+ s dense in this intersection. In particular, if i = d(7), then
DN A%+ consists of several lines whose number is equal to the degree of
D. If i > d(r), then D N AY~#+1 contains only the origin. It follows that if
i > d(m), then S;(E) is empty.
O
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This proof also implies the following corollary. Denote by H C G the
stabilizer of an element in a principal orbit of G in V. The subgroup H

is defined up to conjugation so its class in the ring of conditions is well-
defined.

COROLLARY 3.9. — An open dense subset of the subvariety S;(E) ad-
mits almost a fibration whose fibers are translates of H. Here almost means
that the intersection of different fibers always lies in S;11(F) C S;(E). In
particular, the last Chern class Sq(r)(E) admits a true fibration and co-
incides with the disjoint union of several translates of H. Their number
equals to the degree of a generic principal orbit of G in V.

The last statement follows from the fact that the degree of D in V&V
(see the proof of Lemma 3.8) is equal to the degree of a generic principal
orbit of G in V.

In particular, let E be the tangent bundle. Then the stabilizer of a generic
element in g is a maximal torus in G. Hence, the last Chern class S,,_ (T G)
is the union of several translates of a maximal torus. The number of trans-
lates is the cardinality of the Weyl group (the degree of a general orbit in
the adjoint representation).

3.3. The first and the last Chern classes

Throughout the rest of the paper, I will only consider the Chern classes
S; = Si(TG) of the tangent bundle unless otherwise stated. Theorem 1.1
expresses the Euler characteristic of a complete intersection via the inter-
section indices of the Chern classes S; with generic hyperplane sections.
The question is how to compute these indices. If [S;] is a linear combina-
tion of complete intersections of generic hyperplane sections corresponding
to some representations of GG, then the answer to this question is given by
the Brion-Kazarnovskii formula. A hyperplane section corresponding to the
representation 7 is called generic if its closure in the compactification X
has proper intersections with all G x G-orbits in X.

In this subsection, I describe S; as a generic hyperplane section. The
description follows from a result of Rittatore [25]. One can also compute
the intersection indices with the last Chern class S, _, because S,_j is
the union of translates of a maximal torus (see Corollary 3.9). However,
it seems that in general the Chern class S;, for i # 1, is not a sum of
complete intersections. E.g. I can show that for G = SL3(C) the Chern
class [S3] does not lie in the subring of C*(G) generated by the classes of
hypersurfaces.

ANNALES DE L’INSTITUT FOURIER



CHERN CLASSES OF REDUCTIVE GROUPS 1243

Description of S;. The result of Rittatore for the first Chern class of
regular compactifications (see [25], Proposition 4) implies that the class
[S1] in the ring of conditions can be represented by the doubled sum of the
closures of all codimension one Bruhat cells in G. Below I will deduce this
description directly from the definition of Sj.

It is easy to show that S; C G is given by the equation det(Ad(g) —A) =
0 for a generic A € End(g). Indeed, the first Chern class S1(E) of any
equivariant vector bundle F over G consists of elements g € G such that
the graph of the operator m(g) in V @ V has a nontrivial intersection with
a generic subspace of dimension n in V@V (see Remark 3.5). As a generic
subspace, one can take the graph of a generic operator A on V. Then the
graphs of operators 7(g) and A have a nonzero intersection if and only if
the kernel of the operator 7(g) — A is nonzero.

The function det(Ad(g)—A) is a linear combination of matrix coefficients
corresponding to all exterior powers of the adjoint representation. Hence,
the equation of S; is the equation of a hyperplane section corresponding
to the sum of all exterior powers of the adjoint representation. Denote this
representation by o. It is easy to check that the weight polytope P, coin-
cides with the weight polytope of the irreducible representation 6 with the
highest weight 2p (here p is the half sum of all positive roots, or equivalently
the sum of all fundamental weights). It remains to prove that S is generic,
which means that the closure of S7 in X, intersects all G x G-orbits along
subvarieties of codimension one. The proof of Lemma 3.3 implies that this
is true for the wonderful compactification, and the normalization of X, is
the wonderful compactification by Theorem 2.1 (since Py = P,).

It is now easy to show that the doubled sum of the closures of all codi-
mension one Bruhat cells in G is equivalent to S;. This is because the
closures of codimension one Bruhat cells are generic hyperplane sections
corresponding to the irreducible representations with fundamental highest
weights.

Description of S,,_. By Corollary 3.9 the last Chern class S,,_j is the
disjoint union of translates of a maximal torus. Their number is equal to
the degree of a generic adjoint orbit in g. The latter is equal to the order
of the Weyl group W. Denote by [T] the class of a maximal torus in the
ring of conditions C*(G). Then the following identity holds in C*(G):

[Sn—] = W[T].

The degree of 7(T) can be computed using the formula of D.Bernstein,
Khovanskii and Koushnirenko [18].
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3.4. Examples

G = SLy(C). Consider the tautological embedding of G, namely, G =
{(a,b,c,d) € C*: ad—bc = 1}. Since the dimension of G is 3 and the rank is
1, by Lemma 3.8 we get that there are only two nontrivial Chern classes: Sy
and Ss. Let us apply the results of the preceding subsection to find them.
The first Chern class S7 is a generic hyperplane section corresponding to
the second symmetric power of the tautological representation, i.e., to the
representation 6 : SLy(C) — SO3(C). In other words, it is the intersection
of SL,(C) with a generic quadric in C*. The second Chern class Sy (which
is also the last one in this case) is the union of two translates of a maximal
torus (or the intersection of S; with a hyperplane in C*).

Let 7 be a faithful representation of SL2(C). It is a direct sum of ir-
reducible representations. Any irreducible representation of SLs(C) is iso-
morphic to the i-th symmetric power of the tautological representation for
some 7. Its weight polytope is the line segment [—i,4]. Hence the weight
polytope of 7 is the line segment [—n, n] where n is the greatest exponent
of symmetric powers occurring in . Then the matrix coefficients of 7 are
polynomials in a, b, ¢, d of degree n. In this case, it is easy to compute the
degrees of subvarieties 7(G), 7(S1) and 7(S2) by the Bezout theorem. Then
deg 7(G) = 2n3, deg m(S1) = 4n?, deg 7(S2) = 4n. Also, if one takes an-
other faithful representation o with the weight polytope [—m, m], then the
intersection index of S7 with two generic hyperplane sections corresponding
to m and o, equals to 4mn.

Since by Theorem 1.1 the Euler characteristic x(7) of a generic hyper-
plane section is equal to deg 7(G) — deg 7(S1) + deg w(S2), we get

x(m) = 2n® — 4n? 4 4n.

This answer was first obtained by Kaveh who used different methods [16].
If 7 is not faithful, i.e., 7(SLy(C)) = SO3(C), consider 7 as a representa-
tion of SO3(C). Then x(r) is two times smaller and equals to n® —2n2+2n.
Apply Theorem 1.1 to a curve C' that is the complete intersection of two
generic hyperplane sections corresponding to the representations 7 and o.
Then

x(C)=H,-H, -Hy—H, -H, - (Hy + H,) = —2mn(m +n — 2).
G = (C*)™ is a complex torus. In this case, all left-invariant vector
fields are also right-invariant since the group is commutative. Hence, they

are linearly independent at any point of G = (C*)™ as long as their values
at the identity are linearly independent. It follows that all subvarieties .S;
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are empty, and all the Chern classes vanish. Then Theorem 1 coincides
with a theorem of D.Bernstein and Khovanskii [18].

4. Chern classes of regular compactifications
and proof of Theorem 1.1

4.1. Preliminaries

Chern classes of the tangent bundle. In this paragraph, I explain a
method from [11], which in some cases allows to find the Chern classes of
smooth varieties.

Let X be a smooth complex variety of dimension n, and let D C X be a
divisor. Suppose that D is the union of I smooth irreducible hypersurfaces
Dy, ..., D; with normal crossings. One can relate the tangent bundle T X
of X to the logarithmic tangent bundle, consisting of those vector fields
that preserve the divisor D.

Let Lx(D1),...,Lx(D;) be the line bundles over X associated with
the hypersurfaces D1, ..., D;, respectively. i.e., the first Chern class of the
bundle Lx (D;) is the homology class of D;. One can also associate with D
the logarithmic tangent bundle Vx (D). It is a holomorphic vector bundle
over X of rank n that is uniquely defined by the following property. The
holomorphic sections of Vx (D) over an open subset U C X consist of all
holomorphic vector fields v(z) on U such that v(z) restricted to U N D; is
tangent to the hypersurface D; for any i. The precise definition is as follows.
Cover X by local charts. If a chart intersects the divisors D;,,...,D;,
choose local coordinates z1,...,z, such that the equation of D;, in these
coordinates is x; = 0. Then Vx is given by the collection of trivial vector

bundles spanned by the vector fields xla%l, . o 9 -9 over

. .,.rkailk, 893k+17. 1 Ban
each chart with the natural transition operators.
For a vector bundle E, denote by O(F) the sheaf of its holomorphic

sections.

PROPOSITION 4.1 ([11]). — There is an exact sequence of coherent
sheaves

l
0 — O(Vx(D)) = O(T X) = P O(Lx(Di)) ®o, Op, — 0.

In particular, the tangent bundle T X has the same Chern classes as the
direct sum of the bundle Vx (D) with Lx(D7),..., Lx(Dy).

TOME 56 (2006), FASCICULE 4



1246 Valentina KIRITCHENKO

Proposition 4.1 gives the answer for the Chern classes of X, when the
Chern classes of Vx (D) are known. In particular, this is the case when X
is a smooth toric variety, and D = X ~ (C*)" is the divisor at infinity.
In this case, the vector bundle Vx (D) is trivial, and the Chern classes
of TX can be found explicitly. This was done by Ehlers [11]. A more
general class of examples is given by regular compactifications of reductive
groups (see the next paragraph for the definition) and, more generally, of
arbitrary spherical homogeneous spaces (see Section 5). In this case, the
vector bundle Vx (D) is no longer trivial but still has a nice description,
which is due to Brion [5]. I recall his result in Subsection 4.2 and use it to
prove Theorem 1.1.

Regular compactifications. In this paragraph, I will define the notion
of regular compactifications of reductive groups following [6]. Let X be a
smooth G x G-equivariant compactification of a connected reductive group
G of dimension n. Denote by Oy, ..., O; the orbits of codimension one in X.
Then the complement X ~\ G to the open orbit is the union of the closures
O4,...,0; of codimension one orbits.

DEFINITION 4.2. — A smooth G x G-equivariant compactification X is
called regular if the following three conditions are satisfied.

(1)The hypersurfaces Oy,...,0; are smooth and intersect each other
transversally.

(2)The closure of any G x G-orbit in X \G coincides with the intersection
of those hypersurfaces Oy, ..., O that contain it.

(3) For any point x € X and its G x G-orbit O, C X, the stabilizer
(G xG), C GxG acts with a dense orbit on the normal space T, X/T,O,
to the orbit.

This definition was introduced by E. Bifet, De Concini and Procesi in a
more general setting ([2], see also Section 5).

If G is a complex torus, then the regularity of X is just equivalent to
the smoothness. However, for other reductive groups, there exist compact-
ifications that are smooth but not regular. In particular, it follows from
Proposition 4.3 below that the compactification X associated with a rep-
resentation m : G — GL(V) (see Section 2) is regular if and only it is
smooth and none of the vertices of the weight polytope of 7 lies on the
walls of the Weyl chambers.

Regular compactifications of reductive groups generalize smooth toric
varieties and retain many nice properties of the latter. E.g. any regular
compactification X can be covered by affine charts X, ~ C" in such a
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way that only k hypersurfaces O;,,..., O;, intersect X, and intersections
04, N Xy, ...,0; N X, are k coordinate hyperplanes in X, [9, 6]. Here k
denotes the rank of G. In particular, all G x G-orbits in X have codimension
at most k, and all closed orbits have codimension k.

If G is of adjoint type, then it has the wonderful compactification Xcap,
which is regular. This example is crucial for the study of the other regular
compactifications.

For arbitrary reductive group G, denote by X.., the wonderful com-
pactification of the adjoint group of G. There is the following criterion of
regularity.

PROPOSITION 4.3 ([6]). — Let X be a smooth G x G-equivariant com-
pactification of G. Then the condition that X is regular is equivalent to
the existence of a G x G-equivariant map from X to Xcan.

E.g. if G is a complex torus, then the latter condition is always satisfied
because X ., is a point in this case.

Thus the set of regular compactifications of G consists of all smooth
G x G-equivariant compactifications lying over X ,,. In particular, for re-
ductive groups of adjoint type the wonderful compactification is the mini-
mal regular compactification.

4.2. Demazure bundle and the Chern classes of regular
compactifications

In this subsection, I state a formula for the Chern classes of regular
compactifications of reductive groups. It follows from a more general result
proved for arbitrary toroidal spherical varieties by Brion [5]. This formula
gives a description of the Chern classes in terms of two different collections
of subvarieties. The first collection is given by the Chern classes of G,
which are independent of a compactification, and the second is given by
the closures of codimension one orbits, which are easy to deal with (in
particular, all their intersection indices with other divisors can be computed
via the Brion-Kazarnovskii theorem).

Let X be a regular compactification of G, and let Oy,...,O; be the
closures of the G x G-orbits of codimension one in X. Then the tangent
bundle T X of X can be described using the Demazure vector bundle V.,
over the wonderful compactification X.., (see Example 1 from Subsection
3.2) and the line bundles corresponding to the hypersurfaces O;.
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Let L(O4),...,L(O;) be the line bundles over X associated with the
hypersurfaces Oy, ..., O, respectively. Let p : X — Xcan be the canonical
map from Proposition 4.3, and let p*(Vian) be the pull-back of the De-
mazure vector bundle to X. It turns out that p*(Vian) coincides up to a
trivial summand with the logarithmic tangent bundle corresponding to the
boundary divisor X \ G.

THEOREM 4.4 ([5]). — The tangent bundle T X has the same Chern
classes as the direct sum of the pull-back p*(Vean) with the line bundles
L(Oy),...,L(O)).

In the case when G is a complex torus, Theorem 4.4 was proved by
Ehlers [11]. For arbitrary reductive groups, Theorem 4.4 follows from a
more general result by Brion ([5], 1.6 Corollary 1).

This theorem implies the following formula for the Chern classes
c1(X),...,cn(X) of the tangent bundle of X. Let S; = S;(TG) C G for
i =1,...,n —k be the Chern classes of the tangent bundle of G defined
in the previous section (see Definition 3.4). Denote by S; the closure of S;
in X. Note that S; has proper intersections with all G x G-orbits in X
(since this is already true for the wonderful compactification Xc,,, and X
lies over Xcan).

COROLLARY 4.5. — The total Chern class ¢(X) = 141 (X)+. . .4cn(X)
coincides with the following product:

!
o(X)=(1+S1+...+ S ) [[0+0).
i=1
The product in this formula is the intersection product in the (co)homology
ring of X.

Below I sketch the proof of Theorem 4.4 following mostly the proofs by
Ehlers and Brion. The goal is to explain the main idea of their proofs,
which is very transparent, and motivate the definition of the Chern classes
S;. In the torus case, this idea can be extended to a complete elementary
proof. For more details see [11] and [5].

Take n generic vector fields vy, ..., v, coming from the action of G x G.
It is not hard to show that wq,...,v, are generic in the space of all
C>-smooth vector fields on X (it is enough to prove it for each affine chart
on X). Hence, their degeneracy loci give Chern classes of X. Note that
these fields are not only C*°-smooth but also algebraic so their degeneracy
loci are algebraic subvarieties in X.
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The picture is especially simple in the torus case, because in this case
V1,...,Un—;+1 are linearly dependent precisely on all orbits of codimension
greater than or equal to ¢ (since they all belong to the tangent bundle of
the orbit) and independent on the other orbits. Hence, the i-th Chern class
of X consists of all orbits of codimension at least 1.

In the reductive case, the situation is more complicated because the
degeneracy loci of vq,...,v, have nontrivial intersections with the open
orbit G C X. These intersections are exactly the Chern classes St, ..., Sn_k
of G. So it seems more convenient to use the method described in Subsection
4.1 (see Proposition 4.1). Namely, consider the logarithmic tangent bundle
Vx = Vx(X \ G) corresponding to the boundary divisor X \ G = O; U
...UO;. Recall that ¢ denotes the dimension of the center of G.

PROPOSITION 4.6. — The vector bundle Vx is isomorphic to the direct
sum of the pull-back p*(Vian) with the trivial vector bundle E¢ of rank c.

Proof. — The vector fields coming from the action of G x G on X are
global sections of the bundle Vx, since they are tangent to all
G x G-orbits in X. It follows easily from condition (3) in the definition
of regular compactifications that these global sections span the fiber of Vy
at any point of X. Hence, the map ¢ : G — G(n—c, (g g)/c) considered
in Example 3 extends toamap p: X — G(n—c¢, (g®g)/c). The rest follows
from Example 3 g

Remark 4.7. — There is also another construction of the map p: X —
Xecan by Brion (see [4]).

4.3. Applications

In this subsection, I prove Theorem 1.1 using the formula for the Chern
classes of regular compactifications (Corollary 4.5). Then I apply it to com-
pute the Euler characteristic and the genus of a curve in G.

Proof of Theorem 1.1. First, define the notion of generic collection
of hyperplane sections used in the formulation of Theorem 1.1. A collec-
tion of m hyperplane sections Hq, ..., H,, corresponding to representations
m1,...,Tm, respectively, is called generic, if there exists a regular compact-
ification X of G such that the closure H; of any hyperplane section H; is
smooth, and all possible intersections of Hy,..., H,, with the closures of
G x G-orbits in X are transverse. E.g. one can take the compactification X
corresponding to the tensor product m of the representations 7y, 71, . .., Tm,
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where 7 is any irreducible representation with a strictly dominant highest
weight. Then it is not hard to show that the set of all generic collections
(with respect to the compactification X) is an open dense subset in the
space of all collections.

So the closure Y = C of C = HyN...N H,, in X is the transverse
intersection of smooth hypersurfaces. In particular, Y is smooth, and its
normal bundle Ny in X is the direct sum of m line bundles corresponding to
the hypersurfaces H;. The analogous statement is true for any subvariety
of the form Y N Oy, where I = {i1,...,i,} is a subset of {1,...,l} and
Or=0;N-- -ﬂ@ip. Let us find the Euler characteristic of Y NO; using the
classical adjunction formula. Denote by J = {1,...,1} . I the complement
to the subset I. We get that x(Y N Op) is the term of degree n in the
decomposition of the following intersection product in X:

(1+S1+ -+ Sk ﬁ Hy(1+ Hg)™* H@- H(l + 0;). (%)

s=1 el jedJ

On the other hand, since the Euler characteristic is additive, and C' =
Y\ (O1U---U0)), one can express the Euler characteristic x(C) in terms
of the Euler characteristics x(Y N Oj) over all subsets I C {1,...,1}:

X©)= Y )y no. (%)
Ic{1,...,l}

Combining formulas (*) and (**), we get the formula of Theorem 1.1.
Indeed, we have that x(C) is the term of degree n in the decomposition of
the following intersection product in X:

(1+Sl+---+snk)ﬁHs(HHs)‘l( > (—1)I|HOiH(1+0]-)).

s=1 TuJ={1,...,1} iel  jeJ
The sum in the parentheses is equal to 1, since for any commuting variables
1, To, ..., x; we have the identity:

l

1= +z)—z)= > D" [JC+2)).

i=1 TuJ={1,...1} iel  jeJ

Computation for a curve. Apply Theorem 1.1 and the formula for
the first Chern class S7 to a curve in G. We get that if C = HyN---NH,_4
is a complete intersection of n — 1 generic hyperplane sections, then

n—1

X(C) = (Slle 7"'7Hn_1) HH,
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Since 57 is also a generic hyperplane section, the computation of x(C') re-
duces to the computation of the intersection indices of hyperplane sections.

Recall the Brion-Kazarnovskii formula for such intersection indices. De-
note by R' the set of all positive roots of G. Recall that p denotes the
half of the sum of all positive roots of G and Ly denotes the character
lattice of a maximal torus T' C G. Since G is reductive, we can assume
that g is embedded into gl(IW) so that the trace form tr(A, B) = tr(AB)
for A, B € gl(W) is nondegenerate on g. Then the inner product (-,) on
L7 ®R used in Theorem 4.8 is given by the trace form on g. Choose a Weyl
chamber D C Lt ® R.

THEOREM 4.8 ([4, 17]). — If H, is a hyperplane section corresponding
to a representation w with the weight polytope P, C Ly ® R , then the
self-intersection index of H, in the ring of conditions is equal to

w [T

P.ND a€ERT

(p,

The measure dx on LT ® R is normalized so that the covolume of Lt is 1.

This theorem in particular implies that the self-intersection index H)
depends not on a representation but only on its weight polytope. Note also
that the integrand is invariant under the action of the Weyl group.

Let Hq,...,H, be n generic hyperplane sections corresponding to dif-
ferent representations 7y, ..., mT,. To compute their intersection index one
needs to take the polarization of H}'. Namely, the formula of Theorem
4.8 gives a polynomial function D(P) of degree n on the space of all vir-
tual polytopes P C Lt ® R (the addition in this space is the Minkowski
sum). The polarization D, is the unique symmetric n-linear form on this
space such that Dpoi(Pr,...,Pr) = D(Py). Then Dyoi(Prys- -, Pr,) is
the intersection index Hy - ... H For instance, it can be found by ap-
plying the differential operator X ,mi to the function F(tq,...,t,) =
D(t1Pr, + -+ + tyPr,). Eg. if Pr, = = P, , then the computation
of Dypot(Pry, ..., Pr,) = 22 i—o D(tP,rl + P,rz) reduces to the integration
over the facets of Pr,.

Thus we get the following answer for x(C'). For simplicity, the answer is
given in the case when 7 = - -+ = m,_1 = 7. Then its polarization provides
the answer in the general case. Denote by P», the weight polytope of the
irreducible representation of G with the highest weight 2p.

COROLLARY 4.9. — Let C be a curve obtained as the transverse inter-
section of a generic collection of n — 1 hyperplane sections corresponding
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to the representation 7. Then
X(C) = Dpoi(Pap, Pr, ..., Pr) — (n —1)D(Py)

A similar answer can be obtained for the genus of C' since it is equal to the
genus of the compactified curve C' C X. Hence, g(C) = g(C) = 1—x(C)/2.
To compute the Euler characteristic of C' we need to sum up x(C) and the
number of points in C' . C. The latter is the intersection index of H?~!
with the codimension one orbits in X, and can be again computed by the
Brion-Kazarnovskii formula. Choose [ facets Fy,..., F} of P; so that they
parameterize the codimension one orbits in X ;. This means that each orbit
of the Weyl group acting on the facets of P, contains exactly one F; (see
Theorem 2.1).

COROLLARY 4.10. — The genus g(C) of C is given by the following
formula:

The measure dx on a facet F; is normalized as follows. Let H C L ® R be
the hyperplane containing F;. Then the covolume of the sublattice L N H
in H is equal to 1.

aERJr

In the above answer, one can rewrite the polarization Dyo(Pap, P, - .,
P.) in terms of the integrals over the facets of Py. E.g. in the case when 7 is
the irreducible representation with a strictly dominant highest weight A, the
answer takes the following form. Let 2p = Zle a;; be the decomposition

of 2p in the basis of simple roots aq, ..., ay.
1
X(C)=n'<nz / H (n—1) / H )
i=1 a€R+ P a€R+ P
1k
g(C’)—l—(nZ a; +1) / H o
i=1 FinD a€R+

(n—1) / H

PrND a€R+

)
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5. The case of regular spherical varieties

The results of this paper concerning the Chern classes of the tangent
bundle can be generalized straightforwardly to the case of arbitrary spher-
ical homogeneous space. In this section, I briefly outline how this can be
done.

Let G be a connected complex reductive group of dimension r, and let H
be a closed algebraic subgroup of G' . Suppose that the homogeneous space
G/H is spherical, i.e., the action of G on the homogeneous space G/H
by left multiplication is spherical. In the preceding sections, we considered
a particular case of such homogeneous spaces, namely, the space (G x
G)/G~ G.

The definition of the Chern classes S; of the tangent bundle T(G/H) can
be repeated verbatim for G/H. Denote the dimension of G/H by n. There
is a space of vector fields on G/H coming from the action of G. Take n arbi-
trary vector fields vy, ..., v, of this type. Define the subvariety S; C G/H
as the set of all points € G/H such that the vectors vi(x), ..., vp—ir1(x)
are linearly dependent.

Denote by h C g the Lie algebra of the subgroup H. Again, there is the
Demazure map p : G/H — G(r — n,g), which takes ¢ € G/H to the Lie
subalgebra ghg~!. Denote by X.., the closure of p(X) in the Grassmannian
G(r — n,g). This is a compactification of a spherical homogeneous space
G/N(h), where N(h) C G is the normalizer of . Brion conjectured that
if H coincides with N(H), then the compactification Xca, is smooth, and
hence, regular [5]. F. Knop proved that under the same assumption the
normalization of X ., is smooth [22]. The conjecture has been proved for
semisimple Lie algebras of type A by D. Luna [23], and in type D by
P. Bravi and G. Pezzini [3]. In the general case, one can still define the
Demazure bundle over X.,, as the restriction of the tautological quotient
vector bundle over G(r —n, g).

Since we have not used the regularity of X, in the proof of Lemma 3.3
the same arguments imply two facts. First, for a generic choice of vector
fields v, ..., v,, the resulting subvariety S; belongs to a fixed class [S;] in
the ring of conditions. Second, for any compactification X of G/H lying
over Xcan the closure of a generic S; in X intersects properly any orbit of
X. Repeating the proof of Lemma 3.8 one can also show that S; is empty
unless 7 < n — k. Here k is the difference between the ranks of G and
of H. Therefore, we have n — k well-defined classes [S1],...,[Sn—] in the
ring of conditions C*(G/H). Recently, M. Brion and I. Kausz proved that
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the G-equivariant Chern classes of the Demazure bundle also vanish for
i>n—k|[7.

To extend Theorem 1.1 to an arbitrary spherical homogeneous space one
can use the same description of the Chern classes of its regular compactifi-
cations. The definition of regular compactifications repeats Definition 4.2.

THEOREM 5.1. — Let X be a regular compactification of G/H. Then
the total Chern class of X equals to

l
(1+81 4+ S [ +0).

i=1

This description also follows from Subsection 4.1. The proof uses the
methods mentioned in Subsection 4.2. In fact, regular compactifications of
spherical homogenous spaces arise naturally when one try to apply these
methods to a wider class of varieties with a group action. Namely, suppose
that a connected complex affine group G of dimension 7 acts on a compact
smooth irreducible complex variety X with a finite number of orbits. Then
there is a unique open orbit in X isomorphic to G/H for some subgroup
H C G, so X can be regarded as a compactification of G/H. Denote by
O, ...,0O; the orbits of codimension one in X. Then one can describe the
tangent bundle of X exactly by the methods mentioned in Subsection 4.2
if the following conditions hold. First, the hypersurfaces Oy,...,O; are
smooth and intersect each other transversally (this allows to apply Ehlers’
method to the divisor X \ (G/H) = O; U---U O;). Second, the vector
bundle Vx (defined as in Subsection 4.2) is generated by its global sections
v1,...,0,, where v1,..., v, are infinitesimal generators of the action of G on
X (this allows to give a uniform description of Vx for all compactifications
of G/H satistying these conditions). It is not hard to check that these two
conditions are equivalent to the definition of regular compactifications.

It turns out that a homogeneous space G/H admits a regular compact-
ification if and only if G/H is spherical [1]. Regular compactifications of
arbitrary spherical homogeneous spaces are exactly their smooth toroidal
compactifications [1]. A compactification X of the spherical homogeneous
space G/H is called toroidal if for any codimension one orbit of a Borel
subgroup of G acting on G/ H, its closure in X does not contain any G-orbit
in X.

The proof of Theorem 1.1 goes without any change for complete inter-
sections in arbitrary spherical homogeneous space G/H. Let fIl, ceey I;Tm
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be smooth hypersurfaces in some regular compactification of G/H. Sup-
pose that all possible intersections of H; with the closures of G-orbits are
transverse.

THEOREM 5.2. — Let Hy,...,H,, C G/H be the hypersurfaces H;N
(G/H), and let C = Hy N ---N H,, be their intersection. Then the Euler
characteristic of C equals to the term of degree n in the decomposition of

(1481 + -+ Spp) [[ Hi(1 + H)
i=1

The products are taken in the ring of conditions C*(G/H).

For instance, if G/H is compact, then the S; become the usual Chern
classes and the above formula coincides with the classical adjunction for-
mula. However, if G/H is noncompact then the Chern classes in the usual
sense (as degeneracy loci of generic vector fields on G/H) do not usually
yield the adjunction formula (although they do for G = (C*)"). Indeed,
when the homogeneous space is a noncommutative reductive group, all
usual Chern classes are trivial but as we have seen x(H) # (—1)"H" even
for one smooth hypersurface H. Theorem 5.2 shows that the adjunction
formula still holds for noncompact spherical homogeneous spaces, if one
replaces the usual Chern classes with the refined Chern classes S; that are
defined as the degeneracy loci of the vector fields coming from the action

of G.
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