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GEOMETRY OF CURRENTS, INTERSECTION
THEORY AND DYNAMICS OF HORIZONTAL-LIKE

MAPS

by Tien-Cuong DINH & Nessim SIBONY

Abstract. — We introduce a geometry on the cone of positive closed cur-
rents of bidegree (p, p) and apply it to define the intersection of such currents.
We also construct and study the Green currents and the equilibrium measure for
horizontal-like mappings. The Green currents satisfy some extremality properties.
The equilibrium measure is invariant, mixing and has maximal entropy. It is equal
to the intersection of the Green currents associated to the horizontal-like map and
to its inverse.

Résumé. — Nous introduisons une géométrie sur le cône des courants posi-
tifs fermés de bidegré (p, p) et nous l’utilisons pour définir l’intersection de tels
courants. Nous construisons et étudions aussi les courants de Green et la mesure
d’équilibre pour les applications d’allure horizontale, en toute dimension. Les cou-
rants de Green vérifient certaines propriétés d’extrémalité. La mesure d’équilibre
est invariante, mélangeante et d’entropie maximale. Elle est égale à l’intersection
des courants de Green associés à l’application et à son inverse.

1. Introduction

In this paper we develop the theory of positive closed currents of any
degree in order to continue our exploration of dynamical systems in several
variables, with emphasis on systems not defined by rational maps.

In [7], we developed the theory of polynomial-like maps in higher dimen-
sion. Recall that a polynomial-like map is a holomorphic map f : U → V ,
with U b V b Ck, and that f is proper of topological degree dt > 1. In
some sense, such a map is expanding, but it has critical points in general.

Keywords: Structural discs of currents, Green current, equilibrium measure, mixing,
entropy.
Math. classification: 37F, 32H50, 32U40.
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Here, we consider horizontal-like maps in any dimension. Basically, a
horizontal-like map is a holomorphic map defined on a domain in Ck, which
is “expanding” in p directions and “contracting” in k − p directions. The
expansion and contraction are of global nature, but the map is, in general,
not uniformly hyperbolic in the dynamical sense [20]. The precise definition
is given in Section 4.

This situation has been already studied by Dujardin for k = 2 with em-
phasis on biholomorphic maps [11]. The study was developed in dimension
2 by Dujardin and the authors to deal with the random iteration of mero-
morphic horizontal-like maps, in order to study rates of escape to infinity
for polynomial mappings in C2 [5]. It turns out that, as for polynomial-
like maps, the building blocks for a large class of polynomial maps are
horizontal-like maps. We should observe that to treat the case of C2 with
the methods of the present paper one should deal with horizontal-like maps
in C4 or C8 and that we obtain new results even in the C2 case (see The-
orem 6.4 and [4]). The main technical problem is to deal with currents of
higher bidegree.

One of the difficulties is that the potentials of currents of higher bidegree
are not functions. Hence, the techniques used in the case of dimension 2
do not work for general horizontal-like maps. It seems that considering the
potentials is not the best way to prove properties of currents of higher
bidegree. We propose here another approach to deal directly with the cone
of positive closed currents that we consider as a space of infinite dimension
with some plurisubharmonic (p.s.h.) structure.

We introduce in Section 2 the notion of structural varieties in this cone
which allows us to use the complex structure of Ck. Structural varieties
connect currents in this cone. So, we will study singular currents using their
smooth approximation in structural discs. For example, a structural disc of
currents of bidimension (p, p) is the collection of slices of a positive closed
current of bidimension (p+ 1, p+ 1). The family is not always continuous
in term of slices, but when it acts on forms Φ such that ddcΦ > 0 we get
p.s.h. functions on the space parametrizing slices. To prove the convergence
of a sequence of currents we embed it in some sequence of structural discs
passing through a common smooth current. We then use systematically the
convergence properties of the sequence of p.s.h. functions produced by the
action on a test form Φ with ddcΦ > 0. An analog ΛΦ of the Abel-Radon
transform is also introduced. It plays the role of p.s.h. functions on the
space of currents.
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GEOMETRY OF CURRENTS AND HORIZONTAL-LIKE MAPS 425

In Section 3, we use the structural discs in order to define the wedge
product T ∧ S where T is a vertical positive closed current and S is a
horizontal one, of the right bidegrees, such that the supports intersect on
a compact set. Let ϕ be a p.s.h. function on a small neighbourhood W of
supp(T ) ∩ supp(S). We define

(1.1) 〈T ∧ S, ϕ〉 := lim sup
T ′→T
S′→S

〈T ′ ∧ S′, ϕ〉

where T ′ are smooth vertical currents approaching T and S′ are smooth
horizontal currents approaching S with supp(T ′) ∩ supp(S′) ⊂W . We use
structural discs in order to show that the right hand side of (1.1) depends
linearly on T , S and ϕ. This wedge product has interesting continuity
properties.

We believe that the notion of structural discs will be useful in other
situations. It is a notion of deformation of a positive closed current into
another one in the same “homology” class. This can be also useful in the
context of compact manifolds.

We apply the above theory of currents to study horizontal-like maps in
Ck, k > 2. A horizontal-like map has a (main) dynamical degree d; this
allows us to define an operator Lv := 1

df
∗ (resp. Lh := 1

df∗) on vertical
(resp. horizontal) currents. One of our main results is the following (Theo-
rem 5.1). Let fn be a sequence of invertible horizontal-like maps and let Rn

be a sequence of normalized vertical positive closed forms. If Rn are uni-
formly bounded, then Lv,1 . . .Lv,n(Rn) converge to a normalized vertical
current T+ which is independent of (Rn). If the Rn’s are continuous, the
convergence is stronger than weak convergence (see Remark 5.3). We use
structrural discs in the proof in order to deduce the convergence of currents
from the convergence of subharmonic functions on structural discs.

When all the fn’s are equal to f , we obtain a Green current satisfying
f∗(T+) = dT+ (Corollary 6.1). We are then able to produce in this case
a mixing invariant measure µ (Theorem 7.1). This is done by going to
the product space and applying our formalism to the horizontal-like map
F : (x1, x2) 7→ (f(x1), f−1(x2)) of dynamical degree d2. More precisely, if R
(resp. S) is a normalized smooth vertical (resp. horizontal) positive closed
form then the equilibrium measure is constructed as µ := lim d−2n(fn)∗R∧
(fn)∗S. Formally, if ∆ is the diagonal of the product space, we obtain µ as
the limit of

d−2n
(
(fn)∗R⊗ (fn)∗S

)
∧ [∆] = d−2nFn∗(R⊗ S) ∧ [∆].

TOME 56 (2006), FASCICULE 2



426 Tien-Cuong DINH & Nessim SIBONY

This reduces the problem to the study of strong convergence of the vertical
currents d−2nFn∗(R ⊗ S) (see Remark 5.3). We finally show that µ =
T+ ∧ T− (Theorem 7.10). Here, T− is the Green current associated to f−1.

Our proof of the mixing of the equilibrium measure uses also a new idea
different from the approach in Bedford-Smillie [2] for Hénon maps or in [22]
for regular polynomial automorphisms. The method is to use the maps of
type (x1, x2) 7→ (f(x1), f−1(x2)) in order to reduce the problem to a linear
one.

Using classical arguments [16, 25, 24, 2, 7], we show that µ has maximal
entropy log d (Theorem 8.1).

2. Geometry of currents

In this Section we study the geometry of the cones of positive closed
currents which are supported in vertical or horizontal subsets of a domain
D = M×N . We define structural discs, p.s.h. functions and the Kobayashi
pseudo-distance on these cones. We refer to [13, 21, 3, 18] for the basics
on the theory of currents. For the reader’s convenience, we recall some
properties, that we use in this article, of the slicing operation in the complex
setting.

• Slicing theory. Let X, V be two complex manifolds of dimension
k + l and l respectively. Let ΠV : X → V be a holomorphic submersion
and R be a current on X of degree 2k + 2l −m and of dimension m with
m > 2l. Assume that R, ∂R and ∂R are of order 0. One can define the slice
〈R,ΠV , θ〉 for almost every θ ∈ V . This is a current of dimension m − 2l
on Π−1

V (θ). One can of course consider it as a current on X. When R is of
bidimension (n, n), 〈R,ΠV , θ〉 are of bidimension (n− l, n− l). The slicing
commutes with the operations ∂ and ∂. In particular, if R is closed then
〈R,ΠV , θ〉 is also closed.

Slicing is the generalization of restriction of forms to level sets of holo-
morphic maps. When R is a continuous form, 〈R,ΠV , θ〉 is simply the
restriction of R to Π−1

V (θ). When R is the current of integration on an
analytic subset Y of X, 〈R,ΠV , θ〉 is the current of integration on the an-
alytic set Y ∩ Π−1

V (θ) for θ generic. If ϕ is a continuous form on X then
〈R ∧ ϕ,ΠV , θ〉 = 〈R,ΠV , θ〉 ∧ ϕ.

Let y denote the coordinates in a chart of V and λV the standard volume
form. Let ψ(y) be a positive smooth function with compact support such
that

∫
ψλV = 1. Define ψε(y) := ε−2lψ(ε−1y) and ψθ,ε(y) := ψε(y− θ) (the

measures ψθ,ελV approximate the Dirac mass at θ). Then, for every smooth

ANNALES DE L’INSTITUT FOURIER
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test form Ψ of the right degree with compact support in X one has

〈R,ΠV , θ〉(Ψ) = lim
ε→0

〈R ∧Π∗
V (ψθ,ελV ),Ψ〉

when 〈R,ΠV , θ〉 exists. This property holds for all choice of the function ψ
and for Ψ such that ΠV is proper on supp(Ψ)∩ supp(R). Conversely, when
the previous limit exists and is independent of ψ, it defines 〈R,ΠV , θ〉 and
one says that 〈R,ΠV , θ〉 is well defined. We have the following formula for
every continuous form Ω of maximal degree with compact support in V :

(2.1)
∫

V

〈R,ΠV , θ〉(Ψ)Ω(θ) = 〈R ∧Π∗
V (Ω),Ψ〉.

We will show that in the situation we consider, slices are always well
defined.

• Vertical and horizontal currents. Let M ⊂ Cp and N ⊂ Ck−p

be two bounded convex open sets (see Remark 2.6). Consider the domain
D := M ×N in Ck. We call vertical (resp. horizontal) boundary of D the
set ∂vD := ∂M × N (resp. ∂hD := M × ∂N). A subset E of D is called
vertical (resp. horizontal) if E does not intersect ∂vD (resp. ∂hD). Let π1

and π2 denote the canonical projections of D on M and N . Then, E is
vertical (resp. horizontal) if and only if π1(E) b M (resp. π2(E) b N). A
current on D is vertical (resp. horizontal) if its support is vertical (resp.
horizontal).

Let Cv(D) (resp. Ch(D)) denote the cone of positive closed vertical
(resp. horizontal) currents of bidegree (p, p) (resp. (k − p, k − p)) on D.
Consider a current R in Cv(D). Since π2 is proper on supp(R), (π2)∗(R) is
a positive closed current of bidegree (0, 0) on N . Hence, (π2)∗(R) is given
by a constant function c on N . Formula (2.1) implies that the mass of the
slice measure 〈R, π2, w〉 is independent of w and is equal to c. We will show
in Theorem 2.1 that in this situation, the slice measure is defined for every
w ∈ N (see also Theorem 3.1). We say that c is the slice mass of R and we
denote it by ‖R‖v. For every smooth probability measure Ω with compact
support in N , we have ‖R‖v := 〈R, (π2)∗(Ω)〉. When ‖R‖v = 1 we say that
R is normalized. Let C1

v(D) denote the set of such currents. The slice mass
‖ · ‖h and the convex C1

h(D) for horizontal currents are similarly defined.

• Structural varieties and p.s.h. functions. In order to use the com-
plex structure ofD, we introduce the notion of structural varieties in C1

v(D).
Let V be a connected complex manifold. Let R be a positive closed cur-
rent of bidegree (p, p) in V ×D. Let ΠV : V ×D → V , ΠD : V ×D → D,
ΠM : V×D →M and ΠN : V×D → N be the canonical projections. We as-
sume that for every compact set K ⊂ V the projection of supp(R)∩Π−1

V (K)

TOME 56 (2006), FASCICULE 2
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on M is relatively compact in M . In particular supp(R) ∩Π−1
V (θ) is a ver-

tical set of {θ} ×D for every θ ∈ V .

Theorem 2.1. — For every θ ∈ V the slice 〈R,ΠV , θ〉 exists and is
a vertical positive closed current on {θ} × D. Moreover its slice mass is
independent of θ. If Ψ is a real continuous (k − p, k − p)-form on V × D

such that ddcΨ > 0 and ΠN (supp(Ψ)) b N then 〈R,ΠV , θ〉(Ψ) defines a
p.s.h. function on V . If ddcΨ = 0 then 〈R,ΠV , θ〉(Ψ) is pluriharmonic.

Proof. — The problem is local, so we can assume that V is a ball. Consi-
der the current R′:=R∧Ψ of bidegree (k, k) on V ×D. It satisfies ddcR′ > 0.
Observe that for every θ ∈ V , supp(R′) ∩ Π−1

V (θ) is compact in {θ} × D

and ΠV is proper on the support of R′. Then (ΠV )∗(R′) is well defined.
It is a current of bidegree (0, 0) on V which satisfies ddc(ΠV )∗(R′) > 0.
Therefore, it is defined by a p.s.h. function ϕ. It follows that if ψ, ψθ,ε and
λV are as above then

∫
ϕψθ,ελV converges to ϕ(θ).

The last integral is equal to 〈R∧Π∗
V (ψθ,ελV ),Ψ〉. Hence 〈R∧Π∗

V (ψθ,ελV ),
Ψ〉 converge to ϕ(θ) which does not depend on ψ. This holds also for every
smooth test form Ψ′ with compact support in V ×D. Indeed, we have the
following lemma.

Lemma 2.2. — Smooth (k−p, k−p)-forms with compact support in V ×
D belong to the space generated by the forms Ψ satisfying the hypotheses
of Theorem 2.1, i.e., ΠN (supp(Ψ)) b N and ddcΨ > 0.

Proof. — Let Ψ′ be a real smooth (k − p, k − p)-form with compact
support in V × D. Let Ω be a positive form of maximal degree on N ,
with compact support and strictly positive on ΠN (supp(Ψ′)). If ρ is a
smooth strictly p.s.h. function on V ×D then Ψ0 := ρΠ∗

N (Ω) = ρΠ∗
D(π∗2(Ω))

is a smooth form satisfying the hypothesis of Theorem 2.1. If ΠN,ε is a
small pertubation of ΠN then Ψε := ρΠ∗

N,ε(Ω) satisfies the same properties.
Taking a linear combination of such forms we obtain a form Ψ such that
ddcΨ is strictly positive on supp(Ψ′). Then we can write Ψ′ = (AΨ+Ψ′)−
AΨ with A > 0 large enough. The forms AΨ + Ψ′ and AΨ satisfy the
hypotheses of Theorem 2.1, in particular, we have ddc(AΨ + Ψ′) > 0 and
ddc(AΨ) > 0. �

Hence 〈R,ΠV , θ〉 is well defined and 〈R,ΠV , θ〉(Ψ) = ϕ(θ) is a p.s.h.
function on θ. When ddcΨ = 0 the function 〈R,ΠV , θ〉(−Ψ) is also p.s.h.
Hence 〈R,ΠV , θ〉(Ψ) is pluriharmonic.

Let Ω be as above. Consider Ψ := Π∗
D(π∗2(Ω)). In this case, since Ψ is

closed, ϕ is also closed. It follows that ϕ is a constant function. By definition
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ϕ(θ) = 〈R,ΠV , θ〉(Ψ) is equal to the slice mass of 〈R,ΠV , θ〉. Therefore, the
slice mass is independent of θ. �

Remark 2.3. — One can identify Rθ = 〈R,ΠV , θ〉 with a current in
Cv(D). Theorem 2.1 implies that the family (Rθ) is continuous for the
plurifine topology on V , i.e., the coarsest topology for which p.s.h. functions
are continuous. Let Φ be a real horizontal current of bidegree (k−p, k−p),
of finite mass on D such that ddcΦ > 0. If R or Φ is a continuous form then
〈R,ΠV , θ〉(Φ) defines a p.s.h. function on V . Indeed, we can apply Theorem
2.1 to Ψ := Π∗

D(Φ).

Definition 2.4. —Theorem 2.1 allows us to define a map τ : V→Cv(D)

τ(θ) := Rθ = 〈R,ΠV , θ〉.

If we multiply R by a suitable constant, all the values of τ are normalized.
We say that τ defines a structural variety in C1

v(D).
A function Λ : C1

v(D) → R ∪ {−∞} is called p.s.h. if it is not identically
equal to −∞ and if for every structural variety τ : V → C1

v(D) the function
Λ ◦ τ is either p.s.h. or identically −∞ on V . If Λ and −Λ are p.s.h. we say
that Λ is pluriharmonic.

Let Φ be a real continuous horizontal (k − p, k − p)-form on D. Define
the linear map ΛΦ : Cv(D) → R by ΛΦ(R) := 〈R,Φ〉. Such an operator is
a version of the Abel-Radon transform in complex analysis. Observe that
real smooth (k − p, k − p)-forms with compact support in D belong to the
space generated by the smooth horizontal forms Φ > 0 with ddcΦ > 0 (see
Lemma 2.2). Hence, the maps ΛΦ with Φ > 0 and ddcΦ > 0, separate
currents in Cv(D). Theorem 2.1 and Remark 2.3 show that ΛΦ is p.s.h. on
C1

v(D) when ddcΦ > 0.
We can summarize our construction of the function θ 7→ 〈τ(θ),Φ〉 by the

following diagram:

V
τ // C1

v(D)
ΛΦ // R.(2.2)

• Some structural discs. Given a current R ∈ C1
v(D), we construct

some special structural discs passing through R, that we will use in the
next sections. For these discs, the map τ is continuous with respect to the
weak topology on currents. In order to construct the current R, we consider
the images of R under holomorphic families of maps.

Let M ′ b M and N ′′ b N be open sets. Define D′ := M ′ × N and
D′′ := M ×N ′′. In order to simplify the notations, assume that 0 belongs
to (M \M ′

)× (N \N ′′
). Fix a domain D∗ = M∗ ×N∗ b D with M \M∗

TOME 56 (2006), FASCICULE 2
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and N \ N∗ small enough, M ′ b M∗, N ′ b N∗. Choose a small simply
connected neighbourhood V of [0, 1] in C. Finally, choose a small open
neighbourhood U b D∗ of 0 in Cp × Ck−p and a smooth positive function
ρ with support in U such that

∫
ρ(a, b)λ(a, b) = 1. Here, λ denotes the

standard volume form on Ck.
For θ ∈ V and (a, b) ∈ U , define the affine map ha,b,θ : Cp × Ck−p →

Cp × Ck−p by

ha,b,θ(z, w) :=
(
θz + (1− θ)a,w + (θ − 1)b

)
.

These maps are small pertubations of the map (z, w) 7→ (θz, w). When
θ = 1 we obtain the identity map and when θ = 0 we obtain an affine map
onto the subspace {z = a}. Let R be a current in C1

v(D′). We will show
that the currents Ra,b,θ := (ha,b,θ)∗(R) define a structural disc in C1

v(D∗),
i.e., they are slices of a current Ra,b in V ×D∗.

Observe that Ra,b,θ is well defined, since ha,b,θ : supp(R) ∩ h−1
a,b,θ(D

∗) →
D∗ is proper. This last property follows from the fact that M is convex and
ha,b,θ is close to the map (z, w) 7→ (θz, w). Moreover, Ra,b,θ is well defined
on some open set Dθ which converges to D when θ → 1. The dependence of
currents R0,0,θ on θ has been used by Dujardin in order to study Hénon-like
maps [11] (see also [5]).

Define the meromorphic map Ha,b : V ×D∗ → Cp ×N by

Ha,b(θ, z, w) := h−1
a,b,θ(z, w) =

(z + (θ − 1)a
θ

, w − (θ − 1)b
)
.

The current Ra,b := H∗
a,b(R), which is of bidimension (k− p+1, k− p+1),

is well defined out of the pole set {θ = 0} of Ha,b. Since supp(Ra,b) ⊂
H−1

a,b (supp(R)), then when θ approaches 0, supp(Ra,b) clusters only on the
set {z = a}. So, this current is well defined out of {θ = 0} ∩ {z = a}. The
dimension of {θ = 0}∩{z = a}, which is equal to k−p, is smaller than the
dimension of Ra,b. Hence, one can extend Ra,b across {θ = 0} ∩ {z = a}
with no mass on this set [17].

Since M is convex and since ha,b,θ is close to the map (z, w) 7→ (θz, w),
supp(Ra,b) ∩ Π−1

V (θ), which is isomorphic to supp(Ra,b,θ), is a vertical set
of {θ} ×D∗ for every θ ∈ V . Hence, the slice currents 〈Ra,b,ΠV , θ〉 define
a structural disc in C1

v(D∗). By Theorem 2.1, these slices exist for every
θ ∈ V and are equal to Ra,b,θ (we identify {θ} ×D with D). The currents
Ra,b,θ depend continuously on θ for the weak topology on currents. This
is clear for θ 6= 0, and as we have seen, the limit at θ = 0 is [z = a] (see
also Lemmas 2.5 and 2.7 below). Recall that [z = a] denotes the current of
integration on the analytic set {z = a}.
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We have Ra,b,1 = R and Ra,b,0 = [z = a]. Hence, Ra,b,0 is independent
of R. In other words, when R varies we obtain a family of structural discs
passing through the same point [z = a] in C1

v(D∗).
We introduce a smoothing. Define

R :=
∫

Ra,bρ(a, b)λ(a, b).

The current R satisfies the hypothesis of Theorem 2.1 for D∗. Hence, the
slice currents Rθ := 〈R,Π, θ〉 define a structural disc in C1

v(D∗). These slices
are well defined for every θ ∈ V and

(2.3) Rθ =
∫
Ra,b,θρ(a, b)λ(a, b).

Observe that Rθ depends continuously on θ for the weak topology. We have
R1 = R and

R0 =
∫

[z = a]ρ(a, b)λ(a, b) = π∗1(π1)∗(ρλ).

The last current is independent of R. When R varies, we obtain again a
family of structural discs which pass through the same point π∗1(π1)∗(ρλ)
in C1

v(D∗).
In the following two lemmas, we study the continuity of Rθ near 0 and

near 1. We will use these facts in our convergence theorems. Lemma 2.5
shows that every current in C1

v(D′) can be joined to a fixed vertical current
R0 through smooth ones.

Lemma 2.5. — Let R ∈ C1
v(D′). Then, for θ ∈ V \ {1}, Rθ is a smooth

form on D∗. For θ ∈ V \ {0, 1}, Rθ depends continuously on (R, θ) in the
C∞ topology. Moreover, there exist r > 0 and c > 0 independent of R such
that if |θ| 6 r

‖Rθ −R0‖L∞(D∗) 6 c|θ|
where the L∞ norm on forms is the sum of L∞ norms of coefficients.

Proof. — The smoothness of Rθ for θ 6= 1, and their dependence of (R, θ)
are checked using a classical change of variables in (2.3) as follows. Let R̃,
R̃a,b,θ and R̃θ be the coefficients of dzI ∧dzJ ∧dwK ∧dwL in R, Ra,b,θ and
Rθ respectively, for some multi-indices I, J , K, L. Let

(A,B) := h−1
a,b,θ(z, w) =

(z + (θ − 1)a
θ

, w − (θ − 1)b
)

be the new variables. Since Ra,b,θ = (h−1
a,b,θ)

∗R we have

R̃a,b,θ(z, w) = θ−|I|θ
−|J|

R̃(A,B)
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and from (2.3)

R̃θ(z, w) = θ−|I|θ
−|J|

∫
A,B

R̃(A,B) · (ρλ)
(θA− z

θ − 1
,
w −B

θ − 1

)
.

The smoothness of Rθ for θ ∈ V \ {0, 1} and the dependence of (R, θ) are
clear.

Let Φ be a smooth (k − p, k − p)-form with compact support in D∗. By
duality, the inequality that we have to prove is equivalent to

|〈Rθ −R0,Φ〉| 6 c|θ|‖Φ‖L1 .

From (2.3), we get

〈Rθ,Φ〉 =
∫
〈Ra,b,θ,Φ〉ρ(a, b)λ(a, b) =

∫
〈R, h∗a,b,θ(Φ)〉ρ(a, b)λ(a, b)

=
〈
R,

∫
h∗a,b,θ(Φ)ρ(a, b)λ(a, b)

〉
=: 〈R,Φθ〉.

This also holds for θ = 0 by continuity. The forms Φθ are obtained by
convolution. They are smooth and uniformly bounded by c‖Φ‖L1 . Using
the change of variables (a, b) 7→ (A,B) := ha,b,θ(z, w), we get

‖Φθ − Φ0‖L∞ 6 c|θ|‖Φ‖L1

for θ small. Lemma 2.5 follows. �

Remark 2.6. — When M is not convex and V ′ ⊂ V is a small neigh-
bourhood of 1, then (Rθ)θ∈V ′ defines also a structural disc in C1

v(D′′). The
first part of Lemma 2.5 holds in this case.

Lemma 2.7. — Let R ∈ C1
v(D′) be a continuous form. Let m(R, ε) de-

note the modulus of continuity of R. Then, there exist r > 0, c > 0, A > 0
independent of R such that for |θ − 1| 6 r

‖Rθ −R‖L∞(D∗) 6 c
(
‖R‖L∞(D)|θ − 1|+m(R,A|θ − 1|)

)
.

Proof. — Let W denote the disc {|θ−1| 6 r} with r > 0 small enough, so
we are away of {θ = 0}. Then, there exists A > 0 such that ‖h−1

a,b,θ(z, w)−
(z, w)‖C1 6 A|θ − 1| when (z, w, a, b, θ) ∈ D × U ×W . Hence, there exists
c > 0 such that for (a, b) ∈ U

‖Ra,b,θ −R‖L∞(D∗) 6 c
(
‖R‖L∞(D)|θ − 1|+m(R,A|θ − 1|)

)
.

We can also prove this inequality using the description of R̃a,b,θ as in
Lemma 2.5. Finally, we obtain the desired inequality by integration using
(2.3). �
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• Kobayashi pseudo-distance. Let C1
v(D) be the set of currents in

C1
v(D) which can be extended to a current in C1

v(M ×N ′) for some neigh-
bourhood N ′ of N . We introduce the Kobayashi pseudo-distance ρv on
C1

v(D). Let R and S be two currents in C1
v(D). Let ∆ be the unit disc and ρ0

denote the hyperbolic distance on ∆. Consider chains of continuous struc-
tural discs τi : ∆ → C1

v(D) which connect R and S. More precisely, suppose
θi, θ′i ∈ ∆ such that τ1(θ1) = R, τi(θ′i) = τi+1(θi+1) and τn(θ′n) = S. Define

(2.4) ρv(R,S) := inf
n∑

i=1

ρ0(θi, θ
′
i)

where the infimum is taken over all the n, τi, θi and θ′i. We have seen that
R and S can be connected by a chain of two continuous structural discs.
Hence ρv(R,S) is finite. It is easy to check that ρv satisfies the triangle
inequality.

Proposition 2.8. — The pseudo-distance ρv is not a distance. If real
continuous horizontal ddc-closed forms on D separate R and S then
ρv(R,S) > 0.

Proof. — We have to construct two different currents R and S such that
ρv(R,S) = 0. We can replace N by a ball containing N and M by a polydisc
contained in M . So, we can assume that N is the unit ball and M is the
unit polydisc. It is sufficient to consider the case where p = 1 and M is the
unit disc ∆. We obtain the general case by taking the product of M and
D by ∆p−1.

Let νr be the Lebesgue measure on the circle {|z| = r} normalized by
‖νr‖ = 1. Consider R := π∗1(ν0) = [z = 0] and S := π∗1(ν1/2). Let R

be the positive closed current of bidegree (1, 1) on ∆ × (∆ × Ck−1) given
by R := ddcU where U(θ, z, w) := max{log |z|, 1

A log |θ|} and A > 1. This
current has support in {|z|A = |θ|}. Hence, if Π∆ is the projection on the
first factor ∆, the slices Rθ := 〈R,Π∆, θ〉 = ddcU(θ, ·, ·) define a continuous
structural disc in C1

v(D). Moreover, we have Rθ = π∗1(νr) where rA = |θ|.
In particular, we have R0 = R and Rθ = S for θ := 2−A. It follows that
ρv(R,S) 6 ρ0(0, θ). When A → ∞, we have θ → 0 and then ρ0(0, θ) → 0.
Therefore, ρv(R,S) = 0.

Now assume that R, S satisfy the hypothesis of Proposition 2.8 and
consider structural discs τi as above. Let Φ be a real continuous horizontal
form such that ddcΦ = 0 and 〈R,Φ〉 6= 〈S,Φ〉. Using a regularization we can
assume that Φ is smooth and is defined on a neighbourhood of D. Hence
there exists a smooth current Φ′ in Ch(D) such that −Φ′ 6 Φ 6 Φ′. Using
coordinate changes on ∆, one can also assume that θi = 0. If ρ0(0, θ′i) > 1
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then the right hand side of (2.4) is larger than 1. We have only to consider
the case where ρ0(0, θ′i) 6 1 for every i.

Define ψi := ΛΦ ◦ τi. Theorem 2.1 implies that these functions are
harmonic. Lemma 3.2 below implies that they are uniformly bounded by
±‖Φ′‖h. Hence by Harnack’s inequality |ψi(θ′i)−ψi(0)| 6 cρ0(0, θ′i), c > 0.
On the other hand, we have ψ1(0) = 〈R,Φ〉, ψi(θ′i) = ψi+1(0) and ψn(θ′n) =
〈S,Φ〉. We then deduce that the right hand side of (2.4) is bounded from be-
low by c−1|ψ1(0)−ψn(θ′n)| = c−1|〈R,Φ〉− 〈S,Φ〉|. Hence ρv(R,S) > 0. �

Proposition 2.9. — The space C1
v(D) is hyperbolic in the sense of

Brody. More precisely, there exists no non-constant structural line τ : C →
C1

v(D).

Proof. — Consider a horizontal positive test forms Φ such that ddcΦ > 0
and assume Φ 6 Φ′ with Φ′ a smooth form in Ch(D). Then, ΛΦ ◦ τ is
constant since, by Theorem 2.1 and Lemma 3.2 below, it is a subharmonic
function on C, bounded from above by ‖Φ′‖h. Proposition 2.9 follows. �

• Case of bidegree (1,1). Assume that p = 1. We will construct an
example of non-continuous structural discs in C1

v(D). Let R be a positive
closed current of bidegree (1, 1) on ∆ × D satisfying the hypotheses of
Theorem 2.1. We can write R = ddcU where U is a p.s.h. function on
∆ ×D which is pluriharmonic near ∆ × ∂vD. The slices Rθ := 〈R,Π∆, θ〉
are equal to ddcUθ where Uθ := U|{θ}×D. The geometry of the support of
R insures that Uθ is not identically equal to −∞. Hence slice currents exist
for every θ.

Let v be a bounded subharmonic function on ∆. In order to simplify the
notation assume that 0 belongs to D. Consider the case where

U(θ, z, w) = max{v(θ)−A, log |z|}.

The constant A is chosen large enough so that U = log |z| near ∆ × ∂vD.
Then R vanishes near ∆× ∂vD. One easily check that Rθ = π∗1(νr) where
r := exp(v(θ)−A). Hence (Rθ) is continuous with respect to θ, if and only
if v is continuous.

The following proposition gives a converse of Theorem 2.1 in the bidegree
(1, 1) case.

Proposition 2.10. — Let Rθ be a family of currents of bidegree (1, 1)
in C1

v({θ} × D), θ ∈ ∆. Assume that the projection of ∪ supp(Rθ) on M

is relatively compact in M . Assume also that for every real continuous
(k−1, k−1)-form Ψ on ∆×D such that ddcΨ > 0 and ΠN (supp(Ψ)) b N ,
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the function θ 7→ 〈Rθ,Ψ〉 is subharmonic on ∆. Then θ 7→ Rθ defines a
structural disc in C1

v(D).

Proof. — We want to construct a potential U of a current R with given
slices Rθ. We will obtain U as a decreasing limit of some p.s.h. functions
Uε,δ.

Let λ denote the canonical volume form on Ck−1 and ψ be a positive
radial function with compact support in Ck−1 such that

∫
ψλ = 1. De-

fine continuous functions ψε(w) := ε2−2kψ(ε−1w), ε > 0, and logδ |z| :=
max{log |z|, log δ}, δ > 0. Define also

Φε,δ
z0,w0

(z, w) := logδ |z − z0|ψε(w − w0)λ(w − w0)

which is a regularization of the current log |z − z0| · [w = w0], and

Uε,δ(θ0, z0, w0) := 〈Rθ0 ,Φ
ε,δ
z0,w0

〉.

Here we identify Rθ0 with a current on D.
We first prove that for every domain N∗ b N , the function Uε,δ is p.s.h.

on ∆×C×N∗ for ε small enough. Assume that z0 = g(θ0) and w0 = h(θ0)
where (g, h) is a holomorphic map from ∆ to C×N∗. It is enough to prove
that Uε,δ(θ0, g(θ0), h(θ0)) is a subharmonic function with respect to θ0. This
follows from the hypothesis. Indeed, in this case Φε,δ

z0,w0
(z, w) is equal to a

continuous form Ψε,δ(θ0, z, w) which satisfies ddcΨε,δ > 0 on ∆×D and if
ε is small enough ΠN (supp(Ψε,δ)) is compact in N .

Now let ε decrease to 0. Observe that (π2)∗(logδ |z − z0| ·Rθ0) is defined
by a p.s.h. function ϕδ

θ0
on N and

Uε,δ(θ0, z0, w0) =
∫
ϕδ

θ0
(w)ψε(w − w0)λ(w − w0).

Since ψ is radial and ϕδ
θ0

is p.s.h., the submean inequality implies that Uε,δ

decreases to a p.s.h. function Uδ on ∆ × C × N . The definition of Φε,δ
z0,w0

and slicing theory imply that

Uδ(θ0, z0, w0) =
〈
〈Rθ0 , π2, w0〉, logδ |z − z0|

〉
.

Recall that 〈Rθ0 , π2, w0〉 is a probability measure. When δ decreases to
0, Uδ decreases to the p.s.h. function

U(θ0, z0, w0) :=
〈
〈Rθ0 , π2, w0〉, log |z − z0|

〉
.

The last formula says that for every fixed θ0, U(θ0, ·, ·) defines a potential
of Rθ0 . In particular, the restriction of U to {θ0}×C×N is pluriharmonic
outside the support of Rθ0 . Recall that the projection of ∪ supp(Rθ) on
M is relatively compact in M . On the other hand, for |z0| large enough,
logδ |z− z0| is pluriharmonic for z ∈M . Then, it is easy to check that Uε,δ
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and U are pluriharmonic for |z0| large enough. Now, by Hartogs extension
theorem, U is pluriharmonic near ∆ × ∂vD and then R := ddcU vanishes
near ∆× ∂vD. It follows that the slices of R, which are equal to Rθ, define
a structural disc in C1

v(D). �

3. Intersection of currents

In this section, we define the intersection (wedge product) R ∧ S of a
vertical positive closed current R ∈ Cv(D) and a horizontal positive closed
current S ∈ Ch(D). When one of these currents, for example R, has bide-
gree (1, 1), using a regularization, the reader can verify that our definition
coincides with the classical definition R ∧ S := ddc(uS) where u is a po-
tential of R. The current uS is well defined since, by Oka’s inequality [15,
Prop. 3.1], u is integrable with respect to the trace measure of S. This case
is very simple since the mass of uS on a compact set can be estimated using
Stokes’ theorem and the geometry of the supports of R and S.

Theorem 3.1. — Let R be a current in Cv(D) and S be a current in
Ch(D). Then R ∧ S is defined such that for every p.s.h. function ϕ on D

〈R ∧ S, ϕ〉 = lim sup
R′→R
S′→S

〈R′ ∧ S′, ϕ〉

where R′ ∈ Cv(D) and S′ ∈ Cv(D) are smooth with supports converging in
the Hausdorff sense to those of R and S. The value of 〈R ∧ S, ϕ〉 depends
linearly on R, S and ϕ. The wedge product R ∧ S is a positive measure of
mass ‖R‖v‖S‖h supported in supp(R) ∩ supp(S).

In the previous theorem, we can take R′ and S′ such that supp(R′) ∩
supp(S′) is contained in a fixed neighbourhood W b D of supp(R) ∩
supp(S) (see Propositions 3.4 and 3.5).

Choose M ′ and N ′′ such that R ∈ Cv(D′) and S ∈ Ch(D′′). We can
assume that R and S are normalized. We will construct explicitly the prob-
ability measure R ∧ S. We first prove the following lemma.

Lemma 3.2. — Assume that R is a continuous form. Then, R ∧ S is a
probability measure.

Proof. — By regularization of currents, we can assume that S is smooth.
Let R be the structural disc associated to R which was constructed in Sec-
tion 2. The current R′ := R ∧ Π∗

D(S) is positive closed and of bidimen-
sion (1, 1). Moreover, the restriction of ΠV to supp(R′) is proper. Hence,
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(ΠV )∗(R′), which is positive closed and of bidimension (1, 1), is defined by
a constant function c on V . It follows that ‖Rθ ∧S‖ = c for almost every θ.
By Lemmas 2.5 and 2.7, Rθ depends continuously on θ. Then ‖Rθ ∧S‖ = c

for every θ. From the explicit form of R0, we get c = ‖R0∧S‖ = ‖S‖h = 1.
For θ = 1, we get ‖R ∧ S‖ = c = 1. �

Proposition 3.3. — Let K be a compact subset of M . Then, the set
of currents R ∈ C1

v(D) with support in K × N , is compact for the weak
topology on currents.

Proof. — Let L be a compact subset of D. Let S ∈ C1
h(D) be a normal-

ized smooth form, strictly positive on L. Lemma 3.2 implies that 〈R,S〉 = 1.
Hence, the mass of R on L is bounded from above by a constant indepen-
dent of R. The proposition follows. �

Consider a function ϕ continuous and p.s.h. in a neighbourhood W ′ of
supp(R) ∩ supp(S) in D. Let W be another neighbourhood of supp(R) ∩
supp(S) such that W b W ′. Consider smooth forms Rn ∈ C1

v(D′) and
Sn ∈ C1

h(D′′) such that Rn → R, Sn → S, supp(Rn) ∩ supp(Sn) ⊂ W and
〈Rn ∧ Sn, ϕ〉 converge to a constant mϕ. Assume that mϕ is the maximal
constant that we can obtain in this way. It follows from Lemma 3.2 that
mϕ is finite.

Let Rθ, θ ∈ V , be the currents of the structural disc in C1
v(D′′) associated

to R that we constructed in Section 2. Recall that R1 = R. We construct
in the same way the horizontal currents Sθ′ , θ′ ∈ V , with S1 = S. They
define a structural disc in C1

h(D′). Observe that when θ, θ′ → 1, we have
supp(Rθ) → supp(R) and supp(Sθ′) → supp(S). In particular, supp(Rθ) ∩
supp(Sθ′) ⊂W when θ and θ′ are close to 1.

Proposition 3.4. — We have

mϕ = lim sup
θ→1

〈Rθ ∧ S, ϕ〉 = lim sup
θ→1

〈R ∧ Sθ, ϕ〉 = lim sup
θ,θ′→1

〈Rθ ∧ Sθ′ , ϕ〉.

Moreover, mϕ does not depend on M ′, N”, W ′, W , and depends linearly
on ϕ, R, S.

Proof. — Define ψ(θ, θ′) := 〈Rθ ∧ Sθ′ , ϕ〉. By Lemma 2.5 and Remark
2.6, there exists a small neighbourhood U of (1, 1) in V 2 such that ψ is
defined and continuous on U \ (1, 1). Lemma 3.2 shows that ψ is bounded.
We first show that ψ is p.s.h. on U ′ := {(θ, θ′) ∈ U, θ 6= 1, θ′ 6= 1}. This
allows us to extend ψ to a p.s.h. function on U with

ψ(1, 1) := lim sup
θ,θ′→1

ψ(θ, θ′) = lim sup
θ,θ′→1

〈Rθ ∧ Sθ′ , ϕ〉.

TOME 56 (2006), FASCICULE 2



438 Tien-Cuong DINH & Nessim SIBONY

Let R and S be currents as in Section 2 whose slices are Rθ and Sθ′ .
These currents are smooth for θ 6= 1 and θ′ 6= 1. It follows that the form

R̃(θ, θ′, z, w) := ϕ(z, w)R(θ, z, w) ∧ S(θ′, z, w)

is continuous on U ′ × D. We also have ddcR̃ > 0 and the projection of
supp(R̃) on U ′ is proper. As in Theorem 2.1, we obtain ψ as the push-
forward of R̃ on U ′. Hence ψ is p.s.h.

Define m′
ϕ := ψ(1, 1). We first prove that m′

ϕ = mϕ. This implies that
mϕ depends linearly on ϕ, R and S since ψ depends linearly on ϕ, R and S.
We also deduce that mϕ is independent of M ′, N ′′, W ′, W . The current
Rθ is a priori not defined on D but it is a vertical current on a domain Dθ

with Dθ → D when θ → 1. The current Sθ′ satisfies the same properties.
Hence, by definition of mϕ, we have m′

ϕ 6 mϕ. We use here the convexity
of D and a dilation in order to approximate Rθ, Sθ′ by currents on D.

We define the structural discs (Rn,θ) and (Sn,θ) associated to Rn and Sn

as in Section 2 with Rn,1 = Rn and Sn,1 = Sn. Recall that Rn,θ and Sn,θ

are smooth currents when θ 6= 1. By Lemma 2.5, the bounded sequence of
continuous p.s.h. functions ψn(θ, θ′) := 〈Rn,θ∧Sn,θ′ , ϕ〉 converges pointwise
to ψ on U \ (1, 1). It follows that ψn → ψ in L1

loc(U). By Hartogs lemma,

m′
ϕ = ψ(1, 1) > lim sup

n→∞
ψn(1, 1) = lim sup

n→∞
〈Rn ∧ Sn, ϕ〉 = mϕ.

Hence m′
ϕ = mϕ.

Since p.s.h. functions on U are decreasing limits of smooth p.s.h. func-
tions, their restrictions to V × {1} are subharmonic functions. It follows
that

lim sup
θ→1

〈Rθ ∧ S, ϕ〉 = lim sup
θ→1

ψ(θ, 1) = ψ(1, 1) = mϕ.

We prove in the same way that lim sup〈R ∧ Sθ, ϕ〉 = mϕ. �

End of the proof of Theorem 3.1. — For functions ϕ continuous p.s.h.
on a neighbourhood of supp(R) ∩ supp(S), define

〈R ∧ S, ϕ〉 := mϕ.

Since smooth functions on neighbourhoods of supp(R) ∩ supp(S) can be
written as differences of continuous p.s.h. functions, we can extend the
definition to smooth functions.

Proposition 3.4 shows that the current R ∧ S is supported in supp(R) ∩
supp(S). It is clear that the definition does not depend on coordinate sys-
tems of M , N . If ϕ 6 ϕ′ we have mϕ 6 mϕ′ . Then R ∧ S is a positive
measure. When ϕ = 1, Lemma 3.2 implies that mϕ = 1. Hence R ∧ S is a
probability measure.
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�

Proposition 3.5. — Let R, S, ϕ, W ′ and W be as above. Let Rn ∈
Cv(D′) and Sn ∈ Ch(D′′) such that Rn → R, Sn → S and supp(Rn) ∩
supp(Sn) ⊂W . Then

lim sup
n→∞

〈Rn ∧ Sn, ϕ〉 6 〈R ∧ S, ϕ〉.

The measures Rn ∧ Sn converge to R ∧ S if and only if 〈Rn ∧ Sn, ϕ〉 →
〈R∧S, ϕ〉 for one function ϕ strictly p.s.h. on W ′. In particular, there exists
(θn) ⊂ V \ {1} converging to 1 such that

Rθn ∧ S → R ∧ S, R ∧ Sθn → R ∧ S and Rθn ∧ Sθn → R ∧ S.

More generally, if (θ, θ′) → (1, 1) in the plurifine topology, then Rθ ∧Sθ′ →
R ∧ S.

Proof. — The first inequality follows from the definition of mϕ. Now
assume that ϕ is strictly p.s.h. on W ′. Let φ be a real smooth function
with support in W ′. If A > 0 is large enough then ϕ± := Aϕ± φ are p.s.h.
on W ′. Then lim sup〈Rn ∧ Sn, ϕ

±〉 6 〈R ∧ S, ϕ±〉. When 〈Rn ∧ Sn, ϕ〉 →
〈R∧ S, ϕ〉, we deduce easily that 〈Rn ∧ Sn, φ〉 → 〈R∧ S, φ〉. It follows that
Rn ∧ Sn → R ∧ S.

The functions ψ(·, 1), ψ(1, ·) and ψ(·, ·) associated to ϕ are subharmonic
or p.s.h. Then there exists (θn) → 1 such that ψ(θn, 1), ψ(1, θn) and
ψ(θn, θn) converge to ψ(1, 1). Hence 〈Rθn

∧ S, ϕ〉 = ψ(θn, 1) converge to
〈R ∧ S, ϕ〉 = ψ(1, 1). It follows that Rθn

∧ S → R ∧ S. Other convergences
are obtained in the same way. If (θ, θ′) → (1, 1) in the plurifine topology
(i.e., the coarsest topology which makes p.s.h. functions continuous), we
get Rθ ∧ Sθ′ → R ∧ S. �

Remark 3.6.
a) Proposition 3.5 and Lemma 2.7 imply that when R or S is continuous,

our definition of R ∧ S coincides with the usual one.
b) When ϕ is a uniform limit of continuous functions p.s.h. on neigh-

bourhoods of supp(R) ∩ supp(S), we can apply Proposition 3.5 and get
lim sup〈Rn ∧ Sn, ϕ〉 6 〈R ∧ S, ϕ〉. Hence, if there exists a compact set
K ⊂ D containing supp(R)∩ supp(S) such that continuous p.s.h. functions
on neighbourhoods of K are dense in C0(K), then Rn∧Sn → R∧S provided
that Rn → R, Sn → S and supp(Rn) ∩ supp(Sn) → K. In particular, this
holds when K is totally disconnected. In the last case, continuous functions
on K can be approximated by functions locally constant in neighbourhoods
of K.
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Let λε denote the Lebesgue measure on the disc of center 1 and of radius
ε normalized by ‖λε‖ = 1. Since the function ψ in Proposition 3.4 is p.s.h.
we have

ψ(1, 1) = lim
ε→0

∫
ψ(θ, 1)dλε(θ) = lim

ε→0

∫
ψ(1, θ)dλε(θ)

= lim
ε→0

∫
ψ(θ, θ′)dλε(θ)dλε(θ′).

We define the vertical and horizontal currents R(ε) and S(ε) by

R(ε) :=
∫
Rθdλε(θ) and S(ε) :=

∫
Sθdλε(θ)

and deduce from the previous relations that

ψ(1, 1) = lim
ε→0

〈R(ε) ∧ S, ϕ〉 = lim
ε→0

〈R ∧ S(ε), ϕ〉 = lim
ε→0

〈R(ε) ∧ S(ε), ϕ〉.

This and Proposition 3.5 imply the following result which can be considered
as a “less abstract” definition of R ∧ S.

Proposition 3.7. — Let R, S, R(ε) and S(ε) be as above. Then

R ∧ S = lim
ε→0

R(ε) ∧ S = lim
ε→0

R ∧ S(ε) = lim
ε→0

R(ε) ∧ S(ε).

Remark 3.8. — It follows from the definition of R∧S and from Propo-
sition 3.7, that for ϕ p.s.h. on W ′

〈R ∧ S, ϕ〉 = lim sup〈R′ ∧ S′, ϕ〉

where the limit is taken over all currents, not necessarily smooth, R′ → R

and S′ → S with supp(R′) ∩ supp(S′) ⊂W .
Let (R′θ) (resp. (S′θ′)) be an arbitrary structural variety in C1

v(D) (rep. in
C1

h(D)). Let ϕ be a bounded p.s.h. function on D. Then one can prove as in
Theorem 2.1 and Proposition 3.4 that the function λ(θ, θ′) := 〈R′θ ∧S′θ′ , ϕ〉
is p.s.h. and (θ, θ′) 7→ R′θ ∧ S′θ′ is continuous for the plurifine topology.

4. Horizontal-like maps

In general, a horizontal-like map f on D is not defined on the whole
domain D but only on a vertical subset f−1(D) of D. It takes values in a
horizontal subset f(D) of D. We define these maps using their graphs as
follows (see [11, 5]). Let pr1 and pr2 be the canonical projections of D×D
on its factors. We always assume that D is convex.

Definition 4.1. — A horizontal-like map f on D is a holomorphic map
with graph Γ such that
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(1) Γ is an irreducible submanifold of D ×D.
(2) pr1|Γ is injective; pr2|Γ has finite fibers.
(3) Γ does not intersect ∂vD ×D nor D × ∂hD.

The map f is defined on f−1(D) := pr1(Γ) and its image is equal to
f(D) := pr2(Γ) (if we assume only that π1|Γ has finite fibers, we obtain a
horizontal-like correspondence). Observe that there exist open setsM ′ b M

and N ′′ b N such that f−1(D) ⊂ D′ := M ′ × N and f(D) ⊂ D′′ :=
M×N ′′. We have Γ ⊂ D′×D′′. This property characterizes horizontal-like
maps. Since Γ is a submanifold of D×D, when x converges to ∂f−1(D)∩D,
f(x) converges to ∂vD. When y converges to ∂f(D)∩D, f−1(y) converges
to ∂hD. So, the vertical (resp. horizontal) part of ∂f−1(D) is sent to the
vertical (resp. horizontal) part of ∂f(D). If g is another horizontal-like
map on D, f ◦ g is also a horizontal-like map. When p = k, we obtain the
polynomial-like maps studied in [7].

If pr2|Γ is injective, we say that f is invertible. In this case, up to a
coordinate change, f−1 : pr2(Γ) → pr1(Γ) is a horizontal-like map. When
k = 2 and p = 1, we obtain the Hénon-like maps which are studied in [11, 5].
In order to simplify the paper, we consider only invertible horizontal-like
maps. The results in Sections 4, 5 and 6 hold for non-invertible maps, but
for the construction of T+, we need to define inverse images of positive
closed currents by open holomorphic maps, see also [6].

The operator f∗ = (pr2|Γ)∗ ◦ (pr1|Γ)∗ acts continuously on horizontal
currents. If S is a horizontal current (form), so is f∗(S). The operator
f∗ = (pr1|Γ)∗ ◦ (pr2|Γ)∗ acts continuously on vertical currents. If R is a
vertical current (form), so is f∗(R). We have the following proposition for
positive closed currents.

Proposition 4.2. — The operator f∗ : Ch(D′) → Ch(D′′) is well de-
fined and continuous. Moreover, there exists an integer d > 1 such that
‖f∗(S)‖h = d‖S‖h for every S ∈ Ch(D′). The operator f∗ : Cv(D′′) →
Cv(D′) is well defined and continuous. If R belongs to Cv(D′′), we have
‖f∗(R)‖v = d‖R‖v.

Proof. — Using Definition 4.1, one can check that f∗ and f∗ are well
defined and continuous.

Let R be a current in C1
v(D′′). We want to compute the slice mass of

f∗(R). We can assume that R is smooth. Let S = [w = b] be the current
of integration on the subspace {w = b} with b ∈ N . Since S is normalized,
we have

‖f∗(R)‖v = 〈f∗(R), S〉 = 〈R, f∗(S)〉.
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The current f∗(S) is defined by a horizontal analytic subset of D′′. Hence,
it is a ramified covering over M of degree d for some integer d. We have
‖f∗(S)‖h = d. Theorem 3.1 implies that 〈R, f∗(S)〉=d. Hence, ‖f∗(R)‖v=d.

If S is an arbitrary current in C1
h(D′), then Theorem 3.1 implies that

‖f∗(S)‖h = 〈f∗(S), R〉 = 〈S, f∗(R)〉 = d. �

The integer d in Proposition 4.2 is called the (main) dynamical degree
of f . Define Lv := 1

df
∗ and Lh := 1

df∗. Using Cesàro means, one can easily
construct a current T+ ∈ C1

v(D) such that Lv(T+) = T+. A priori such
T+ is not unique. Our aim is to construct such a current T+ with a good
convergence theorem and some extremality properties. This allows us to
construct an interesting invariant measure. The following diagram is one
of the main objects we consider:

(4.1) V
τ // C1

v(D∗)

Lv

VV
ΛΦ // R.

Example 4.3. — Let f be a polynomial automorphism of Ck. Denote
also by f its meromorphic extension to Pk. Let (z1, . . . , zk) be the coordi-
nates of Ck and [z1 : · · · : zk] be homogeneous coordinates of the hyperplane
at infinity L. Assume that the indeterminacy set I+ of f is the subspace
{z1 = · · · = zp = 0} of L and the indeterminacy set I− of f−1 is the sub-
space {zp+1 = · · · = zk = 0} of L. This map is regular in the sense of [22];
that is I+ ∩ I− = ∅ (see also [9]).

If M and N are the balls of center 0 and of radius r in Cp and Ck−p,
then fn0 defines a horizontal-like map in D = M ×N when r and n0 are
big enough. This follows from the description of Julia sets of f and f−1 in
[22].

Observe that every small pertubation of fn0 on D is still horizontal-like.
One can construct such a map which admits both attractive and repelling
fixed points [11]. The map is not conjugated to a polynomial automorphism
since polynomial automorphisms have constant jacobian and hence cannot
have such fixed points.

Example 4.4. — Let fi be horizontal-like maps on Di = Mi×Ni. Define
D = D1 ×D2 and the product map f(x1, x2) := (f1(x1), f2(x2)). Up to a
coordinate change, we can identify D to M ×N , with M = M1 ×M2 and
N = N1 ×N2. Then, one can check easily that f defines a horizontal-like
map on D.
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When M1 = N2 and N1 = M2, let ∆ denote the diagonal of D. Then, ∆
is not a horizontal set but f(∆) is horizontal.

We will see in Section 7 that this simple example can be used to linearize
some problems.

5. Random iteration

Let (fn) be a sequence of invertible horizontal-like maps on D of dynam-
ical degrees dn. Define Lv,n := 1

dn
f∗n and Lh,n := 1

dn
(fn)∗. Assume there

exist open sets M ′ b M and N ′′ b N such that f−1
n (D) ⊂ D′ := M ′ ×N

and fn(D) ⊂ D′′ := M ×N ′′ for every n. Define the filled Julia set associ-
ated to (fn) as

K+ :=
⋂
n>1

f−1
1 ◦ · · · ◦ f−1

n (D) =
⋂
n>1

f−1
1 ◦ · · · ◦ f−1

n (D
′
).

This is a vertical closed subset of D′.

Theorem 5.1. — Let (Rn) ⊂ C1
v(D′) be a uniformly bounded family of

forms. Then, the sequence Lv,1 . . .Lv,n(Rn) converges weakly to a current
T+ ∈ C1

v(D′) supported in ∂K+. Moreover, T+ is independent of (Rn).

We say that T+ is the Green current associated to the sequence (fn). We
say that (Rn) is uniformly bounded if the coefficients of Rn are uniformly
bounded. Observe that Lv,n is “distance decreasing” for the Kobayashi
pseudo-distance on C1

v(D
′′
). However, the fact that it is not a distance

makes the convergence questions more delicate. We first prove the following
proposition.

Proposition 5.2. — Let Φ be a real continuous horizontal (k−p, k−p)-
form with ddcΦ > 0. There exists a constant MΦ such that if Rn are
currents in C1

v(D), then lim sup〈Lv,1 . . .Lv,n(Rn),Φ〉 6 MΦ; if Rn are as in
Theorem 5.1, then lim〈Lv,1 . . .Lv,n(Rn),Φ〉 = MΦ.

Proof. — By regularization, we can assume that Rn are smooth. Observe
that by Theorem 3.1 if Φ is positive and closed then 〈Lv,1 . . .Lv,n(Rn),Φ〉 =
‖Φ‖h. So in this case the convergence is clear. If we add to Φ a form in
Ch(D), we can assume that Φ is positive on D′. We can also assume that
Φ is smaller than a smooth form in C1

h(D′). It follows from Proposition 4.2
that each form Lh,n . . .Lh,1(Φ) is positive and bounded from above by a
current in C1

h(D′′), depending on n.
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Let (R̃′in
) be a sequence of continuous forms in C1

v(D′′) with (in) a se-
quence of integers, in > n, such that 〈Lv,1 . . .Lv,in(R̃′in

),Φ〉 which is equal
to 〈R̃′in

,Lh,1 . . .Lh,in(Φ)〉 converge to a real number MΦ. We choose (in)
and (R̃′in

) so that MΦ is the maximal value that we can obtain in this way.
Since Lh,n . . .Lh,1(Φ) are bounded by normalized currents, Theorem 3.1
implies that MΦ is finite. Hence, MΦ satisfies the inequality in Proposi-
tion 5.2.

Define

R̃n := Lv,n+1 · · ·Lv,in(R̃′in
).

We have R̃n ∈ C1
v(D′) and 〈Lv,1 . . .Lv,n(R̃n),Φ〉 → MΦ. We will use the

structural discs (R̃n,θ) of C1
v(D′′) constructed in Section 2 (see also (2.2)

and (4.1)) associated to R̃n in order to prove that the convergence holds
when Rn is replaced by R̃n,0.

Theorem 2.1 allows us to define continuous subharmonic functions on
V by

ϕn(θ) := 〈Lv,1 . . .Lv,n(R̃n,θ),Φ〉 = 〈R̃n,θ,Lh,n . . .Lh,1(Φ)〉.

Since ϕn(1) tends to the maximal value MΦ, Hartogs lemma [19] and the
maximum principle imply that ϕn →MΦ in L1

loc(V ).
On the other hand, since each Lh,n . . .Lh,1(Φ) is bounded by a current

in C1
h(D), Lemma 2.5 implies that |ϕn(θ)−ϕn(0)| 6 c|θ| for |θ| 6 r. Hence,

ϕn(0) converge to MΦ. Since R̃0 := R̃n,0 is independent of n, we obtain
that 〈Lv,1 . . .Lv,n(R̃0),Φ〉 →MΦ.

Now assume that Rn satisfy the hypothesis of Theorem 5.1. If we replace
M ′ by a bigger domain, we can assume that there exists an open set M ′′ b
M ′ such that f−1

n (D) ⊂ M ′′ × N and supp(Rn) ⊂ M ′′ × N . Then, we
can find a continuous form R ∈ C1

v(D′) and c > 0 such that Rn 6 cR for
every n.

Define the currents Rθ associated to R as in Section 2 and

ψn(θ) := 〈Lv,1 . . .Lv,n(Rθ),Φ〉 = 〈Rθ,Lh,n . . .Lh,1(Φ)〉.

Recall that R0 = R̃0. Since ψn(0) = ϕn(0) → MΦ and lim supψn 6 MΦ,
we have ψn → MΦ in L1

loc(V ). On the other hand, since Lh,n . . .Lh,1(Φ)
are bounded by currents in C1

h(D′′), Lemma 2.7 implies that

lim
θ→1

(
sup
n>1

|ψn(θ)− ψn(1)|
)

= 0.

It follows that ψn(1) →MΦ. We obtain that 〈Lv,1 . . .Lv,n(R),Φ〉 →MΦ.
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We turn to the general case. Since Rn and cR − Rn belong to Cv(D′),
by definition of MΦ, we have

(5.1) lim sup〈Lv,1 . . .Lv,n(Rn),Φ〉 6 MΦ

and since cR−Rn have slice mass c− 1

(5.2) lim sup〈Lv,1 . . .Lv,n(cR−Rn),Φ〉 6 (c− 1)MΦ.

We consider the sum of (5.1) and (5.2) and deduce that these inequalities
are in fact equalities. It follows that

lim〈Lv,1 . . .Lv,n(Rn),Φ〉 = MΦ.

�

Remark 5.3. — Proposition 5.2 still holds when Rn are continuous
forms and Φ is a non-smooth horizontal current such that ddcΦ > 0 and
−Ψ 6 Φ 6 Ψ for some current Ψ ∈ Ch(D). If Rn are continuous then
Lv,1 . . .Lv,n(Rn) are continuous and they act on currents of order 0, i.e.,
on Φ. All the arguments in the above proof make sense. In this case, the
convergence in Theorem 5.1 is stronger than the usual weak convergence.

Proof of Theorem 5.1. — Since the maps ΛΦ separate the currents in
Cv(D), Proposition 5.2 implies that Lv,1 . . .Lv,n(Rn) converge to a current
T+ in C1

v(D) which is defined by 〈T+,Φ〉 := MΦ. This current is independent
of (Rn).

Now, we prove that T+ is supported in ∂K+. It is clear that supp(T+) ⊂
K+. If U b K+ is an open set, then fn◦· · ·◦f1(U) ⊂ f−1

n+1(D) ⊂M ′′×N for
some M ′′ b M and for every n. It follows that if supp(Rn) ⊂ (M ′\M ′′

)×N
we get supp(T+) ∩ U = ∅, since T+ is independent of Rn. �

The following corollary is a direct consequence of Proposition 5.2. It gives
an extremality property of T+.

Corollary 5.4. — Let (Rn) ⊂ C1
v(D). Let Φ be a real continuous

horizontal (k − p, k − p)-form such that ddcΦ > 0. Then, every limit value
R of the sequence of currents Lv,1 . . .Lv,n(Rn) satisfies

〈R,Φ〉 6 〈T+,Φ〉.

If ddcΦ = 0, then 〈R,Φ〉 = 〈T+,Φ〉.

Corollary 5.5. — Let (ni) be an increasing sequence of integers and
Rni

, R′ni
be currents in C1

v(D). Assume that Lv,1 . . .Lv,ni
(Rni

) converge
to T+ and that R′ni

6 cRni
with c > 0 independent of ni. Then Lv,1 . . .

Lv,ni(R
′
ni

) converge also to T+.
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Proof. — Let Φ be as above. Proposition 5.2 implies that

(5.3) lim sup〈Lv,1 . . .Lv,ni(R
′
ni

),Φ〉 6 〈T+,Φ〉.

On the other hand, the currents cRni −R′ni
belong to Cv(D) and have slice

mass c− 1. Hence

(5.4) lim sup〈Lv,1 . . .Lv,ni(cRni −R′ni
),Φ〉 6 (c− 1)〈T+,Φ〉.

By hypothesis,

lim〈Lv,1 . . .Lv,ni(Rni),Φ〉 = 〈T+,Φ〉.

We consider the sum of (5.3) and (5.4) and deduce that

lim〈Lv,1 . . .Lv,ni
(R′ni

),Φ〉 = 〈T+,Φ〉.

The corollary follows. �

The following proposition allows us to check that lim Lv,1 . . .Lv,n(Rn) =
T+ with only one test form.

Proposition 5.6. — Let Rn, R and Φ be as in Corollary 5.4. Assume
that ddcΦ is strictly positive on an open set V . If 〈R,Φ〉 = 〈T+,Φ〉, then
R = T+ on V .

Proof. — Let Ψ be a real test form with compact support in V . Let
A > 0 be a constant such that ddc(AΦ ± Ψ) > 0. Corollary 5.4 implies
that 〈R,AΦ ± Ψ〉 6 〈T+, AΦ ± Ψ〉. We deduce that 〈R,Ψ〉 = 〈T+,Ψ〉 if
〈R,Φ〉 = 〈T+,Φ〉. Therefore, R = T+ on V . �

Corollary 5.7. — Let (ni) be an increasing sequence of integers. Then,
there exist a subsequence (mi) and a pluripolar set E+ ⊂M such that, for
every a ∈M \ E+, we have

Lv,1 · · ·Lv,mi [z = a] → T+

where [z = a] is the current of integration on the vertical analytic set
{a} ×N .

Proof. — Let Φ and V be as above. Consider the locally uniformly
bounded p.s.h. functions ϕni

(a) := 〈Lv,1 . . .Lv,ni
[z = a],Φ〉 (see Section 2).

By extracting a subsequence, we can assume that ϕni
converge in L1

loc(M)
to a p.s.h. function ϕ. Proposition 5.2 implies ϕ 6 MΦ.

Let ν be a smooth probability measure with compact support in M ′.
Consider the current R := π∗1(ν) in C1

v(D′). Since R is smooth, Proposition
5.2 implies ∫

ϕnidν = 〈Lv,1 · · ·Lv,ni(R),Φ〉 →MΦ.
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It follows that ϕ = MΦ. Hence, there exists a subsequence (mi) ⊂ (ni) and a
pluripolar set E+(Φ) ⊂M such that ϕmi

→MΦ pointwise on M \E+(Φ) [7,
Proposition 3.9.4]. Proposition 5.6 implies that Lv,1 . . .Lv,mi

[z = a] → T+

on V for a 6∈ E+(Φ).
Consider a sequence of (Φn, Vn) such that ∪nVn = D. Extracting sub-

sequences of (mi) gives Lv,1 . . .Lv,mi
[z = a] → T+ on D for a 6∈ E+ :=

∪nE+(Φn). �

Remark 5.8. — Corollary 5.7 implies that T+ can be approximated by
currents of integration on vertical manifolds with control of support. When
p = 1, this holds for every current in Cv(D) [12]. The problem is still open
for general currents of higher bidegree.

6. Green currents

In the rest of the paper, we study the dynamics of an invertible horizontal-
like map. The following result is a direct consequence of Theorem 5.1.

Corollary 6.1. — Let f be an invertible horizontal-like map on D of
dynamical degree d > 1. Let K+ := ∩n>1f

−n(D) be the filled Julia set
of f . Let (Rn) ⊂ C1

v(D′) be a uniformly bounded family of forms. Then,
d−nfn∗(Rn) converge weakly to a current T+ ∈ C1

v(D′) supported in ∂K+.
Moreover, T+ does not depend on (Rn) and satisfies f∗(T+) = dT+.

We call T+ the Green current of f . Corollary 5.7 shows that T+ is a limit
value of (d−nfn∗[z = a]) for a ∈M generic. We construct in the same way
the Green current T− ∈ C1

h(D′′) for f−1. This current is supported in the
boundary of K− := ∩n>1f

n(D) and satisfies f∗(T−) = dT−. Now, we give
some properties of the Green currents.

Let (Rn) be an arbitrary sequence of currents in C1
v(D) and Φ be a

smooth real horizontal test form such that ddcΦ > 0. Corollary 5.4 implies
that every limit value R of (d−nfn∗(Rn)) satisfies 〈R,Φ〉 6 〈T+,Φ〉. Propo-
sition 5.6 implies that if 〈R,Φ〉 = 〈T+,Φ〉, then R = T+ in the open set
where ddcΦ is strictly positive. We deduce from this the following corollary.

Corollary 6.2. — Let T be a current in C1
v(D) and Φ be a real hor-

izontal continuous form. Assume that ddcΦ > 0 on D and ddcΦ > 0 on
a neighbourhood W of K+ ∩ K−. Then, d−nfn∗(T ) → T+ if and only if
〈d−nfn∗(T ),Φ〉 → 〈T+,Φ〉.

Proof. — Assume that 〈d−nfn∗(T ),Φ〉 → 〈T+,Φ〉. Hence, every limit
value R of (d−nfn∗(T )) is equal to T+ on W . For every m > 0, there exists
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a limit value R′ of (d−n+m(fn−m)∗(T )) such that R = d−mfm∗(R′). We
also have R′ = T+ on W . This implies R = T+ on f−m(W ). It follows that
R = T+ on ∪m>0f

−m(W ) which is a neighbourhood of K+. Since both the
currents R and T+ are supported in K+, we have R = T+. �

The following result is a direct consequence of Corollary 5.5.

Corollary 6.3. — Let T be a current in C1
v(D). Assume there exist

c > 0, an increasing sequence (ni) and currents Tni
∈ C1

v(D) such that
Tni

6 cT+ and T = d−ni(fni)∗(Tni). Then T = T+. In particular, T+ is
extremal in the cone of currents T ∈ C1

v(D) satisfying f∗(T ) = dT .

Theorem 6.4. — Let R be a real continuous vertical form of bidegree
(p, p) not necessarily closed. Then, d−n(fn)∗(R) converge to cT+ where
c := 〈R, T−〉.

Proof. — We can write R as a difference of positive forms (scale D if
necessary). Hence, we can assume that R is positive and that R 6 R′ for
a suitable continuous form R′ ∈ Cv(D). We can extract from d−n(fn)∗(R)
convergent subsequences. Corollary 6.1 implies that every limit value is
bounded by ‖R′‖vT+.

Let (ni) and T such that lim d−ni(fni)∗(R) = T . We have T 6 ‖R′‖vT+.
Moreover, for every m > 0, we have T = d−m(fm)∗(T ′) where T ′ is a limit
value of (d−ni+m(fni−m)∗(R)).

Let Φ ∈ C1
h(D) be a continuous form. We have

〈T,Φ〉 = lim〈d−ni(fni)∗(R),Φ〉 = lim〈R, d−ni(fni)∗(Φ)〉 = 〈R, T−〉 = c.

It follows that if T were closed, it has slice mass c (this also holds for T ′).
Hence, Corollary 6.3 implies that it is sufficient to prove that T is closed.
We first prove that it is ddc-closed.

Lemma 6.5. — Let T be a real vertical current of bidegree (p, p) and of
finite mass. Consider smooth forms Φ ∈ C1

h(D). Assume that 〈T,Φ〉 does
not depend on Φ. Then T is ddc-closed.

Proof. — Consider a real smooth (k − p − 1, k − p − 1)-form α with
compact support in D. Let Φ be a smooth form in Ch(D) strictly positive
in a neighbourhood of supp(α). Write ddcα = (AΦ + ddcα) − AΦ. When
A is big enough, both AΦ + ddcα and AΦ are positive closed and have
the same slice mass. By hypothesis, 〈T,AΦ + ddcα〉 = 〈T,AΦ〉. Hence,
〈T,ddcα〉 = 0 and T is ddc-closed. �

Consider the product map F (x1, x2) = (f(x1), f(x2)) on D2 as in Exam-
ple 4.4. The same arguments applied to F and to R⊗R imply that T ⊗T is
ddc-closed. It follows that T is closed. It suffices to compute ddc(T⊗T ). �
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7. Equilibrium measure

The main result of this section is the following theorem.

Theorem 7.1. — Let f be an invertible horizontal-like map of dynam-
ical degree d on D. Let (Rn) ⊂ C1

v(D′) and (Sn) ⊂ C1
h(D′′) be uniformly

bounded sequences of continuous forms. Then, d−2n(fn)∗(Rn)∧ (fn)∗(Sn)
converge weakly to an invariant probability measure µ which does not de-
pend on (Rn) and (Sn). Moreover, µ is mixing and is supported on the
boundary of the compact set K := ∩n∈Zf

n(D) = K+ ∩K−.

We say that µ is the equilibrium measure of f . We will see that the
convergence part of Theorem 7.1 is a consequence of Proposition 5.2 and
Remark 5.3 (see also Proposition 7.8 and Corollary 7.9).

Let Mi and Ni be copies of M and N . Consider the domain

D2 = D ×D = (M1 ×N1)× (M2 ×N2) ⊂ C2k

and the product map (see Example 4.4)

F (z1, w1, z2, w2) :=
(
f(z1, w1), f−1(z2, w2)

)
.

Using the coordinate change (z1, w1, z2, w2) 7→ (z1, w2, z2, w1), write

F (z1, w2, z2, w1) =
(
fM (z1, w1), f−1

N (z2, w2), f−1
M (z2, w2), fN (z1, w1)

)
where f = (fM , fN ) and f−1 = (f−1

M , f−1
N ).

Recall that, the coordinate change (z, w) 7→ (w, z) makes f−1 a
horizontal-like map. One can check that F is an invertible horizontal-like
map of dynamical degree d2 on D2 ' (M1×N2)×(M2×N1). The diagonal

∆ := {z1 = z2, w1 = w2}

is not a horizontal set but F (∆) is horizontal. If ϕ̃ is a (positive) p.s.h.
function on ∆, then ϕ̃[∆] is a (positive) current such that ddc(ϕ̃[∆]) > 0.
Hence, we can apply Proposition 5.2 and Remark 5.3.

Proposition 7.2. — Let ϕ be a continuous p.s.h. function on D. There
exists a constant Mϕ such that if (Rm) ⊂ C1

v(D) and (Sn) ⊂ C1
h(D), then

lim sup
m,n→∞

〈d−m−n(fm)∗Rm ∧ (fn)∗Sn, ϕ〉 6 Mϕ.

If Rn and Sn are as in Theorem 7.1, we have

lim
n→∞

〈d−2n(fn)∗Rn ∧ (fn)∗Sn, ϕ〉 = Mϕ.
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Proof. — By Proposition 3.7, we can assume that Rn and Sn are smooth
forms. We can also assume that m > n and n→∞. Write d−m(fm)∗Rm =
d−n(fn)∗Rm,n with Rm,n := d−m+n(fm−n)∗Rm. This allows us to suppose
that m = n.

Define the currents Tn in C1
v(D2) by Tn:=Rn⊗Sn and ϕ̃(z1, w2, z2, w1):=

ϕ(z1, w1). Then

〈(fn)∗Rn ∧ (fn)∗Sn, ϕ〉 = 〈Fn∗(Tn), ϕ̃[∆]〉.

The current Φ := ϕ̃[∆] is not horizontal, but F∗(Φ) is horizontal. Hence,
Proposition 7.2 is a consequence of Proposition 5.2 and Remark 5.3 applied
to F . �

We can now define the positive measure µ by

〈µ, ϕ〉 := Mϕ.

Consider smooth forms R ∈ C1
v(D′) with support in D′ \ K+ and S ∈

C1
h(D′′) with support in D′′ \K−. We have µ = lim d−2n(fn)∗R ∧ (fn)∗S.

Hence, µ is supported in the boundary of K = K+ ∩ K−. Theorem 3.1
shows that µ is a probability measure.

We also have

f∗(µ) = lim
n→∞

d−2nf∗
(
(fn)∗R ∧ (fn)∗S

)
= lim

n→∞
d−2n(fn+1)∗R ∧ (fn−1)∗S

= lim
n→∞

d−2n+2(fn−1)∗(d−2f2∗R) ∧ (fn−1)∗S = µ.

Hence, µ is invariant.
The following corollary gives us an extremality property of µ:

Corollary 7.3. — Let (Rm) ⊂ C1
v(D) and (Sn) ⊂ C1

h(D). Let ν be a
limit value of d−m−n(fm)∗Rm ∧ (fn)∗Sn when min(m,n) →∞. Then

〈ν, ϕ〉 6 〈µ, ϕ〉 for ϕ p.s.h. on D.

If ϕ is pluriharmonic, then 〈ν, ϕ〉 = 〈µ, ϕ〉.

Proof. — We can assume that ϕ is continuous since we can approximate
it by a decreasing sequence of continuous p.s.h. functions. Proposition 7.2
implies that 〈ν, ϕ〉 6 〈µ, ϕ〉. When ϕ is pluriharmonic, this inequality holds
for −ϕ. Hence 〈ν, ϕ〉 = 〈µ, ϕ〉. �

The proof of the following results are left to the reader (see Corollaries
5.5, 5.7, 6.2 and Proposition 5.6).
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Corollary 7.4. — Let Rn, R′n in C1
v(D) and Sn, S′n in C1

h(D) and
c > 0 such that R′n 6 cRn, S′n 6 cSn for every n. Let (mi) and (ni) be
increasing sequences of integers. If

d−mi−ni(fmi)∗Rmi ∧ (fni)∗Sni → µ,

then
d−mi−ni(fmi)∗R′mi

∧ (fni)∗S′ni
→ µ.

Proposition 7.5. — Let Rm, Sn, mi, ni be as in Corollary 7.4. Let ϕ
be a function strictly p.s.h. on D. Then,

d−mi−ni(fmi)∗Rmi ∧ (fni)∗Sni → µ

if and only if

〈d−mi−ni(fmi)∗Rmi ∧ (fni)∗Sni , ϕ〉 → 〈µ, ϕ〉.

Corollary 7.6. — Let (ni) be an increasing sequence of integers. Then,
there exist a subsequence (mi) and a pluripolar set E ⊂ D such that, for
every (a, b) ∈ D \ E, we have

d−2mi(fmi)∗[z = a] ∧ (fmi)∗[w = b] → µ

where (z, w) are the coordinates of Cp × Ck−p.

To complete the proof of Theorem 7.1, we have only to check that µ is
mixing. That is

(7.1) lim
m→∞

〈µ, (φ ◦ fm)(ψ ◦ f−m)〉 = 〈µ, φ〉〈µ, ψ〉

for every functions φ and ψ smooth in a neighbourhood of D. Define a
function ϕ on D2 by

ϕ(z1, w2, z2, w1) := φ(z1, w1)ψ(z2, w2).

Lemma 7.7. — Assume that ϕ is p.s.h. Then

lim sup
m→∞

〈µ, (φ ◦ fm)(ψ ◦ f−m)〉 6 〈µ, φ〉〈µ, ψ〉.

Proof. — Let R ∈ C1
v(D′) and S ∈ C1

h(D′′) be smooth forms. Define
T := R⊗ S and T ′ = S ⊗R. We have

〈µ, (φ ◦ fm)(ψ ◦ f−m)〉 = lim
n→∞

〈d−2n(Fn)∗T, (ϕ ◦ Fm)[∆]〉

= lim
n→∞

〈d−2n(Fm)∗
(
(Fn−m)∗Tϕ

)
, [∆]〉

= lim
n→∞

〈d−2n(Fn−m)∗Tϕ, (Fm)∗[∆]〉

= lim
n→∞

〈d−2n(Fn−m)∗T ∧ (Fm)∗[∆], ϕ〉.
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Applying Proposition 7.2 to F gives

lim sup
m→∞

〈µ, (φ ◦ fm)(ψ ◦ f−m)〉

6 lim
m→∞

〈d−4m(Fm)∗T ∧ (Fm)∗T ′, ϕ〉

= lim
m→∞

〈d−2m(fm)∗R ∧ (fm)∗S, φ〉〈d−2m(fm)∗R ∧ (fm)∗S, ψ〉

= 〈µ, φ〉〈µ, ψ〉.

�

End of the proof of Theorem 7.1. — Since φ and ψ can be written as
differences of smooth strictly p.s.h. functions, in order to prove (7.1), it is
sufficient to consider φ and ψ smooth strictly p.s.h. in a neighbourhood of
D. Let A > 0 be a large constant. Then, (φ(z1, w1) +A)(ψ(z2, w2) +A) is
p.s.h. Lemma 7.7 implies that

lim sup
m→∞

〈µ, (φ ◦ fm +A)(ψ ◦ f−m +A)〉 6 〈µ, φ+A〉〈µ, ψ +A〉.

Since µ is invariant, we have 〈µ, φ◦fm〉 = 〈µ, φ〉 and 〈µ, ψ ◦f−m〉 = 〈µ, ψ〉.
We deduce from the last inequality that

(7.2) lim sup
m→∞

〈µ, (φ ◦ fm)(ψ ◦ f−m)〉 6 〈µ, φ〉〈µ, ψ〉.

On the other hand, the function (φ(z1, w1)−A)(−ψ(z2, w2) +A) is also
p.s.h. in a neighbourhood of D. In the same way, we obtain

(7.3) lim sup
m→∞

−〈µ, (φ ◦ fm)(ψ ◦ f−m)〉 6 −〈µ, φ〉〈µ, ψ〉.

The inequalities (7.2) and (7.3) imply (7.1). Hence, µ is mixing. �

The following proposition generalizes the convergence in Theorem 7.1.

Proposition 7.8. — Let (Rm) ⊂ C1
v(D′) and (Sn) ⊂ C1

h(D′′) be uni-
formly bounded sequences of continuous forms. Then, d−m−n(fm)∗Rm ∧
(fn)∗Sn converges weakly to µ when min(m,n) →∞.

Proof. — It is sufficient to consider the case where m 6 n and m→∞. If
we replace M ′, N ′′ by bigger domains, we can assume that there exist c > 0
and continuous forms R ∈ C1

v(D′) and S ∈ C1
h(D′′) such that Rm 6 cR and

Sn 6 cS for every m and n. By Corollary 7.4, it is sufficient to prove that
d−m−n(fm)∗R∧(fn)∗S → µ. We will use the same idea as in Theorem 5.1.

Let ϕ be a continuous function strictly p.s.h. on D with 0 6 ϕ 6 1. By
Proposition 7.5, we only need to check that 〈d−m−n(fm)∗R∧ (fn)∗S, ϕ〉 →

ANNALES DE L’INSTITUT FOURIER



GEOMETRY OF CURRENTS AND HORIZONTAL-LIKE MAPS 453

Mϕ. Write

〈d−m−n(fm)∗R ∧ (fn)∗S, ϕ〉 = 〈R, d−m−n(ϕ ◦ f−m)(fm+n)∗S〉
=: 〈R,Ψm,n〉.

Observe that each Ψm,n is positive, bounded by a current in C1
h(D′′) and

verifies ddcΨm,n > 0. If Rθ is defined as in Section 2, then φm,n(θ) :=
〈Rθ,Ψm,n〉 define a uniformly bounded family of subharmonic functions
on θ ∈ V . Since R = R1, we want to prove that φm,n(1) → Mϕ. By
Proposition 7.2

lim sup
m,n→∞

φm,n(θ) 6 Mϕ

and by Lemma 2.7

lim
θ→1

sup
m,n

|φm,n(θ)− φm,n(1)| = 0.

Hence, it is sufficient to prove that φm,n converge to Mϕ in L1
loc(V ).

By maximum principle and Hartogs lemma, we only have to check that
φm,n(0) = 〈R0,Ψm,n〉 →Mϕ.

Consider a smooth form R′ ∈ C1
v(D′) and define R′m,n:=dm−n(fn−m)∗R′.

Theorem 7.1 implies that d−m−n(fm)∗R′m,n ∧ (fn)∗(S) → µ. Let R′m,n,θ

be the currents of the structural discs associated to R′m,n constructed in
Section 2. Then, φ′m,n(θ) := 〈R′m,n,θ,Ψm,n〉 define a uniformly bounded
family of subharmonic functions on θ ∈ V . We also have lim supφ′m,n(θ) 6
Mϕ and limφ′m,n(1) = Mϕ since R′m,n,1 = R′m,n. By maximum principle
and Hartogs lemma, φ′m,n →Mϕ in L1

loc(V ). Lemma 2.5 implies that

lim
θ→0

sup
m,n

|φ′m,n(θ)− φ′m,n(0)| = 0.

Hence, 〈R′m,n,0,Ψm,n〉 = φ′m,n(0) → Mϕ. We have seen in Section 2 that
R0 = R′m,n,0. It follows that 〈R0,Ψm,n〉 →Mϕ. �

Corollary 7.9. — Let S ∈ C1
h(D) be a continuous form. Then d−nT+∧

(fn)∗S converge weakly to µ.

Proof. — Let ϕ be a continuous strictly p.s.h. function on D. Let R ∈
C1

v(D) be a smooth form. Corollary 6.1 implies that T+ = lim d−nfn∗(R).
Hence, there exists m > n such that∣∣∣〈d−m−n(fm)∗R ∧ (fn)∗S, ϕ〉 − 〈d−nT+ ∧ (fn)∗S, ϕ〉

∣∣∣ 6 1/n.

By Proposition 7.8, this implies that lim〈d−nT+ ∧ (fn)∗S, ϕ〉 = 〈µ, ϕ〉.
Proposition 7.5 implies that lim d−nT+ ∧ (fn)∗S = µ. �

We now show that the equilibrium measure is equal to the wedge product
of the Green currents.
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Theorem 7.10. — Let f be an invertible horizontal-like map and µ,
T+, T− be as above. Then

µ = T+ ∧ T−.

Proof. — Let ϕ be a continuous p.s.h. function on D. Let R ∈ C1
v(D)

and S ∈ C1
h(D) be smooth forms. Corollary 6.1 and Theorem 7.1 implies

that d−n(fn)∗R → T+, d−n(fn)∗S → T− and d−2n(fn)∗R ∧ (fn)∗S → µ.
It follows from Theorem 3.1 that 〈µ, ϕ〉 6 〈T+ ∧ T−, ϕ〉.

On the other hand, we have f∗T+ = dT+ and f∗T− = dT−. Hence
Proposition 7.2 imply that

〈T+ ∧ T−, ϕ〉 = lim〈d−2n(fn)∗T+ ∧ (fn)∗T−, ϕ〉 6 〈µ, ϕ〉.

Theorem 7.10 follows. �

8. Entropy

We will show that the topological entropy ht(f|K) of the restriction of
f to the invariant compact set K is equal to log d. From the variational
principle [20, 24], it follows that the entropy of µ is bounded from above by
log d. We will show that this measure has entropy h(µ) = log d. This also
implies that ht(f| supp(µ)) = log d.

Theorem 8.1. — Let f , d, K, µ be as above. Then, the topological
entropy of f|K is equal to log d and µ is an invariant measure of maximal
entropy log d.

We have to prove that ht(f|K) 6 log d and h(µ) > log d. Using Yomdin’s
results [25], Bedford-Smillie proved the second inequality for Hénon maps
[2] (see also Smillie [23]). We only need the following lemma applied to a
closed form S strictly positive in a neighbourhood of K− in order to adapt
their proof and get h(µ) > log d.

Lemma 8.2. — Let S ∈ C1
h(D′′) be a smooth form. Then, there exist an

increasing sequence (ni) of positive integers and a point a ∈M ′ such that

1
ni

ni−1∑
j=0

d−ni(f j)∗[z = a] ∧ (fni−j)∗S → µ.

Proof. — Let ϕ be a smooth strictly p.s.h. function on D. Define a se-
quence of p.s.h. functions, for a ∈M (see Theorem 2.1):

φn(a) :=
〈 1
n

n−1∑
j=0

d−n(f j)∗[z = a] ∧ (fn−j)∗S, ϕ
〉
.
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Let ν be a smooth probability measure on M ′. Consider the smooth form
R := π∗1(ν) = f [z = a]dν(a) in C1

v(D′). Proposition 7.8 implies that

1
n

n−1∑
j=0

d−n(f j)∗R ∧ (fn−j)∗S → µ.

Hence,
∫
φn(a)dν(a) → Mϕ. On the other hand, Proposition 7.2 implies

that

lim
n→∞

sup
a∈M ′

φn(a) 6 Mϕ.

It follows that there exist (ni) and a ∈M ′ such that limφni(a) = Mϕ. As
in Propositions 5.6 and 7.5, we prove that (ni) and a satisfy the lemma. �

Now, we prove the first inequality ht(f|K) 6 log d. Analogous inequalities
have been proved in [16, 7, 10, 8]. We use here some arguments in Gromov
[16] and in [7].

Let Γ[n] be the graph of the map x 7→ (f(x), . . . , fn−1(x)) in Dn. This
is the set of points (x, f(x), . . . , fn−1(x)). We use the canonical euclidian
metric on Dn. Let D∗ := M ′ ×N ′′. We have K ⊂ D∗ b D. Define

lov(f) := lim sup
n→∞

1
n

log volume(Γ[n] ∩Dn
∗ ).

Following Gromov [16, 7], we have ht(f|K) 6 lov(f). We will show that
lov(f) 6 log d; then ht(f|K) = lov(f) = log d since ht(f|K) > h(µ) > log d.

Let Π denote the projection of Dn = (M ×N)n on the product M ×N

of the last factor M and the first factor N . Let Π1 (resp. Π2) denote the
projections of Dn on the product Mn−1 (resp. Nn−1) of the other factors
M (resp. N). Observe that Π : Γ[n] → M × N is proper and defines a
ramified covering of degree dn−1 over M × N . Indeed, for a generic point
(a, b) ∈ M × N the fiber Π−1(a, b) ∩ Γ[n] contains a number of points
equal to the number of points in {z = a} ∩ fn−1{w = b}, i.e., equal to
dn−1 (see Proposition 4.2). Moreover, we have Γ[n] ⊂ Π−1

1 (M ′n−1) and
Γ[n] ⊂ Π−1

2 (N ′′n−1). Now, it is sufficient to apply the following lemma (see
[7, lemme 3.3.3] for the proof).

Lemma 8.3. — Let Γ be an analytic subset of dimension k of D×Mm×
Nm such that Γ ⊂ D×M ′m×N ′′m. We assume that Γ is a ramified covering
over D of degree dΓ. Then, there exist c > 0, s > 0 independent of Γ and
of m such that

volume(Γ ∩D∗ ×Mm ×Nm) 6 cmsdΓ.
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