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DETERMINANT FORMULAE FOR

SOME TILING PROBLEMS AND

APPLICATION TO FULLY PACKED LOOPS

by Philippe Di FRANCESCO, Paul ZINN-JUSTIN

& Jean-Bernard ZUBER

1. Introduction.

Determinants appear naturally in physics when one studies systems
of free fermions: their wave functions (Slater wave function), as well as
their grand canonical partition function, can be expressed as determinants.
These statements have exact discrete counterparts. In particular, discrete
dynamics can be formulated in terms of transfer matrices (instead of a
Hamiltonian): these are familiar objects of statistical mechanics, which
from a combinatorial point of view simply count the number of ways
to go from a given initial configuration to a given final configuration. Here
we are more specifically interested in models on two-dimensional lattices,
in which the role of free fermions is played by non-intersecting paths;
the analogous determinantal expressions can then be derived from the
so-called Lindström-Gessel-Viennot (LGV) formula [12]. In this paper we
intend to show how these determinantal techniques can be applied to some
combinatorial problems, which all amount to the enumeration of certain
types of rhombus tilings.

The methods we present here are fairly general and make use of
various standard combinatorial objects. Young diagrams appear as a way
to encode locations of paths crossing a given straight line; furthermore, the
determinants involved often turn out to be Schur functions sY (x) where,

Keywords: Tilings, alternating sign matrices, fully packed loops.
Math.classification: 05A19, 52C20, 82B20.
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beside the Young diagram Y , appears the set of parameters x = {x1, x2, . . .}
which encodes the dynamics (here we are mostly concerned with simple
counting, in which case xi = 1). Also note that in the context of free
fermions, Schur functions are natural building blocks for tau-functions of
classical integrable hierarchies, see for example [1] for such a connection
and further relations to matrix integrals.

The paper is organized as follows. In Section 2, we introduce the basic
methods and tools which are required for our computations — the LGV
formula, and the definition of the elementary transfer matrices from which
all can be built — and revisit as an example the MacMahon formula. In
Section 3, we provide some further examples of enumeration of rhombus
tilings of various domains. In Section 4, we show how similar considerations
also enable us to count fully packed loop (FPL) configurations with given
connectivities and various symmetries. We conclude in Section 5 with some
open issues, including a discussion of the asymptotic enumeration of FPL
configurations.

2. Basic ingredients: corner transfer matrices and
the LGV formula.

2.1. The LGV formula.

Here and in the following we consider lattice paths whose oriented
steps connect nearest neighboring vertices of the two-dimensional integer
lattice Z2, and with only two directions allowed say along the vectors (−1, 0)
and (0, 1). The LGV formula allows to express the number P({S}, {E}) of
configurations of n non-intersecting lattice paths with, say, starting points
S1, S2, . . . , Sn and endpoints E1, E2, . . . , En in Z2, as the determinant of
the matrix whose element (i, j) is the number P(Si, Ej) of lattice paths
from Si to Ej , namely

(2.1) P
(
{S}, {E}

)
= det

(
P(Si, Ej)

)
1≤i,j≤N .

For reasons that will become obvious later on, the matrix with en-
tries P(Si, Ej) will be called transfer matrix for the corresponding path
counting problem.

2.2. The matrices W and T.

In this note we will mainly be dealing with lattice paths with
starting and endpoints occupying consecutive positions along two lines
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Figure 1. The transfer matrix T is expressed as a product WW t.

that intersect. The most basic situations are depicted in Fig. 1. The most
fundamental situation is that of (ordered) starting points Sa = (ia, 1),
a = 1, 2, . . . , N , and endpoints Ea = (ra, ra), a = 1, 2, . . . , N , namely with
paths across a corner of angle 45◦. The corresponding “corner” transfer
matrix W has the entries

(2.2) Wi,r ≡ P
(
(i, 1), (r, r)

)
=

( i− 1
r − 1

)

expressing that r − 1 vertical steps must be chosen among a total of i− 1.
The action of W is represented in the lower corner of Fig. 1. The LGV
formula allows us to write

(2.3) P({(ia, 1)}a=1,...,N , {(rb, rb)}b=1,...,N ) = det(Wia,rb)1≤a,b≤N .

Upon reflecting the picture and exchanging the roles of starting and
endpoints, we easily find that W t is the corner transfer matrix for the
situation with starting points (ra, ra) and endpoints (1, ib). We deduce that
the corner transfer matrix for the situation Sa = (ia, 1) and Eb = (1, jb) is
nothing else than T = WW t. We easily find that

(2.4) Ti,j ≡ P
(
(i, 1), (1, j)

)
=

∑
r≥1

Wi,rWj,r =
( i+ j − 2

i− 1

)

which eventually expresses that i− 1 horizontal steps must be taken among
a total of i+ j − 2. Similarly, the LGV formula gives

(2.5) P
(
{(ia, 1)}a=1,...,N , {(1, jb)}b=1,...,N

)
= det (Tia,jb)1≤a,b≤N .

Note that in both (2.3) and (2.5) the result is simply the minor
determinant corresponding to a specific choice of N rows and columns of
the matrices W or T , taken of sufficiently large size.

TOME 55 (2005), FASCICULE 6
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2.3. Rhombus tiling of a hexagon: the MacMahon formula
revisited.

As a first application of the above, let us evaluate the total number of
rhombus tilings of a hexagon of size a × b × c, using the three elementary
rhombi of size 1× 1.

The standard approach consists of introducing so-called De Bruijn
lines that follow chains of consecutive rhombi of two of the three types.
In Fig. 2, we have represented the a De Bruijn lines connecting consecutive
points along the two sides of length a of the hexagon.

a

b

c
c

b

a

Figure 2. A sample rhombus tiling of a hexagon of size a× b× c (left).
We have indicated in heavy lines the De Bruijn lines following the two

types of rhombi shown in the oval. We have deformed them so as to

obtain a set of a non-intersecting lattice paths (right).

Upon slightly deforming the rhombi, as indicated in Fig. 2, these
lines form a set of a non-intersecting lattice paths, with starting points
Si = (c + i − 1, i), i = 1, 2, . . . , a and endpoints Ej = (j, b + j − 1),
j = 1, 2, . . . , a. Moreover, rhombus tilings of the hexagon are in bijection
with such non-intersecting lattice path configurations. The total number of
such configurations reads, according to the LGV formula

(2.6) N(a, b, c) = det
(
Hb,c(a)i,j

)
1≤i,j≤a

where we have introduced the “parallel” transfer matrix Hb,c of size a× a,
with entries

(2.7) Hb,c(a)i,j =
( b+ c

b+ j − i

)
.

ANNALES DE L’INSTITUT FOURIER
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Figure 3. Using T to enumerate rhombus tilings of a hexagon with a

given number of winding De Bruijn loops. The first picture shows a

sample rhombus tiling, and its decomposition into three parallelograms.

In each parallelogram, the De Bruijn lines follow sequences of the two

rhombi displayed in the ovals. In the second picture, we only retain the

De Bruijn lines: within each parallelogram, these are clearly generated

by the corner transfer matrix T with the appropriate shape.

Note that Eq. (2.6) expresses N(a, b, c) as the Schur function associated to
the b×a rectangular Young diagram and to parameters x1 = · · · = xb+c = 1
(i.e. dimension as a GL(b + c) representation). Similar occurrences will be
discussed in more detail below.

By line and column manipulations, this determinant may be explicitly
computed to yield the celebrated MacMahon formula

(2.8) N(a, b, c) =
a∏
i=1

b∏
j=1

c∏
k=1

i+ j + k − 1
i+ j + k − 2

·

We may alternatively decompose the hexagon into three parallelo-
grams (there are exactly two ways of doing this, pick one), meeting at a
“central point” (see Fig. 3). We now follow particular De Bruijn lines joining
the inner edges of these parallellograms without ever exiting the hexagon.
These are sequences of two of the three tiles, the pairs differing in the three
parallellograms. These lines actually form loops that wind around the cen-
tral point. Note finally that the problem of counting configurations of lines
with fixed ends within each of the three parallelograms uses a corner trans-
fer matrix T of appropriate size. In Fig. 3, we have denoted by T (x, y) the
rectangular matrix with entries (2.4), for i = 1, 2, . . . , x and j = 1, 2, . . . , y.
It is now easy to write the number Nd(a, b, c) of configurations of exactly d

non-intersecting loops winding around the central point:

TOME 55 (2005), FASCICULE 6
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Nd(a, b, c) =
∑

1≤a1<···<ad≤a
1≤b1<···<bd≤b
1≤c1<···<cd≤c

det
1≤r,s≤d

(Tar,bjTbj ,ckTck,as)(2.9)

=
∑

1≤a1<···<ad≤a
det

1≤r,s≤d

((
T (a, b)T (b, c)T (c, a)

)
ar,as

)

= det
a×a

(
I + µT (a, b)T (b, c)T (c, a)

)
µd

where the last line uses the decomposition formula for the determinant
of the sum of two matrices in terms of their minors, and we have to extract
the µd coefficient to get the sum over all diagonal minors of size d × d.
This gives a refinement of the MacMahon formula. We recover the total
number of tilings of the hexagon by summing over d, or equivalently by
taking µ = 1 in the last determinant, namely

(2.10) N(a, b, c) =
min(a,b,c)∑

d=0

Nd(a, b, c) = det
(
I + T (a, b)T (b, c)T (c, a)

)
.

Note that the symmetry under the permutations of a, b, c is manifest here,
as opposed to Eq. (2.6). In the case a = b = c, denoting T (a) ≡ T (a, a), we
have

N(a, a, a) = det(I + T (a)3)(2.11)

= det
(
I + T (a)

)
det

(
I + ωT (a)

)
det

(
I + ω2T (a)

)
where ω = e

2
3 iπ. Nice formulas [6], [11] happen to be known for the

characteristic polynomial of T (a) precisely at sixth roots of unity, and allow
for yet another expression for the MacMahon formula in a cube, via (2.11).

It is easy to relate this picture to the former, with a set of a standard
De Bruijn lines connecting the opposite sides of length a in the hexagon.
Indeed consider the intersection of the standard De Bruijn lines, as well
of winding lines, with the line parallel to the a sides that goes through
the center: the location of the lines is precisely the same to the right of
the center, whereas it is complementary to the left. Therefore Nd(a, b, c)
also counts the tiling configurations with exactly d of these lines passing to
the right of the “center” of the hexagon. This is also a consequence of the
following relation between transfer matrices, pictorially proved in Fig. 4:

(2.12) Hb,c(a) = W (b, a)tPbT (b, c)PcW (c, a) + Zb(a)Zc(a)t

in which the (i, j) entry of the first term counts the number of paths passing
to the right of the center connecting the i-th entry point to the j-th exit

ANNALES DE L’INSTITUT FOURIER
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Figure 4. Decomposition of the transfer matrix Hb,c(a) for

De Bruijn lines of a a× b×c hexagon which allows to keep track

of paths passing to the left or right of the “center” (white dot).
We give an explicit representation of the matrices W and Zb.

one, while the second term yields the contribution of paths passing to the
left of the center. In (2.12), as usual the argument corresponds to the size
of the matrix ((a) for a square a × a matrix, (a, b) for a rectangular a × b

matrix), and the matrices have the following entries, see Fig. 4:

(2.13)




(Hb,c)ij =
( b+ c

c+ i− j

)
, Wij =

( i− 1
j − 1

)
,

(Pb)ij = δj,b+1−i, (Zb)ij =
( b

i− j

)
.

Note that the matrix P induces a reflection, needed whenever passing
from a corner to another one pointing in the opposite direction. We finally
identify

(2.14) det
a×a

(
I + µT (a, b)T (b, c)T (c, a)

)
= det

a×a

(
Zb(a)Zc(a)t + µW (b, a)tPbT (b, c)PcW (c, a)

)

by noticing that, after factoring out ZZt whose determinant is 1, the two
corresponding matrices are conjugate of one-another.

TOME 55 (2005), FASCICULE 6
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a

a

T

d

Figure 5. Computing the numbers of tilings of a lozenge of side a

glued along two of its consecutive edges, and with exactly d

loops winding around its conic singularity.

3. Rhombus tilings of various domains.

3.1. Lozenge with glued sides.

T may be used to compute the numbers NL
d (a) of tilings of a lozenge

of side a glued along two of its consecutive edges (see Fig. 5), and on which
exactly d De Bruijn loops wind around the tip of the cone. We simply have

(3.1) NL
d (a) = det

a×a

(
I + µT (a)

)
µd
.

Disregarding the d dependence, we find the numbers

(3.2) NL(a) = det
a×a

(
I + T (a)

)
=

a−1∏
n=0

(3n+ 2)(3n)!n!
(2n)! (2n+ 1)!

·

These read for a = 1, 2, 3, . . .

(3.3) 2, 5, 20, 132, 1452, 26741, 826540, 42939620, . . .

This is by construction the number of cyclically symmetric plane partitions
in a cube a×a×a, obtained by decomposing a regular hexagon of size a×a×a
into three identically tiled parallelograms, with suitable identifications of
boundaries (see Section 4.3 for another interpretation of these numbers).

3.2. Half-hexagon with glued sides.

The corner transfer matrix W may be used to compute the
numbers NHH

d (a) of tilings of a half-hexagon of side a glued along two
of its cut edges (see Fig. 6), and on which exactly d De Bruijn loops wind

ANNALES DE L’INSTITUT FOURIER
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d

W

W
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W

t

Figure 6. How to use the corner transfer matrices W and W t

to generate the rhombus tilings of a half-hexagon with glued

sides. The gluing is indicated by the arrows. The half-hexagon

is decomposed into three triangles, within which the De Bruijn

lines are generated by W or W t.

around the tip of the cone(1). We have

(3.4) NHH
d (a) = det

a×a

(
I + µW (a)W (a)tW (a)

)
µd
.

Disregarding the d dependence, we find the numbers

NHH(a) = det
a×a

(I +WW tW )(3.5)

=




2n
( n−2∏
j=0

(4j + 3)! (j + 1)! j!
(2j + 2)! ((2j + 1)!)2

)2

· (4n− 1)!n! (n− 1)!
(2n)! ((2n− 1)!)2

if a = 2n,

2n+1
( n−1∏
j=0

(4j + 3)! (j + 1)! j!
(2j + 2)! ((2j + 1)!)2

)2

if a = 2n+ 1.

These numbers read for a = 1, 2, 3, . . .

(3.6) 2, 6, 36, 420, 9800, 4527650, 41835024, 7691667984 . . . .

Remarkably, these turn out to match exactly the total dimension of the
homology of free 2-step nilpotent Lie algebras of rank a [10] (cf. entry
A078973 of the on-line encyclopedia of integer sequences [15]).

Let us give an explanation for this apparent coincidence, and present
a determinant formula for the Poincaré polynomial of 2-step nilpotent Lie

(1) The present geometry was not considered before in the context of plane partitions.
In particular the objects enumerated by NHH

d (a) are not the symmetric plane partitions
introduced by MacMahon.

TOME 55 (2005), FASCICULE 6
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algebras of rank a. As in the case of the full hexagon, one can introduce
the standard De Bruijn lines; here there are a lines which enter from the
middle side of length a and come out from the side of length 2a. Let us
denote by 2a ≥ n1 > · · · > na > 0 the locations of their endpoints. Then
the LGV formula tells us that the number of such De Bruijn lines at fixed
endpoints ni is

(3.7) NHH
(n) (a) = det

( a

ni − (a+ 1− j)

)
1≤i,j≤a

.

Now the irreducible representations of GL(a) are indexed by Young
diagrams Y = {λ1, λ2, . . . , λa} with λi boxes in the i-th row, and
λi ≥ λi+1 ≥ 0 for i = 1, 2, . . . , a−1. The corresponding character, evaluated
on the class of matrices with eigenvalues x = {x1, x2, . . . , xa} is the Schur
function, expressed via the Jacobi-Trudi formula as

sY (x) = det
(
hλi+j−i(x)

)
1≤i,j≤a = det

(
h′λ′

i
+j−i(x)

)
1≤i,j≤a

where hm(x) are the complete symmetric functions, generated by

∑
m≥0

hm(x)tm =
a∏
i=1

1
1− txi

,

similarly
∑

m≥0 h
′
m(x)tm =

∏a
i=1(1 + txi), and the λ′i denote the λ’s of

the transposed Young diagram Y T (reflected w.r.t. the first diagonal). The
dimension dimY of the representation Y corresponds to the character of the
identity class, with x1 = x2 = · · · = 1 (also denoted by x = 1). Explicitly,

dimY = sY (1) = det
(a+ λi + j − i− 1

λi + j − i

)
1≤i,j≤a

(3.8)

= det
( a

λ′i + j − i

)
1≤i,j≤a

.

We recognize this dimension, provided we identify ni = λ′i + a + 1 − i,
in Eq. (3.7). Finally, the gluing of the two half-sides means that in the
summation over the endpoints ni, we must only include those such that the
corresponding diagram Y is invariant by transposition. We thus find

(3.9) NHH(a) =
∑
Y=Y T

dimY

which is precisely the quantity calculated in [10], with the result (3.5).

ANNALES DE L’INSTITUT FOURIER



DETERMINANT FORMULAE FOR TILINGS 2035

m1

m2

m1

m2

md
md

p1
p1

p
2 p

2

pd
pd

a

a

d

a

(a) (b)

. .
.

. .
.

...

...

Figure 7. (a) Half-hexagon tilings with d De Bruijn lines having

fixed endpoints, with positions m1,m2, . . . ,md and p1, p2, . . . , pd
counted from the center. (b) The corresponding Young diagrams,

with characteristics (m;p) in Frobenius notation. Boxes are counted

from and include the diagonal, from left to right (m’s) and top to

bottom (p’s).

Note that the correspondence between the two approaches can be
made for each term of the sum: indeed the endpoints of the standard lines
and of the winding lines are clearly in one-to-one correspondence. If we
record the positions of endpoints of the winding lines on the (cut) boundary,
counted from the center, namely

(m; p) =
{
m1, . . . ,md; p1, . . . , pd

}
,

1 ≤ m1 < m2 < · · · < md ≤ a from center to top and

1 ≤ p1 < p2 < · · · < pd ≤ a from center to bottom

in the case of d winding lines, then the corresponding Young diagram Y

is given by Fig. 7. Therefore, the total number of tiling configurations
NHH

(m;p)(a) of the half-hexagon with fixed endpoints (m; p) of De Bruijn lines
is also the dimension of Y :

(3.10) NHH
(m;p)(a) = det

(
(WW tW )mi,pj

)
1≤i,j≤d = dimY .

The Poincaré polynomial Pa(u) generating the dimensions of the
homology spaces of a 2-step nilpotent Lie algebra of rank a has been shown
to read [10]

(3.11) Pa(u) =
∑
Y=Y T

dimY u|Y |

TOME 55 (2005), FASCICULE 6
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where the sum extends over the self-transposed Young diagrams, namely
those for which the two characteristics (m;p) are equal, and where |Y |
denotes the total number of boxes in Y . Note that

∣∣Y (m;m)
∣∣ =

∑
1≤i≤d

(2mi − 1).

Introducing the diagonal matrix θ with entries

(3.12) θij = δiju
2i−1, i, j = 1, 2, . . . , a

and using the relation (3.10), we get

(3.13) Pa(u) = det
a×a

(I + θWW tW ).

The first few such polynomials read

(3.14)




P1(u) = 1 + u,

P2(u) = 1 + 2u+ 2u3 + u4,

P3(u) = 1 + 3u+ 8u3 + 6u4 + 6u5 + 8u6 + 3u8 + u9,

P4(u) = 1 + 4u+ 20u3 + 20u4 + 36u5 + 64u6 + 20u7 + 90u8

+ 20u9 + 64u10 + 36u11,+20u12 + 20u13 + 4u15 + u16,

P5(u) = 1 + 5u+ 40u3 + 50u4 + 126u5 + 280u6 + 160u7 + 765u8

+ 245u9 + 1248u10 + 720u11 + 1260u12 + 1260u13

+ 720u14 + 1248u15 + 245u16 + 765u17 + 160u18

+ 280u19 + 126u20 + 50u21 + 40u22 + 5u24 + u25.

At u = 1, we recover the formula (3.5), which indeed counts the total
dimension of the homology of a 2-step nilpotent Lie algebra of rank a.

3.3. Hexagon with a triangular central hole.

A variant of T may be used to generate the numbers Nd(a, c+m, b, a+
m, c, b + m) of tilings of a hexagon with an equilateral central triangle of
side m removed (see Fig. 8), and with d loops winding around the hole.
More precisely, let Tm(a, b) denote the transfer matrix of rectangular size
a× b with entries

(3.15) (Tm)ij =
(m+ i+ j − 2

j − 1

)

with i = 1, 2, . . . , a, j = 1, 2, . . . , b.

ANNALES DE L’INSTITUT FOURIER
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Tm(a, b)
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Tm(c, a)

m m

m

Figure 8. The transfer matrix Tm(a, b) is used to generate

tilings of a hexagon with a central triangular hole.

The configurations are then generated by

(3.16) det
a×a

(
I + µTm(a, b)Tm(b, c)Tm(c, a)

)

=
min(a,b,c)∑

d=0

µdNd(a, c+m, b, a+m, c, b+m).

See [6] for explicit expressions of some of these determinants.

3.4. Hexagon with chopped-off corners.

We consider the tiling of a hexagon a × b × c with three corners
chopped off as indicated in Fig. 9, along line cuts at distances m, p, q from
the central point, with m ≥ max(a, b), p ≥ max(b, c), and q ≥ max(a, c),
a case already studied in [5]. Let N

(m,p,q)
d (a, b, c) denote the number of

tilings of this domain with d winding lines. These are enumerated using a
restricted version of T that incorporates a “ceiling” at a given height not
to be crossed. By the reflection principle, the relevant truncation reads

(3.17) T
(m)
ij =

( i+ j − 2
i− 1

)
−

( i+ j − 2
m

)
.

We denote by T (m)(a, b) the corresponding rectangular a× b matrix. With
this definition, we have

(3.18) det
a×a

(
I + µT (m)(a, b)T (p)(b, c)T (q)(c, a)

)
µd

= N
(m,p,q)
d (a, b, c).

Note that a half-corner transfer matrix can still be introduced, namely
a matrix W (m) with entries

(3.19) W
(m)
ij =

( i− 1
j − 1

)
−

( i− 1
m+ 1− j

)

and such that T (m)(a, b) = W (m)(a, c)W (m)(b, c)t for any c ≥ 1
2m.
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a

b
c

T (m)(a, b)

T (p)(b, c)

T (q)(c, a)

m

p

q

Figure 9. A hexagon of shape a × b × c with three chopped off

corners at distances m, p, q from the origin (central point). We

have represented the relevant corner transfer matrix.

A particular case of (3.18) corresponds to tilings of a notched
equilateral triangle, with a = b = c and m = p = q = a.

We may easily treat the case of rectangular chopping as well, by
suitably modifying T to incorporate the corresponding “broken ceiling”
restriction indicated in Fig. 10. Let Nd(a1, a2;b1, b2;c1, c2) denote the
corresponding number of tilings with d winding loops. We have the transfer
matrix

(3.20) T (a1, a2; b1, b2) =
(

T (a1, b1) T0,b1(a1, b2)
Ta1,0(a2, b1) T (a2, b1)T (b1, a1)T (a1, b2)

)

where Tm,p(a, b)ij =
(
m+i+p+j−2
m+i−1

)
, 1 ≤ i ≤ a, 1 ≤ j ≤ b, and finally

(3.21) Nd(a1, a2; b1, b2; c1, c2)

= det
(a1+a2)×(a1+a2)

(
I + µT (a1, a2; b1, b2)T (b1, b2; c1, c2)T (c1, c2; a1, a2)

)
µd
.

4. Fully-packed loops and more tiling problems.

4.1. Fully-packed loops, alternating sign matrices and
plane partitions.

The fully-packed loop (FPL) model plays a central role in the
Razumov-Stroganov conjecture, which attracted a lot of attention recently.
In short, the FPL model is a statistical model on a square grid of size
a × a of the square lattice, in which edges may be occupied or not,
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T (c1 c2; a1,, a2)

T (a1 a2; b1,, b2) T (b1 b2; c1

c1

,, c2

c2

)

T (a1, b2)

T (b1, a1)

T (a1, b1)

Ta1,0(a2, b1)T0,b1(a1, b2)

T (a2, b1)

a1a2

a1 a2

b1

b1

b2

b2

Figure 10. Tilings of a hexagon with removed parallellograms.

The relevant transfer matrix T has a block decomposition

according to the arrows.

and with the constraint that exactly two incident edges are occupied
at each vertex. Moreover, one imposes alternating boundary conditions
along the border of the grid, that every second edge at the exterior of
and perpendicular to the boundary is occupied. These occupied external
edges are labeled 1, 2, . . . , 2a. The FPL configurations are in bijection
with alternating sign matrices (ASM) of size a × a, namely matrices with
entries ±1, 0 only, such that +1 and −1 alternate and sum up to 1 along
each row and column.

The Razumov-Stroganov conjecture involves refined FPL numbers,
according to the connectivity of external edges. Indeed, from the definition
of the model, the occupied external edges are connected by pairs via chains
of consecutive occupied edges, forming lines (rather than loops) on the
square grid, while closed loops may occupy some of the inner edges of the
grid. To summarize these connectivities, one generally uses the language
of link patterns, namely planar permutations π ∈ S2a with only 2-cycles
indicating the connected edges. The Razumov-Stroganov conjecture relates
the numbers of FPL with fixed connectivities to the groundstate vector of
the O(1) loop model [17], [2].

Rhombus tiling configurations of a hexagon are also called plane
partitions (PP), as they may be interpreted as the view in perspective from
the (1, 1, 1) direction of a piling-up of unit cubes in the positive octant of
the 3D lattice Z3, with the constraint that gravity has the direction−(1, 1, 1)
and that only stable configurations are retained. The total number of FPL
or ASM of size a × a matches that of so-called totally symmetric self-
complementary plane partitions (TSSCPP) of size 2a × 2a × 2a, namely
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a+ d

a+ d

b− d

c+ d

c+ d

c+ d

c+ d

b+ c
b+ c

X

T

T (b+ c, a+ d)T (a+ d, c+ d)

U(c+ d, b+ c)

Figure 11. The domain whose rhombus tilings match the

N(a, b, c, d) FPL with four sets of nested lines a, b, c, d. It is a

heptagonal domain with two sides glued, and with the indicated

size. Moreover, it must have exactly d winding De Bruin loops

(thick lines) crossing the gluing line. The transfer matrices are

obtained by decomposing the domain into three parallelograms

as indicated.

plane partitions being maximally symmetric, i.e. under rotations of 2
3 π and

reflections w.r.t. medians, as well as identical to their complement. This
result is one of the keystones of modern combinatorics and is beautifully
described in the book [3]. From this we simply retain that there should
exist a natural bijection between the two sets of objects, still to be found
to this day.

4.2. FPL with fixed sets of nested lines.

In parallel to the FPL-ASM-TSSCPP relation, there exist bijections
between special FPL configurations and rhombus tilings of special domains.
The simplest of these concerns the FPL of size n × n with three sets of
nested lines, in numbers say a, b, c with a + b + c = n, namely with a link
pattern that connects 2a external edges say 1, 2, . . . , 2a by symmetric pairs
(1, 2a)(2, 2a − 1), . . . , (a, a + 1), then the 2b next analogously and the 2c
remaining analogously, thus forming three “bundles” of respectively a, b, c

connecting lines. These were shown to be in bijection with the rhombus
tilings of a hexagon of size a× b× c [7], and henceforth are enumerated by
the MacMahon formula (2.6).

This result was improved in [8] so as to include the case of four sets
of nested lines, in numbers say a, b, c, d. The total number N(a, b, c, d) of
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such FPL matches that of rhombus tilings of the domain of Fig. 11, which
have exactly d De Bruijn loops crossing the gluing line of length c+ d. This
decomposition allows one to write the number as

(4.1) N(a, b, c, d)

= det
(b+c)×(b+c)

(
I + T (b+ c, a+ d)T (a+ d, c+ d+ e)U(c+ d, b+ c)

)
µd

where the transfer matrix U(p, q) has the block form (see the right sketch
of Fig. 11)

(4.2) U(p, q) =
(
T (p, q − p) µXq−p(p)

)
where (Xm)i,j =

(
m−1+i−j

i−j
)
.

b
e

a d

c

Figure 12. FPL configurations with four sets of nested arches

separated into two subsets by a fifth one.

Finally, it is possible to extend this bijection to FPL with link patterns
with five sets of nested lines as depicted on Fig. 12. These FPL are easily
related to the rhombus tilings of the domain displayed in Fig. 13, which have
exactly d De Bruijn loops going across the gluing line. The only difference
with the case of four nested sets of lines is that we have introduced a
branch cut of length e in the glued domain. The numbers N(a, b | e | c, d) of
desired FPL reads

(4.3) N(a, b | e | c, d)
= det

(b+c)×(b+c)

(
I+T (b+c, a+d)T (a+d, c+d+e)U (e)(c+d+e, b+c)

)
µd

where the transfer matrix U (e) has the block form

(4.4) U (e)(p, q) =
(
T (p, q − p+ e)

0

µXq−p+2e(p− e)

)

with a zero block of size e × (p − e). Note that all of the currently known
numbers of FPL configurations with prescribed connectivities (for which a
proof exists), as in [7], [8], [4], are special cases of our pattern (a, b | e | c, d).
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a+ d

a+ d

b+ c

c+ d+ e

b− d+ e

e

c+ d
T

T

T

Xb−d+e

Figure 13. The domain whose rhombus tilings match theN(a, b | e | c, d)
FPL with a, b and c, d nested lines separated by e. The nonagon is

glued along its edges of length c + d as indicated by arrows. The

segments of length e are forbidden, and form a branch cut in the glued

domain. After decomposing the domain into three sub-domains, we

have indicated the transfer matrices needed for the enumeration. As

before, we must have a total of d De Bruijn winding loops i.e. going

through the glued cut.

4.3. Other symmetry classes of FPL/ASM.

The Razumov-Stroganov conjecture has been generalized to symmetry
classes of FPL: the numbers of FPL with certain symmetries and with given
connectivity patterns turn out to be related to the ground state vectors of
the same O(1) loop model, but with different boundary conditions [16], [9].
The counting of FPL with connectivity (a, b | e | c, d) described above can
be naturally restricted to symmetry classes by imposing the corresponding
symmetry on the rhombus tiling, or equivalently by dividing out the domain
by the symmetry. Here we consider only the symmetry classes for which a
Razumov-Stroganov type conjecture is known.

The first class is the so-called half-turn symmetric FPL (HTSFPL),
i.e. configurations which are invariant by rotation of π. Naturally, the
connectivity pattern itself must be half-turn symmetric, so that we must
choose it to be of the form (a, b | e | a, b). The domain is of the form of Fig. 14,
and we find that

(4.5) NHT (a, b | e | a, b) = det
(
I + µTe(a+ b)

)
µb

where Te(a + b) = T (a + b)Xe(a + b) has its entries given by Eq. (3.15)
with 1 ≤ i, j ≤ a+ b.

Note in particular that for e = 0 we recover the sequence A045912
of [15] that was implicit in Section 3.1 (Eq. (3.1)); and by summing at
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a+ b

a+ b

a+ b + e e
Te

Figure 14. Domain of rhombus tilings for (a, b | e | a, b) HTSFPL.

fixed n = a + b, the total number of dimers det(I + T (n)) (Eq. (3.2):
sequence A006366 of [15]) which is the number of cyclically symmetric
plane partitions in the n-cube. This number also coincides with the
ratio of numbers of 2n × 2n half-turn symmetric ASM (HTSASM) and
of n × n ASM. One now finds an indirect proof of the latter fact,
via the Razumov-Stroganov conjecture for HTSFPL and FPL. Indeed,
there is a projection that sends the ground state eigenvector counting
FPL onto the one for HTSFPL. All connectivity patterns that contribute
to NHT (a, b | 0 | a, b) are projected(2) onto the trivial pattern of n arches
for FPLs of size n; there is only one corresponding FPL, and therefore the
sum of such contributions must be related to the relative normalization of
the ground state eigenvectors, which can be obtained by taking the sum
of all components, i.e. which is equal to the ratio of numbers of 2n × 2n
HTSASM and of n× n ASM.

Next we consider the vertically symmetric FPL (VSFPL), which are
invariant by reflection with respect to the vertical axis, and only exist for
odd sizes. The connectivity is now (a, b | e | b, a), e odd, and the domain is
of the form of Fig. (15) (i). There are exactly a non-intersecting paths, and
it is convenient to redefine them as coming out of the side of length a and
propagating to the opposite side as depicted. As in Section (3.4), we apply
the reflection principle to compute the number of paths in the presence
of a “wall”, and then apply the LGV formula:

(4.6) NV (a, b | e | b, a) = det
i,j=1,...,a

((2b+ e+ j − 1
b− j + i

)
−

(2b+ e+ j − 1
b− j − i+ 1

))
.

These numbers were already considered in [9], and have a simple product
form [5].

(2) Recall that a HT-symmetric pattern of size 2n is projected onto a pattern of size n
by cutting the disk into two equal sized pieces in any way such that it does not cut an
arch, taking one half-disk and gluing it back together into a disk.
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(ii)(i)

a

a a

b

e

a+ b+ e

a+ 1
2
(e− 1)

1
2 (e− 1)

Figure 15. Domains of rhombus tilings for the (i) (a, b | e | b, a) VSFPL

and (ii) (a, 1, a | e | a, 1, a) HVSFPL configurations. In each case there

are exactly a non-intersecting paths (only one is depicted).

Similarly, the vertically and horizontally symmetric FPL (HVSFPL)
are invariant under reflections with respect to both axes. Here the sequence
of arches must be slightly modified in order to accommodate the additional
symmetry; with the insertion of two single arches, the connectivity pattern
becomes (a, 1, a | e | a, 1, a) and the domain is of the form of Fig. 15 (ii).
We finally find

(4.7) NHV (a, 1, a | e | a, 1, a)

= det
i,j=1...a

((2a+ 1
2 (e− 1)− j + 1

a− 2j + i+ 1

)
−

(2a+ 1
2 (e− 1)− j + 1

a− 2j − i+ 2

))
.

A nice product form for (4.7) may be found in [11] (Theorem 47).

4.4. Plane partitions: q-decoration.

When we view the rhombus tilings of a hexagon as plane partitions,
we may introduce yet another catalytic variable, namely a weight q per
unit cube in the PP. Many of the above results may thus be “q-decorated”
whenever there exists a PP interpretation. This is for instance the case
for the total number of PP in a box of size a × b × c, which gives a q-
MacMahon formula. To express it, we introduce q-deformed corner transfer
matrices w, t that keep track of the numbers of boxes in the PP picture.
This leads to

(4.8) wi,j = q
1
6+ 1

2 (i−1)+ 1
2 (j−1)2

[ i− 1
j − 1

]
q
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where we have used q-binomials

[ a
b

]
q

=
(1− qb+1)(1− qb+2) · · · (1− qa)

(1− q)(1− q2) · · · (1− qa−b)
,

and where the prefactors are ad-hoc to take care of boundaries. Similarly,
we have t = wwt reading

(4.9) ti,j = q
1
3+ 1

2 (i+j−2)
[ i+ j − 2

i− 1

]
q
.

With this definition, we get the q-deformation of the MacMahon for-
mula (2.6)

(4.10) N(a, b, c; q)

= det
(
I + t(a, b)t(b, c)t(c, a)

)
=

a∏
i=1

b∏
j=1

c∏
k=1

1− qi+j+k−1

1− qi+j+k−2

for the generating function N(a, b, c;q) for PP in a box a × b × c with a
weight q per unit cube. Combining this with Eq. (2.9), we also get the
generating function N(a, b, c;q, µ) for PP in a box a× b× c with a weight q
per unit cube, and with a weight µ per De Bruijn loop in the tiling picture

(4.11) N(a, b, c; q, µ) = det
(
I + µ t(a, b)t(b, c)t(c, a)

)
.

With the matrix t, we have also access to the generating function
NCS(a; q, µ) for the numbers of cyclically symmetric plane partitions in a
box a × a × a, weighted by q per unit cube, and µ per winding De Bruijn
loop, namely

(4.12) NCS(a; q, µ) = det
(
I + µ t(a)

)
provided q is replaced by q3 in the definition of t (as the total number
of boxes is three times that in any of the three identical copies of the
parallelogram that form the total hexagon).

Finally, we get the generating function NHH(a;q, µ) for the numbers
of “vertically symmetric partitions” corresponding to the tiling of the glued
half-hexagons of Section 3.2, with an additional weight q per unit cube
and µ per winding De Bruijn loop

(4.13) NHH(a;q, µ) = det
(
I + µw(a)wt(a)w(a)

)
provided q is replaced by q2 in the definition of w (as the plane partition
is obtained by completing the (opened) half-hexagon with its reflection.
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1 qµ q3µ

q5µ q7µ q8µ2

Figure 16. Vertically symmetric plane partitions in a box a×a×a
corresponding to the tiling of a glued half-hexagon, for a = 2.

For each partition, we have indicated the contribution to the

generating functionNHH(2; q, µ) = 1+qµ+q3µ+q5µ+q7µ+q8µ2.

These partitions are represented in Fig. 16 for a = 2. We may also write a
q-deformed version of the Poincaré polynomial (3.11) for 2-step nilpotent
Lie algebras of rank a:

(4.14) Pa(u; q) = det
(
I +

1√
q
θ w(a)wt(a)w(a)

)

with the matrix θ as in (3.12). The latter corresponds presumably to
a sum over Schur functions of the form

∑
Y=Y T sY (xq)u|Y |, with the

specialization x = xq ≡ {1, q, q2, . . . , qa−1}. The coefficients of Pa(u;q) as a
function of u are q-deformed dimensions of homology spaces, and await a
good interpretation in the Lie algebraic context. For illustration, we have

P3(u; q) = 1 + u(1 + q + q2) + u3q2(1 + q)2(1 + q2)(4.15)

+ u4q3(1 + q2)(1 + q + q2) + u5q5(1 + q2)(1 + q + q2)

+ u6q6(1 + q)2(1 + q2) + u8q10(1 + q + q2) + u9q12.

5. Conclusion.

We have provided expressions for the numbers of rhombus tilings of
certains regions of the plane with some gluing conditions. Sometimes these
expressions were directly determinants, sometimes they were coefficients in
the expansion of a determinant in powers of a variable, in a way similar to
grand canonical vs canonical partition functions. We used transfer matrix
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techniques, in analogy with Baxter’s corner transfer matrix. We have
applied these ideas to the computation of the numbers of FPL for a fairly
general class of connectivities, with and without additional symmetries.
Various issues remain open.

5.1. FPL and rhombus tilings.

In view of Sections 4.2 and 4.3, one may wonder whether there
exists a deeper connection between FPL configurations with prescribed
connectivities and rhombus tilings of possibly cut and/or glued domains of
the plane.

The answer to this question must be subtle as was already observed
in the case of four sets of nested lines [8]: Indeed in that case, only a
few rotated versions (in the sense of Wieland [18]) of the FPL counting
problem allowed for a straightforward bijection with rhombus tilings of
the domains of Figure 11. In the general case, we must first optimize the
Wieland rotation in order to attack the problem.

Another relation to rhombus tiling, though very hypothetical, would
first involve finding a bijection between FPL/ASM and totally symmetric
self-complementary plane partitions (TSSCPP), themselves reducible to
the rhombus tilings of triangles with free boundary conditions along one
side. The number of TSSCPP in a box of size 2a × 2a × 2a was shown to
match that of a × a FPL/ASM, but no natural bijection is available yet
between the two sets [3]. If we knew such a bijection, we could characterize
among TSSCPP the rhombus tilings corresponding to FPL configurations
with fixed connectivities, thus provide an answer to the above question.
This answer, however, would not coincide with that of Section 4.2 in the
case of four sets of lines separated by a fifth one, as the domain considered
do not match in any simple way.

Answering this question remains an interesting challenge.

5.2. Asymptotic enumeration.

A by-product of our work has been to provide us with new data
for FPL configuration numbers, either by explicit determinant formulae,
or just numerical. It is tempting to try to extract the asymptotic behavior
for large configurations of a given type. This is in particular the case for
the configurations denoted ( )pr in [14], i.e. made of p sets of r arches, for
which we conjecture that for p large, r fixed, or vice versa (and n = p r)

(5.1) log #
(
( )pr

)
≈ κr2

(
(p− 1)2 − 1

)
+O(log n)
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with the same κ = 1
2 log 27

16 that appears in the asymptotics of An,

(5.2) An ≈ n−
23
36 eκn

2
.

p\r 1 2 3 4 αp

2 1 1 1 1 0

3 2 20 980 232848 3
2

4 7 3504 118565449 266866085641550 ∼ 4 (*)

5 42 5100260 1637273349805800 · · · ∼ 15
2

?

6 429 60908609580 · · ·

7 7436 5939300380261111 · · ·

8 218348 4717858636573174999768 · · ·

βr
1
2

∼ 2? ∼ 9
2
?

Table 1. Numbers of FPL configurations ()pr with p sets of r arches.

(*) See the text for justification. In each column, as p→∞, there is

good evidence that the numbers behave as
(

27
16

)βrp2
, with numbers βr

as shown; likewise, along each row, r →∞, behavior as ( 27
16 )αpr

2
, with

αp as shown. The expression in (5.1) is consistent with these data.

The conjecture (5.1) agrees with some particular cases. For r = 1,
all p = n, we have configurations with n simple arches, whose number is
An−1, as conjectured in [2], and whose asymptotics is thus given by (5.2)
(with n �→ n− 1). For p = 3, r = 1

3 n, we have the MacMahon formula, the
asymptotics of which is easy to calculate. Our conjecture is also supported
by the observation that the number of 4-arch configurations ( )4r, r = 1

4 n, is
given by the middle term in the expansion of det(x+T 2), with T the Pascal
matrix (2.4), and is in fact the dominant coefficient in that polynomial in x.
Then Mitra-Nienhuis [13] conjecture on det(i1 + T ) ∼ (AHT(L = 2r))2

together with the known asymptotic behavior of half-turn symmetric ASM,
AHT(L) ∼

(
27
16

) 1
4 L

2

, gives log #( )4r ∼ 1
28r2 log 27

16 . Last but not least, our
conjecture (5.1) is well supported by numerical data, as shown in Table 1.
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Université Paris-Sud, Bâtiment 100
91405 Orsay Cedex (France)
pzinn@ipno.in2p3.fr

Jean-Bernard ZUBER,
Université Paris 6
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