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FORMAL DEFORMATION OF CURVES

WITH GROUP SCHEME ACTION

by Stefan WEWERS

Introduction.

Let Y be a (not necessarily smooth) curve over an algebraically closed
field k of characteristic p > 0. Let W be a complete local ring with residue
field k. Furthermore, let G be a finite flat group scheme over W which acts
faithfully on Y . We denote by Def(Y,G) the functor which associates to a
local Artinian W -algebra R with residue field k the set of isomorphism
classes of G-equivariant deformations of Y to R. The present paper is
concerned with a study of the functor Def(Y,G), using cohomological
methods. The special case where Y is smooth and G is a constant group
scheme has been studied previously by Bertin and Mézard [3].

One of the motivations for studying the functor Def(Y,G) is the lifting

problem. Suppose that Y is smooth and that G is a finite abstract group
which acts faithfully on the curve Y . LetW be the ring of Witt vectors over
k, and consider G as a constant group scheme over W . In this situation,
the lifting problem asks the following question. Does there exist a finite
extension R/W of complete discrete valuation rings and a G-equivariant
lift of Y over R? For instance, if the deformation functor Def(Y,G) is
unobstructed then the answer to this question is positive.

A conjecture of Oort predicts that the lifting problem has a positive
solution if the group G is cyclic. However, even in the simplest nontrivial

Keywords: Equivariant deformation, curves, group schemes, cotangent complex.
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1106 Stefan WEWERS

case G = Z/p (where Oort’s conjecture is proved, see [21] and [6]) the
functor Def(Y,G) is obstructed. In [3] these obstructions are identified as
elements in a certain Galois cohomology group. However, they remain a
bit mysterious. One of the motivations for generalizing the approach of
Bertin–Mézard is the author’s hope that this will lead to new insight into
the nature of these obstruction, and the lifting problem in general.

Another (related) motivation comes from the study of the stable
reduction of Galois covers of curves. Let R be a complete discrete valuation
ring, with algebraically closed residue field k of characteristic p and fraction
field K of characteristic 0. Let YK → XK be a Galois cover of smooth
projective curves over K, with Galois group G. After a finite extension of
K, there exists a certain natural R-model YR → XR of YK → XK , called
the stable model, see [18] or [26] for a precise definition. The problem we
are interested in is to understand this model and in particular its relation
with the ramification of the prime p in the field K. It has become clear
from recent work of several authors (e.g. [11], [19], [26]) that this problem
naturally leads to the study of singular curves with an action of a finite
group scheme, and of the deformation theory of such objects.

This paper is divided into two main parts. The first part (§1–3) is
an exposition of certain cohomological methods for studying equivariant
deformations of (not necessarily smooth) curves with group scheme action.
Although the guiding principles are the same as in [3], we have to use much
heavier technical machinery. For instance, it does not suffice to look at the
equivariant cohomology of the tangent bundle of Y over k, as in [3]. Instead,
one has to consider certain hyperext groups with values in the equivariant

cotangent complex of Y over k. The latter is an object in the derived
category of G-OY -modules, and was first introduced by Grothendieck in [8].

In principal, everything one might want to known about the equivari-
ant cotangent complex and its role in deformation theory can be found in
Illusie’s book [12]. However, the generality in which [12] is written makes it
somewhat difficult to read and to work with in a concrete situation (at least
for the author of this paper). In the literature there are a number of excel-
lent and readable accounts of certain special cases (see e.g. [23] or [3], §2-3)
but none seems to be sufficiently general to deal with the case we need.
To improve this situation, the present paper contains a self-contained ex-
position of a special case of Illusie’s theory, which should nevertheless be
sufficiently general for the applications we have in mind.

ANNALES DE L’INSTITUT FOURIER
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In the second part of this paper (§4–5) we apply the general theory to
a special case which is relevant for the study of three point covers with bad
reduction. In particular, we prove a certain result which is a key ingredient
for the main theorem of [26].

We start in §4 with a multiplicative deformation datum. To give
an idea what this is, fix a smooth projective curve X over k. Then a
multiplicative deformation datum over X is a pair (Z, V ), where Z → X is
a Galois cover of smooth projective curves over a field k of characteristic
p > 0, with Galois group H of order prime-to-p, and V ⊂ Ωk(Z)/k is an
H-stable Fp-vector space of logarithmic differential forms. To (Z, V ) we
associate a finite flat group scheme G over W (k) and a (singular) curve Y
over k with an action of G such that X = Y/G. Briefly, the group scheme
G is of the form µs

p � H and Y → Z is the µs
p-cover locally given by s

Kummer equations yp
i = ui, where φi = dui/ui, i = 1, . . . , s, form a basis

of V .

We study the deformation functor Def(Y,G) for such an action of a
group scheme G and exhibit a number of its properties. Some of theses
properties are specific to the action of G we deal with. They are in general
very different from the properties enjoyed by the deformation functor
studied in [3]. For instance, there is in general no such thing as a local-
global principle, because the “local contribution” to the tangent space
of the functor Def(Y,G) is not concentrated in a finite number of closed
points. However, from another point of view things are really much easier
than in [3], due to the fact that the “p-Sylow” of G is a multiplicative
group scheme. Since multiplicative group schemes have trivial cohomology,
the general machinery developed in the first sections shows that the
deformation functor Def(Y,G) is unobstructed. Another nice property of
Def(Y,G) is the existence of a natural morphism of deformation functors

(1) Def(Y,G) −→ Def(X; τj)

which sends an equivariant deformation of Y to its quotient by G. (Here
we regard X as a marked curve, the marked points being the “branch
points” τ1, . . . , τn of the G-cover Y → X.) In this respect, the G-cover
Y → X behaves like a tamely ramified Galois cover. However, unlike in the
case of tamely ramified Galois covers, the functor (1) is in general not an
isomorphism.

In §5 we assume in addition that the curveX is the projective line and
that the vector space V is an irreducible Fp[H]-module which decomposes,
after tensoring with F̄p, into the direct sum of one dimensional modules.

TOME 55 (2005), FASCICULE 4
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Among all the multiplicative deformation data (Z, V ) of this type, there
are some which we call special. The definition of specialty is given in terms
of certain numerical invariants attached to (Z, V ). But philosophically,
special deformation data are attached to three point Galois covers of the
projective line with bad reduction to characteristic p. We refer to [25]
and [26] for details on the case dimFp V = 1 and for a more satisfactory
explanation of the connection to three point covers. Let us only mention
that the deformation theory of the G-cover Y → X attached to a special
deformation datum has a number of very nice and surprising properties:

• The lifting property: the morphism of deformation functors (1) is an
isomorphism. In this respect, the G-cover Y → X behaves just like a
tamely ramified Galois cover.

• The local-global principle: local deformations in formal neighborhoods
of the ramification points (which satisfy a certain condition) can be
interpolated by a unique global deformation of Y .

• Rigidity: If an equivariant deformation of Y in equal characteristic
(i.e. over a local k-algebra) is again special then it is the trivial
deformation. Therefore, there exist at most a finite number of special
deformation data of a given type (up to isomorphism), and every
special deformation datum can be defined over a finite field.

These properties are very particular to special deformation data. They
reflect, in a rather subtle way, the connection to three point covers with
bad reduction and in particular to the fact that three point covers are
“rigid” objects.

At the end of the paper, the reader will find three appendices
containing background material which the author found difficult to extract
from the literature. This includes Picard stacks, the cohomology of affine
group schemes, and two spectral sequences which are useful to compute
equivariant hyperext groups.

1. The equivariant cotangent complex.

In [12] Illusie defines, for any morphism of schemes Y → S, the
cotangent complex LY/S . This is a complex of flatOY -modules, well defined
up to canonical quasi-isomorphism, such that H0(LY/S) = ΩY/S . If Y → S

is smooth then LY/S = ΩY/S . Moreover, if G → S is a group scheme

ANNALES DE L’INSTITUT FOURIER
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acting on Y , Illusie defines the equivariant cotangent complex as an object
of the derived classifying topos D+(BG/X) whose underlying complex of
OY -modules is LY/S .

In this section we give a more down-to-earth definition of the equiv-
ariant cotangent complex which, however, works well only if Y → S and
the G-action on Y have certain good properties. We follow the original
approach of Grothendieck [8]. This gives the “correct” cotangent complex
only if Y → S is a local complete intersection morphism. We assume that Y
admits locally an equivariant embedding into a formally smooth S-scheme
with G-action. Under this assumption, it is much easier to endow the cotan-
gent complex with a natural G-action.

1.1. — Let S = SpecR be an affine scheme, G → S a flat affine
group scheme and Y → S an S-scheme with an action of G. By a
G-OY -module we mean a sheaf of OY -modules F , together with a lift
of the G-action from Y to F . A homomorphism between two G-OY -
modules F and G is a sheaf homomorphism which is both OY -linear
and G-equivariant. The group of such homomorphisms is denoted by
HomG(F ,G). We denote by Mod(Y,G) the corresponding category of G-
OY -modules. See Appendix C.1 for more details on the category Mod(Y,G).
For ∗ ∈ {+,−, b}, we denote by K∗(Y,G) the category of cochain complexes
in Mod(Y,G), up to homotopy, which are bounded from below (∗ = +),
bounded from above (∗ = −) or bounded in both directions (∗ = b). We
write D∗(Y,G) for the derived category of K∗(Y,G).

In this section we define the equivariant cotangent complex LY/S of
the morphism Y → S as an object of D+(Y,G), assuming:

Assumption 1.1. — Every point of Y is contained in an affine
and G-stable open neighborhood U ⊂ Y such that the following holds.
There exists a formally smooth affine S-scheme P → S with G-action and
a G-equivariant closed immersion ϕ : U ↪→ P .

Remark 1.2. — It is not clear to the author how restrictive Assump-
tion 1.1 is. We expect that it can be verified in any concrete situation where
one actually wants to apply our theory. For instance, in §4 we use the case
where G is an extension of a constant by a multiplicative group scheme and
acts freely on a dense open subset of Y . In this situation, Assumption 1.1
is easy to verify.

TOME 55 (2005), FASCICULE 4



1110 Stefan WEWERS

1.2. — A triple (U,P, ϕ) as in Assumption 1.1 is called a local chart

for Y → S. Often we will simply write ϕ instead of (U,P, ϕ). Given such a
local chart, we denote by I ⊂ OP the sheaf of ideals defining the image of
ϕ. We define the cotangent complex of the chart ϕ as the following complex
of G-OY -modules:

(2) Lϕ := (I/I2 −→ ΩP/S ⊗OY ).

The two nontrivial terms of Lϕ lie in degree −1 and 0. Note that there is
a natural augmentation Lϕ → ΩY/S which identifies ΩY/S with H0(Lϕ).

Remark 1.3.

(i) If Y/S is of finite type, then we may take P/S to be smooth. In
this case, L0

ϕ = ΩP/S ⊗OY is a locally free OY -module of finite rank.

(ii) If, moreover, Y → S is a local complete intersection (in the sense
of [2], VIII.1.1) then the embedding ϕ is regular. Recall that this means
the following. For every point y ∈ U the stalk Iy is an ideal generated by
a regular sequence of the local ring OP,y. It follows that L−1

ϕ = I/I2 is a
locally free OY -module of finite rank, too.

Let (U,P, ϕ) and (V,Q, ψ) be two local charts, and assume that
V ⊂ U . A morphism from ψ to ϕ is a G-equivariant morphism of S-schemes
u : Q→ P such that the diagram

V
ψ−→ Q� �u

U
ϕ−→ P

commutes. We use the notation u : ψ → ϕ. Note that u induces a morphism
of complexes of G-OY -modules

u∗ : Lϕ|V −→ Lψ.

Lemma 1.4.

(i) The homotopy class of u∗ is independent of the morphism u.

(ii) The morphism u∗ is a quasi-isomorphism.

Proof. — It is no restriction to assume that U = V . We may
also assume that U is affine. Let P ′ denote the second infinitesimal
neighborhood of U in P , i.e. the closed subscheme of P defined by the sheaf
of ideals I2. Similarly, Q′ denotes the second infinitesimal neighborhood of

ANNALES DE L’INSTITUT FOURIER
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Y in Q. It is defined by J 2, where J ⊂ OQ is the sheaf of ideals defining
the image of ψ. Let v : Q→ P be another morphism of local charts, and set
u′ := u|Q′ and v′ := v|Q′ . It is clear that u∗ (resp. v∗) only depends on the
restriction u′ (resp. on v′). An easy computation shows that the difference
of the two pullback maps

(u′)∗ − (v′)∗ : OP −→ J /J 2

is an R-linear derivation. Hence it gives rise to an OY -linear map s :
ΩP ⊗OY → J /J 2, and one checks that s is the desired homotopy between
u∗ and v∗:

I/I2 d−−−→ ΩP/S ⊗OY

u∗−v∗
� ↙�

s

�u∗−v∗

J /J 2 d−−−→ ΩQ/S ⊗OY

This proves (i).

By assumption Q → S is formally smooth and U is affine. Hence
there exists a morphism w′ : P ′ → Q lifting ψ : Y ↪→ Q. As in the proof of
(i), one shows that there are homotopies

(w′)∗ ◦ u∗ ∼ IdLϕ , u∗ ◦ (w′)∗ ∼ IdLψ .

This proves (ii). ��

1.3. — We are now ready to define the equivariant cotangent
complex. By Assumption 1.1 there exists a covering (Ui)i∈I of Y by affine
and G-stable opens Ui ⊂ Y , each admitting a local chart ϕi : Ui ↪→ Pi. We
choose, once and for all, a well-ordering on the set of indices of the covering
(Ui). The datum (Ui, ϕi) is called an atlas.

For any (n+ 1)-tuple i = (i0, . . . , in) we set

Ui := Ui0 ∩ . . . ∩ Uin , Pi := Pi0 ×S . . .×S Pin ,

ϕi := ϕi0 × · · · × ϕin : Ui ↪→ Pi.

Clearly, ϕi is a local chart and gives rise to a complex of G-OUi-modules
Lϕi . We denote by Li the push-forward of Lϕi to Y . Thus, Li is a flat and
quasi-coherent G-OY -module such that Li|Ui = Lϕi .

For i = (i0, . . . , in) as above and 0 � ν � n, let pν
i : Pi → Pi′

denote the projection which leaves out the νth component (i.e. i′ =
(i0, . . . , îν , . . . , in)); it is a morphism ϕi → ϕi′ of local charts. The resulting

TOME 55 (2005), FASCICULE 4
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morphism (pν
i )∗ : Lϕi′ |Ui → Lϕi extends in a canonical way to a morphism

of G-OY -modules ∂ν
i : Li′ → Li. Note that

(3) ∂ν
i ◦ ∂µ

i′ = ∂µ
i ◦ ∂ν−1

i′′

holds for µ < ν, if we set i′ := (. . . , îν , . . .) and i′′ := (. . . , îµ, . . .).

Definition 1.5. — The equivariant cotangent complex of the
morphism Y → S (relative to the open covering (Ui) and the local charts
ϕi) is the total complex

LY/S := Tot(K)

of the following double complex of G-OY -modules:

K :




∏
i

L−1
i

d−→
∏
i

L0
i�∂

�∂∏
i<j

L−1
i,j

−d−→
∏
i<j

L0
i,j�∂

�∂∏
i<j<k

L−1
i,j,k

d−→
∏

i<j<k

L0
i,j,k�∂

�∂

· · · · · ·
The vertical differentials are defined as ∂ :=

∑p
ν=0(−1)ν

∏
i ∂

ν
i : Kp,q →

Kp+1,q. The horizontal differentials are induced from the differentials of the
complexes Li. The columns of K start with degree 0, so LY/S starts with
degree −1. Note that LY/S consists of flat and quasi-coherent sheaves.

Proposition 1.6. — For all i there exist a quasi-isomorphism

βi : LY/S |Ui → Lϕi . Moreover, for all i < j we have a homotopy

si,j : ∂1
i,j ◦ βi ∼ ∂0

i,j ◦ βj .

which satisfies the cocycles relation

(4) ∂0
i,j,k ◦ sj,k − ∂1

i,j,k ◦ si,k + ∂2
i,j,k ◦ si,j = 0.

Proof. — The natural projections K0,q|Ui → Lq
i induce a morphism

βi : LY/S |Ui → Lϕi . We define the homotopy si,j as follows:

s0i,j :
{

(LY/S)0 −→ L−1
i,j

(fk; gk,l) �−→ gi,j
, s1i,j :

{
(LY/S)1 −→ L0

i,j

(fk,l; gk,l,m) �−→ fi,j
.

ANNALES DE L’INSTITUT FOURIER
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We leave it to the reader to check that si,j is indeed a homotopy from
∂1

i,j ◦ βi to ∂0
i,j ◦ βj and satisfies the cocycle relation (4).

It remains to show that βi is a quasi-isomorphism. Let i, j be a
pair of indices. By definition and by Lemma 1.4 (ii) the restriction of
∂0

i,j : Lj → Li,j to Ui,j is a quasi-isomorphism. Therefore, for q = −1, 0 we
may define

αq
i,j := Hq(∂0

i,j)
−1 ◦Hq(∂1

i,j) : Hq(Li)|Ui,j
∼−→ Hq(Lj)|Ui,j .

One checks that the cocycle relation αq
j,k ◦ α

q
i,j = αq

i,k holds. Therefore,
there exists a G-OY -module T q together with isomorphisms γq

i : T q|Ui
∼−→

Hq(Li) such that αq
i,j = γq

j ◦ (γq
i )−1. It is a bit tedious but elementary to

define, for each (n+1)-tuple i = (i0, . . . , in) an isomorphism γq
i : T q|Ui

∼−→
Hq(Li) which identifies the complex

(5) Hq(K) =
(∏

i

Hq(Li) −→
∏
i<j

Hq(Li,j) −→ · · ·
)

with the Čech-resolution of the sheaf T q. We conclude that the complex (5)
is exact. Now the spectral sequence Hp(Hq(K)) ⇒ Hp+q(LY/S) identifies
T q with Hq(LY/S) in such a way that γq

i is identified with Hq(βi). In
particular, Hq(βi) is an isomorphism, which is what we wanted to show.��

Remark 1.7. — Let (Ui, ϕi) and (U ′i , ϕ
′
i) be two atlases and LY/S

and L′Y/S the corresponding complexes, as defined above. Then the disjoint
union of (Ui, ϕi) and (U ′i , ϕ

′
i) is again an atlas and gives rise to a third

complex L′′Y/S , canonically equipped with quasi-isomorphisms L′′Y/S →
LY/S and L′′Y/S → L′Y/S . In other words: the cotangent complex LY/S ,
considered as an object of the derived category D+(Y,G), does not depend
on the choice of the atlas (Ui, ϕi).

Remark 1.8. — By definition we have H0(LY/S) = ΩY/S and
Hq(LY/S) = 0 for q �∈ {−1, 0}. It is also clear that LY/S has functorial
properties similar to the sheaf of differentials ΩY/S . Namely, if

(6)
Y ′

u−→ Y� �
S′ = SpecR′ −→ S = SpecR

is a commutative and G-equivariant diagram of schemes (where Y/S and
Y ′/S′ satisfy Assumption 1.1), then we have a natural homomorphism

(7) u∗LY/S −→ LY ′/S′

TOME 55 (2005), FASCICULE 4
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in D+(Y ′, G). The morphism (7) is an isomorphism in each of the following
two cases:

(i) We have S = S′ and Y ′ → Y is an open immersion.

(ii) The diagram (6) is Cartesian and either Y → S or S′ → S is flat.

Remark 1.9. — If Y → S is a local complete intersection, then LY/S

agrees with Illusie’s equivariant cotangent complex, up to canonical quasi-
isomorphism. In general, LY/S is quasi-isomorphic to Illusie’s equivariant
cotangent complex, truncated at degree −1. In particular, if F is a G-OY -
module then the nth hyperext group ExtnG(LY/S ,F) is the “correct” one
only for n � 1. See [12], Chapitre III, Corollaire 1.2.9.1.

2. Extensions.

In this section we prove that G-equivariant extensions of the mor-
phism Y → S by a quasi-coherent G-OY -module F are classified by the
group Ext1G(LY/S ,F). See Corollary 2.3. This result will be the basis for
the results on equivariant deformations of Y → S in §3. Actually, instead
of working with extensions of the scheme Y , we prefer to work with the
opposite category of extensions of the sheaf OY .

2.1. — Let G→ S = SpecR and Y → S be as in §1.1. We also fix
a G-OY -module F which is a quasi-coherent OY -module.

Definition 2.1. — An equivariant extension of OY by F is given
by a short exact sequence of sheaves of R-modules on Y , of the form

0 → F −→ E −→ OY → 0,

together with a G-action and a structure of sheaf of R-algebras on E such
that the following holds:

(i) The maps F → E and E → OY are G-equivariant.

(ii) The map E → OY is an R-algebra morphism.

(iii) The sheaf F , considered as a subsheaf of E , is a sheaf of ideals
with square zero.

We denote by ExtG(OY ,F) the category of all such extensions. Morphisms
between extensions are defined in the obvious manner. (The Five Lemma
shows that all morphisms are in fact isomorphisms.)

ANNALES DE L’INSTITUT FOURIER
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Given an extension E of OY by F , we get a morphism of S-schemes
Y ′ → Y (which is a homeomorphism on the underlying topological spaces)
such that E = OY ′ . The scheme Y ′ is called an extension of Y by F .

By taking Baer sums of short exact sequences, one defines a bifunctor
(E1, E2) �→ E1+E2. Together with certain natural transformations (E1+E2)+
E3 ∼= E1+(E2+E3) and E1+E2 ∼= E2+E1, it gives ExtG(OY ,F) the structure
of a (strictly commutative) Picard category, see Appendix A.

Theorem 2.2. — Let F be a coherent sheaf of G-OY -modules.

We denote by Pic(RHomG(LY/S ,F)) the Picard category associated to

the derived complex RHomG(LY/S ,F), see Appendix A.1 and C.3. Then

there exists a natural isomorphism of Picard categories

ExtG(OY ,F) ∼= Pic(RHomG(LY/S ,F)).

We will sketch a proof of Theorem 2.2 in the rest of this section. The
following corollary corresponds to Theorem 1.5.1 of [13].

Corollary 2.3. — The group of isomorphism classes of equiv-

ariant extensions of Y by F is canonically isomorphic to Ext1G(LY/S ,F).
Moreover, the group of automorphisms of any fixed equivariant extension

of Y by F is canonically isomorphic to HomG(ΩY/S ,F).

2.2. — In the following three subsections we prove a non-equivariant
version of Theorem 2.2. To this end, we denote by Ext(OY ,F) the Picard
category of (non-equivariant) extensions of OY by F .

Proposition 2.4. — Suppose that Y is affine and admits a global

chart ϕ : Y ↪→ P . Let Lϕ be the cotangent complex of ϕ, see §1.2. Then

there exists an isomorphism of Picard categories

Fϕ : Ext(OY ,F) ∼−→ Pic(RHomY (Lϕ,F)).
Given a morphism u : ψ → ϕ of global charts, let

ũ : Pic(RHomY (Lψ,F)) ∼= Pic(RHomY (Lϕ,F))
denote the isomorphism of Picard categories induced from the quasi-

isomorphism u∗ : Lϕ → Lψ. There exists an isomorphism of additive

functors

tu : ũ ◦ Fψ
∼−→ Fϕ

such that the following holds. If χ
v−→ ψ

u−→ ϕ is the composition of two

morphisms of global charts, then

(8) tu◦v = tu ◦ ũ(tv).

TOME 55 (2005), FASCICULE 4
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Proof. — Using that Y is affine and that P/S is formally smooth
one shows that L0

ϕ = ΩP/S ⊗OY is a projective OY -module. This implies
that

RHomY (Lϕ,F)[0,1] ∼= Hom•Y (Lϕ,F)[0,1].

Therefore, we may replace RHomY (Lϕ,F) in the statement of the propo-
sition by the complex Hom•Y (LY/S ,F). We write Y = SpecA and P =
SpecB. Then ϕ corresponds to an ideal I 2 B such that A = B/I. We also
write F = M̃ for some A-module M . With this notation, we have

Hom•Y (Lϕ,F) = (HomA(ΩB/R ⊗A,M) ◦d−→ HomA(I/I2,M)).

An object of Ext(OY ,F) is given by an extension of R-modules 0 →M →
E → A→ 0, where E carries in addition the structure of an R-algebra such
that the following holds. Firstly, E → A is a homomorphism of R-algebras;
secondly, M2 = 0, considered as ideal of E. In the rest of the proof, we
shall refer to such an object simply as an extension. Since B is formally
smooth, there exists a homomorphism of R-algebras λ : B → E lifting the
canonical map B → A. Set ν := λ|I mod I2. It is clear that ν is an A-linear
morphism I/I2 → M . We consider ν as an object of Pic(Hom•Y (Lϕ,F))
and set

Fϕ(E) := ν.

Let 0 → M → E′ → A → 0 be another extension and f : E ∼−→ E′

an isomorphism of extensions. Let λ′ : B → E′ be an R-algebra morphism
lifting B → A and set ν′ := λ′|I mod I2. Then the map λ′−f ◦λ : B →M is
easily seen to be an R-linear derivation which vanishes on I2. It corresponds
to an A-linear homomorphism θ : ΩB/R⊗A→M such that θ ◦ d = ν′− ν.
In other words, θ is a homomorphism ν → ν′ in Pic(Hom•Y (Lϕ,F)). We
set

Fϕ(f) = θ.

One checks that Fϕ is a faithful additive functor.

Given an arbitrary A-linear map ν : I/I2 → M , we define the
extension Eν as the pushout of B/I2 along ν:

(9)
0 → I/I2 −→ B/I2 −→ A → 0�ν

�λ

�=

0 → M −→ Eν −→ A → 0.

It is easy to see that Eν carries a unique R-algebra structure such that
M2 = 0 and λ is an R-algebra morphism. Moreover, we have Fϕ(Eν) = ν

by construction. Hence Fϕ is essentially surjective.
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Let θ : ν → ν′ be an isomorphism in Pic(Hom•Y (Lϕ,F)). This means
that ν′ : I/I2 → M and θ : ΩB/R ⊗ A → M are A-linear maps such
that θ ◦ d = ν′ − ν. We may identify θ with the corresponding derivation
B/I2 → M ; then θ|I/I2 = ν′ − ν. The universal property of the push-
forward shows that there exists a unique R-linear map f : Eν → Eν′ such
that f ◦ λ = λ′. By construction we have Fϕ(f) = θ. Hence Fϕ is fully
faithful and even an isomorphism of Picard categories.

Now let ψ : Y ↪→ Q be another global chart and u : ψ → ϕ a
morphism of charts. We write Q = SpecB′, A = B′/I ′2 and consider u as a
morphism of R-algebras B → B′. Let E be an extension and λ : B/I2 → E

(resp. λ′ : B′/I ′2 → E) a lift of B/I2 → A (resp. of B′/I ′2 → A). By
definition we have

Fϕ(E) = λ|I (mod I2), ũ ◦ Fψ(E) = λ′ ◦ u|I (mod I2).

Again it is clear that λ − λ′ ◦ u (mod I2) is a derivation B/I2 → M ,
corresponding to an A-linear map θ : ΩB/R ⊗ A → M and representing a
homomorphism ũ ◦ Fψ(E) → Fϕ(E). We set

tu(E) = θ.

A formal verification shows that tu is a morphism of additive functors
ũ ◦ Fψ

∼= Fϕ and that (8) holds. ��

2.3. — Let Ext(OY ,F) denote the Y -stack whose fiber over a given
open subset U ⊂ Y is the Picard category Ext(OU ,F|U ) (here Y -stack
means a stack over the Zariski site of Y ). It is clear that Ext(OY ,F) is a
Picard stack, see Appendix A.2.

Proposition 2.5. — We assume that Y is affine and admits a

global chart ϕ : Y ↪→ P .

(i) Let U ⊂ Y be an affine open. Then the natural functor

(10) Pic(RHomU (Lϕ|U ,F|U )) −→ Pic(RHomY (Lϕ,F))(U)

is an isomorphism.

(ii) There exists a unique isomorphism of Picard stacks

Fϕ : Ext(OY ,F) ∼−→ Pic(RHomY (Lϕ,F))

such that for each affine open U ⊂ Y the restriction of Fϕ to the fiber

Ext(OY ,F)(U) = Ext(U,F|U ) is equal (up to canonical isomorphism) to

the composition of Fϕ|U with (10).
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Proof. — Part (i) follows from Proposition A.2 and the fact that
the cohomology of the complex RHomY (Lϕ,F) consists of quasi-coherent
sheaves. Part (ii) is a formal consequence of (i) and is left to the reader.��

2.4. — We will now globalize the isomorphism of Picard stacks
constructed in the previous two subsections. To this end, we will use the
notation introduced in §1.3. In particular, (Ui)i∈I is a covering of Y by
affine opens, admitting local charts ϕi : Ui ↪→ Pi. By Proposition 1.6 we
obtain, for each ordered pair i < j, an essentially commutative square of
quasi-isomorphisms

(11)

LY/S |Ui,j
βi−−−→ Lϕi |Ui,j�βj

�∂1
i,j

Lϕj |Ui,j
∂0
i,j−−−→ Lϕi,j ,

i.e. a homotopy si,j : ∂1
i,j ◦ βi ∼ ∂0

i,j ◦ βj such that the cocycle relation (4)
holds. Set

P := Pic(RHomY (LY/S ,F)), P
i
= Pic(RHomY (Lϕi ,F)).

The diagram (11) yields an essentially commutative square of isomor-
phisms of Picard stacks

(12)

P
i,j

∂̃1
i,j−−−→ P

i
|Ui,j

∂̃0
i,j

� �β̃i

P
j
|Ui,j −−−→

β̃j

P|Ui,j ,

i.e. an isomorphism of additive functors s̃i,j : β̃i ◦ ∂̃1
i,j ∼ β̃j ◦ ∂̃0

i,j such that

(13) ∂̃0
i,j,k(s̃j,k) ◦ ∂̃2

i,j,k(s̃i,j) = ∂̃1
i,j,k(s̃i,k)

for all triples i < j < k.

Proposition 2.6. — There exists an isomorphism of Picard stacks

F : Ext(OY ,F) ∼−→ P = Pic(RHomY (LY/S ,F))

and for each index i an isomorphism of additive functors ui : F|Ui ∼= β̃i◦Fϕi .

Proof. — Let i < j. By Proposition 2.4 we obtain two natural
isomorphisms of additive functors

Fϕi |Ui,j ∼= ∂̃1
i,j ◦ Fϕi,j , Fϕj |Ui,j ∼= ∂̃0

i,j ◦ Fϕi,j .

ANNALES DE L’INSTITUT FOURIER



FORMAL DEFORMATION 1119

Using the essentially commutative square (12) they can be extended to an
isomorphism

ui,j : β̃j ◦ Fϕj |Ui,j ∼= β̃j ◦ ∂̃0
i,j ◦ Fϕi,j

∼= β̃i ◦ ∂̃1
i,j ◦ Fϕi,j

∼= β̃i ◦ Fϕi |Ui,j .
A tedious but elementary verification, using (8) and (13), shows that ui,j

satisfies the obvious cocycle relation. The proposition follows. ��

Using the canonical isomorphism

RHomY (LY/S ,F)) ∼= RΓ(Y,RHomY (LY/S ,F))

and Proposition A.2, we obtain a non-equivariant version of Theorem 2.2:

Corollary 2.7. — There is a natural isomorphism of Picard

categories

F : Ext(OY ,F) ∼−→ Pic(RHomY (LY/S ,F)).

2.5. — We are now going to prove Theorem 2.2 in full generality.
In the sequel, R′ will always denote a flat R-algebra, and a prime stands
for base change with respect to R → R′; for instance Y ′ := Y ⊗R R

′. By
Remark 1.8 we have natural isomorphisms

(14) LY/S ⊗R R
′ ∼= LY ′/S′ .

and

(15) RHomY (LY/S ,F)⊗R R
′ ∼= RHomY ′(LY ′/S′ ,F ′).

To simplify the notation, we will henceforth write

A := RHomY (LY/S ,F)[0,1].

Note that A is a complex of G-R-modules of amplitude [0, 1], well defined
up to canonical isomorphism in D[0,1](Y,G).

Let R′ be a flat R-algebra and σ ∈ G(R′). The automorphism
A′

∼−→ A′, a �→ aσ induces an isomorphism of Picard categories σ̃ :
Pic(A′) ∼−→ Pic(A′). Given an extension 0 → F ′ → E ′ → OY ′ → 0
(i.e. an object of Ext(Y ′,F)op), let Eσ be the extension

0 → F ′ ∼= σ∗F −→ σ∗E −→ σ∗OY ′
∼= OY ′ → 0

Here the isomorphisms F ′ ∼= σ∗F and σ∗OY ′
∼= OY ′ come from the G-

action on F and OY . Given an isomorphism f : E1 ∼−→ E2 of extensions,
then fσ, as defined in §C.1, is an isomorphism Eσ

1
∼−→ Eσ

2 . One checks that
the association E �→ Eσ is an automorphism of Picard categories

σ̃ : Ext(Y ′,F ′) ∼−→ Ext(Y ′,F ′).
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One checks:

Lemma 2.8. — We have an essentially commutative diagram

Pic(A′) F ′−→ Ext(Y ′,F)
σ̃

� �σ̃

Pic(A′) F ′−→ Ext(Y ′,F)

(the isomorphism F ′ is given by Corollary 2.7).

It follows from Proposition B.2 that

(16) RHomG(LY/S ,F)[0,1] ∼= Tot(K)[0,1],

where K is the double complex

K :




A0 d−→ A1�∂

�∂

C1(G,A0) −d−→ C1(G,A1)�∂

�∂

C2(G,A0) d−→ C2(G,A1)�∂

�∂

· · · · · ·
We are now going to construct an isomorphism of Picard categories

(17) FG : ExtG(OY ,F) ∼−→ Pic(Tot(K)).

Together with (16), this will complete the proof of Theorem 2.2.

An object of ExtG(OY ,F) is an object E of Ext(OY ,F), together
with an action of G on E such that the maps F → E and E → OY

are G-equivariant. Such an action is determined by the following data.
For each flat R-algebra R′ and group element σ we get an isomorphism
fσ : E ′ ∼−→ Eσ in Ext(OY ′ ,F ′) such that

(18) fστ = fτ
σ ◦ fτ

holds for all pairs σ, τ ∈ G(R′). Let F be the isomorphism of Corollary 2.7
and set ν := F (E) ∈ A1, θσ := F (fσ) ∈ (A0)′. By Lemma 2.8, θσ is an
isomorphism ν′

∼−→ νσ, i.e.

(19) d(θσ) = νσ − ν′.
Equation (18) shows that

θστ = θτ
σ + θτ .
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In other words, the association σ �→ θσ corresponds to a 1-cocycle θ, i.e.

an element of Z1(G,A0) = Ker(C1(G,A0) ∂−→ C2(G,A0)), see §B.3. Also,
Equation (19) means that d(θ) = ∂(ν). We have shown that the pair (ν, θ)
lies in Z1(Tot(K)), i.e. represents an object of Pic(Tot(K)). We set

FG(E) := (ν, θ).

Now let g : E1 ∼−→ E2 be an isomorphism in ExtG(Y,F). Set
FG(E1) := (ν1, θ1), FG(E2) := (ν2, θ2) and η := F (g). Then d(η) = ν2− ν1.
By definition, g is G-equivariant, so the diagram

E ′1
g′−→ E ′2

f1,σ

� �f2,σ

Eσ
1

gσ−→ Eσ
2

commutes for all σ ∈ G(R′). By Lemma 2.8 this means that

(20) θ2,σ − θ1,σ = ησ − η′,
or, equivalently, θ2 − θ1 = ∂(η). It follows that η corresponds to an
isomorphism (ν1, θ1)

∼−→ (ν2, θ2) in Pic(Tot(K)). We set

FG(g) := η.

We leave it to the reader to check that FG is indeed an isomorphism of
Picard categories. Now the proof of Theorem 2.2 is complete. ��

3. Deformations.

In this section we show how one can classify equivariant deformations
of Y → S along an infinitesimal extension S ↪→ S′, using the equivariant
cotangent complex. The main result is Theorem 3.3. In §3.3 we discuss how
this result behaves under localization to a formal neighborhood of a point
(Theorem 3.11).

3.1. — Let R′ be a commutative ring and a 2 R′ an ideal with
a2 = 0. We set R := R′/a, S′ := SpecR′ and S := SpecR. Furthermore, let
G′ → S′ be a flat affine group scheme and Y → S a flat morphism together
with an S-linear action of G := G′ ×S′ S on Y .

Definition 3.1. — An equivariant deformation of Y → S to S′ is
a flat morphism Y ′ → S′ together with an S′-linear action of G′ on Y ′ and

TOME 55 (2005), FASCICULE 4



1122 Stefan WEWERS

a G-equivariant isomorphism of S-schemes Y ∼= Y ′×S′ S. An isomorphism
of deformations is a G′-equivariant isomorphism of S′-schemes Y ′1 ∼= Y ′2
which induces the identity on Y .

Theorem 3.3 below shows how to classify isomorphism classes of
equivariant deformations of Y → S using the equivariant cotangent
complex LY/S . However, in the proof of Theorem 3.3 we will also use the
cotangent complex of the composed morphism Y → S ↪→ S′. Therefore,
to be able to use the definition of LY/S′ in §1, we make the following
assumption.

Assumption 3.2. — Every point of Y is contained in an affine
and G-stable open U ⊂ Y such that the following holds. There exists a
smooth affine S′-scheme P ′ → S′, an S′-linear action of G′ on P ′ and a G-
equivariant closed immersion ϕ : U ↪→ P ′. In other words, Assumption 1.1
holds for the composed morphism Y → S′ and the group scheme G′.

Under this assumption we can prove:

Theorem 3.3.

(i) There exists an element (called the obstruction)

ω = ω(Y/S, S′) ∈ Ext2G(LY/S ,OY )⊗R a,

depending functorially on Y → S ↪→ S′, whose vanishing is necessary and

sufficient for the existence of an equivariant deformation of Y → S to S′.

(ii) Suppose that ω = 0. Then the set of isomorphism classes of

deformations of Y → S to S′ is, in a natural way, a principal homogeneous

space under the Abelian group

Ext1G(LY/S ,OY )⊗R a.

This corresponds to Proposition 2.3 of [13]. However, if Y → S is not a
local complete intersection, then our definition of LY/S does not always give
the same hyperext group Ext2G(LY/S ,OY ) as in [12] and [13]. In particular,
our obstruction does not necessarily agree with the obstruction constructed
in [12] and [13], simply because it does not lie in the same group. See also
Remark 3.6 below.

3.2. Proof of Theorem 3.3. — Let F := OY ⊗R a. Since Y → S

is flat we have natural isomorphisms

(21) ExtnG(LY/S ,F) ∼= ExtnG(LY/S ,OY )⊗R a
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for all n. By Assumption 3.2 and Definition 1.5, the equivariant cotangent
complexes LY/S and LY/S′ are defined as complexes of G-OY -modules and
we have a natural G-equivariant morphism LY/S′ → LY/S .

Lemma 3.4. — There is a natural exact sequence in D+(Y,G)
(22) 0 −→ F [1] −→ LY/S′ −→ LY/S −→ 0.
More precisely, the natural morphism LY/S′ → LY/S is surjective in

all degrees, and there exists a G-equivariant quasi-isomorphism F [1] →
Ker(LY/S′ → LY/S). (Recall that F [1] denotes the complex where F is

placed in degree −1.)

Proof. — Let ϕ′ : U ↪→ P ′ be a local chart for the morphism Y → S′

and I ′ ⊂ OP ′ the corresponding sheaf of ideals. Then ϕ′ gives rise to a local
chart ϕ : U ↪→ P := P ×S′ S for the morphism Y → S. The corresponding
sheaf of ideals is I := I ′/F . It is clear that ΩP ′/S′ ⊗ OY

∼= ΩP/S ⊗ OY .
Moreover, we have a short exact sequence
(23) 0 −→ F −→ I ′/I ′2 −→ I/I2 −→ 0.
Hence it follows from Definition 1.5 that LY/S′ → LY/S is surjective in
all degrees and that its kernel is isomorphic to the Čech-resolution of F [1]
(with respect to the open covering (Ui) used to define LY/S). This proves
the lemma. ��

Let G be a G-OY -module. The short exact sequence (22) gives rise to
the following long exact sequence
(24) 0 → Ext1G(LY/S ,G) −→ Ext1G(LY/S′ ,G) −→ HomG(F ,G)

∂−→ Ext2G(LY/S ,G).
This applies in particular to the case G := F . We define the obstruction
ω := ω(Y/S, S′) as the image of the identity map Id : F → F under the
boundary map ∂ in (24). Now Theorem 3.3 follows from Corollary 2.3, the
exactness of (24) and the following proposition.

Proposition 3.5. — There is a natural bijection between

(a) deformations of Y → S to S′, up to isomorphism, and

(b) elements of Ext1G(LY/S′ ,F) which are mapped to IdF (by the

middle arrow in (24)).

Proof. — Let G be a quasi-coherent G-OY -module. By Corollary 2.3,
an element of Ext1G(LY/S′ ,G) corresponds to an equivariant extensions of Y
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by G, i.e. a closed equivariant embedding Y ↪→ Y ′ of S′-schemes defined by
an ideal J ⊂ OY ′ , together with an isomorphism G ∼= J of G-OY -modules.
We obtain a morphism of G-OY -modules
(25) F = OY ⊗R a −→ J ∼= G.
By reexamination of the proof of Theorem 2.2 one shows that the middle
arrow of the sequence (24) maps the element of Ext1G(LY/S′ ,G) correspond-
ing to the extension Y ′ to the morphism (25). Also, the local criterion of
flatness (see [15], Theorem 49) shows that the morphism Y ′ → S′ is flat if
and only if (25) is an isomorphism.

The proposition follows easily from these arguments. First, an equiv-
ariant extension of Y by F for which (25) is the identity on F gives rise
to an equivariant deformation of Y → S to S′. Conversely, let Y ′ → S′ be
an equivariant deformation of Y → S, and let J ⊂ OY ′ be the sheaf of
ideals corresponding to the embedding Y ↪→ Y ′. Since Y ′ → S′ is flat by
assumption, the natural map F → J is an isomorphism. Using this iso-
morphism, we can see Y ′ as an equivariant extension of Y by F for which
(25) is the identity on F . This concludes the proof of the proposition and
hence of Theorem 3.3. ��

Remark 3.6. — The short exact sequence of Lemma 3.4 should be
compared with the transitivity triangle attached to the composition of
morphisms Y → S ↪→ S′ in [12]:

(26)
LI

Y/S

↙ ↖
LI

S/S′ ⊗OY −→ LI
Y/S′

Here LI
Y/S denotes the cotangent complex in the sense of Illusie.

Now suppose that Y → S is a local complete intersection. Then
LY/S

∼= LI
Y/S . We also have natural morphisms LI

Y/S′ → LY/S′ and
LI

S/S′ ⊗ OY → F [1], but they are quasi-isomorphisms only if S ↪→ S′ is a
local complete intersection (which is typically not the case). Nevertheless,
one can show that the obstruction ω in Theorem 3.3 is the same as the
obstruction obtained by Illusie’s theory (via the canonical isomorphism
Ext2G(LY/S ,OY ) ∼= Ext2G(LI

Y/S ,OY )).

3.3. Localization. — Keeping the notation introduced before, we
now impose the following finiteness conditions.

Assumption 3.7.

(i) The affine scheme S = SpecR is local, Artinian and Noetherian.
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(ii) The group scheme G is finite and flat over S.

(iii) The scheme Y is either of finite type over S or the localization of

something of finite type over S.

It follows from Part (i) and (iii) of the assumption that Y is Noethe-
rian.

By Assumption 1.1 the action of G on Y is admissible; hence the
quotient scheme X := Y/G exists. It follows from Assumption 3.7 (ii)
that the projection π : Y → X is finite. Let x ∈ X be a point. Let
X̂ = Spec ÔX,x denote the completion of X at x and set Ŷ := Y ×X X̂.
Since π : Y → X is finite, Ŷ is naturally isomorphic to the completion of
Y along the fiber π−1(x). The action of G on Y induces an action of G on
Ŷ . Since X̂ → X is flat, we have Ŷ /G = X̂.

Let u : Ŷ → Y denote the canonical map. By Remark 1.8 we have a
canonical morphism of complexes of G-O

Ŷ
-modules

(27) u∗LY/S −→ L
Ŷ /S

.

A technical complication arises from the fact that (27) is in general not a
quasi-isomorphism. However, the next proposition shows that this does not
really matter to us.

Proposition 3.8. — Let F be a coherent sheaf of G-OY -modules.

There exists an isomorphism of Picard categories

Fx : ExtG(O
Ŷ
, u∗F) ∼−→ Pic(RHomG(u∗LY/S , u

∗F))

such that the following diagram commutes:

(28)

ExtG(OY ,F) −→ ExtG(O
Ŷ
, u∗F)

F

� �FxV

Pic(RHomG(LY/S ,F)) −→ Pic(RHomG(u∗LY/S , u
∗F)).

Here the upper horizontal arrow is the functor which sends an extension Y ′

of Y by F to the completion of Y ′ along the fiber π−1(x). The left vertical

arrow is the isomorphism from Theorem 2.2. The lower horizontal arrow is

the natural pullback map.

Proof. — The construction of the equivalence Fx is very similar to
the construction of F in the proof of Theorem 2.2. An essential difference
appears only in the first step, see §2.2. We will therefore assume for the
rest of the proof that Y is affine and that G = 1.
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Replacing Y by its localization at any point y ∈ π−1(x) we may
assume that Y = SpecA is local. We have Ŷ = Spec Â, where Â is the
completion of A. The coherent sheaf F is given by a finite A-module M ;
the pullback u∗F corresponds to the Â-module M̂ := M⊗A Â. SinceM is a
finiteA-module, M̂ is the mA-adic completion ofM . By Assumption 3.7 (iii)
we can write A = B/I, where B is the localization of a polynomial ring over
R and I 2 B is an ideal. By Assumption 3.7 (i) the ring B is Noetherian
and hence I is finitely generated. Moreover, Â = B̂/Î, where B̂ is the
completion of B at its maximal ideal and Î := IB̂. The ring B̂ is a power
series ring over R. In general, B is not formally smooth over R but only mB-
smooth (see [16]; note that “formal smoothness” is called “0-smoothness”
in loc.cit.).

The complex u∗LY/S corresponds to the complex of Â-modules

L̂ := (Î/Î2 −→ ΩB/R ⊗B Â).

The canonical map ΩB/R⊗B Â→ Ω
B̂/R

⊗
B̂
Ã is injective but in general not

surjective. However, ΩB/R ⊗ Â is mapped isomorphically onto Ωcont

B̂/R
⊗ Â,

where
Ωcont

B̂/R
:= Ω

B̂/R
/(∩n mn

B̂
· Ω

B̂/R
)

denotes the module of continuous differentials. Since ΩB/R ⊗ Â is a free
Â-module, we have

(29) RHomY (u∗LY/S , u
∗F)[0,1]

=
(
Hom

Â
(ΩB/R ⊗ Â, M̂) −→ Hom

Â
(Î/Î2, M̂)

)
.

An object of the Picard category Ext(Ŷ , u∗F) is given by an extension
M̂ → E → Â of R-modules, with M̂2 = 0. In what follows we will refer to
such an object simply as an extension.

Lemma 3.9. — Let M̂ → E → Â be an extension and let mE 2 E

denote the inverse image of the maximal ideal m
Â

of Â.

(i) The ring E is complete with respect to the ideal mE .

(ii) There exists a continuous lift λ:B̂→E of the canonical map B̂→Â.

Proof. — Look at the following ladder with exact rows:

(30)

0 → M̂ → E → Â → 0
↓ ↓ ↓

0 → lim
←
M̂/(mn

E ∩ M̂) → lim
←
E/mn

E → lim
←
Â/m̂n → 0.
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The vertical arrow on the right is an isomorphism by definition. An
argument similar to the one used in the proof of the Artin–Rees Lemma
(see [16], Theorem 8.5) shows that there exists a constant c > 0 such that

mn
E ∩ M̂ ⊂ m

n−c

Â
· M̂

for all n � c (here we use that A and hence Â is Noetherian). Therefore,
the vertical arrow in (30) on the left is an isomorphism. Now the Five-
Lemma implies that the vertical arrow in the middle is an isomorphism,
too. This proves (i). Part (ii) of the lemma follows from Part (i) and the
mB-smoothness of B̂. ��

Using this lemma, the construction of the equivalence Fx is essentially
the same as in the proof of Proposition 2.5. It is also clear from this
construction that the diagram (28) commutes. There are two points one has
to pay attention to. The first is to consider only continuous lifts λ : B̂ → E.
The second is this: if E′ is another extension, λ′ : B̂ → E′ a lift and
f : E ∼−→ E′ an isomorphism of extensions, then λ′ − f ◦ λ : B̂ → M̂

is a continuous R-linear derivation which vanishes on Î2; it therefore
corresponds to an Â-linear map θ : ΩB/R⊗Â→ M̂ . Moreover, any R-linear
derivation B̂ → M̂ is automatically continuous because M̂ is complete and
hence separated with respect to the mA-adic topology. This completes the
proof of the proposition. ��

Remark 3.10. — The proposition is essentially equivalent with the
statement that the homomorphism

ExtnG(L
Ŷ /S

, u∗F) −→ ExtnG(u∗L
Ŷ /S

, u∗F)

induced by (27) is an isomorphism for n = 0, 1. I suspect that this is true
for n > 1 as well, but I don’t know how to prove this.

For n � 0 we write ExtnG(LY/S ,F)x̂ for the ÔX,x-module
ExtnG(LY/S ,F)x ⊗ ÔX,x. It follows from flatness of X̂ → X that

ExtnG(LY/S ,F)x̂ = ExtnG(u∗LY/S , u
∗F).

The local-global spectral sequence from §C.4 gives rise to a localization

map

ExtnG(LY/S ,F) −→ ExtnG(LY/S ,F)x̂.

Theorem 3.11. — Let S ↪→ S′ = SpecR′ be a small extension,

with R = R′/a. Let ω be the obstruction for lifting Y to S′. Also, let ωx

denote the image of ω under the localization map

Ext2G(LY/S ,OY )⊗ a −→ Ext2G(LY/S ,OY )x̂ ⊗ a.
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(i) There exists an equivariant deformation of Ŷ to S′ if and only if

ωx = 0.

(ii) If ωx = 0 then the set of isomorphism classes of deforma-

tions of Ŷ to S′ is a principal homogeneous space under the group

Ext1G(LY/S ,OY )x̂ ⊗ a.

(iii) If ω = 0 then the action of Ext1G(LY/S ,F) on the set of isomor-

phism classes of deformations of Y to S′ is compatible with the action of

Ext1G(LY/S ,OY )x̂⊗a on deformations of Ŷ , with respect to the localization

map

Ext1G(LY/S ,OY )⊗ a −→ Ext1G(LY/S ,OY )x̂ ⊗ a.

Proof. — This is proved in the same way as Theorem 3.3 except that
the exact sequence (24) is replaced by the sequence

(31) 0 → Ext1G(LY/S ,F)x̂ → Ext1G(LY/S′ ,F)x̂ → HomG(F ,F)x̂
∂−→ Ext2G(LY/S ,F)x̂

and we use Proposition 3.8 in addition to Theorem 2.2. The compatibility
statement (iii) follows from the commutativity of the diagram (28) and the
fact that the localization maps define a homomorphism between the exact
sequences (24) and (31). ��

4. Multiplicative deformation data.

Let X be a smooth projective curve, defined over an algebraically
closed field k of characteristic p > 0. A multiplicative deformation datum
over X is a pair (Z, V ), where Z → X is a Galois cover, with Galois
group H of order prime to p, and an H-stable Fp-vector space V of
logarithmic differential forms on Z. In §4.1, we associate to the pair (Z, V )
a singular curve Y together with an action of a finite group scheme G such
that X = Y/G. Essentially, G is a semi-direct product µs

p � H (where
s := dimFp V ) and Y → Z is generically a µs

p-torsor determined by a basis
φ1, . . . , φs of V .

As an application of the general theory developed in the previous
sections, we study equivariant deformations of Y . Even though the cover
Y → X is inseparable, its deformation theory is in some sense similar to
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the deformation theory of a tame cover. For instance, we get a morphism
of deformation functors

Def(Y,G) −→ Def(X; τj),

see §4.2 for a precise definition. In §4.3 we give a criterion when this
morphism is an isomorphism. The reason for this relatively nice behavior
of Def(Y,G) is that the “p-Sylow subgroup” of G is a multiplicative group
scheme, whose cohomology is trivial. Thus, all the contribution to the
hyperext groups ExtnG(LY/k,OY ) comes from the cohomology of a certain
coherent sheaf on X, and there is no group cohomology involved.

4.1. The G-cover associated to a deformation datum. — Fix
an algebraically closed field k of characteristic p > 0 and a smooth k-curve
X. Let H be a finite group of prime-to-p order and χ a character of H with
values in Fp.

Definition 4.1. — A (multiplicative) deformation datum on X of
type (H,χ) is a pair (Z, V ), where

• π : Z → X is a finite, tamely ramified Galois cover with Galois
group H, and

• V ⊂ Ωk(Z)/k is an H-stable and finite dimensional Fp-vector space
consisting of logarithmic differential forms on Z. Let Vk denote the k-linear
hull of V in Ωk(Z)/k. We demand that dimk Vk = dimFp V and that H acts
on V with character χ.

Recall that a differential form φ ∈ Ωk(Z)/k is called logarithmic if it
can be written as φ = du/u for some rational function u ∈ k(Z).

If dimFp V = 1 then Definition 4.1 agrees with Definition 1.5 of [26].
In this paper we shall only consider multiplicative deformation data (as
opposed to additive deformation data), so we omit from now on the
adjective “multiplicative”.

Let us fix a deformation datum (Z, V ) of type (H,χ). For the moment,
we will consider V simply as a (right) Fp[H]-module. Let W (k) denote the
ring of Witt vectors over k and W (k)[V ] the group ring of V over W (k)
(here we consider V as an Abelian group). Then

G0 := SpecW (k)[V ]

is a finite flat and commutative group scheme over W (k). In fact, G0

represents the group functor (on the category of W (k)-algebras)

R �−→ G0(R) = Homgr(V,R×).
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Groups schemes of this form are called diagonalizable in [9], Exposé I. We
shall write ζ = (ζφ)φ∈V for an element of G0(R). Here ζφ ∈ R× such that
ζφ1ζφ2 = ζφ1+φ2 . In particular, ζp

φ = 1. Therefore, the choice of an Fp-basis
of V gives rise to an isomorphism G0

∼= µn
p , where n = dimFp V .

An element β ∈ H induces an automorphism G0
∼−→ G0 of group

schemes which sends ζ = (ζφ)φ∈V ∈ G0(R) to

β(ζ) := (φ �→ ζβ∗φ) ∈ G0(R).

This gives an action of H on G0 from the left. We define the group scheme
G as the semidirect product G0 �H; it represents the group functor

R �−→ G(R) := G0(R) �H.

The multiplication on the right hand is determined by the rule

(ζ
1
, β1) · (ζ2, β2) := (ζ

1
· β1(ζ2), β1β2).

Note that the subgroup scheme G0 ⊂ G is equal to the local part of G.

Let R be a W (k)-algebra and M a G-R-module. The induced action
of G0 on M is given by a map µ : M → R[V ] ⊗R M . It gives rise to a
V -grading, i.e. a direct sum decomposition

M =
⊕
φ∈V

Mφ, Mφ := {m ∈M | µ(m) = φ⊗m }.

One checks that a G-R-module is the same as an R-module together with a
V -grading and anR-linear action ofH from the right such thatMβ

φ = Mβ∗φ

for all β ∈ H and φ ∈ V . See also [9], Exposé I. Using the assumption that
the order of H is prime to p one shows:

Lemma 4.2. — Let R be a W (k)-algebra and M a G-R-module.

Then

Hn(G,M) =
{
MH

0 for n = 0,

0 for n > 0.

Construction 4.3. — Let (Z, V ) be a deformation datum of type
(H,χ) over X. We shall construct a curve Y over k and a G-action on Y
such that Z = Y/G0 and X = Y/G. The definition of Y and the G-action
will depend, up to canonical isomorphism, only on the deformation datum
(Z, V ) but not on the choices we make during the construction. Therefore,
it suffices to give the construction locally on X. Hence, we may assume
that Z = SpecA is affine. Let us also choose an Fp-basis φ1, . . . , φs of V .
Since φi is logarithmic, we have φi = dui/ui for some rational function ui
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on Z. After shrinking Z and replacing φi by a suitable Fp-multiple of itself,
we may assume that ui lies in A and has at most simple zeros on Z. Set

B := A[y1, . . . , ys | yp
i = ui], Y := SpecB.

The A-algebra B has a unique V -grading such that B0 = A and yi ∈ Bφi .
It gives rise to an action of G0 on Y such that Z = Y/G0. One checks that
there is a unique way to extend the action of H on A to an action on B
such that β∗Bφ = Bβ∗φ. Whence an action of G on Y such that Z = Y/G0

and X = Y/G. This finishes the construction of Y .

Definition 4.4. — Let (Z, V ) be a deformation datum of type
(H,χ), and let Y be the k-curve with G-action from Construction 4.3. Let
τ ∈ X be a closed point and choose a point ξ ∈ Z above τ . We say that τ
is

(i) a tame branch point if it is a branch point of the tame cover
Z → X,

(ii) a wild branch point if there exists φ ∈ V such that ordξ φ = −1,

(iii) a critical point if it is a branch point (tame or wild) or if

min
φ∈V

( ordξ φ ) �= 0.

Note that these conditions do not depend on the choice of ξ and that a
branch point can be wild and tame at the same time.

Notation 4.5. — Let (τj)j∈B denote the set of critical points
for (Z, V ), indexed by the finite set B. Let Btame (resp. Bwild) denote
the subset of B corresponding to the tame (resp. wild) branch points; set
Bram := Btame ∪Bwild. We have a divisor on Z

D :=
∑
ξ∈Z

( min
φ∈V

ordξ φ ) · ξ.

We can writeD as the difference of two disjoint effective divisors in a unique
way:

D = D0 −D∞.
Note that the image of D (resp. of D∞) on X has support in the set of
critical points (resp. in the set of wild branch points).

Remark 4.6.

(i) The map Y → X is finite and flat. It is aG-torsor precisely outside
the set of branch points.
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(ii) The curve Y is generically smooth over k if and only if dimFp V=1.
If this is the case then the singular points of Y are precisely the points lying
over a critical point which is not a wild branch point.

4.2. Equivariant deformations of Y . — Let Ck denote the
category of local Artinian W (k)-algebras. A G-equivariant deformation of
Y over an object R of Ck is a flat R-scheme YR together with an action of G
and aG-equivariant isomorphism Y ∼= YR⊗k (compare with Definition 3.1).
We are concerned with the deformation functor

R �−→ Def(Y,G)(R)

which sends R to the set of isomorphism classes of G-equivariant deforma-
tions of Y over R. The next lemma follows easily from Construction 4.3:

Lemma 4.7. — Let YR be an equivariant deformation of Y over R.

Furthermore, let R′ → R be a small extension, i.e. R = R′/a for an ideal

a 2 R′ such that a · mR′ = 0. Then the morphism YR → SpecR′ satisfies

Assumption 1.1.

The lemma shows that the equivariant cotangent complex LY/k is
defined and that we can apply Theorem 3.3 to classify the set of liftings
of the deformation YR to R′. Let k[ε] denote the ring of dual numbers.
We call T 1(Y,G) := Def(Y,G)(k[ε]) the tangent space of the deformation
functor Def(Y,G). Theorem 3.3 says in particular that there is a canonical
isomorphism

(32) T 1(Y,G) ∼= Ext1G(LY/k,OY ).

Moreover, Theorem 3.3 together with standard arguments (see e.g. [20]
or [23]) implies:

Theorem 4.8. — Suppose that n := dimk Ext1G(LY/k,OY ) is finite

(this holds, for instance, if X is projective). Then Y admits a versal

deformation over a ring of the form

Runiv = W (k)[[t1, . . . , tn]]/〈f1, . . . , fm〉.

If, moreover, Ext2G(LY/k,OY ) = 0 then Def(Y,G) is formally smooth and

we have Runiv = W (k)[[t1, . . . , tn]].

Let YR be an equivariant deformation of Y over R. Then the quotient
schemes ZR := YR/G0 and XR := YR/G are deformations of Z and X, re-
spectively. Let Def(X; τj) denote the functor which classifies deformations
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of the marked curve (X; τj | j ∈ Bram), i.e. deformations XR of X together
with sections τj,R : SpecR→ XR lifting the points τj .

We claim that the association YR �→ XR := YR/G gives rise to a
morphism of deformation functors

(33) Def(Y,G) −→ Def(X; τj | j ∈ Bram).

To prove the claim we have to endow the curve XR with sections τj,R :
SpecR→ XR lifting the branch points τj , for all j ∈ Bram. This is obvious
for j ∈ Btame: the G-action on YR induces an action of H on ZR such
that XR = ZR/H and such that the map ZR → XR is a tame H-cover
lifting Z → X. It follows that the branch locus of ZR → XR is the disjoint
union of sections τj,R : SpecR→ XR lifting the tame branch points τj (for
j ∈ Btame). Now let j ∈ Bwild and let ξ ∈ Z be a point above the wild
branch point τj . Let φ1, . . . , φs be a basis of V . We can choose this basis
in such a way that φ1 has a simple pole in ξ and that φ2, . . . , φs generate
the kernel of the residue map resξ : V → Fp. If we further replace φi by a
multiple of itself then we may assume that φi = dui/ui, with ordξ u1 = 1
and ordξ ui = 0 for i > 1. In a neighborhood of ξ, the cover Y → Z is
(locally at ξ) given by s Kummer equations yp

i = ui, see Construction 4.3.
Hence the deformation YR → ZR of Y → Z is (locally at ξ) given by s
Kummer equations yp

i = ui,R, where ui,R lifts ui. The equation u1,R = 0
defines a section ξR : SpecR → ZR which lifts the point ξ. We define
τj,R : SpecR → XR to be the image of ξR. Using the H-action, one also
checks that the definition of τj,R for j ∈ Bwild agrees with the definition of
τj,R for j ∈ Btame, in case that j ∈ Btame ∩Bwild. This proves the claim.

It is well known (see e.g. [4]) that the tangent space of the deformation
functor Def(X; τj) is given by

T 1(X; τj | j ∈ Bram) ∼= H1(X, TX(−
∑

j∈Bram

τj)).

Here TX is the sheaf of tangent vectors of X. Hence the morphism (33)
induces a k-linear map

(34) Ext1G(LY/k,OY ) −→ H1(X, TX(−
∑

j∈Bram

τj)).

In the next subsection we will analyze this map in more detail.

4.3. Analysis of Ext1G(LY/S ,OY ). — By Lemma 4.2 and the
spectral sequence (79) we have

(35) ExtnG(LY/k,OY ) = ExtnG0
(LY/k,OY )H = ExtnY (LY/k,OY )G.
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The analogous statement for ExtnG holds as well. In other words, we do
not have to worry about group cohomology. In the following, we shall use
this sort of argument over and over again, sometimes without mentioning
it explicitly.

A V -derivation is an Fp-linear function θ : V → k(Z). We say that θ
is integral at a point ξ ∈ Z if θ(φ) ∈ OZ,ξ for all φ ∈ V . Let M be the sheaf
of integral V -derivations; for an open subset U ∈ Z the group Γ(U,M)
of sections over U is the set of V -derivations θ which are integral at each
point ξ ∈ U . Obviously, M is a locally free OZ-module whose rank is equal
to s = dimFp V . There is a natural H-action on M, i.e. a structure of
H-OZ-module, such that MH is the sheaf of H-equivariant V -derivations
on X.

Let TZ = HomZ(ΩZ/k,OZ) denote the sheaf of tangent vectors on
Z. We write TZ(D) := TZ ⊗ OZ(D) etc. There is a natural injection of
H-OZ-modules

TZ(D) ↪→M
which sends a vector field θ to its restriction to V . From the definition
of the divisor D it is clear that this is well defined and that the quotient
M/TZ(D) is torsion free.

Lemma 4.9. — There is a natural isomorphism of H-OZ-modules

(36) M ∼−→ HomG0(ΩY/k,OY ) := T G0
Y .

Furthermore, we have a short exact sequence of H-OZ-modules

(37) 0 −→ TZ(−D∞) −→M −→ Ext1G0
(LY/k,OY ) −→ 0.

Proof. — It suffices to prove this locally on Z. Hence we may assume
that Z = SpecA is affine and that there is a basis φ1, . . . , φs of V such that
φi = dui/ui with ui ∈ A and such that ui has at most simple zeros. By
construction we have

Y = SpecB, B = C/I,

where C = A[y1, . . . , ys] is the polynomial algebra over A in s variables
(with V -grading such that yi ∈ Cφi) and I is generated by the polynomials
ui − yp

i . One checks that the B-module I/I2 is free, with G0-invariant
generators [ui − yp

i ].

The cotangent complex LY/k may be identified with the complex of
G-OY -modules associated to the complex L := (I/I2 → ΩC/k ⊗ B) of V -
graded B-modules with H-action. The differential of this complex sends

ANNALES DE L’INSTITUT FOURIER



FORMAL DEFORMATION 1135

the generator [ui − yp
i ] to the 1-form dui. It follows that ΩB/k = H0(L)

is the direct sum of the free B-module generated by dyi and the torsion
module

(ΩB/k)tors =
ΩA/k

〈dui〉
⊗A B.

Let θ : V → A be an everywhere integral V -derivation. It gives rise to a
G0-equivariant derivation η : ΩB/k → B which is zero on (ΩB/k)tors and
such that

η(dyi) := θ(φi) yi.

One checks that the association θ �→ η defines an isomorphism of H-OZ-
modules (36).

Since both nontrivial terms of the complex L are locally free B-
modules, we have

ExtnG0
(LY/k,OY ) = Hn(Hom•G0

(L,B)).

For n = 1 this gives the exact sequence

(38) HomG0(ΩC/k, B) −→ HomG0(I/I
2, B) −→ Ext1G0

(LY/k,OY ) → 0.

Let θ : V → A be a global section of M. There exists a unique B-linear
and G0-equivariant map ν : I/I2 → B such that

ν([ui − yp
i ]) = ui θ(φi)

for all i. This defines an A-linear map

(39) H0(Z,M) −→ HomG0(I/I
2, B).

From (38) and (39) we obtain the sequence (37). It is easy to see that this
sequence is H-equivariant and does not depend on the choice of the basis
of V . It remains to show that (37) is exact.

Exactness on the left is obvious; exactness in the middle follows easily
from the exactness of (38). To prove exactness on the right, let ν : I/I2 → B

be a B-linear and G0-equivariant homomorphism. We can define a V -
derivation θ : V → k(Z) = Frac(A) by setting

θ(φi) =
ν([ui − yp

i ])
ui

.

By construction the images of θ and of ν in Ext1G0
(LY/k,OY ) are equal. If

θ was integral everywhere then we would be done. However, if ξ ∈ Z is a
point in the support of D∞ then θ may not be integral at ξ. In this case
we may suppose that ordξ u1 = 1 and that ordξ ui = 0 for i > 1. After
shrinking Z to a sufficiently small neighborhood of ξ we may suppose that

θ′ = θ − ν([u1 − yp
1 ]) ∂/∂u1|V
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is integral everywhere. But since (38) is exact in the middle, the image of
θ′ in Ext1G0

(LY/k,OY ) is the same as the image of θ. This finishes the proof
of the lemma. ��

Applying the exact functor F �→ FH to (37) we obtain a short exact
sequence of OX -modules

(40) 0 −→ TZ(−D∞)H −→MH −→ Ext1G(LY/k,OY ) −→ 0.

The following proposition identifies the first boundary map associated to
(40) with the differential of the morphism of deformation functors (33).

Proposition 4.10. — The following diagram commutes:

(41)

Ext1G(LY/k,OY ) −→ H0(X, Ext1G(LY/k,OY ))� �∂

H1(X, TX(−
∑

j∈Bram
τj))

∼=−→ H1(X, TZ(−D∞)H).

Here the upper horizontal arrow is deduced from the local-global spec-

tral sequence (82). The left vertical arrow is the tangent map of the mor-

phism (33). The right vertical arrow is the boundary map of the short

exact sequence (40). The lower horizontal arrow comes from the canonical

isomorphism

TZ(−D∞)H ∼= TX(−
∑

j∈Bram

τj).

Proof. — Let us denote by Def(Z,H,D∞) the functor which clas-
sifies H-equivariant deformations of the marked curve (Z,D∞) (here we
identify D∞ with its support, which consists of the points of Z lying above
the wild branch points). By [3] the tangent space of Def(Z,H,D∞) is canon-
ically isomorphic to

H1(Z, TZ(−D∞)H) ∼= H1(X, TX(−
∑

j∈Bram

τj)).

Using this fact, the proposition is easily reduced to the case H = 1 and
Z = X.

Let Y ′ be a G-equivariant deformation of Y over R = k[ε] and
Z ′ := Y ′/G the induced deformation of Z. We have seen in the last
subsection that Z ′ is naturally endowed with a lift D′∞ of the divisor D∞.
We denote by e(Y ′) the global section of Ext1G0

(LY/k,OY ) corresponding
to Y ′, see §2 and §3. Similarly, we denote by e(Z ′, D′∞) ∈ H1(Z, TZ(−D∞))
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the cohomology class representing (Z ′, D′∞). We have to show that e(Z ′)
is the image of e(Y ′) under the boundary map ∂.

To prove this, we will first recall the definition of e(Y ′) and e(Z ′, D′∞).
Let (Uµ) be a covering of Z by sufficiently small affine open subsets
Uµ = SpecAµ. Let Wµ = SpecBµ ⊂ Y be the inverse image of Uµ. Also, let
U ′µ = SpecA′µ ⊂ Z ′ (resp.W ′µ = SpecB′µ ⊂ Y ′) be the induced deformation
of U (resp. the induced G-equivariant deformation of W ).

Since Z is smooth over k there exists, for all µ, a (non-canonical)
isomorphism of R-algebras

σµ : A′µ
∼−→ Aµ ⊗k R

which lifts the identity on Aµ. For each pair of indices µ, λ we set Uµ,λ :=
Uµ ∩ Uλ = SpecAµ,λ. Then the equality

σλ ◦ σ−1
µ = IdAµ,λ +ε · θµ,λ

defines a vector field θµ,λ ∈ Γ(Uµ,λ, TZ). The 1-cocycle (θµ,λ) represents
the cohomology class e(Z ′, D′∞).

We may assume that

Bµ = A[ yi | uµ,i − yp
µ,i ],

with uµ,i ∈ Aµ such that φi = duµ,i/uµ,i. There is a V -grading on
Bµ such that yµ,i ∈ (Bµ)φi . Let y′µ,i ∈ (B′µ)φi be a lift of yµ,i. Then
u′µ,i := (y′µ,i)

p ∈ Aµ. Note that u′µ,i is independent of the choice of the lift
y′µ,i. Set

σµ(u′µ,i) = uµ,i + ε · vµ,i.

Let νµ be the section of the sheaf M over Uµ such that

νµ(φi) = vµ,i.

Using the definition of e(Y ′) via Theorem 3.3, together with the proof of
Proposition 4.10, one checks that the image of νµ under the second map
in (39) is equal to the restriction of e(Y ′) to Uµ.

A straightforward computation shows that

θµ,λ(φi) =
θµ,λ(uλ,i)
uλ,i

= vµ,i − vλ,i

for all µ, λ, i. This means that θµ,λ is mapped to νµ − νλ ∈ Γ(Uµ,λ,M)
under the first map in (39). Therefore, e(Z ′, D′∞) is the image of e(Y ′)
under the boundary map ∂. This is what we wanted to prove. ��
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Theorem 4.11. — Suppose Hn(X,MH) = 0 for n = 0, 1. Then

the morphism

Def(Y,G) −→ Def(X; τj)

is an isomorphism. In particular, the deformation functor Def(Y,G) is

unobstructed.

Proof. — The hypothesis implies that the boundary map

(42) ∂ : H0(X, Ext1G(LY/k,OY )) ∼−→ H1(X, TZ(−D∞)H)

deduced from the short exact sequence (40) is an isomorphism. The local-
global spectral sequence for ExtnG gives rise to a short exact sequence

0 → H1(X, T G
Y ) −→ Ext1G(LY/k,OY ) −→ H0(X, Ext1G(LY/k,OY )) → 0.

But (36) and the hypothesis show thatH1(X, T G
Y ) = 0. Therefore, it follows

from Proposition 4.10 that the morphism Def(Y,G) → Def(X; τj) induces
an isomorphism on tangent spaces. The theorem would follow if we knew
that Def(Y,G) is unobstructed.

The local global spectral sequence for ExtnG also shows that

(43) Ext2G(LY/k,OY ) = H1(X, Ext1G(LY/k,OY )).

Using again the long exact cohomology sequence deduced from (42) and
the hypothesis we see that (40) is zero. Hence Def(Y,G) is unobstructed
by Theorem 3.3. This concludes the proof of the theorem. ��

Remark 4.12. — Suppose that all elements of V are regular,
i.e. Bwild = ∅. Then we may regard V as an Fp-subvector space of
the χ-isotypical part of JZ [p](k). It can be shown that the hypothesis
Hn(X,MH) = 0 of Theorem 4.11 is equivalent to the condition that the
χ-isotypical part of the group scheme JZ [p] is étale. Using this fact one can
give a different proof of Theorem 4.11. In the special case dimFp V = 1 this
is the approach taken in [25].

5. Special deformation data.

In this section we suppose that X = P
1
k. We begin by defining a

certain class of multiplicative deformation data over X, which we call
special. The definition of specialty may seem a little bit ad hoc. However,
we show that the deformation functor Def(Y,G) associated to (Z, V ) in
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the last section has some very nice properties if (Z, V ) is special. These
are the lifting property (Theorem 5.7), the local-global principle (Theorem
5.11) and rigidity (Theorem 5.14). At a deeper level, these properties are
explained by the way special deformation data arise in the study of three
point covers with bad reduction, see [25] and [26].

We also prove a technical result (Proposition 5.15) which is used
in [26].

5.1. — Let p be a prime, H a finite group of order prime to p

and χ0 : H → F̄
×
p a one dimensional character on H with values in the

algebraic closure of Fp. The values of χ0 generate a finite field Fq with
q = ps elements. Set

χi := χpi

0 , χ =
s−1∑
i=0

χi.

Then χ is an irreducible Fp-valued character.

Let k be an algebraically closed field of characteristic p and set
X := P1

k. Let (Z, V ) be a (multiplicative) deformation datum of type (H,χ)
over X. Choose a basis ω0, . . . , ωs−1 of V ⊗Fp F̄p consisting of eigenvectors,
such that

(44) α∗ωi = χi(α)ωi,

for all α ∈ H and i = 0, . . . , s− 1. Let C denote the Cartier operator. Since
C is p−1-linear and is the identity on V , we have

(45) C(ωi+1) = ci ωi

for a constant ci �= 0 in F̄p. (Here and for the rest of this section we will
consider the index i modulo s.) After multiplying the ωi with a constant
in F̄p we may assume that ci = 1.

As in the previous section, we denote by τj , j ∈ B, the critical points
on X. Choose j ∈ B and a point ξ ∈ Z above τj , and set

mj := |StabH(ξ)|, h
(i)
j := ordξ ωi + 1, σ

(i)
j :=

h
(i)
j

mj
.

The tuple (σ(i)
j )i,j is called the signature of the deformation datum (Z, V ).

For a rational number w, we let 〈w〉 denote the fractional part of w (such
that 0 � 〈w〉 < 1 and w − 〈w〉 ∈ Z).

Lemma 5.1. — For all i we have
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(i)
∑

j∈B (σ(i)
j − 1) = −2,

(ii) 〈σ(i)
j 〉 = 〈piσ

(0)
j 〉.

Proof. — Part (i) follows from a straightforward computation using
the Riemann-Hurwitz formula. To prove (ii), let ξ ∈ Z be a point above
τj and z a local coordinate at ξ. The inertia character ψξ : Hξ → k× is
determined by the congruence

(46) α∗z ≡ ψξ(α) z (mod z2)

for all α ∈ Hξ := StabH(ξ). Now (44) and the definition of h(i)
j imply that

χpi

0 = ψ
h
(i)
j

ξ .

Part (ii) of the lemma follows. ��

Definition 5.2. — The deformation datum (Z, V ) is called pure

if for all i we have ∑
j∈B

〈σ(i)
j 〉 = 1.

Lemma 5.3. — Let M be the sheaf of H-OZ-modules defined in

§4.3. The deformation datum (Z, V ) is pure if and only if Hn(X,MH) = 0
for n = 0, 1.

Proof. — Let OZ,χi denote the χi-isotypical part of the sheaf π∗OZ .
Let θ : V → k(Z) be anH-equivariant V -derivation and extend it k-linearly
to Vk. Then fi := θ(ωi) is a meromorphic section of OZ,χi ; it is holomorphic
at τ ∈ X if and only if θ is integral at all points ξ ∈ Z above τ . Therefore,
the rule θ �→ (fi) defines an isomorphism

MH ∼−→
s−1⊕
i=0

OZ,χi

of OX -modules. A local calculation as in the proof of Lemma 5.1 shows
that

deg OZ,χi = −
∑
j∈B

〈σ(i)
j 〉.

Hence the lemma follows from the Riemann–Roch formula. ��
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5.2. — In order to discuss special deformation data we need some
more notation:

Notation 5.4. — Let (Z, V ) be a deformation datum of type
(H,χ) and signature (σ(i)

j ). Set

ν
(i)
j := *σ(i)

j + = σ
(i)
j − 〈σ(i)

j 〉, νj := min
i
ν

(i)
j ,

and
a
(i)
j := mj · 〈σ(i)

j 〉, aj := min
i
a
(i)
j .

Definition 5.5. — The deformation datum (Z, V ) is called special

if σ(i)
j �= 1 for all i and j and if the following holds. There exists a subset

B0 ⊂ B with exactly three elements such that

νj =
{

0, j ∈ B0

1, j �∈ B0.

A special deformation datum (Z, V ) is called normalized if { τj | j ∈ B0 } =
{0, 1,∞} ⊂ X = P1.

For the rest of this section we assume that the deformation datum
(Z, V ) is special. Whenever it is convenient, we may also assume that (Z, V )
is normalized. (However, sometimes it more convenient to have τj �= ∞ for
all j ∈ B.) Since σ(i)

j �= 1 we conclude that Bwild ⊂ B0 and that Bram = B.
We set

Bnew := B −B0, Bprim := B0 −Bwild .

For an explanation of the terminology, see [26].

Lemma 5.6. — Suppose (Z, V ) is special. Then the following holds.

(i) The deformation datum (Z, V ) is pure.

(ii) We have ν
(i)
j = νj for all j ∈ B.

(iii) Let j ∈ B −Bwild and let ξ ∈ Z be a point above τj . Then for all

φ ∈ V we have

ordξ φ = νjmj + aj − 1.

Proof. — By Lemma 5.1 (i) we have

(47) 1 = 3 +
∑
j∈B

(ν(i)
j − 1) +

∑
j∈B

〈σ(i)
j 〉 �

∑
j∈B

〈σ(i)
j 〉.
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Suppose that
∑

j〈σ
(i)
j 〉 = 0. Since σ(i)

j �= 1, it would follow that B = B0

and σ(i)
j = 0 for all i and j. But then

∑
j(σ

(i)
j − 1) = −3, contradicting

Lemma 5.1. We conclude that
∑

j〈σ
(i)
j 〉 = 1, proving (i). We also conclude

that the inequality (47) is an equality, which means that ν(i)
j = νj , proving

(ii).

It follows from Lemma 5.1 (ii) that ordξ ωi = mjσ
(i)
j −1 takes pairwise

distinct values for all i. Every element φ ∈ V can be written as
∑

i ciωi,
with ci ∈ k. Using C(φ) = φ and Equations (44) and (45), one shows that
ci �= 0 for all i. Therefore,

ordξ φ = min
i

(ordξ ωi) = min
i

(mjν
(i)
j + a

(i)
j − 1).

Now (iii) follows from (ii). ��

Putting Theorem 4.11, Lemma 5.3 and Lemma 5.6 (i) together, we
get:

Theorem 5.7 (Lifting property). — Let Y be the curve with G-

action corresponding to the special deformation datum (Z, V ), as defined

in §4. The homomorphism of deformation functors

Def(Y,G) −→ Def(X; τj)
is an isomorphism.

Problem 5.8. — Let (H,χ) be as in the beginning of this section.
Let (σ(i)

j ) be a tuple of rational numbers (indexed by j ∈ B and i ∈
Z/s) such that the statements of Lemma 5.1 and of Definition 5.5 hold.
Furthermore, let (τj)j∈B be a B-tuple of closed points of X = P

1
k.

Does there exists a special deformation datum (Z, V ) of type (H,χ) with
signature (σ(i)

j ) and critical points (τj)?

Proposition 5.9. — With assumptions as in Problem 5.8:

(i) Suppose that the character χ0 : H → F
×
q is injective. Then if it

exists, the special deformation datum (Z, V ) is uniquely determined (up to

isomorphism) by the datum (H,χ, σ(i)
j , τj).

(ii) Fix (H,χ, σ(i)
j ). The set of all tuples (τj) such that there exists

a special deformation datum (Z, V ) with critical points (τj) is a locally

closed subset of (P1
Fp

)B .

We will see later (Theorem 5.14) that the set of tuples (τj) in (ii) is
actually finite.
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Proof. — (Compare with [25], §3.5.) Suppose that (Z, V ) exists. Let
H̄ := H/Ker(χ0), Z̄ := Z/Ker(χ0) and χ̄ the restriction of χ to H̄. The
subvector space V ⊂ Ωk(Z)/k descends to a subvector space V̄ ⊂ Ωk(Z̄)/k.
One checks that (Z̄, V̄ ) is again a special deformation datum, of type (H̄, χ̄).
The signature (σ(i)

j ) and the set (τj) of critical points remain unchanged
during this descent. Therefore, we may assume that χ0 is injective, even for
the proof of (ii). (For (i) the assumption of injectivity is necessary because
the cover Z → Z̄ is not unique if Ker(χ0) �= 1.)

If χ0 is injective then H is cyclic of order m where m is a positive
integer such that Fq = Fp[ζm]; in particular, m|q − 1. Set a(i)

j := m 〈σ(i)
j 〉.

Then the a
(i)
j are integers with 0 � a

(i)
j < m,

∑
j a

(i)
j = m and

a
(i+1)
j ≡ pi a

(i)
j (mod m). The proof of Lemma 5.1 shows that the a(i)

j

determine the ramification type of the m-cyclic cover π : Z → X = P
1
k.

This can be made more explicit with Kummer theory. In fact, for all i there
exists a rational section zi of OZ,χi which satisfies the equation

(48) zm
i =

∏
j∈B

(x− τj)a
(i)
j .

Here x denotes the standard coordinate on X = P1 and we assume, without
loss of generality, that τj �= ∞. The curve Z is the smooth projective model
of the plane curve with equation (48) (for any i).

We claim that the eigenvector ωi of Vk is of the form

(49) ωi = εi
zi dx∏

j∈B0
(x− τj)

for some constant εi ∈ k. Indeed, a local calculation shows that the
right hand side of (49) has everywhere the right order of poles and zeros
compatible with the signature (σ(i)

j ) and the set of critical points (τj). This
proves the claim. If we plug in (49) into the equation

(50) C(ωi+1) = ci ωi

and look at Taylor series (say in x) on both sides, we obtain a set of algebraic
equations with coefficients in Fp which are satisfied by the tuple (τj). These
equations define a Zariski closed subset of (P1

Fp
)B . The conditions ci �= 0

define an open subset of this closed subset. We have shown that the set of
tuples (τj) coming from a special deformation datum with given type and
signature are contained in a certain locally closed subset of (P1

Fp
)B . It is

clear that (Z, V ) is uniquely determined by the datum (H,χ, σ(i)
j , τj).

Conversely, let (τj) be a B-tuple of k-rational points of P1 which
is contained in the locally closed subset constructed above. This means
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that if we define an H-cover π : Z → X = P
1 by equation (48) and define

differentials ωi on Z by equation (49) then (50) holds with certain constants
ci �= 0. After multiplying the ωi by suitable constants we may assume that
ci = 1. Let V ′ ⊂ Ωk(Z)/k be the Fq-linear subspace spanned by the ωi. The
Cartier operator C stabilizes V ′ and acts semi-simply on it. A well known
lemma in p−1-linear algebra shows that the stabilizer V of C inside V ′ is an
Fp-vector space of dimension s = dimFq V

′. Here we can be more explicit:
if α ∈ H is an element such that χ0(α) generates Fq then

(51) φl :=
∑

i

χi+l(α) · ωi, l = 0, . . . , s− 1

gives a basis for V . By construction, (Z, V ) is a special deformation datum
of type (H,χ), signature (σ(i)

j ) and with critical points (τj). This concludes
the proof of the proposition. ��

5.3. The local-global principle. — For j ∈ B, let Ŷj denote the
completion of Y at the critical point τj , see §3.3. Given an equivariant
deformation YR of Y , we denote by Ŷj,R the completion of YR at τj ; this is
an equivariant deformation of Ŷj . We obtain a morphism

Φ : Def(Y,G) −→
∏
j∈B

Def(Ŷj , G)

which maps a deformation YR to the tuple (Ŷj,R)j . Following [3], we call
Φ the local-global morphism. By the results of §3.3 we can identify the
natural morphism arising from the local-global spectral sequence
(52) Ext1G(LY/k,OY ) −→

⊕
j∈B

Ext1G(LY/k,OY )τĵ

with the differential of Φ. In contrast to the situation studied in [3], Φ
is not formally smooth unless s = 1. In fact, if s > 1 then the groups
Ext1G(LY/k,OY )τĵ are not finite-dimensional over k. However, if we restrict
our attention to the image of Φ, then we obtain a local-global-principle,
comparable to [3], Théorème 3.3.4.

Lemma 5.10. — The map (52) is injective. Its image is the direct

sum ⊕
j∈Bnew

TX,τj ⊗ k(τj) ⊂
⊕
j∈B

Ext1G(LY/k,OY )τĵ .

Proof. — We have already seen in the proof of Theorem 4.11 that
the natural map

Ext1G(LY/k,OY ) −→ H0(X, Ext1G(LY/k,OY ))
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is an isomorphism. (Note that the hypothesis of Theorem 4.11 is verified
by Lemma 5.6 (i).) Furthermore, we have an isomorphism

(53) H0(X, Ext1G(LY/k,OY )) ∼= H1
(
X, TX

(
−

∑
j∈B

τj

))
.

The k-dimension of (53) is |B| − 3 = |Bnew | by Riemann-Roch.

Let Etor ⊂ Ext1G(LY/k,OY ) be the maximal sub-OX -module which is
torsion. The sequence (40) and a local computation shows

Etor ∼=
TZ(D)H

TZ(−D∞)H
∼=
TX(−

∑
j∈B(1− νj)τj)

TX(−
∑

j∈B τj)
.

Therefore,

(54) H0(X, Etor) ∼=
⊕

j∈Bnew

TX,τj ⊗ k(τj).

Comparing dimensions, we find thatH0(X, Etor) ↪→ H0(X, Ext1G(LY/k,OY ))
is an isomorphism. This proves the lemma. ��

Let Def(Ŷj , G)† ⊂ Def(Ŷj , G) denote the image of Def(Y,G) under the
localization map. In other words, Def(Ŷj , G)† classifies those equivariant
deformations of Ŷj which arise as the completion of a global deformation
of Y . We denote by

Φ† : Def(Y,G) −→ Def(Y,G)loc :=
∏
j∈B

Def(Ŷj , G)†

the restriction of Φ onto its image. By Lemma 5.10, the differential of Φ†

is the isomorphism

Ext1G(LY/S ,OY ) ∼−→
⊕

j∈Bnew

TX,τj ⊗ k(τj).

Theorem 5.11 (Local-global principle).

(i) The functor Def(Ŷj , G)† admits a versal deformation over the ring

R̃j :=
{
W (k), for j ∈ B0,

W (k)[[tj ]], for j ∈ Bnew.

(ii) The functor Def(Y,G) admits an effective universal deformation.

Let R̃ be the universal deformation ring.

(iii) The restricted local-global morphism Φ† is an isomorphism.

Therefore, we have

R̃ ∼= ⊗̂W (k) R̃j = W (k)[[ tj | j ∈ Bnew ]].
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Proof. — By Theorem 4.8 the functor Def(Y,G) admits a versal de-
formation. By Theorem 4.11 it is unobstructed. The space of “infinitesimal
automorphisms” of Def(Y,G) is isomorphic to H0(X, T G

Y ). By Lemma 4.9
we have

H0(X, T G
Y ) ∼= H0(X,MH) = 0.

Therefore, the versal deformation of Def(Y,G) is also universal, see[20]. It
is effective by Grothendieck’s existence theorem. This proves (ii). The func-
tors Def(Ŷj , G)† are unobstructed, because the same holds for Def(Y,G).
Using Theorem 3.11 and Lemma 5.10, it is easy to verify Schlessinger’s
axioms[20], showing that Def(Ŷj , G)† admits a versal deformation over the
ring R̃j , as claimed in (i). Finally, Lemma 5.10 together with the argument
used in the proof of [3], Théorème 3.3.4, shows that Φ† is an isomorphism.
This finishes the proof of the theorem. ��

Remark 5.12. — If s = dimFp V = 1 then Φ† = Φ.

5.4. Rigidity. — In this subsection (Z, V ) and Y will be as before.
Let R be an Artinian local k-algebra with residue field k. Since R has
characteristic p, an equivariant deformation of Y over R corresponds to a
deformation datum (ZR, VR) over R which lifts (Z, V ). By this we mean
that πR : ZR → XR = P

1
R is a tamely ramified H-Galois cover lifting

π : Z → X and VR ⊂ H0(ZR,ΩZR/R(D∞,R)) is an H-stable Fp-vector
space of logarithmic differentials lifting V (here D∞,R ⊂ ZR is a relative
Cartier divisor lifting D∞).

Let YR be an equivariant deformation of Y and (ZR, VR) the corre-
sponding deformation datum. Choose j ∈ Bnew and a point ξ ∈ Z lying
above τj . By the theory of tame ramification, there exists a local param-
eter z for ZR at ξ such that OZR,ξ = R[[z]] and α∗z = ψ(α) · z for some
character ψ : Hξ → R×. We say that the deformation YR is j-special if
every element φ ∈ VR is of the form

φ = zmj+aj−1(c0 + c1z + . . .) dz
with ci ∈ R and c0 ∈ R×. Note that this condition is independent of the
choice of z.

Lemma 5.13. — The equivariant deformation YR is trivial (i.e.

isomorphic to Y ⊗k R) if and only if it is j-special for all j ∈ Bnew.

Proof. — One direction of the claim follows immediately from
Lemma 5.6 (iii). To prove the other direction, suppose that YR is j-special
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for every j ∈ Bnew. We have to show that YR is the trivial deformation.
By Theorem 5.11 (iii) it suffices to show that the completion Ŷj,R of YR at
τj is the trivial deformation of Ŷj , for all j ∈ Bnew. Fix one index j. Since
R is Artinian, we may prove triviality of Ŷj,R by induction: suppose that
Ŷj,R′ := Ŷj,R ⊗R R

′ is trivial, where R′ := R/mn
R for some n � 1. Then we

want to conclude that Ŷj,R′′ is trivial, where R′′ := R/mn+1
R . To simplify

the notation, we may even assume that R = R′′.

The “difference” between Ŷj,R and the trivial deformation Ŷj ⊗k R,
considered as lifts of the trivial deformation Ŷj ⊗k R

′, is measured by an
element θ̄j in

Ext1G(LY/S ,OY )τĵ⊗k mn
R
∼= (MH/TZ(−D∞)H)τĵ⊗k mn

R,

see Theorem 3.11 (ii). Since Ŷj,R lies in the image of the local-global
morphism Φ the element θ̄j lies in the subspace

(TZ(D)H/TZ(−D∞)H)τĵ ⊗k mn
R
∼= TX,τj ⊗ k(τj)⊗k mn

R,

see the proof of Lemma 5.10. In other words, we may regard θ̄j as a tangent
vector at τj , with values in the k-vector space mn

R. We have to show that
θ̄j = 0.

Choose a point ξ ∈ Z above τj . Let z be a local parameter of ZR at ξ
such that ÔZR,ξ = R[[z]] and α∗z = ψξ(α) ·z for a character ψξ : Hξ → R×.
It follows that ÔXR,τj = R[[x]], where x := zmj and mj := |Hξ|. Note that
the fiber product Ŷξ,R := YR ×ZR SpecR[[z]] is a connected component
of Ŷj,R. Let φ1, . . . , φs be a basis of VR. We have φi = dui/ui for a unit
ui ∈ R[[z]]× which is unique up to multiplication by a pth power. The
G0-torsor Ŷξ,R → SpecR[[z]] is given by the Kummer equations

yp
i = ui, i = 1, . . . , s.

By our induction hypothesis, the induced deformation Ŷj,R′ is trivial. This
means that, for a suitable choice of the parameter z and the units ui, the
image of ui in R′[[z]] actually lies in the subalgebra k[[z]] ⊂ R′[[z]]. In other
words, we have

ui = ūi + vi, ū ∈ k[[z]]×, vi ∈ k[[z]]⊗k mn
R.

Claim. — The tangent vector θ̄j extends to a vector field θj ∈
TX,τj ⊗mn

R in a neighborhood of τj , with values in mn
R, such that

(55) vi = θj(dūi),

for i = 1, . . . , s.
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Let us prove this claim. The class in Ext1G(LY/S ,OY )τĵ ⊗k mn
R corre-

sponding to θ̄j lifts to a local section θ′j of the sheafMH in a neighborhood
of τj , via the exact sequence (40). We consider θ′j as an Fp-linear and H-
equivariant map θj : V → k[[z]] ⊗ mn

R. By the definition of θ̄j in terms of
the deformation Ŷj,R, we have θ′j(φ̄i) = vi/ūi (compare with the proof of
Proposition 4.10). But since Ŷj,R lies in the image of the local-global mor-
phism, θ′j is actually the restriction to V of a vector field θj on X which is
regular in a neighborhood of τj (compare with the proof of Lemma 5.10).
The claim follows.

We can now finish the proof of the lemma. The vector field θj
appearing in the claim we have just proved can be written as follows:

θj = (b0 + b1x+ . . .)
d
dx

=
1
mj

(b0z1−mj + b1z + . . .)
d
dz
,

with bµ ∈ mn
R. Since by assumption the deformation YR is j-special we have

dui = zmj+aj−1(c0 + c1z + . . .) dz with c̄0 �= 0. From (55) we get

(56) vi =
zaj

mj
( c̄0b0 + (c̄0b1 + c̄1b0)zmj + · · ·).

But since dui = dūi + dvi is divisible by zmj+aj−1 it follows that

aj c̄0 b0 = 0.

But aj is prime to p and c̄0 �= 0, hence b0 = 0. We conclude that θ̄j = 0,
which completes the proof of the lemma. ��

Theorem 5.14 (Rigidity). — There exist, up to isomorphism, at

most a finite number of special deformation data of given type (H,χ).
Moreover, every special deformation datum can be defined over a finite

field.

Proof. — For a fixed type (H,χ) there exists at most a finite number
of possibilities for the signature (σ(i)

j ) of a special deformation datum.

Therefore, we may also fix the signature (σ(i)
j ). Let U ⊂ (P1)B be the

locally closed subset from Proposition 5.9 (ii). Let U ′ ⊂ (P1)Bnew denote
the intersection of U with the closed subset {(0, 1,∞)}×(P1)Bnew ⊂ (P1)B .
Thus, a point on U ′ corresponds to the branch locus of a normalized

special deformation datum. To prove the theorem, it suffices to show that
U ′ has pure dimension 0. Suppose that U ′ has an irreducible component
of dimension > 0. Then there exists an algebraically closed field k of
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characteristic p and a nonconstant morphism ϕ : SpecR → U ′, with
R = k[[t]]. We will show that ϕ is constant, which gives a contradiction.

Going again through the proof of Proposition 5.9, we see that ϕ
corresponds to a deformation datum (ZR, VR) defined over R. Moreover,
the special and the generic fiber of (ZR, VR) are special deformation data.
Applying Lemma 5.6 to the generic fiber of (ZR, VR), we see that the
pullback (ZR′ , VR′) of (ZR, VR) over R′ := R/tn is a deformation of its
special fiber which is j-special, for all j ∈ Bnew and for all n. Hence it
follows from Lemma 5.13 that the curve YR′ corresponding to (ZR′ , VR′)
is the trivial deformation of its special fiber. By Theorem 5.7, this implies
that the branch locus of the induced G-cover YR′ → XR′ = P1

R′ is constant,
for all n. We conclude that ϕ : SpecR → U ′ is constant, which proves the
theorem. ��

5.5. — In this last section we prove a proposition which links two of
our previous results on special deformation data: the lifting property (Theo-
rem 5.7) and the local-global principle (Theorem 5.11). This proposition is
a key ingredient for the proof of the main result of [26].

Let Y be the universal equivariant deformation of Y over R̃, see
Theorem 5.11. The quotient scheme X := Y/G is naturally equipped
with sections τ

j,R̃
: Spec R̃ → X lifting the critical points τj . We may

suppose that X = P
1

R̃
and that { τ

j,R̃
| j ∈ B0 } = {0, 1,∞}. With this

normalization, we may regard the sections τ
j,R̃

for j ∈ Bnew simply as

elements of the ring R̃. Let [τj ] ∈ W (k) denote the Teichmüller lift of
τj ∈ k and set Tj := τ

j,R̃
− [τj ]. By the lifting property (Theorem 5.7) we

have
R̃ = W (k)[[ tj | j ∈ Bnew ]] = W (k)[[Tj | j ∈ Bnew ]].

A priori, it is not clear that these two sets of coordinates of R̃ are in any
way related. However, we have:

Proposition 5.15. — For all j ∈ Bnew there exists a unit wj ∈ R̃×
such that

Tj ≡ wj · tj (mod p).

Proof. — Let R := k[ε] denote the ring of dual numbers. Fix some
j0 ∈ Bnew and let κ : R̃→ R be the unique W (k)-algebra morphism which
sends tj0 to ε and tj to 0 for j �= j0. Set τj,R := κ(τ

j,R̃
). Then τj,R = τj+ε·δj
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for an element δj ∈ k. To prove the proposition it suffices to show that

(57) δj �= 0 if and only if j = j0.

Let YR denote the equivariant deformation of Y obtained from pulling
back the universal deformation Y along κ. The isomorphism class of YR

corresponds to a class in Ext1G(LY/k,OY ). Via the isomorphism

Ext1G(LY/k,OY ) ∼−→
⊕

j∈Bnew

TX,τj ⊗ k(τj),

this class may be represented by a tuple (θ̄j), where θ̄j is a tangent vector
in τj (see the proof of Lemma 5.10). By the choice of the indeterminates tj
and the homomorphism κ we have

(58) θ̄j �= 0 if and only if j = j0.

On the other hand, it follows from Proposition 4.10 that the tuple (θ̄j),
considered as a class in

H1(X, TX(−
∑
j∈B

τj)) ∼= H0(X,
TX(−

∑
j∈B0

τj)
TX(−

∑
j∈B τj)

) ∼=
⊕

j∈Bnew

TX,τj ⊗ k(τj),

represents the isomorphism class of the deformation (XR; τj,R). Therefore,

(59) θ̄j = δj ·
d
dx

∣∣
x=τj

.

Now (58) and (59) together imply (57). The proposition is proved. ��

To finish, let us explain briefly the motivation behind Proposi-
tion 5.15. Let R be a complete discrete valuation ring of mixed character-
istic (0, p). Let k be the residue field of R (which we assume algebraically
closed) and K its fraction field. Let (Z, V ) be a special deformation datum
over X = P1

k and Y → X the associated G-cover. Furthermore, let τj,R ∈ R
be points on XR = P1

R which lift the branch points (τj) of Y → X. By the
lifting property, there exists a unique lift YR → XR of Y → X with branch
points (τj,R). Assuming that ζp ∈ R, the generic fiber YK → XK = P

1
K is

a tame Galois cover with Galois group

G(K) ∼= (Z/p)s �H.

By construction, the cover YK → XK has bad reduction: the special fiber
Y is singular and the induced map Y → X is not separable. However, after
some blowing up we can find a certain nice model ỸR → X̃R over R of
YK → XK , called the stable model, see [18] and [26].

What can we say about the stable model, and how does it depend on
the choice of the branch points τj,R? Let us say that the stable reduction of
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YK → XK is nice if the vanishing cycles of YR are resolved by blowing up
XR = P1

R in certain disjoint closed disks with center τj,R, for j ∈ B−Bwild

(in [25] this property is called special). If the stable reduction is nice, then
the special fiber X̃ of X̃R is a comb. More precisely, X̃ is a semistable curve
consisting of the central component X and, for each index j ∈ B−Bnew, a
tail Xj meeting X in τj . Using Proposition 5.15 one can show the following.

Result 5.16. — The stable reduction of YK → XK is nice if and
only if the branch points τj,R ∈ R are “sufficiently close” to the Teichmüller
lift [τj ] ∈W (k) ⊂ R.

In the case s = dimFp V = 1 the “if”-direction of this result was
proved in [25], using a very different kind of argument. In [26] and still
under the condition s = 1, both directions of the above result are proved,
using Proposition 5.15. The case s > 1 is similar but a bit more involved
and will be dealt with in a subsequent paper.

Roughly speaking, the singularities of YR can be described in terms
of the image of the parameters tj in R (under the classifying map R̃→ R of
the deformation YR). Therefore, Proposition 5.15 provides a link between
the singularities of YR and the position of the branch points of YR → XR.
It is somewhat surprising that such a relation exists at all, because the
dependence of the cover YR → XR on the branch points τj,R seems to be
of a more global nature.

A. Picard categories and Picard stacks.

In this first appendix we recall some basic facts about Picard cat-
egories and Picard stacks. The main result we need is Proposition A.2.
References are [1], Exposé XVIII and [22].

A.1. — A (strictly commutative) Picard category is a nonempty
monoid P, together with a functor

+ : P×P −→ P, (x, y) �−→ x+ y

and two functorial isomorphisms

σ : (x+ y) + z ∼= x+ (y + z), τ : x+ y ∼= y + x

such that the following holds.
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(i) The isomorphisms σ and τ make + an associative and strictly

commutative functor, in the sense of [1], Exposé XVIII, §1.4.1.

(ii) For any object y of P, the functor x �→ x+ y is an equivalence of
categories.

Given two Picard categories P1,P2, an additive functor from P1 to P2 is
a functor F : P1 → P2 together with a functorial isomorphism

F (x+ y) ∼−→ F (x) + F (y)

which is compatible with the associativity and the commutativity laws, see
[1], Exposé XVIII, §1.4.6. Given two additive functors F,G : P1 → P2,
a morphism of additive functors u : F → G is a morphism of functors
(automatically an isomorphism) such that the diagram

F (x+ y)
ux+y−−−→ G(x+ y)� �

F (x) + F (y)
ux+uy−−−→ G(x) +G(y)

commutes. We denote by Hom(P1,P2) the corresponding category of
additive functors and by Hom(P1,P2) its set of isomorphism classes. One
can show that Hom(P1,P2) carries a natural structure of Picard category.

Let A be a complex of Abelian groups. We define a Picard category
Pic(A) as follows. Objects of Pic(A) are 1-cocycles, i.e. elements of Z1(A) =
Ker(A1 d−→ A2). Given two objects x, y ∈ Z1(A), the set of morphisms
Hom(x, y) is the set of elements f ∈ A0 such that d(f) = y− x, modulo 0-
coboundaries, i.e. elements of B0(A) = /(A−1 d−→ A0). The composition
of two morphisms f : x → y and g : y → z is the sum f + g. The functor
+ is induced from the addition law of A1. It follows immediately from
this definition that the group of automorphisms of the “neutral object” of
Pic(A) is identified with H0(A), whereas the group of isomorphism classes
of Pic(A) is identified with H1(A). Note also that Pic(A) = Pic(A[0,1]),
where A[0,1] denotes the complex of amplitude [0, 1] deduced from A such
that Hn(A[0,1]) = Hn(A) for n = 0, 1.

Given two complexes of Abelian groups A,B, a homomorphism of
complexes ϕ : A → B gives rise to an additive functor Pic(ϕ) : Pic(A) →
Pic(B). The functor Pic(ϕ) is an equivalence of categories if and only
if Hn(ϕ) is an isomorphism for n = 0, 1. Given two homomorphisms
ϕ,ψ : A→ B, a homotopy ϕ ∼ ψ gives rise to an isomorphism of additive
functors Pic(ϕ) ∼= Pic(ψ). Therefore, the association A �→ Pic(A) gives rise
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to a functor from the derived category D�0(Ab) to the category of all (small)
Picard categories (morphisms in the latter category are isomorphism classes
of additive functors). It is shown in [1], Exposé XVIII, that this functor
becomes an equivalence of categories when restricted to the full subcategory
D[0,1](Ab) of complexes of amplitude [0, 1].

Remark A.1. — Our definition of Pic(A) is a bit different from the
definition used in [1], Exposé XVIII. In loc.cit., Pic(A) is only defined for
a complex of amplitude [−1, 0]. For the application of Picard categories in
this paper, it seemed more convenient to shift degrees by 1 and to allow
arbitrary complexes.

A.2. — Let X be a topological space. (Actually, without changing
anything essential, we could let X be an arbitrary site.) We denote by
Ab(X) the category of sheaves of Abelian groups on X. The total right
derived functor of the global section functor Γ(X, ·) is denoted by RΓ(X, ·).
For generalities about stacks, see [5] or [14].

A Picard stack over X is a stack P over X, together with a morphism
of X-stacks

+ : P×X P −→ P, (x, y) �−→ x+ y

and two functorial isomorphisms
σ : (x+ y) + z ∼= x+ (y + z), τ : x+ y ∼= y + x

such that the following holds.

(i) For each open subset U ⊂ X, the fiber P(U), together with the
restrictions of +, σ and τ to U , is a (strictly commutative) Picard category.

(ii) For each inclusion U ⊂ V of open subsets, the restriction functor
P(U) → P(V ) is a morphism of Picard categories.

Given two Picard stacks P
1
,P

2
, an additive functor from P

1
to P

2
is an X-functor F : P

1
→ P

2
together with functorial isomorphisms

F (x + y) ∼−→ F (x) + F (y) whose restriction to each fiber is an additive
functor. Given two additive functors F,G : P

1
→ P

2
, a morphism of

additive functors is a morphism of X-functors u : F → G (automatically
an isomorphism) whose restriction to all fibers is a morphism of additive
functors. We denote by Hom(P

1
,P

2
) the corresponding category of additive

functors and by Hom(P
1
,P

2
) its set of isomorphism classes. It is easy to

equip Hom(P
1
,P

2
) with a natural structure of a Picard category. Moreover,

one can show that the X-groupoid
U �−→ Hom(P

1
|U ,P2

|U )
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is itself a Picard stack, see [1], Exposé XVIII.

Let A be a complex of Abelian sheaves on X. The association

U �−→ Pic(Γ(U,A))

(where U ⊂ X runs over all open subsets of X) gives rise to a prestack
P
′(A) over X. Let Pic(A) be the stack over X associated to this prestack,

see e.g. [14], Lemme (3.2). One checks that Pic(A) is a Picard stack, in a
natural way. For each open subset U ⊂ X, the natural functor

(60) Pic(Γ(U,A)) −→ Pic(A)

is an additive functor. In general, it is not an isomorphism.

A homomorphism ϕ : A → B of Abelian sheaves gives rise to
a morphism Pic(ϕ) : Pic(A) → Pic(B) of Picard stacks. Moreover,
a homotopy ϕ ∼ ψ gives rise to a isomorphism of additive functors
Pic(ϕ) ∼= Pic(ψ). Therefore, the association A �→ Pic(A) gives rise to
a functor from the derived category D(X) to the category of all (small)
Picard stacks on X (morphisms in the latter category are isomorphism
classes of additive functors).

Proposition A.2. — Let X be a topological space and A a sheaf

of Abelian groups on X such that Hn(A) = 0 for n < 0. Then we have a

natural equivalence of Picard categories

Pic(A)(X) ∼= Pic(RΓ(X,A)).

This proposition seems to be well known. Since it is an important
step in the proof of Theorem 2.2 and we could not find a suitable reference,
we give a proof.

Proof. — The hyper-cohomology spectral sequence and the assump-
tion Hn(A) = 0 for n < 0 show that

H
n(X,A[0,1]) = Hn(X,A) for n = 0, 1.

We may therefore assume that A = A[0,1]. Let U = (Ui)i∈I be an
open covering of X. We choose a well-ordering on the index set I. Let
KU := C•(U ,A) be the double complex whose nth column (for n = 0, 1) is
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the Čech cochain complex of An with respect to U :

KU :




∏
i Γ(Ui,A0) d−→

∏
i Γ(Ui,A1)�∂

�∂∏
i<j Γ(Ui,j ,A0) −d−→

∏
i<j Γ(Ui,j ,A1)�∂

�∂∏
i<j<k Γ(Ui,j,k,A0) d−→

∏
i<j<k Γ(Ui,j,k,A1)�∂

�∂

· · · · · ·
We define a morphism of Picard categories

(61) Pic(Tot(KU )) ∼−→ Pic(A)(X),

as follows. An object of Pic(Tot(KU )) is a datum (fi; gi,j), with fi ∈
Γ(Ui, Z

1(A)) and gi,j ∈ Γ(Ui,j ,A0), such that

(62) d(gi,j) = fj |Ui,j − fi|Ui,j
for all i < j and

(63) gi,j − gi,k + gj,k = 0

for all i < j < k. Let f̃i denote the object of Pic(A)(Ui) corresponding to
fi. By (62), gi,j corresponds to an isomorphism g̃i,j : f̃i|Ui,j

∼−→ f̃j |Ui,j .
Now (63) means that these isomorphisms satisfy the cocycle relation
g̃j,k ◦ g̃i,j = g̃i,k. In other words, (f̃i; g̃i,j) is a patching datum with values
in Pic(A). Since Pic(A) is a stack, there exists an object f̃ of Pic(A)(X)
together with isomorphisms αi : f̃ |Ui

∼−→ f̃i such that g̃i,j = αj ◦ α−1
i . By

definition, f̃ is the image of (fi, gi,j) under (61).

Let (f ′i , g
′
i,j) be another object of Pic(Tot(KU )), and let f̃ ′ be the

corresponding object of Pic(A)(X). A homomorphism from (fi, gi,j) to
(f ′i , g

′
i,j) is a datum (hi), with hi ∈ Γ(Ui,A0), such that

(64) d(hi) = f ′i − fi
for all i and

(65) hj |Ui,j − hi|Ui,j = g′i,j − gi,j
for all i < j. Equation (64) shows that hi corresponds to an isomorphism
h̃i : f̃i

∼−→ f̃j . Moreover, by (65) the diagram

f̃i|Ui,j
h̃i−→ f̃ ′i |Ui,j

g̃i,j

� �g̃′i,j

f̃j |Ui,j
h̃j−→ f̃ ′j |Ui,j
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commutes for all i < j. In other words, (h̃i) is an isomorphism of patching
data. Using again that Pic(A) is a stack, we see that there exists a unique
isomorphism h̃ : f̃ ∼−→ f̃ ′ such that h̃i ◦ αi = α′i ◦ h̃|Ui . By definition, h̃
is the image of (hi) under (61). This finishes the definition of (61) as a
functor. We leave it to the reader to check that (61) is indeed a morphism
of Picard categories.

Clearly, the definition of (61) is compatible with taking refinements
of the covering U . Therefore, we obtain a morphism of Picard categories

(66) lim−→U
Pic(Tot(KU )) −→ Pic(A)(X).

We claim that (66) is an isomorphism. Indeed, the discussion of the previous
paragraph, leading to the definition of (61), shows that Pic(Tot(KU )) is
isomorphic to the category of patching data for the covering U , with values
in the prestack Pic(A)′. On the other hand, the category Pic(A)(X) is the
direct limit over the categories of such patching data, where the limit is
taken over all possible coverings U ; this follows from the construction of a
stack associated to a prestack, see e.g. [14], §3. This proves the claim.

To finish the proof of the proposition, it suffices to show that the
natural morphisms

Tot(KU ) −→ RΓ(X,A)

induces isomorphisms on cohomology

lim−→U
Hn(Tot(KU )) ∼−→ H

n(X,A)

for n = 0, 1. This is proved in two steps. First, one compares the two
spectral sequences which compute the cohomology of Tot(KU ) on the one
hand and the hyper-cohomology groups Hn(X,A) on the other hand. Then
one uses the well known fact that Čech-cohomology agrees with ordinary
sheaf cohomology in degree n = 0, 1 (see e.g. [10], Ex. III.4.4). We omit the
details. ��

B. Group cohomology for affine flat group schemes.

We show how to compute the cohomology of an affine group flat group
scheme in terms of cocycles and coboundaries, just as for abstract groups.
Reference is [9], Exposé I.
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B.1. — Throughout this section, we fix a commutative ring and
an affine flat R-group scheme G = SpecOG. We denote by ∆ : OG →
OG ⊗R OG the comultiplication and by e : OG → R the counit of G.

A (right) G-R-module is an R-module M together with an R-linear
morphism µM : M → OG⊗RM such that (IdOG ⊗µM )◦µM = (∆⊗ IdM )◦
µM and (e⊗ IdM ) ◦ µM = IdM . For each R-algebra R′ and σ ∈ G(R′) we
obtain an R′-linear automorphism m �→ mσ of M ′ := M ⊗R R

′ such that
mστ = (mσ)τ . We shall denote by Mod(R,G) the category of G-R-modules,
by K+(R,G) the (triangulated) category of bounded below cochain complex
in Mod(R,G) (modulo homotopy) and by D+(R,G) the derived category
of K+(R,G).

Given a G-R-module M , the invariant R-submodule MG is the set
of all m ∈ M such that µM (m) = 1 ⊗m, or, what is equivalent, mσ = m

for all R′ and σ ∈ G(R′). The functor M �→ MG from Mod(R,G) to the
category of Abelian groups is obviously additive and left exact. We denote
its nth right derived functor by Hn(G, · ) and its total right derived functor
by RG. (For the existence of enough injectives in Mod(G,R), see the proof
of Lemma Bbelow.)

B.2. — Given an R-module M , we set
M̃ := OG ⊗R M.

The map ∆ ⊗ IdM : M̃ → OG ⊗R M̃ gives M̃ the structure of a (right)
G-R-module. A G-R-module which is isomorphic to M̃ for some R-module
M is called coinduced. If G is a finite group then this agrees with the usual
definition of coinduced modules.

Let M be an R-module M , P a G-R-module and ϕ : P → M an
R-linear morphism. Then ϕ̃ := (IdOG ⊗ϕ) ◦ µP : P → M̃ is easily checked
to be G-equivariant. One checks that this construction yields a natural
isomorphism
(67) HomR(P,M) ∼−→ HomG(P, M̃).
(The inverse of (67) is defined as follows: given a G-equivariant homo-
morphism ψ : P → M̃ , ϕ := (e ⊗ IdM ) ◦ ψ : P → M is an R-linear
morphism such that ψ = ϕ̃.) Moreover, the isomorphism (67) makes the
functor M �→ M̃ a right adjoint of the forgetful map from Mod(R,G) to
Mod(R).

Lemma B.1. — For any R-module M we have

Hn(G, M̃) =
{
M for n = 0,

0 for n > 0.
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Proof. — For n = 0, the lemma is equivalent to the exactness of the
sequence

(68) 0 →M −→ M̃ −→ OG ⊗R M̃

(the first arrow sends m to 1 ⊗ m and the second a ⊗ m to ∆(a) ⊗ m −
1 ⊗ a ⊗ m). Now (68) is exact on the left because R → OG is flat, by
assumption. Exactness in the middle is proved using the properties of the
counit e : OG → R. Hence the lemma holds for n = 0.

Choose an injective resolution M → I0 → I1 → · · · of the R-
module M . The functor M �→ M̃ , being the right adjoint of an exact
functor, preserves injectives, see e.g. [24], Proposition 2.3.11. Therefore,
M̃ → Ĩ0 → Ĩ1 → · · · is an injective resolution of the G-R-module M̃ . Now
the general case of the lemma follows from the case n = 0. ��

B.3. — Let M be a G-R-module. In order to compute the coho-
mology groups Hn(G,M), it suffices to write down a resolution of M by
coinduced G-R-modules. We do this as follows. Set B−1(G,M) := M and
define inductively Bn(G,M) := (Bn−1(M))∼ for all n � 0. As R-modules,
we simply get

Bn(G,M) = OG ⊗R · · · ⊗R OG︸ ︷︷ ︸
(n+1)×

⊗RM.

We define differentials ∂ : Bn(G,M) → Bn+1(G,M) by setting

∂(a0 ⊗ · · · ⊗ an ⊗m) :=
n∑

ν=0

(−1)νa0 ⊗ · · · ⊗∆(aν)⊗ · · · ⊗ an ⊗m

+(−1)n+1a0 ⊗ · · · ⊗ an ⊗ µM (m).

Note that ∂ : M = B−1(G,M) → M̃ = B0(G,M) equals µM . It is easy to
check that

(69) M
µM−→ B0(G,M) ∂−→ B1(G,M) ∂−→ · · ·

is an (augmented) complex a G-R-modules. (In fact, (69) is the (aug-
mented) cochain complex associated to M and the pair of adjoint functors
Mod(G,R) � Mod(R), see [24], §8.6.) Moreover, (69) is exact. This follows
immediately from the existence of the homotopy

s :
{

Bn+1(G,M) −→ Bn(G,M)
a0 ⊗ · · · ⊗ an ⊗m �−→ e(a0)a1 ⊗ · · · ⊗ an ⊗m

.

Applying the functor M �→ MG to the resolution (69) defines an
augmented complex of R-modules

(70) MG −→ C0(G,M) ∂−→ C1(G,M) ∂−→ · · ·

ANNALES DE L’INSTITUT FOURIER



FORMAL DEFORMATION 1159

Elements of Cn(G,M) are called n-cochains with values in M . Likewise,
elements of Zn(G,M) := Ker(∂) (resp. of Bn(G,M) := /(∂)) are called
cocycles (resp. coboundaries). Note that we have an isomorphism of R-
modules

Cn(G,M) ∼= OG ⊗R · · · ⊗R OG︸ ︷︷ ︸
n×

⊗RM,

such that the canonical injection Cn(G,M) ↪→ Bn(G,M) sends the element
a1⊗ · · ·⊗ an⊗m to the element 1⊗ a1⊗ · · ·⊗ an⊗m. Given an R-algebra
R′, an n-cochain ϕ ∈ Cn(G,M) gives rise to a function
G(R′)× · · · ×G(R′) −→M ′ = M ⊗R R

′, σ = (σ1, . . . , σn) �−→ ϕσ.

Now ϕ is a cocycles (resp. a coboundary) if and only if this function is a
cocycle (resp. a coboundary) in the traditional sense, for all R-algebras R′

(again, it suffices to take R′ flat over R). For instance, a 1-cochain ϕ is a
cocycle if and only if

ϕσ,τ = ϕτ
σ + ϕτ

holds for all σ, τ ∈ G(R′). It is a coboundary if and only if for all R′ there
exists an element m ∈M ′ such that ϕσ = mσ −m holds for all σ ∈ G(R′).

It follows from Lemma B.1 that
(71) Hn(G,M) = Hn(C•(G,M))
for all G-R-modules M and all n � 0. The next proposition is a slight
generalization of (71).

Proposition B.2. — Let M• ∈ K+(R,G) be a bounded below

complex of G-R-modules. Then we have a natural isomorphism of derived

complexes

R
G(M•) ∼= Tot(C•(G,M•)).

Proof. — Let K denote the double complex B•(G,M•). The qth
row of K is exact except at degree p = 0, where the cohomology is Mq.
Therefore, the spectral sequence associated to K (filtered by rows) shows
that the augmentation M• → K gives rise to a quasi-isomorphism

M• −→ Tot(K).
By definition, the complex Tot(K) consists entirely of coinduced G-
R-modules, which are acyclic with respect to taking G-invariants, by
Lemma B.1. Therefore, [24], Theorem 10.5.9 implies

R
G(M•) = Tot(K)G = Tot(C•(G,M•)).

This finishes the proof of the proposition. ��
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C. Sheaves of G-OY -modules.

The goal of this last appendix is to review the definition of equivariant
hyperext groups and the construction of the two spectral sequences (79)
and (82). The standard reference is [7].

C.1. — Let G → S and Y → S be as in §1. Let λ : G ×S Y → Y

(resp. p : G ×S Y → Y ) denote the morphism defining the action of G on
Y (resp. the second projection). Given a sheaf of OY -modules F , a lift of
the G-action from Y to F is given by an isomorphism λ∗F → p∗F which
satisfies certain obvious axioms, see e.g. [17], §III.12.

Let F and G be G-OY -modules. Let HomY (F ,G) denote the R-
module of OY -linear (but not necessarily G-equivariant) homomorphisms
from F to G. It carries a natural structure of G-R-module, defined as
follows. Let R′ be a flat R-algebra and σ ∈ G(R′). Since R′ is flat over
R we have a natural isomorphism

HomY (F ,G)⊗R R
′ ∼= HomY ′(F ′,G′).

Given f : F ′ → G′ ∈ HomY ′(F ′,G′), we define fσ via the following
commutative diagram:

F ′ fσ−→ G′
ϕσ

� �ϕσ

σ∗F ′ σ∗f−→ σ∗G′

Note that an OY -linear morphism f : F → G is G-equivariant if and only
if it is invariant under the G-action just defined, i.e.

HomG(F ,G) = HomY (F ,G)G.

C.2. — Let F be an OY -module. We set F̃ := µ∗p∗F and claim
that F̃ carries a natural structure of G-OY -module. To define a G-action
on F̃ , let S′ = SpecR′ be an affine S-scheme and σ ∈ G(S′). As usual, we
indicate base change to S′ with a prime (e.g. Y ′ = Y ×S S

′) and identify
σ with the automorphism of Y ′ induced from σ via the action of G on Y .
Also, we let tσ : G′×S′ Y

′ ∼−→ G′×S′ Y
′ denote the automorphism induced

from left translation by σ on the first factor. Since p′ ◦ tσ = p′, we have a
natural isomorphism

(72) p′
∗F ′ ∼−→ t∗σp

′∗F ′.
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Using the commutative diagram

(73)
G′ ×S′ Y

′ tσ−→ G′ ×S′ Y
′

µ′
� �µ′

Y ′
σ−→ Y ′

we obtain an isomorphism ϕσ : F̃ ′ ∼−→ σ∗F̃ ′ as follows:

(74) F̃ ′ = µ′∗p
′∗F ′ ∼−→ µ′∗t

∗
σp
′∗F ′ ∼−→ σ∗µ′∗p

′∗F ′ = σ∗F̃ ′.

One checks that the definition of ϕσ is functorial in S′ and satisfies the rule
ϕστ = (τ∗ϕσ)◦ϕτ . This defines a lift of the G-action from Y to F̃ . we may
therefore regard F̃ as a G-OY -module. A G-OY -module isomorphic to F̃
for some OY -module F is called coinduced. Compare with §B.2.

Proposition C.1.

(i) Given an OY -module F and a G-OY -module G, we have a natural

isomorphism of G-R-modules

HomY (G, F̃) ∼= ˜HomY (G,F)

(the right hand side is the G-R-module coinduced from the R-module

HomY (G,F)).

(ii) The functor F �−→ F̃ is the right adjoint of the forgetful functor

Mod(Y,G) → Mod(Y ).

Proof. — Given a G-OY -module G, we have natural isomorphisms
of R-modules

HomY (G,F) ∼= HomG×Y (µ∗G, p∗F) ∼= HomG×Y (p∗G, p∗F)(75)
∼= ˜HomY (G,F).

Here the first isomorphism is obtained from the adjointness of µ∗ and µ∗,
the second isomorphism from the G-action on G and the third isomorphism
exists because G→ S is flat. Note that both the first and the last term in
(75) carry a natural structure of G-R-module. One checks that (75) defines
an isomorphism of G-R-modules. This proves (i). Taking G-invariants and
using Lemma B.1 for n = 0, we obtain an isomorphism of R-modules

(76) HomG(G, F̃) ∼= HomY (G,F).

A tedious but elementary verification shows that this isomorphism makes
F �→ F̃ the right adjoint of the forgetful functor Mod(Y,G) → Mod(Y ). ��
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Corollary C.2.

(i) The category Mod(Y,G) has enough injectives.

(ii) Given a G-OY -module G, the functor

HomY (G, ·) : Mod(Y,G) −→ Mod(R,G)

sends injective G-OY -modules to G-R-modules which are acyclic with

respect to the functor M �→MG.

C.3. — LetA,B be complexes of G-OY -modules. We assume thatA
is bounded below and that B is bounded in both directions. Then the total

Hom complex Hom•G(A,B) is a (bounded above) complex of Abelian groups
whose nth cohomology group is isomorphic to the group of homomorphisms
A → B[−n] up to homotopy, i.e.

Hn(Hom•G(A,B)) = HomK+(Y,G)(A,B[−n]).

See e.g. [24], 2.7.4. Let K−(Ab) denote the category of bounded above
complexes of Abelian groups, up to homotopy, and D−(Ab) its derived
category. The functor Hom•G(A, · ) : Kb(G,Y ) → K−(Ab) is a morphism
of triangulated categories and has a total right derived functor, which we
denote by RHomG(A, · ) : Db(Y,G) → D−(Ab). The nth hyperext of A
and B is defined as

ExtnG(A,B) := Hn(RHomG(A,B))

see e.g. [24], §10.7. It follows from standard arguments that the functor
RHomG( · ,B) : D+(Y,G) → D−(Ab) is a morphism of triangulated
categories.

Ignoring the G-action, we may as well define the total Hom complex
Hom•Y (A,B). By §C.1, the terms of Hom•Y (A,B) carry a natural structure
of G-R-modules such that

(77) Hom•G(A,B) = Hom•Y (A,B)G.

This formula displays the functor Hom•G(A, ·) as the composition of two
morphisms of triangulated categories

Kb(Y,G) −→ K−(R,G) −→ K−(Ab).

It follows from Corollary C.2 and [24], Theorem 10.8.2 that

(78) RHomG(A,B) ∼= RG(RHomY (A,B)).

Therefore, the hyperext group ExtnG(A,B) can be computed via the
Grothendieck spectral sequence

(79) Ep,q
2 := Hp(G,ExtqY (A,B)) =⇒ Extp+q

G (A,B).
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C.4. — Now assume that G→ S is finite and that Y can be covered
by affine G-stable open subsets. Then by [17], Theorem 12.1, the quotient
scheme X := Y/G exists and the natural projection π : Y → X is finite.
Given a G-OY -module F , one defines a sheaf of OX -modules FG such that

Γ(V,FG) = Γ(π−1(V ),F)G.

Let F , G be two G-OY -modules. In view of §C.1 it is clear that the sheaf
HomY (F ,G) is endowed with a natural action of G, i.e.with a structure of
G-OY -module. We set

HomG(F ,G) := HomY (F ,G)G.

By definition, we have

(80) HomG(F ,G) = Γ(X,HomG(F ,G)).

Lemma C.3. — The additive functor HomG(F , · ) sends injective

G-OY -modules to Γ(X, · )-acyclic OX -modules.

Proof. — By the construction of injective objects of Mod(Y,G) in
§C.2, it suffices to proof the lemma for G-OY -modules of the form Ĩ, where
I is an injective OY -module. Using Proposition C.1 (ii) one shows that

HomG(F , Ĩ) = π∗HomY (F , I).

It is well known that HomY (F , · ) sends injective to Γ(Y, · )-acyclic OY -
modules. But since π is finite the functor π∗ is exact and so π∗HomY (F , I)
is Γ(X, · )-acyclic. This proves the lemma. ��

Given two complexes of G-OY -modules A and B (with A bounded
below and B bounded), one defines the (bounded above) complex of OX -
modules Hom•G(A,B). We let RHomG(A,B) denote the total right derived
functor of Hom•G(A, · ), evaluated at B, and set

ExtnG(A,B) := Hn(RHomG(A,B)).

As in the previous subsection, it follows from (80) and Lemma C.3 that

(81) RHomG(A,B) ∼= RΓ(X,RHomG(A,B)).

In particular, there exists a spectral sequence

(82) Hp(X, ExtqG(A,B)) =⇒ Extp+q
G (A,B).

Following [7], we call (82) the local-global spectral sequence for Ext∗G.
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