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FORMAL DEFORMATION OF CURVES
WITH GROUP SCHEME ACTION

by Stefan WEWERS

Introduction.

Let Y be a (not necessarily smooth) curve over an algebraically closed
field k of characteristic p > 0. Let W be a complete local ring with residue
field k. Furthermore, let G be a finite flat group scheme over W which acts
faithfully on Y. We denote by Def(Y, G) the functor which associates to a
local Artinian W-algebra R with residue field k& the set of isomorphism
classes of G-equivariant deformations of Y to R. The present paper is
concerned with a study of the functor Def(Y,G), using cohomological
methods. The special case where Y is smooth and G is a constant group
scheme has been studied previously by Bertin and Mézard [3].

One of the motivations for studying the functor Def(Y, G) is the lifting
problem. Suppose that Y is smooth and that G is a finite abstract group
which acts faithfully on the curve Y. Let W be the ring of Witt vectors over
k, and consider G as a constant group scheme over W. In this situation,
the lifting problem asks the following question. Does there exist a finite
extension R/W of complete discrete valuation rings and a G-equivariant
lift of Y over R? For instance, if the deformation functor Def(Y,G) is
unobstructed then the answer to this question is positive.

A conjecture of Oort predicts that the lifting problem has a positive
solution if the group G is cyclic. However, even in the simplest nontrivial
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Math. classification: 14B12, 14H30, 13D10.



1106 Stefan WEWERS

case G = Z/p (where Oort’s conjecture is proved, see [21] and [6]) the
functor Def(Y, G) is obstructed. In [3] these obstructions are identified as
elements in a certain Galois cohomology group. However, they remain a
bit mysterious. One of the motivations for generalizing the approach of
Bertin-Mézard is the author’s hope that this will lead to new insight into
the nature of these obstruction, and the lifting problem in general.

Another (related) motivation comes from the study of the stable
reduction of Galois covers of curves. Let R be a complete discrete valuation
ring, with algebraically closed residue field k of characteristic p and fraction
field K of characteristic 0. Let Yy — Xg be a Galois cover of smooth
projective curves over K, with Galois group G. After a finite extension of
K, there exists a certain natural R-model Yp — Xpg of Y — Xk, called
the stable model, see [18] or [26] for a precise definition. The problem we
are interested in is to understand this model and in particular its relation
with the ramification of the prime p in the field K. It has become clear
from recent work of several authors (e.g. [11], [19], [26]) that this problem
naturally leads to the study of singular curves with an action of a finite
group scheme, and of the deformation theory of such objects.

This paper is divided into two main parts. The first part (§1-3) is
an exposition of certain cohomological methods for studying equivariant
deformations of (not necessarily smooth) curves with group scheme action.
Although the guiding principles are the same as in [3], we have to use much
heavier technical machinery. For instance, it does not suffice to look at the
equivariant cohomology of the tangent bundle of Y over k, as in [3]. Instead,
one has to consider certain hyperext groups with values in the equivariant
cotangent complex of Y over k. The latter is an object in the derived
category of G-Oy-modules, and was first introduced by Grothendieck in [8].

In principal, everything one might want to known about the equivari-
ant cotangent complex and its role in deformation theory can be found in
Tllusie’s book [12]. However, the generality in which [12] is written makes it
somewhat difficult to read and to work with in a concrete situation (at least
for the author of this paper). In the literature there are a number of excel-
lent and readable accounts of certain special cases (see e.g. [23] or [3], §2-3)
but none seems to be sufficiently general to deal with the case we need.
To improve this situation, the present paper contains a self-contained ex-
position of a special case of Illusie’s theory, which should nevertheless be
sufficiently general for the applications we have in mind.
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In the second part of this paper (§4-5) we apply the general theory to
a special case which is relevant for the study of three point covers with bad
reduction. In particular, we prove a certain result which is a key ingredient
for the main theorem of [26].

We start in §4 with a multiplicative deformation datum. To give
an idea what this is, fix a smooth projective curve X over k. Then a
multiplicative deformation datum over X is a pair (Z, V), where Z — X is
a Galois cover of smooth projective curves over a field k of characteristic
p > 0, with Galois group H of order prime-to-p, and V' C Qy(z)/x is an
H-stable Fp-vector space of logarithmic differential forms. To (Z,V) we
associate a finite flat group scheme G over W (k) and a (singular) curve Y’
over k with an action of G such that X = Y/G. Briefly, the group scheme
G is of the form p; x H and Y — Z is the pj-cover locally given by s
Kummer equations y? = u;, where ¢; = du;/u;, i = 1,...,s, form a basis
of V.

We study the deformation functor Def(Y, G) for such an action of a
group scheme G and exhibit a number of its properties. Some of theses
properties are specific to the action of G we deal with. They are in general
very different from the properties enjoyed by the deformation functor
studied in [3]. For instance, there is in general no such thing as a local-
global principle, because the “local contribution” to the tangent space
of the functor Def(Y,G) is not concentrated in a finite number of closed
points. However, from another point of view things are really much easier
than in [3], due to the fact that the “p-Sylow” of G is a multiplicative
group scheme. Since multiplicative group schemes have trivial cohomology,
the general machinery developed in the first sections shows that the
deformation functor Def(Y,G) is unobstructed. Another nice property of
Def(Y, G) is the existence of a natural morphism of deformation functors
(1) Def(Y,G) — Def(X; 7;)
which sends an equivariant deformation of Y to its quotient by G. (Here
we regard X as a marked curve, the marked points being the “branch
points” 71,...,7, of the G-cover Y — X.) In this respect, the G-cover
Y — X behaves like a tamely ramified Galois cover. However, unlike in the
case of tamely ramified Galois covers, the functor (1) is in general not an
isomorphism.

In §5 we assume in addition that the curve X is the projective line and
that the vector space V' is an irreducible F,[H]-module which decomposes,
after tensoring with ]F‘p7 into the direct sum of one dimensional modules.

TOME 55 (2005), FASCICULE 4
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Among all the multiplicative deformation data (Z, V) of this type, there
are some which we call special. The definition of specialty is given in terms
of certain numerical invariants attached to (Z,V). But philosophically,
special deformation data are attached to three point Galois covers of the
projective line with bad reduction to characteristic p. We refer to [25]
and [26] for details on the case dimp, V' = 1 and for a more satisfactory
explanation of the connection to three point covers. Let us only mention
that the deformation theory of the G-cover Y — X attached to a special
deformation datum has a number of very nice and surprising properties:

o The lifting property: the morphism of deformation functors (1) is an
isomorphism. In this respect, the G-cover Y — X behaves just like a
tamely ramified Galois cover.

e The local-global principle: local deformations in formal neighborhoods
of the ramification points (which satisfy a certain condition) can be
interpolated by a unique global deformation of Y.

o Rigidity: If an equivariant deformation of Y in equal characteristic
(i.e. over a local k-algebra) is again special then it is the trivial
deformation. Therefore, there exist at most a finite number of special
deformation data of a given type (up to isomorphism), and every
special deformation datum can be defined over a finite field.

These properties are very particular to special deformation data. They
reflect, in a rather subtle way, the connection to three point covers with
bad reduction and in particular to the fact that three point covers are
“rigid” objects.

At the end of the paper, the reader will find three appendices
containing background material which the author found difficult to extract
from the literature. This includes Picard stacks, the cohomology of affine
group schemes, and two spectral sequences which are useful to compute
equivariant hyperext groups.

1. The equivariant cotangent complex.

In [12] Illusie defines, for any morphism of schemes ¥ — S, the
cotangent complex Ly /g. This is a complex of flat Oy-modules, well defined
up to canonical quasi-isomorphism, such that HO(EY/S) =Qys. Y — 8
is smooth then Ly, = Qy/s. Moreover, if G — S is a group scheme

ANNALES DE IINSTITUT FOURIER
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acting on Y, Illusie defines the equivariant cotangent complex as an object
of the derived classifying topos ©T(BG,x) whose underlying complex of
Oy-modules is Ly/g.

In this section we give a more down-to-earth definition of the equiv-
ariant cotangent complex which, however, works well only if Y — S and
the G-action on Y have certain good properties. We follow the original
approach of Grothendieck [8]. This gives the “correct” cotangent complex
only if Y — S is a local complete intersection morphism. We assume that Y’
admits locally an equivariant embedding into a formally smooth S-scheme
with G-action. Under this assumption, it is much easier to endow the cotan-
gent complex with a natural G-action.

1.1. — Let S = Spec R be an affine scheme, G — S a flat affine
group scheme and ¥ — S an S-scheme with an action of G. By a
G-Oy-module we mean a sheaf of Oy-modules F, together with a lift
of the G-action from Y to F. A homomorphism between two G-Oy-
modules F and G is a sheaf homomorphism which is both Oy-linear
and G-equivariant. The group of such homomorphisms is denoted by
Homg (F,G). We denote by Mod(Y, G) the corresponding category of G-
Oy-modules. See Appendix C.1 for more details on the category Mod(Y, G).
For * € {4+, —, b}, we denote by £ (Y, G) the category of cochain complexes
in Mod(Y, G), up to homotopy, which are bounded from below (x = +),
bounded from above (¥ = —) or bounded in both directions (¥ = b). We
write ©*(Y, G) for the derived category of £*(Y, Q).

In this section we define the equivariant cotangent complex Ly /g of
the morphism Y — S as an object of D1 (Y, &), assuming:

AssuMPTION 1.1. —  Every point of Y is contained in an affine
and G-stable open neighborhood U C Y such that the following holds.
There exists a formally smooth affine S-scheme P — S with G-action and
a G-equivariant closed immersion ¢ : U — P.

Remark 1.2. — It is not clear to the author how restrictive Assump-
tion 1.1 is. We expect that it can be verified in any concrete situation where
one actually wants to apply our theory. For instance, in §4 we use the case
where G is an extension of a constant by a multiplicative group scheme and
acts freely on a dense open subset of Y. In this situation, Assumption 1.1
is easy to verify.

TOME 55 (2005), FASCICULE 4
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1.2. — A triple (U, P, ¢) as in Assumption 1.1 is called a local chart
for Y — S. Often we will simply write ¢ instead of (U, P, ¢). Given such a
local chart, we denote by Z C Op the sheaf of ideals defining the image of
. We define the cotangent complex of the chart ¢ as the following complex
of G-Oy-modules:

(2) L, = (Z/IQ HQP/S(@Oy).

The two nontrivial terms of L, lie in degree —1 and 0. Note that there is
a natural augmentation £, — {2y, which identifies Qy/g with HO(L,).

Remark 1.3.

(i) If Y/S is of finite type, then we may take P/S to be smooth. In
this case, Eg = Qp/5 @ Oy is a locally free Oy-module of finite rank.

(ii) If, moreover, Y — S is a local complete intersection (in the sense
of [2], VIIL.1.1) then the embedding ¢ is regular. Recall that this means
the following. For every point y € U the stalk Z, is an ideal generated by
a regular sequence of the local ring Op,,. It follows that E;l =ZI/I%is a
locally free Oy-module of finite rank, too.

Let (U,P,p) and (V,Q,%) be two local charts, and assume that
V C U. A morphism from 1) to ¢ is a G-equivariant morphism of S-schemes
u : Q — P such that the diagram

v Y0
L
u 2 p

commutes. We use the notation u : 1y — ¢. Note that u induces a morphism
of complexes of G-Oy-modules

u* Loly — Ly

LEMMA 1.4.
(i) The homotopy class of u* is independent of the morphism u.

(ii) The morphism u* is a quasi-isomorphism.

Proof. — It is no restriction to assume that U = V. We may
also assume that U is affine. Let P’ denote the second infinitesimal
neighborhood of U in P, i.e. the closed subscheme of P defined by the sheaf
of ideals Z?2. Similarly, Q' denotes the second infinitesimal neighborhood of

ANNALES DE IINSTITUT FOURIER
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Y in Q. It is defined by J?2, where J C Og is the sheaf of ideals defining
the image of ¢. Let v : Q — P be another morphism of local charts, and set
u' :=u|g and v := v|g . It is clear that u* (resp. v*) only depends on the
restriction u’ (resp. on v’). An easy computation shows that the difference

of the two pullback maps
(W) = () : 0p — T/)T?

is an R-linear derivation. Hence it gives rise to an Oy-linear map s :
Qp®0Oy — J/J?, and one checks that s is the desired homotopy between
u* and v*:

I/T 2 4, Q P/S® Oy

vor| A e
JIT?: 1 Qus®0y
This proves (i).
By assumption @ — S is formally smooth and U is affine. Hence

there exists a morphism w’ : P’ — Q@ lifting ¢ : Y — Q. As in the proof of
(i), one shows that there are homotopies

(W) ou* ~Idg, u o (w')* ~1Idg, .

This proves (ii). O

1.3. — We are now ready to define the equivariant cotangent
complex. By Assumption 1.1 there exists a covering (U;);cr of Y by affine
and G-stable opens U; C Y, each admitting a local chart ¢; : U; — P;. We
choose, once and for all, a well-ordering on the set of indices of the covering
(U;). The datum (U;, ¢;) is called an atlas.

For any (n + 1)-tuple i = (4o, ...,%,) we set

UZ::Uioﬂ...ﬂUi PL’::PiOXS-nXSPi

n? n’

Qi = Pig X 2 X Qi Ul(_)Pl
Clearly, ¢; is a local chart and gives rise to a complex of G-Oy,-modules

Ly,;. We denote by £; the push-forward of L, to Y. Thus, £, is a flat and
quasi-coherent G-Oy-module such that £;|y, = Loy,.

For i = (ig,...,in) as above and 0 < v < n, let p/ : P, — Py
denote the projection which leaves out the vth component (ie. i’ =
(%0, -+ %y, ..., 0n)); it is a morphism ¢; — ¢y of local charts. The resulting

TOME 55 (2005), FASCICULE 4
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morphism (p})* : L, v; — Ly, extends in a canonical way to a morphism
of G-Oy-modules 87 : L — L;. Note that

(3) 0y 0 0 = 0l 0 O

~ ~

holds for p < v, if we set i’ := (...,%y,...) and i := (... 7, ...).

DEFINITION 1.5. —  The equivariant cotangent complex of the
morphism Y — S (relative to the open covering (U;) and the local charts
;) is the total complex

ﬁy/s = TOt(IC)

of the following double complex of G-Oy-modules:

Mt - JJ<

o o
H EZJ'I i’ H E(i),j

1<j 1<j

K: la la
I c)e = I 2

i<j<k i<j<k
o o
The vertical differentials are defined as 9 := > 0 _ (—=1)" [, oy« KPd —

JCP+1:4, The horizontal differentials are induced from the differentials of the
complexes L;. The columns of K start with degree 0, so Ly, starts with
degree —1. Note that Ly consists of flat and quasi-coherent sheaves.

PROPOSITION 1.6. —  For all i there exist a quasi-isomorphism
Bi : Ly/slu, — Ly, Moreover, for all i < j we have a homotopy

1
Si)jla »OﬁiNagjOﬁj.

.3
which satisfies the cocycles relation

(4) (‘?1—37]-_’,6053-’;c —31-17]-7,6081-,1@ +5‘1-27j7kosi,j =0.

Proof. — The natural projections K%4|y;, — L7 induce a morphism
Bi : Ly/slu, — Ly, We define the homotopy s; ; as follows:

0, { (Lyss) — Lij g { (Lyss)t  — LYy

S (frigey) v iy SO (ks Gram) v fi

ANNALES DE IINSTITUT FOURIER
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We leave it to the reader to check that s;; is indeed a homotopy from
9} j o Bi to 9Y; o B; and satisfies the cocycle relation (4).

It remains to show that (; is a quasi-isomorphism. Let 7,5 be a
pair of indices. By definition and by Lemma 1.4 (ii) the restriction of
6‘2% : L; — L;j to Us ; is a quasi-isomorphism. Therefore, for ¢ = —1,0 we
may define

af = HIY0);) o HYD} ;) : HY(Li)|v,, — HY(L;)

Uiy

One checks that the cocycle relation oz?.,k oaf; = af, holds. Therefore,
there exists a G-Oy-module 77 together with isomorphisms v{ : 79|y, ——
H9(L;) such that oy ; =~ o ()7 Tt is a bit tedious but elementary to
define, for each (n+1)-tuple i = (i, . . .,%n) an isomorphism ;' : 79y, ——
HY(L;) which identifies the complex

) 1ok = ([T ae) — [Tac,) — )

i i<j
with the Cech-resolution of the sheaf 7. We conclude that the complex (5)
is exact. Now the spectral sequence HP(H9(K)) = HPT9(Ly/g) identifies
T9 with HY(Ly/s) in such a way that ~ is identified with H?(3;). In
particular, H9((;) is an isomorphism, which is what we wanted to show.O

Remark 1.7. —  Let (U, ¢;) and (U], ¢;) be two atlases and Ly/g
and L}, /s the corresponding complexes, as defined above. Then the disjoint
union of (U;,¢;) and (U], ¢}) is again an atlas and gives rise to a third
complex El}///sa canonically equipped with quasi-isomorphisms £§£/S —
Ly s and E’{,/S — Eg//s. In other words: the cotangent complex Lyg,
considered as an object of the derived category DT (Y, &), does not depend
on the choice of the atlas (U, ;).

Remark 1.8. — By definition we have HO(EY/S) = Qy,s and
HY(Ly;s) = 0 for ¢ ¢ {—1,0}. It is also clear that Ly,5 has functorial
properties similar to the sheaf of differentials {2y, 5. Namely, if

Y’ LN Y

6) | |

S"=SpecR" — S =SpecR

is a commutative and G-equivariant diagram of schemes (where Y/S and
Y’ /S’ satisfy Assumption 1.1), then we have a natural homomorphism

(7) U*'CY/S — ﬁy//sl

TOME 55 (2005), FASCICULE 4
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in ®*(Y’, G). The morphism (7) is an isomorphism in each of the following
two cases:

(i) We have S = 5" and Y/ — Y is an open immersion.

ii) The diagram (6) is Cartesian and either Y — S or S — S is flat.
(i) g

Remark 1.9. — IfY — §'is a local complete intersection, then Ly/g
agrees with Illusie’s equivariant cotangent complex, up to canonical quasi-
isomorphism. In general, Ly /g is quasi-isomorphic to Illusie’s equivariant
cotangent complex, truncated at degree —1. In particular, if F is a G-Oy-
module then the nth hyperext group Extg(Ly /g, F) is the “correct” one
only for n < 1. See [12], Chapitre III, Corollaire 1.2.9.1.

2. Extensions.

In this section we prove that G-equivariant extensions of the mor-
phism Y — S by a quasi-coherent G-Oy-module F are classified by the
group Extf, (Lyys,F). See Corollary 2.3. This result will be the basis for
the results on equivariant deformations of Y — S in §3. Actually, instead
of working with extensions of the scheme Y, we prefer to work with the
opposite category of extensions of the sheaf Oy.

2.1. — Let G— S=SpecRand Y — S be as in §1.1. We also fix
a G-Oy-module F which is a quasi-coherent Oy -module.

DEFINITION 2.1. —  An equivariant extension of Oy by F is given
by a short exact sequence of sheaves of R-modules on Y, of the form
0—-F —E&— 0Oy —0,

together with a G-action and a structure of sheaf of R-algebras on £ such
that the following holds:

(i) The maps F — & and £ — Oy are G-equivariant.
(ii) The map &€ — Oy is an R-algebra morphism.

(iii) The sheaf F, considered as a subsheaf of &£, is a sheaf of ideals

with square zero.

We denote by €t (Oy,F) the category of all such extensions. Morphisms
between extensions are defined in the obvious manner. (The Five Lemma
shows that all morphisms are in fact isomorphisms.)

ANNALES DE IINSTITUT FOURIER
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Given an extension &£ of Oy by F, we get a morphism of S-schemes
Y’ — Y (which is a homeomorphism on the underlying topological spaces)
such that & = Oy/. The scheme Y’ is called an extension of Y by F.

By taking Baer sums of short exact sequences, one defines a bifunctor
(£1,&) — E1+&;. Together with certain natural transformations (€1 +&3)+
E3 2 E1+(E3+E5) and &1 +E; = E3+ &1, it gives €t (Oy, F) the structure
of a (strictly commutative) Picard category, see Appendix A.

THEOREM 2.2. — Let F be a coherent sheaf of G-Oy-modules.
We denote by Pic(RHomg(Ly,g,F)) the Picard category associated to
the derived complex RHomg(Ly s, F), see Appendix A.1 and C.3. Then
there exists a natural isomorphism of Picard categories

€t (Oy, F) = Pic(RHome (Ly/s, F))-

We will sketch a proof of Theorem 2.2 in the rest of this section. The
following corollary corresponds to Theorem 1.5.1 of [13].

COROLLARY 2.3. —  The group of isomorphism classes of equiv-
ariant extensions of Y by F is canonically isomorphic to Exté(ﬁy/ s, F).
Moreover, the group of automorphisms of any fixed equivariant extension
of Y by F is canonically isomorphic to Homg(Q2y /s, F).

2.2. — In the following three subsections we prove a non-equivariant
version of Theorem 2.2. To this end, we denote by €xt(Oy,F) the Picard
category of (non-equivariant) extensions of Oy by F.

PROPOSITION 2.4. —  Suppose that Y is affine and admits a global
chart ¢ : Y — P. Let L, be the cotangent complex of ¢, see §1.2. Then
there exists an isomorphism of Picard categories

F, : &t(Oy,F) — Pic(RHomy (L, F)).
Given a morphism u : 1) — @ of global charts, let
u : Pic(RHomy (Ly, F)) = Pic(RHomy (L, F))

denote the isomorphism of Picard categories induced from the quasi-
isomorphism v* : L, — Ly. There exists an isomorphism of additive
functors

tu Tuo Fw ; Fap
such that the following holds. If x —— 1) —— ¢ is the composition of two
morphisms of global charts, then
(8) tyoy = ty 0 U(ty).

TOME 55 (2005), FASCICULE 4
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Proof. — Using that Y is affine and that P/S is formally smooth
one shows that /.Zg = Qp/s ® Oy is a projective Oy-module. This implies
that

RHomy (L, F) Y = Hom$. (£, F) 101,

Therefore, we may replace RHomy (L, F) in the statement of the propo-
sition by the complex Hom3 (Ly /g, F). We write Y = Spec A and P =
Spec B. Then ¢ corresponds to an ideal I < B such that A = B/I. We also
write F = M for some A-module M. With this notation, we have

Homy, (Lo, F) = (Homa(Qp/r ® A, M) o4, Hom 4 (I/1%, M)).

An object of €rt(Oy,F) is given by an extension of R-modules 0 — M —
E — A — 0, where E carries in addition the structure of an R-algebra such
that the following holds. Firstly, £ — A is a homomorphism of R-algebras;
secondly, M? = 0, considered as ideal of E. In the rest of the proof, we
shall refer to such an object simply as an extension. Since B is formally
smooth, there exists a homomorphism of R-algebras A : B — FE lifting the
canonical map B — A. Set v := \|; mod I?. It is clear that v is an A-linear
morphism I/I? — M. We consider v as an object of Pic(Homy (L, F))
and set
F,(E) :=v.

Let 0 = M — E’ — A — 0 be another extension and f : E — E’
an isomorphism of extensions. Let A’ : B — E’ be an R-algebra morphism
lifting B — A and set v/ := \|; mod I?. Then the map X' — fo) : B — M is
easily seen to be an R-linear derivation which vanishes on I2. It corresponds
to an A-linear homomorphism 6 : Qg,p ® A — M such that fod = ' —v.
In other words, 6 is a homomorphism v — v/ in Pic(Homy (L, F)). We
set

F,(f)=0.
One checks that F, is a faithful additive functor.

Given an arbitrary A-linear map v : I/I?> — M, we define the
extension E, as the pushout of B/I? along v:
0— I/I? — BJ/I? — A —0
(9) lu JA l:
00— M — E, — A —0.
It is easy to see that E, carries a unique R-algebra structure such that

M? =0 and X is an R-algebra morphism. Moreover, we have F,(E,) = v
by construction. Hence F,, is essentially surjective.

ANNALES DE IINSTITUT FOURIER
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Let 6 : v — v/ be an isomorphism in Pic(Hom3 (L, F)). This means
that v/ : I/I? — M and 0 : Qp/r ® A — M are A-linear maps such
that # o d = v/ — v. We may identify 6 with the corresponding derivation
B/I? — M; then 0l7/r> = v/ — v. The universal property of the push-
forward shows that there exists a unique R-linear map f : F, — F, such
that f oA = X. By construction we have F,(f) = 6. Hence F is fully
faithful and even an isomorphism of Picard categories.

Now let ¥ : Y — @ be another global chart and u : v — ¢ a
morphism of charts. We write Q = Spec B/, A = B’/I’2 and consider u as a
morphism of R-algebras B — B’. Let E be an extension and A : B/I?> — E
(resp. N : B'/T'* — E) a lift of B/I? — A (resp. of B'/I"*> — A). By
definition we have

F (E)=)\; (modI?), woFy(E)=Xoul; (modI?).

Again it is clear that A — X ou (mod I?) is a derivation B/I?> — M,
corresponding to an A-linear map 6 : Qp/r ® A — M and representing a
homomorphism @ o Fy,(E) — F,(E). We set

to(E) = 0.

A formal verification shows that ¢, is a morphism of additive functors
uo Fy = F, and that (8) holds. O

2.3. — Let €rt(Oy, F) denote the Y-stack whose fiber over a given
open subset U C Y is the Picard category €rt(Opy,F|u) (here Y-stack
means a stack over the Zariski site of Y). It is clear that Ert(Oy,F) is a
Picard stack, see Appendix A.2.

PROPOSITION 2.5. —  We assume that Y is affine and admits a
global chart ¢ : Y — P.
(i) Let U C Y be an affine open. Then the natural functor
(10)  Pic®Homy (Ly|v, Flv)) — Pic(RHomy (L, F))(U)
is an isomorphism.
(ii) There exists a unique isomorphism of Picard stacks
F, : &t(Oy,F) = Pic(RHomy (L, F))

such that for each affine open U C Y the restriction of F, to the fiber
Et(Oy, F)(U) = €t(U, Fly) is equal (up to canonical isomorphism) to
the composition of F,, with (10).
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Proof. — Part (i) follows from Proposition A.2 and the fact that
the cohomology of the complex RHomy (L, F) consists of quasi-coherent
sheaves. Part (ii) is a formal consequence of (i) and is left to the reader.O

2.4. — We will now globalize the isomorphism of Picard stacks
constructed in the previous two subsections. To this end, we will use the
notation introduced in §1.3. In particular, (U;);cr is a covering of Y by
affine opens, admitting local charts ¢; : U; — P;. By Proposition 1.6 we
obtain, for each ordered pair i < j, an essentially commutative square of
quasi-isomorphisms

Bi
EY/S|U1',,' I ‘Ctpi|U1:,j
(11) lﬁj lai,j

0
['soj ‘Um — ﬁ%\j’
i.e. a homotopy s; ; : 82-17j o [3; ~ 82j o f3; such that the cocycle relation (4)
holds. Set

P = Pic(RHomy (Lys, F)), B, = Pic(RHomy (Ly,, F)).

The diagram (11) yields an essentially commutative square of isomor-
phisms of Picard stacks

at .
]
%L:j %AUM
(12 %, | i
§j|Ui.j - §|Ui,j’
Bj
i.e. an isomorphism of additive functors s; ; : Bio 511] ~ Ej o 5? ; such that
20 (> 32 (= a1 (=
(13) ai,j,k(sj»k) o i,j,k(SiJ’) = 8i,j,k(5z',k)
for all triples ¢ < j < k.
PROPOSITION 2.6. —  There exists an isomorphism of Picard stacks

F: &t(Oy, F) = P = Pic(RHomy (Ly, s, F))

and for each index i an isomorphism of additive functors u; : Fly, = BiOEPi.

Proof. — Let i < j. By Proposition 2.4 we obtain two natural
isomorphisms of additive functors

Foilu,; = 81'1,3' o Fy

Pi

F

Pi

~J ~0
Uij = 32',]' o Fy,

i, i3 "
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Using the essentially commutative square (12) they can be extended to an
isomorphism

~ ~ = ~ ~
Uit B0 F¢j|U,in =00 8i,j oF,,  =po ai,j oF, = Bio Fw|Ui,j~

2%
A tedious but elementary verification, using (8) and (13), shows that w; ;
satisfies the obvious cocycle relation. The proposition follows. ad

Using the canonical isomorphism
RHomy (Ly/s, F)) = RI'(Y, RHomy (Ly;s, F))

and Proposition A.2, we obtain a non-equivariant version of Theorem 2.2:

COROLLARY 2.7. —  There is a natural isomorphism of Picard
categories
F: €xt(Oy,F) — Pic(RHomy (Ly,s, F)).

2.5. — We are now going to prove Theorem 2.2 in full generality.
In the sequel, R’ will always denote a flat R-algebra, and a prime stands
for base change with respect to R — R’; for instance Y’ := Y ®gr R’. By
Remark 1.8 we have natural isomorphisms

(].4) EY/S ®R R/ = £Y’/S"
and
(15) RHOHIY (,Cy/s, ]:) XRr R/ = RHomy/(ﬂy//S,,f').

To simplify the notation, we will henceforth write
A= RHomy(ﬁy/S, .7:)[0’1].

Note that A is a complex of G-R-modules of amplitude [0, 1], well defined
up to canonical isomorphism in DIH(Y, G).

Let R’ be a flat R-algebra and ¢ € G(R’). The automorphism
A" =5 A, a +— a” induces an isomorphism of Picard categories & :
Pic(A') == Pic(A'). Given an extension 0 — F' — & — Oy: — 0
(i.e. an object of Ert(Y’, F)°P), let £7 be the extension

0—-F 20" F — 06 — "0y 20y — 0

~

Here the isomorphisms F' = ¢*F and c*Oy/ = Oy come from the G-
action on F and Oy. Given an isomorphism f : & —— & of extensions,
then f7, as defined in §C.1, is an isomorphism £ —— £5. One checks that
the association £ — £7 is an automorphism of Picard categories

o et(Y, F) = et(Y, F).
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One checks:
LEMMA 2.8. —  We have an essentially commutative diagram
Pic(A) L ey, F)

jnl

Pic(A')  — (Y, F)
(the isomorphism F' is given by Corollary 2.7).

It follows from Proposition B.2 that

(16) RHomg (Ly; s, ]-")[0,1] o~ Tot(K)[0’1]7
where K is the double complex
AO AN Al
| £
d

We are now going to construct an isomorphism of Picard categories
(17) FC: Erto(Oy, F) = Pic(Tot(K)).
Together with (16), this will complete the proof of Theorem 2.2.

An object of €t (Oy,F) is an object € of Ert(Oy,F), together
with an action of G on £ such that the maps F — & and £ — Oy
are G-equivariant. Such an action is determined by the following data.
For each flat R-algebra R’ and group element o we get an isomorphism

fo 1 & == &% in €rt(Oy, F') such that
(18) fcr-r:f;ofr

holds for all pairs 0,7 € G(R’). Let F be the isomorphism of Corollary 2.7
and set v := F(€) € AY, 0, := F(f,) € (A°). By Lemma 2.8, 6, is an

isomorphism v/ —— 17, i.e.
(19) d(0,) =v" — .
Equation (18) shows that

Oyr = 07 +0,.
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In other words, the association ¢ — 6, corresponds to a l-cocycle 0, i.e.
an element of Z1(G, A%) = Ker(C(G, A°) 2, C?(G, A%)), see §B.3. Also,
Equation (19) means that d(6) = 9(v). We have shown that the pair (v,0)
lies in Z!(Tot(K)), i.e. represents an object of Pic(Tot(K)). We set

FC(E) = (1,0).

Now let g : & —— &; be an isomorphism in €ty (Y, F). Set
FC(&) = (v1,01), FE (&) := (v2,02) and 1 := F(g). Then d(n) = vy — 1.
By definition, g is G-equivariant, so the diagram

/

g g
wl e
g Y g
commutes for all ¢ € G(R'). By Lemma 2.8 this means that
(20) O20 =10 =17 =17,

or, equivalently, 6, — 67 = 9(n). It follows that 7 corresponds to an
isomorphism (v1,01) — (v2,02) in Pic(Tot(K)). We set

FC(g) =n.

We leave it to the reader to check that F'¢ is indeed an isomorphism of
Picard categories. Now the proof of Theorem 2.2 is complete. a

3. Deformations.

In this section we show how one can classify equivariant deformations
of Y — S along an infinitesimal extension S < S’, using the equivariant
cotangent complex. The main result is Theorem 3.3. In §3.3 we discuss how
this result behaves under localization to a formal neighborhood of a point
(Theorem 3.11).

3.1. — Let R be a commutative ring and a < R’ an ideal with
a? =0. Weset R := R'/a, S' := Spec R’ and S := Spec R. Furthermore, let
G’ — S’ be a flat affine group scheme and Y — S a flat morphism together
with an S-linear action of G := G’ xg» Son Y.

DEFINITION 3.1. —  An equivariant deformation of Y — S to S’ is
a flat morphism Y’ — S’ together with an S’-linear action of G’ on Y’ and
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a G-equivariant isomorphism of S-schemes Y = Y’ x g/ S. An isomorphism
of deformations is a G’-equivariant isomorphism of S’-schemes Y] = Yj
which induces the identity on Y.

Theorem 3.3 below shows how to classify isomorphism classes of
equivariant deformations of ¥ — S using the equivariant cotangent
complex Ly/g. However, in the proof of Theorem 3.3 we will also use the
cotangent complex of the composed morphism Y — S < S’. Therefore,
to be able to use the definition of Ly,s in §1, we make the following
assumption.

ASSUMPTION 3.2. —  Every point of Y is contained in an affine
and G-stable open U C Y such that the following holds. There exists a
smooth affine S’-scheme P’ — S’ an S’-linear action of G’ on P’ and a G-
equivariant closed immersion ¢ : U < P’. In other words, Assumption 1.1
holds for the composed morphism Y — S’ and the group scheme G’.

Under this assumption we can prove:

THEOREM 3.3.

(i) There exists an element (called the obstruction)
w=w(Y/S,5) € Extg,(Ly/s,Oy) @ a,
depending functorially on Y — S < S’ whose vanishing is necessary and

sufficient for the existence of an equivariant deformation of Y — S to S’.

(ii) Suppose that w = 0. Then the set of isomorphism classes of
deformations of Y — S to S’ is, in a natural way, a principal homogeneous
space under the Abelian group

Exté(ﬁy/s, Oy) ®r a.

This corresponds to Proposition 2.3 of [13]. However, if Y — S is not a
local complete intersection, then our definition of Ly g does not always give
the same hyperext group Ext(Ly,s, Oy) as in [12] and [13]. In particular,
our obstruction does not necessarily agree with the obstruction constructed
in [12] and [13], simply because it does not lie in the same group. See also
Remark 3.6 below.

3.2. Proof of Theorem 3.3. — Let F:= Oy ®ra. SinceY — S
is flat we have natural isomorphisms

(21) Extg(ﬁy/s,f) = Extg(ﬁy/s, OY) ®R a
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for all n. By Assumption 3.2 and Definition 1.5, the equivariant cotangent
complexes Ly,s and Ly /g are defined as complexes of G-Oy-modules and
we have a natural G-equivariant morphism Ly ;g — Ly/g.

LEMMA 3.4. — There is a natural exact sequence in D7 (Y, G)
(22) 0 — F[l] — Ly;sr — Ly, — 0.
More precisely, the natural morphism Ly;sr — Ly,g is surjective in
all degrees, and there exists a G-equivariant quasi-isomorphism F[1] —
Ker(Ly;sr — Lys). (Recall that F[1] denotes the complex where F is
placed in degree —1.)

Proof. — Let ¢’ : U — P’ be alocal chart for the morphism Y — 5’
and Z' C Op: the corresponding sheaf of ideals. Then ¢’ gives rise to a local
chart ¢ : U < P := P x g/ S for the morphism Y — S. The corresponding
sheaf of ideals is Z := Z'/F. It is clear that Qp/,5 ® Oy = Qp/g @ Oy.
Moreover, we have a short exact sequence
(23) 0—F —T'/T° —1TI/I>—0.

Hence it follows from Definition 1.5 that Ly,s» — Ly,g is surjective in
all degrees and that its kernel is isomorphic to the Cech-resolution of F[1]
(with respect to the open covering (U;) used to define Ly/g). This proves
the lemma. O

Let G be a G-Oy-module. The short exact sequence (22) gives rise to
the following long exact sequence

(24) 0 — Extg(Ly;s,G) — Extg(Ly)s,G) — Homg(F,G)

2 Ext(Ly /s, G).
This applies in particular to the case G := F. We define the obstruction
w = w(Y/S,S’) as the image of the identity map Id : F — F under the
boundary map 9 in (24). Now Theorem 3.3 follows from Corollary 2.3, the
exactness of (24) and the following proposition.

ProrosITION 3.5. —  There is a natural bijection between
(a) deformations of Y — S to S’, up to isomorphism, and

(b) elements of Exté(ﬁy/s/,]—') which are mapped to Idz (by the
middle arrow in (24)).

Proof. — Let G be a quasi-coherent G-Oy-module. By Corollary 2.3,
an element of ]EXté(,Cy/ 57, G) corresponds to an equivariant extensions of Y’
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by G, i.e. a closed equivariant embedding Y — Y of S’-schemes defined by
an ideal J C Oy, together with an isomorphism G = 7 of G-Oy-modules.
We obtain a morphism of G-Oy-modules

(25) F=0y ®@pa— J2G.

By reexamination of the proof of Theorem 2.2 one shows that the middle
arrow of the sequence (24) maps the element of Exté(ﬁy/ s, G) correspond-
ing to the extension Y’ to the morphism (25). Also, the local criterion of
flatness (see [15], Theorem 49) shows that the morphism Y’ — S’ is flat if
and only if (25) is an isomorphism.

The proposition follows easily from these arguments. First, an equiv-
ariant extension of Y by F for which (25) is the identity on F gives rise
to an equivariant deformation of Y — S to S’. Conversely, let Y’ — S’ be
an equivariant deformation of Y — S, and let J C Oy be the sheaf of
ideals corresponding to the embedding Y — Y”. Since Y’ — S’ is flat by
assumption, the natural map F — J is an isomorphism. Using this iso-
morphism, we can see Y/ as an equivariant extension of Y by F for which
(25) is the identity on F. This concludes the proof of the proposition and
hence of Theorem 3.3. g

Remark 3.6. — The short exact sequence of Lemma 3.4 should be
compared with the transitivity triangle attached to the composition of
morphisms Y — S — S’ in [12]:

I
’CY/S
(26) / N
I I
ES/S/ ®OY I ﬁY/S’
Here E{, /s denotes the cotangent complex in the sense of Illusie.

Now suppose that ¥ — S is a local complete intersection. Then
Lys = E{//S. We also have natural morphisms E{//s' — Ly,g and
Eg/s, ® Oy — F[1], but they are quasi-isomorphisms only if S — S’ is a
local complete intersection (which is typically not the case). Nevertheless,
one can show that the obstruction w in Theorem 3.3 is the same as the

obstruction obtained by Illusie’s theory (via the canonical isomorphism
Extg(Lyys, Oy) = Extg (L] 5, Oy).

3.3. Localization. — Keeping the notation introduced before, we
now impose the following finiteness conditions.

ASSUMPTION 3.7.

(i) The affine scheme S = Spec R is local, Artinian and Noetherian.
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(ii) The group scheme G is finite and flat over S.

(iii) The scheme Y is either of finite type over S or the localization of
something of finite type over S.

It follows from Part (i) and (iii) of the assumption that Y is Noethe-
rian.

By Assumption 1.1 the action of G on Y is admissible; hence the
quotient scheme X := Y/G exists. It follows from Assumption 3.7 (ii)
that the prOJectlon m:Y — X is finite. Let x € X be a point. Let

= Spec OX « denote the completlon of X at z and set ¥ := Y X x X.
Slnce m:Y — X is finite, Y is naturally isomorphic to the completion of
Y along the fiber 7~ L(z). The action of G on'Y induces an action of G' on
Y. Since X — X is flat, we have Y /G = X.

Let u:Y — Y denote the canonical map. By Remark 1.8 we have a
canonical morphism of complexes of G-Og:-modules

(27) u EY/S — ‘CY/S

A technical complication arises from the fact that (27) is in general not a
quasi-isomorphism. However, the next proposition shows that this does not
really matter to us.

PrRoOPOSITION 3.8. — Let F be a coherent sheaf of G-Oy -modules.
There exists an isomorphism of Picard categories

Fy: Ertg(Op,u™F) — Pic(RHome (u* Ly /s, u* F))
such that the following diagram commutes:
Crto (Oy, F) — Crtg(Op, u*F)
(28) Fl leV
Pic(RHomeg(Ly/s, F)) — Pic(RHomg(u*Ly /g, u*F)).
Here the upper horizontal arrow is the functor which sends an extension Y’
of Y by F to the completion of Y' along the fiber 7= (x). The left vertical

arrow is the isomorphism from Theorem 2.2. The lower horizontal arrow is
the natural pullback map.

Proof. — The construction of the equivalence F, is very similar to
the construction of F' in the proof of Theorem 2.2. An essential difference
appears only in the first step, see §2.2. We will therefore assume for the
rest of the proof that Y is affine and that G = 1.
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Replacing Y by its localization at any point y € 7 1(x) we may
assume that Y = Spec A is local. We have Y = Specg where A is the
completion of A. The coherent sheaf F is given | by a finite A-module M;
the pullback u*F correbponde to the A-module M := M ® AA. Since M is a
finite A-module, M is the m 4-adic completion of M. By Assumption 3.7 (iii)
we can write A = B/I, where B is the localization of a polynomial ring over
R and I < B is an ideal. By Assumption 3.7 (i ) the ring B is Noetherian
and hence [ is finitely generated. Moreover A=2B /I where B is the
completion of B at its maximal ideal and T:=IB. The ring Bisa power
series ring over R. In general, B is not formally smooth over R but only mp-
smooth (see [16]; note that “formal smoothness” is called “O-smoothness”
in loc.cit.).

The complex u*Ly,g corresponds to the complex of A-modules
L:=(I/T? — Qp/r®p A).
The canonical map g/ r ®BA — QB/R®§E is injective but in general not
surjective. However, Qp/r ® Ais mapped isomorphically onto Q%’/n; ® A,
where

Qcont - Q -

B/R B/R/(m”m 5

B/R)

denotes the module of continuous differentials. Since Qp/p ® A is a free
ﬁ—module, we have

(29) RHomy (u* Ly /g, u"F) [0,1]
= (HomA(QB/R ® A, M\) — HornA(IA/lc2 ]\7)) .

An object of the Picard category @;t(Y u*F) is given by an extension
M —E — Aof R-modules, with M M2 = 0. In what follows we will refer to
such an object simply as an extension.

LEMMA 3.9. — Let M — E — A be an extension and let mg<FE
denote the inverse image of the maximal ideal m 4 of A.

(i) The ring E is complete with respect to the ideal mg.

(ii) There exists a continuous lift A\:B—E of the canonical map B—A.

Proof. — Look at the following ladder with exact rows:
0 — M — E — A — 0
(30) 1 | l

0 — lLmM/(mpNnM) — lmE/m?, — limA/m" — 0.
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The vertical arrow on the right is an isomorphism by definition. An
argument similar to the one used in the proof of the Artin—Rees Lemma
(see [16], Theorem 8.5) shows that there exists a constant ¢ > 0 such that

myE N Mcmi¢ M
A
for all n > ¢ (here we use that A and hence A is Noetherian). Therefore,
the vertical arrow in (30) on the left is an isomorphism. Now the Five-
Lemma implies that the vertical arrow in the middle is an isomorphism,

too. This proves (i). Part (ii) of the lemma follows from Part (i) and the
mp-smoothness of B. O

Using this lemma, the construction of the equivalence F is essentially
the same as in the proof of Proposition 2.5. It is also clear from this
construction that the diagram (28) commutes. There are two points one has
to pay attention to. The first is to consider only continuous lifts A : B — E.
The second is this: if E’ is another extension, A : B — E' a lift and
f: E =5 E’ an isomorphism of extensions, then \ — f’go N:B—> M
I

is a continuous R-linear derivation which Vanlshes on [I¢; it therefore

corresponds to an A-linear map 0 : Qp/ R®A —~ M. Moreover, any R-linear
derivation B — M is automatically continuous because M is complete and
hence separated with respect to the m4-adic topology. This completes the

proof of the proposition. a
Remark 3.10. — The proposition is essentially equivalent with the
statement that the homomorphism
Extg(ﬁy,/s,u F) — Extg(u* /.ZY/S, u*F)

induced by (27) is an isomorphism for n = 0, 1. I suspect that this is true
for n > 1 as well, but I don’t know how to prove this.
For n > 0 we write Extg(Ly)s,F)e for the O\X’m—module
Extt(Ly)s, F)e ® Ox o It follows from flatness of X — X that
Extt(Lyys, Flz = Extg(u* Ly g, u™F).
The local-global spectral sequence from §C.4 gives rise to a localization

map
Extg(ﬁy/s, .7:) — 51’tg(£y/5, f);

THEOREM 3.11. — Let S «— S’ = Spec R’ be a small extension,
with R = R’/a. Let w be the obstruction for lifting Y to S’. Also, let w,
denote the image of w under the localization map

Extg;(Ly/s, Oy) ® a — Eatg(Lys, Oy )z @ a.
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(i) There exists an equivariant deformation of Y to S’ if and only if
we = 0.
(ii) If w, = 0 then the set of isomorphism classes of deforma-

tions of Y to S’ is a principal homogeneous space under the group
Exty(Lys, Oy )z @ a.

(iii) If w = 0 then the action of EXté(ﬁy/S,f) on the set of isomor-
phism classes of deformations of Y to S’ is compatible with the action of
5xté(£y/g, Oy )z ®a on deformations of 37, with respect to the localization
map

Exté(ﬁy/s, Oy)®a— 5l‘té(£y/s, Oy, ®a.

Proof. — This is proved in the same way as Theorem 3.3 except that
the exact sequence (24) is replaced by the sequence

(31) 0 — Extg(Lyys, F)z — Exte(Ly)s, F)z — Homa(F, F)y
2 Extg(Lyys, Fa

and we use Proposition 3.8 in addition to Theorem 2.2. The compatibility
statement (iii) follows from the commutativity of the diagram (28) and the
fact that the localization maps define a homomorphism between the exact
sequences (24) and (31). O

4. Multiplicative deformation data.

Let X be a smooth projective curve, defined over an algebraically
closed field k of characteristic p > 0. A multiplicative deformation datum
over X is a pair (Z,V), where Z — X is a Galois cover, with Galois
group H of order prime to p, and an H-stable IF)-vector space V of
logarithmic differential forms on Z. In §4.1, we associate to the pair (Z,V)
a singular curve Y together with an action of a finite group scheme G such
that X = Y/G. Essentially, G is a semi-direct product p; x H (where
s :=dimp, V) and Y — Z is generically a p;-torsor determined by a basis
@1y, 05 Of V.

As an application of the general theory developed in the previous
sections, we study equivariant deformations of Y. Even though the cover
Y — X is inseparable, its deformation theory is in some sense similar to
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the deformation theory of a tame cover. For instance, we get a morphism
of deformation functors
Def(Y, G) — Def(X; 75),

see §4.2 for a precise definition. In §4.3 we give a criterion when this
morphism is an isomorphism. The reason for this relatively nice behavior
of Def(Y, G) is that the “p-Sylow subgroup” of G is a multiplicative group
scheme, whose cohomology is trivial. Thus, all the contribution to the
hyperext groups Ext¢(Ly/x, Oy) comes from the cohomology of a certain
coherent sheaf on X, and there is no group cohomology involved.

4.1. The G-cover associated to a deformation datum. — Fix
an algebraically closed field k of characteristic p > 0 and a smooth k-curve
X. Let H be a finite group of prime-to-p order and x a character of H with
values in [F),.

DEFINITION 4.1. — A (multiplicative) deformation datum on X of
type (H,x) is a pair (Z,V), where

e m: Z — X is a finite, tamely ramified Galois cover with Galois
group H, and

o V C Qp(z)/k is an H-stable and finite dimensional F,-vector space
consisting of logarithmic differential forms on Z. Let Vj denote the k-linear
hull of V' in Q(z)/x- We demand that dimy Vi, = dimp, V' and that H acts
on V with character x.

Recall that a differential form ¢ € Q7). is called logarithmic if it
can be written as ¢ = du/u for some rational function u € k(Z).

If dimp, V' =1 then Definition 4.1 agrees with Definition 1.5 of [26].
In this paper we shall only consider multiplicative deformation data (as
opposed to additive deformation data), so we omit from now on the
adjective “multiplicative”.

Let us fix a deformation datum (Z, V') of type (H, x). For the moment,
we will consider V' simply as a (right) F,[H]-module. Let W (k) denote the
ring of Witt vectors over k and W (k)[V] the group ring of V' over W (k)

(here we consider V' as an Abelian group]) Then
Go := Spec W (k)[V]

is a finite flat and commutative group scheme over W (k). In fact, Go

represents the group functor (on the category of W (k)-algebras)

R — Go(R) = Homg, (V, R™).
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Groups schemes of this form are called diagonalizable in [9], Exposé I. We
shall write ¢ = ((g)pecv for an element of Go(R). Here (4 € R* such that
C1Cpy = Cpq+¢o- In particular, Qf; = 1. Therefore, the choice of an F,-basis
of V' gives rise to an isomorphism Gy = p;, where n = dimp_ V.

An element 8 € H induces an automorphism Gy — Gy of group
schemes which sends ¢ = ((y)gcv € Go(R) to

B(Q) := (¢ (prg) € Go(R).

This gives an action of H on Gq from the left. We define the group scheme
G as the semidirect product Gy x H; it represents the group functor

R+— G(R) := Go(R) x H.
The multiplication on the right hand is determined by the rule

(Ql,ﬁl) ) (Qzaﬁz) = (§1 ‘51(£2)aﬂ152)-
Note that the subgroup scheme Gy C G is equal to the local part of G.

Let R be a W(k)-algebra and M a G-R-module. The induced action
of Gp on M is given by a map u : M — R[V] ®g M. It gives rise to a
V-grading, i.e. a direct sum decomposition

M= My, My:={meM|pum)=¢am}.
eV
One checks that a G-R-module is the same as an R-module together with a
V-grading and an R-linear action of H from the right such that M =M )
for all B € H and ¢ € V. See also [9], Exposé I. Using the assumption that
the order of H is prime to p one shows:

LEMMA 4.2. — Let R be a W(k)-algebra and M a G-R-module.
Then

Hn(G M)_{M({{ fOl"Tl:O,
’ 0 for n > 0.

CONSTRUCTION 4.3. — Let (Z, V) be a deformation datum of type
(H,x) over X. We shall construct a curve Y over k and a G-action on Y
such that Z =Y/Gp and X = Y/G. The definition of Y and the G-action
will depend, up to canonical isomorphism, only on the deformation datum
(Z,V) but not on the choices we make during the construction. Therefore,
it suffices to give the construction locally on X. Hence, we may assume
that Z = Spec A is affine. Let us also choose an [Fp-basis ¢1,...,¢s of V.
Since ¢; is logarithmic, we have ¢; = du;/u; for some rational function wu;
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on Z. After shrinking Z and replacing ¢; by a suitable [F,,-multiple of itself,
we may assume that u; lies in A and has at most simple zeros on Z. Set
B:=Aly1,...,ys | ¥ = wil, Y := Spec B.

The A-algebra B has a unique V-grading such that By = A and y; € By, .
It gives rise to an action of Gy on Y such that Z = Y/G,. One checks that
there is a unique way to extend the action of H on A to an action on B
such that 5*By = Bg-,. Whence an action of G on Y such that Z =Y/G
and X =Y/G. This finishes the construction of Y.

DEFINITION 4.4. — Let (Z,V) be a deformation datum of type
(H,x), and let Y be the k-curve with G-action from Construction 4.3. Let
7 € X be a closed point and choose a point ¢ € Z above 7. We say that 7
is

(i) a tame branch point if it is a branch point of the tame cover
Z — X,

(ii) a wild branch point if there exists ¢ € V such that orde ¢ = —1,
(iii) a critical point if it is a branch point (tame or wild) or if

géi‘r/l(ordg @) #0.

Note that these conditions do not depend on the choice of £ and that a
branch point can be wild and tame at the same time.

NoTATION 4.5. — Let (75);ep denote the set of critical points
for (Z,V), indexed by the finite set B. Let Biame (resp. Bwid) denote
the subset of B corresponding to the tame (resp. wild) branch points; set
Biam := Btame UBwila- We have a divisor on Z

D= &ZZ({#PEI‘I} orde ¢) - €.
We can write D as the difference of two disjoint effective divisors in a unique
way:
D =Dy— Dy.
Note that the image of D (resp. of D) on X has support in the set of

critical points (resp. in the set of wild branch points).

Remark 4.6.

(i) ThemapY — X is finite and flat. It is a G-torsor precisely outside
the set of branch points.
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(ii) The curve Y is generically smooth over k if and only if dimp, V=1.
If this is the case then the singular points of Y are precisely the points lying
over a critical point which is not a wild branch point.

4.2. Equivariant deformations of Y. — Let & denote the
category of local Artinian W (k)-algebras. A G-equivariant deformation of
Y over an object R of € is a flat R-scheme Yy together with an action of G
and a G-equivariant isomorphism Y 2 Yr®k (compare with Definition 3.1).
We are concerned with the deformation functor

R — Def(Y, G)(R)

which sends R to the set of isomorphism classes of G-equivariant deforma-
tions of Y over R. The next lemma follows easily from Construction 4.3:

LEMMA 4.7. — Let YR be an equivariant deformation of Y over R.
Furthermore, let R’ — R be a small extension, i.e. R = R'/a for an ideal
a < R such that a-mpg = 0. Then the morphism Yr — Spec R’ satisfies
Assumption 1.1.

The lemma shows that the equivariant cotangent complex Ly is
defined and that we can apply Theorem 3.3 to classify the set of liftings
of the deformation Yr to R’. Let k[e] denote the ring of dual numbers.
We call TH(Y,G) := Def(Y, G)(k[e]) the tangent space of the deformation
functor Def(Y, G). Theorem 3.3 says in particular that there is a canonical
isomorphism

(32) THY, G) = Extg(Lyk, Oy).
Moreover, Theorem 3.3 together with standard arguments (see e.g. [20]

or [23]) implies:

THEOREM 4.8. —  Suppose that n := dimy, Exth(,Cy/k, Oy ) is finite
(this holds, for instance, if X is projective). Then Y admits a versal
deformation over a ring of the form

Runiv = W(k)[[h, s atn]]/<f1a ) fm>
If, moreover, IEthG(Ey/k, Oy) = 0 then Def(Y, G) is formally smooth and
we have Ryniv = W(E)[[t1,. .., tn]]-

Let Y be an equivariant deformation of Y over R. Then the quotient
schemes Zp := Yr/Gy and Xg := Yr/G are deformations of Z and X, re-
spectively. Let Def(X; 7;) denote the functor which classifies deformations
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of the marked curve (X;7; | j € Bram), I.6. deformations X of X together
with sections 7; g : Spec R — X lifting the points 7;.

We claim that the association Yr +— Xpg := Yr/G gives rise to a
morphism of deformation functors
(33) Def(Y,G) — Def(X;7; | j € Bram)-

To prove the claim we have to endow the curve Xpr with sections 7; g :
Spec R — X lifting the branch points 7;, for all j € Byam. This is obvious
for j € Biame: the G-action on Ygi induces an action of H on Zi such
that Xp = Zg/H and such that the map Zr — Xpg is a tame H-cover
lifting Z — X. It follows that the branch locus of Zrp — Xpg is the disjoint
union of sections 7; r : Spec R — Xp lifting the tame branch points 7; (for
J € Biame). Now let j € Byqg and let £ € Z be a point above the wild
branch point 7;. Let ¢1,...,¢s be a basis of V. We can choose this basis
in such a way that ¢; has a simple pole in £ and that ¢o, ..., ¢s generate
the kernel of the residue map res¢ : V' — F,,. If we further replace ¢; by a
multiple of itself then we may assume that ¢; = du;/u,;, with orde u; =1
and ordg u; = 0 for 7 > 1. In a neighborhood of &, the cover Y — Z is
(locally at &) given by s Kummer equations y? = u;, see Construction 4.3.
Hence the deformation Ygr — Zg of Y — Z is (locally at &) given by s
Kummer equations yf = u; g, where u; g lifts u;. The equation u; zrp =0
defines a section £r : Spec R — Zpi which lifts the point £. We define
7j,r : Spec R — Xpg to be the image of {r. Using the H-action, one also
checks that the definition of 7; g for j € Byiq agrees with the definition of
7j R for j € Biame, in case that j € Biame NBwila. This proves the claim.

It is well known (see e.g. [4]) that the tangent space of the deformation

functor Def(X;7;) is given by
TH(X;7; | j € Bram) = H' (X, Tx (= > 7))
jEBram
Here Tx is the sheaf of tangent vectors of X. Hence the morphism (33)
induces a k-linear map
(34) Extg(Ly /i, Ov) — HY(X, Tx(= Y 7).
J€Bram

In the next subsection we will analyze this map in more detail.

4.3. Analysis of ]Eth(,cy/S7OY). — By Lemma 4.2 and the
spectral sequence (79) we have

(35) Extg(Lyy, Oy) = Extl (Lyy, Oy)T = Exty (Lyyy, Oy)C.
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The analogous statement for Ext¢ holds as well. In other words, we do
not have to worry about group cohomology. In the following, we shall use
this sort of argument over and over again, sometimes without mentioning
it explicitly.

A V-derivation is an F)-linear function 6 : V' — k(Z). We say that 6
is integral at a point £ € Z if 0(¢) € Oz for all ¢ € V. Let M be the sheaf
of integral V-derivations; for an open subset U € Z the group I'(U, M)
of sections over U is the set of V-derivations 6 which are integral at each
point & € U. Obviously, M is a locally free Oz-module whose rank is equal
to s = dimp, V. There is a natural H-action on M, i.e. a structure of
H-Oz-module, such that M* is the sheaf of H-equivariant V-derivations
on X.

Let 7z = Homgz(Qz/,Oz) denote the sheaf of tangent vectors on
Z. We write Tz(D) := Tz ® Oz(D) etc. There is a natural injection of
H-0Oz-modules

which sends a vector field 6 to its restriction to V. From the definition
of the divisor D it is clear that this is well defined and that the quotient
M/Tz(D) is torsion free.

LEMMA 4.9. —  There is a natural isomorphism of H-Oz-modules
(36) M = Homg, (Qy /i, Oy) == T,2°.
Furthermore, we have a short exact sequence of H-O z-modules
(37) 0 — Tz(—Dws) — M — Ext, (Lyx, Oy) — 0.

Proof. — 1t suffices to prove this locally on Z. Hence we may assume
that Z = Spec A is affine and that there is a basis ¢1, . .., ¢s of V such that
¢; = du;/u; with u; € A and such that w; has at most simple zeros. By
construction we have

Y =SpecB, B=C/I,
where C' = Aly1,...,ys| is the polynomial algebra over A in s variables
(with V-grading such that y; € Cy,) and I is generated by the polynomials
u; — y¥. One checks that the B-module I/I? is free, with Go-invariant
generators [u; — y¥].

The cotangent complex Ly, may be identified with the complex of
G-Oy-modules associated to the complex L := (I/I? — Q¢ ® B) of V-
graded B-modules with H-action. The differential of this complex sends
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the generator [u; — y¥] to the 1-form du,. It follows that Qp/, = H°(L)
is the direct sum of the free B-module generated by dy; and the torsion
module 0
A/k

Q ors — 77\ B.

(QB/k)t dus) ®a
Let 6 : V. — A be an everywhere integral V-derivation. It gives rise to a
Go-equivariant derivation 1 : Qp/, — B which is zero on (/i )tors and
such that

n(dy;) = 0(¢i) yi-

One checks that the association 6 — 7 defines an isomorphism of H-Oz-
modules (36).

Since both nontrivial terms of the complex L are locally free B-
modules, we have
Extg, (Ly/k, Oy) = H"(Homg, (L, B)).
For n = 1 this gives the exact sequence
(38) Homg,(Qcyr, B) — Homg, (I/1%, B) — Ext, (Ly/x, Oy) — 0.

Let 6 : V. — A be a global section of M. There exists a unique B-linear
and Go-equivariant map v : I/I? — B such that

v([wi = yi]) = ui 0(:)
for all 4. This defines an A-linear map
(39) H°(Z, M) — Homg, (I/I?, B).
From (38) and (39) we obtain the sequence (37). It is easy to see that this

sequence is H-equivariant and does not depend on the choice of the basis
of V. It remains to show that (37) is exact.

Exactness on the left is obvious; exactness in the middle follows easily
from the exactness of (38). To prove exactness on the right, let v : I/I? — B
be a B-linear and Gg-equivariant homomorphism. We can define a V-
derivation 6 : V' — k(Z) = Frac(A) by setting

u;
By construction the images of # and of v in Ext%;o (Ly/k, Oy) are equal. If
0 was integral everywhere then we would be done. However, if £ € Z is a
point in the support of D,, then 8 may not be integral at £. In this case
we may suppose that orde u; = 1 and that ordeu; = 0 for ¢ > 1. After

shrinking Z to a sufficiently small neighborhood of ¢ we may suppose that
0 =60 —v([ur —y¥]) 0/ous|v
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is integral everywhere. But since (38) is exact in the middle, the image of
0" in ]Exté;o (Ly/x, Oy) is the same as the image of 6. This finishes the proof
of the lemma. O

Applying the exact functor F +— FH to (37) we obtain a short exact
sequence of O x-modules

(40) 0 — T7(—Doo) — M — Ext;(Lyk, Oy) — 0.

The following proposition identifies the first boundary map associated to
(40) with the differential of the morphism of deformation functors (33).

PRrROPOSITION 4.10. —  The following diagram commutes:
Extg (Lyx, Oy) —  HOX,Extg(Ly i, Oy))

(41) | E

~

Hl(X,TX(_ZjeBram Tj)) — Hl(XaTZ(_DOC)H)'

Here the upper horizontal arrow is deduced from the local-global spec-
tral sequence (82). The left vertical arrow is the tangent map of the mor-
phism (33). The right vertical arrow is the boundary map of the short
exact sequence (40). The lower horizontal arrow comes from the canonical

Tx(— Y. 7).

JEBram

isomorphism

1%

Tz(—Doo)?

Proof. — Let us denote by Def(Z, H, Dy,) the functor which clas-
sifies H-equivariant deformations of the marked curve (Z, D) (here we
identify Do, with its support, which consists of the points of Z lying above
the wild branch points). By [3] the tangent space of Def(Z, H, D) is canon-
ically isomorphic to

HY(Z,Tz(~Doo)") = H'(X, Tx (= Y 7))
JEBram
Using this fact, the proposition is easily reduced to the case H = 1 and
Z=X.

Let Y’ be a G-equivariant deformation of ¥ over R = k[e¢] and
Z' = Y'/G the induced deformation of Z. We have seen in the last
subsection that Z’ is naturally endowed with a lift D’ of the divisor D.
We denote by e(Y”) the global section of Extbo (Ly,k, Oy) corresponding
to Y, see §2 and §3. Similarly, we denote by e(Z’, D’ ) € HY(Z,Tz(— D))
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the cohomology class representing (Z', D._ ). We have to show that e(Z’)
is the image of e(Y”) under the boundary map 0.

To prove this, we will first recall the definition of e(Y”) and e(Z’, D).
Let (U,) be a covering of Z by sufficiently small affine open subsets
U, = SpecA,. Let W,, = Spec B,, C Y be the inverse image of U,,. Also, let
U/, = Spec A}, C Z' (vesp. W/, = Spec B,, C Y”) be the induced deformation
of U (resp. the induced G-equivariant deformation of W).

Since Z is smooth over k there exists, for all u, a (non-canonical)
isomorphism of R-algebras

O'MiAL L»AH®kR

which lifts the identity on A,. For each pair of indices p, A we set U, » :=
U, NUyx = Spec A, x. Then the equality

—1
oxo00, = IdAp,,)\ —I—E-eu))\

defines a vector field 8, x € I'(U, x,7z). The 1-cocycle (6,,) represents
the cohomology class e(Z’, D).

We may assume that
Bu = A[yi | Uy — yﬁﬂ»

with u,; € A, such that ¢; = du,;/u,;. There is a V-grading on
By, such that y,; € (B.)g,. Let y,; € (B,)s, be a lift of y, ;. Then

uy, ;= (y,,;)" € Ayu. Note that v, ; is independent of the choice of the lift
Y, Set

Uu(“im) = Up,i+ € Vyi.
Let v, be the section of the sheaf M over U, such that

VM(¢’L') = Upi-

Using the definition of e(Y”) via Theorem 3.3, together with the proof of
Proposition 4.10, one checks that the image of v, under the second map
in (39) is equal to the restriction of e(Y”) to U,.

A straightforward computation shows that

0 Ui
Oun(ds) = M = Vi — U
Ui
for all g, A, 4. This means that 6,  is mapped to v, — vy € I(U, n, M)
under the first map in (39). Therefore, e(Z’, D..) is the image of e(Y”)

under the boundary map 9. This is what we wanted to prove. O
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THEOREM 4.11. —  Suppose H"(X, M) = 0 for n = 0,1. Then
the morphism
Def(Y,G) — Def(X; 1)

is an isomorphism. In particular, the deformation functor Def(Y,G) is
unobstructed.

Proof. — The hypothesis implies that the boundary map
(42) 9 : HY(X, Exte(Ly i, Oy)) — H' (X, Tz(~Doo)™)
deduced from the short exact sequence (40) is an isomorphism. The local-
global spectral sequence for Extg gives rise to a short exact sequence
0 — H'(X,T¥) — Extg(Lyyr, Oy) — H(X, Extg(Ly sk, Oy)) — 0.
But (36) and the hypothesis show that H!(X, 7:¥) = 0. Therefore, it follows
from Proposition 4.10 that the morphism Def(Y, G) — Def(X;7;) induces

an isomorphism on tangent spaces. The theorem would follow if we knew
that Def(Y, G) is unobstructed.

The local global spectral sequence for Ext¢ also shows that
(43) Extg (Ly i, Oy) = HY (X, Exty(Ly i, Oy)).

Using again the long exact cohomology sequence deduced from (42) and
the hypothesis we see that (40) is zero. Hence Def(Y, G) is unobstructed

by Theorem 3.3. This concludes the proof of the theorem. a
Remark 4.12. — Suppose that all elements of V are regular,
i.e. Byiia = 0. Then we may regard V as an F,-subvector space of

the x-isotypical part of Jz[p](k). It can be shown that the hypothesis
H™(X, M) = 0 of Theorem 4.11 is equivalent to the condition that the
X-isotypical part of the group scheme Jz[p] is étale. Using this fact one can
give a different proof of Theorem 4.11. In the special case dimp, V' =1 this
is the approach taken in [25].

5. Special deformation data.

In this section we suppose that X = ]P’,lf. We begin by defining a
certain class of multiplicative deformation data over X, which we call
special. The definition of specialty may seem a little bit ad hoc. However,
we show that the deformation functor Def(Y, @) associated to (Z,V) in

ANNALES DE IINSTITUT FOURIER



FORMAL DEFORMATION 1139

the last section has some very nice properties if (Z,V) is special. These
are the lifting property (Theorem 5.7), the local-global principle (Theorem
5.11) and rigidity (Theorem 5.14). At a deeper level, these properties are
explained by the way special deformation data arise in the study of three
point covers with bad reduction, see [25] and [26].

We also prove a technical result (Proposition 5.15) which is used

in [26].

5.1. — Let p be a prime, H a finite group of order prime to p
and xo : H — I_F; a one dimensional character on H with values in the
algebraic closure of F,,. The values of x( generate a finite field F, with
q = p° elements. Set

) s—1
Xi=xh. X=X
=0

Then y is an irreducible IFp-valued character.

Let k£ be an algebraically closed field of characteristic p and set
X :=Pi. Let (Z,V) be a (multiplicative) deformation datum of type (H, x)

over X. Choose a basis wy, ... ,ws—1 of V®p, F, consisting of eigenvectors,
such that
(44) oFw; = xi(o) wi,

foralla € Handi=0,...,s—1. Let C denote the Cartier operator. Since
C is p~!-linear and is the identity on V, we have

(45) C(wi_H) = C; W;

for a constant ¢; # 0 in F,. (Here and for the rest of this section we will
consider the index ¢ modulo s.) After multiplying the w; with a constant
in IF, we may assume that ¢; = 1.

As in the previous section, we denote by 7;, j € B, the critical points
on X. Choose j € B and a point £ € Z above 7, and set

m; = [Staby (§)], h§-“ = orde w; + 1, ol =

The tuple (aj(-i))i’j is called the signature of the deformation datum (Z, V).
For a rational number w, we let (w) denote the fractional part of w (such
that 0 < (w) < 1 and w — (w) € Z).

LEMMA 5.1. —  For all i we have
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B Yepl! -1)=-2
i) (o) = o).

Proof. — Part (i) follows from a straightforward computation using
the Riemann-Hurwitz formula. To prove (ii), let £ € Z be a point above
7; and z a local coordinate at £. The inertia character v : He — k> is
determined by the congruence

(46) "z =vY¢(a)z  (mod 2?)

for all @ € H¢ := Staby (§). Now (44) and the definition of h;i) imply that

i R(H
Xg = d’gJ .
Part (ii) of the lemma follows. O
DEFINITION 5.2. —  The deformation datum (Z,V) is called pure
if for all 7 we have
o) -1
jeB
LEMMA 5.3. — Let M be the sheaf of H-Oz-modules defined in

§4.3. The deformation datum (Z,V) is pure if and only if H"(X, M) =0
forn=20,1.

Proof. — Let Oz, denote the x;-isotypical part of the sheaf 7,.0.
Let 0 : V — k(Z) be an H-equivariant V-derivation and extend it k-linearly
to V. Then f; := 6(w;) is a meromorphic section of Oy ,,; it is holomorphic
at 7 € X if and only if € is integral at all points £ € Z above 7. Therefore,
the rule 6 — (f;) defines an isomorphism
s—1
MH @ Oz,
i=0
of Ox-modules. A local calculation as in the proof of Lemma 5.1 shows
that
deg Oz, ==Y _ (o1).
jEB
Hence the lemma follows from the Riemann—Roch formula. O
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5.2. — In order to discuss special deformation data we need some
more notation:

NoraTioN 5.4. —  Let (Z,V) be a deformation datum of type
(H, x) and signature (O'J(-z)). Set
@ .0 _ ) (@ — min
le = Lajz | = crjz — (csz ) vj i= min l/jz ,
and 4 4 '
ag-l) =m; <U§l)>, a; = mz_in agz).

DEFINITION 5.5. —  The deformation datum (Z, V) is called special
if UJ@ # 1 for all ¢ and j and if the following holds. There exists a subset
By C B with exactly three elements such that

L _ [0, jeBy
T ]-7 .7 ¢ BO~
A special deformation datum (Z, V') is called normalized if {7; | j € By } =
{0,1,00} C X =PL.

For the rest of this section we assume that the deformation datum
(Z,V) is special. Whenever it is convenient, we may also assume that (Z,V)
is normalized. (However, sometimes it more convenient to have 7; # oo for
all j € B.) Since J](-i) # 1 we conclude that Byjq C By and that By, = B.
We set

Brew I:B—B(), Bprim = BO_Bwild'

For an explanation of the terminology, see [26].

LEMMA 5.6. — Suppose (Z,V) is special. Then the following holds.
(i) The deformation datum (Z, V) is pure.
(ii) We have V](-i) =v; forall j € B.

(i) Let j € B — Byia and let § € Z be a point above 7;. Then for all
¢ € V we have
ord¢ ¢ = vym; +a; — 1.

Proof. — By Lemma 5.1 (i) we have

) RPN EDEDNCUED M

JjEB JjEB JjEB
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Suppose that <a§i)> = 0. Since aj(.i) # 1, it would follow that B = By
and J;i) = 0 for all ¢ and j. But then Zj(a§i) — 1) = —3, contradicting
Lemma 5.1. We conclude that (aj(-i)) =1, proving (i). We also conclude

that the inequality (47) is an equality, which means that I/]('i) = v;, proving

(ii).

It follows from Lemma 5.1 (ii) that ords w; = m; O'J(»i) —1 takes pairwise
distinct values for all i. Every element ¢ € V' can be written as ), c;w;,
with ¢; € k. Using C(¢) = ¢ and Equations (44) and (45), one shows that
¢; # 0 for all 7. Therefore,

orde ¢ = min (ordg w;) = min (mjuj(»l) + ag»l) —1).
K3 K]
Now (iii) follows from (ii). O

Putting Theorem 4.11, Lemma 5.3 and Lemma 5.6 (i) together, we
get:

THEOREM 5.7 (Lifting property). — Let Y be the curve with G-
action corresponding to the special deformation datum (Z,V'), as defined
in §4. The homomorphism of deformation functors

Def(Y, G) — Def(X; 7))

is an isomorphism.

PROBLEM 5.8. — Let (H, x) be as in the beginning of this section.
Let (O'J(-i)) be a tuple of rational numbers (indexed by j € B and i €
Z/s) such that the statements of Lemma 5.1 and of Definition 5.5 hold.
Furthermore, let (7;)jep be a B-tuple of closed points of X = Pj.
Does there exists a special deformation datum (Z, V') of type (H, x) with

signature (O'J(-Z)) and critical points (7;)?

ProrosiTION 5.9. —  With assumptions as in Problem 5.8:

(1) Suppose that the character xo : H — F is injective. Then if it
exists, the special deformation datum (Z, V') is uniquely determined (up to
isomorphism) by the datum (H, y, 0](-2), ;).

(ii) Fix (H,X,a@). The set of all tuples (7;) such that there exists
a special deformation datum (Z,V) with critical points (7;) Iis a locally
closed subset of (]P’]%-IJ)B :

We will see later (Theorem 5.14) that the set of tuples (7;) in (ii) is
actually finite.
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Proof. — (Compare with [25], §3.5.) Suppose that (Z, V) exists. Let
H := H/XKer(xo), Z := Z/Ker(xo) and X the restriction of x to H. The
subvector space V' C {1y(z)/1 descends to a subvector space Vc Qk(Z)/k
One checks that (Z V) is again a special deformation datum, of type (H, Y).
The signature (ay ) and the set (7;) of critical points remain unchanged
during this descent. Therefore, we may assume that x is injective, even for
the proof of (ii). (For (i) the assumption of injectivity is necessary because
the cover Z — Z is not unique if Ker(yq) # 1.)

If x¢ is injective then H is cyclic of order m where m is a positive
integer such that F, = F,[(,,]; in particular, m|g — 1. Set ag-i) =m <0§-i)>.
Then the ag»i) are integers with 0 < ay) < m, Zj ay) = m and
ay’ﬂ) =p ay) (mod m). The proof of Lemma 5.1 shows that the agi)
determine the ramification type of the m-cyclic cover 7 : 7 — X = IP’}C.
This can be made more explicit with Kummer theory. In fact, for all 7 there

exists a rational section z; of Oz, which satisfies the equation
(i)
(48) =1 @-m)"".
jEB
Here x denotes the standard coordinate on X = P! and we assume, without
loss of generality, that 7; # oco. The curve Z is the smooth projective model

of the plane curve with equation (48) (for any 7).

We claim that the eigenvector w; of Vj is of the form

z; dx
HjeBO (x—15)
for some constant ¢; € k. Indeed, a local calculation shows that the
right hand side of (49) has everywhere the right order of poles and zeros
compatible with the signature (O'y)) and the set of critical points (7). This
proves the claim. If we plug in (49) into the equation
(50) C(wi_H) = C; W;
and look at Taylor series (say in 2) on both sides, we obtain a set of algebraic
equations with coefficients in F), which are satisfied by the tuple (7;). These
equations define a Zariski closed subset of (IP’Ile)B. The conditions ¢; # 0
define an open subset of this closed subset. We have shown that the set of
tuples (7;) coming from a special deformation datum with given type and
signature are contained in a certain locally closed subset of (]P’1 VBTt is
(Z) 7).

(49) W; = €;

clear that (Z,V) is uniquely determined by the datum (H, x, o

Conversely, let (7;) be a B-tuple of k-rational points of P! which
is contained in the locally closed subset constructed above. This means
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that if we define an H-cover 7 : Z — X = P! by equation (48) and define
differentials w; on Z by equation (49) then (50) holds with certain constants
¢; # 0. After multiplying the w; by suitable constants we may assume that
c; = 1. Let V' C Qyz) 1 be the Fy-linear subspace spanned by the w;. The
Cartier operator C stabilizes V' and acts semi-simply on it. A well known
lemma in p~!-linear algebra shows that the stabilizer V of C inside V"’ is an
[Fp-vector space of dimension s = dimp, V'. Here we can be more explicit:
if & € H is an element such that xo(«) generates F, then

(51) ] ::ZXi+l(CY)'wi, [=0,...,s—1

gives a basis for V. By construction, (Z,V) is a special deformation datum
of type (H, x), signature (JY)) and with critical points (7;). This concludes
the proof of the proposition. O

5.3. The local-global principle. — For j € B, let )7'] denote the
completion of Y at the critical point 7;, see §3.3. Given an equivariant
deformation Y5 of Y, we denote by 5}] r the completion of Y at 7;; this is
an equivariant deformation of 37'] We obtain a morphism

®: Def(Y,G) — [] Def(¥;,G)
jEB
which maps a deformation Yz to the tuple (?J r);. Following [3], we call
® the local-global morphism. By the results of §3.3 we can identify the
natural morphism arising from the local-global spectral sequence
(52) Ext&;(Ly /i, Oy) — EP Extg(Ly i Ov)7,
jEB
with the differential of ®. In contrast to the situation studied in [3], ®
is not formally smooth unless s = 1. In fact, if s > 1 then the groups
5xté(£y/k, Oy ), are not finite-dimensional over k. However, if we restrict
our attention to the image of ®, then we obtain a local-global-principle,
comparable to [3], Théoreme 3.3.4.

LEMMA 5.10. — The map (52) is injective. Its image is the direct
sum

@ TXv"'j ® k(Tj) C @ gxté(ﬁy/k,(gy);

JEBnew JjEB

Proof. — We have already seen in the proof of Theorem 4.11 that
the natural map

Ext&(Ly sk, Oy) — HO(X, Extg(Ly i, Oy))
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is an isomorphism. (Note that the hypothesis of Theorem 4.11 is verified
by Lemma 5.6 (i).) Furthermore, we have an isomorphism

(53) H(X, Eatl(Lyp, Oy)) = H (X, Tx (=D 1) ).
JjEB
The k-dimension of (53) is |B| — 3 = | Bnew | by Riemann-Roch.

Let Eior C Exté(ﬁy/k, Oy ) be the maximal sub-Ox-module which is
torsion. The sequence (40) and a local computation shows

Tz(D)" ~ TX(_ZjeB(l_Vj)Tj).

gtor =

T72(-Doo)? — Tx(=2epT)
Therefore,
(54) HY X, &)= @ Txr, ® k(7).
JE€Brew
Comparing dimensions, we find that H°(X, £or) — HO(X, Extg, Ly /i, Oy))
is an isomorphism. This proves the lemma. a

Let Def(f/j, o)t c Def()A/j7 G) denote the image of Def(Y, G) under the
localization map. In other words, Def(}?j, G)' classifies those equivariant
deformations of }A/j which arise as the completion of a global deformation
of Y. We denote by

: Def(Y, G) — Def(V,G)° == [] Def(¥,
jEB

the restriction of ® onto its image. By Lemma 5.10, the differential of &%
is the isomorphism

Exté(ﬂy/s,Oy) = @ TX7Tj®kI(Tj).
J€Bnew

THEOREM 5.11 (Local-global principle).

(i) The functor Def (17], G) admits a versal deformation over the ring

}Aé‘ — W(k), fOI'j € By,
7 W(k)[[tjﬂv fOI’j € Brew-

(ii) The functor Def(Y, G) admits an effective universal deformation.
Let R be the universal deformation ring.

(iii) The restricted local-global morphism &' is an isomorphism.
Therefore, we have

R ®wuy Ry = WE)[t; | j € Buew -

TOME 55 (2005), FASCICULE 4



1146 Stefan WEWERS

Proof. — By Theorem 4.8 the functor Def(Y, G) admits a versal de-
formation. By Theorem 4.11 it is unobstructed. The space of “infinitesimal
automorphisms” of Def(Y,G) is isomorphic to H’(X,T,¥). By Lemma 4.9
we have

HY(X,T¥) = H' (X, M") = 0.
Therefore, the versal deformation of Def(Y, G) is also universal, see[20]. It
is effective by Grothendieck’s existence theorem. This proves (ii). The func-
tors Def()/}j7 G)' are unobstructed, because the same holds for Def(Y,G).
Using Theorem 3.11 and Lemma 5.10, it is easy to verify Schlessinger’s
axioms[20], showing that Def (17], G)T admits a versal deformation over the
ring ]?Ej, as claimed in (i). Finally, Lemma 5.10 together with the argument
used in the proof of [3], Théoréme 3.3.4, shows that ® is an isomorphism.
This finishes the proof of the theorem. a

Remark 5.12. — 1f s = dimp, V' =1 then of = @.

5.4. Rigidity. — In this subsection (Z, V) and Y will be as before.
Let R be an Artinian local k-algebra with residue field k. Since R has
characteristic p, an equivariant deformation of Y over R corresponds to a
deformation datum (Zg,Vg) over R which lifts (Z, V). By this we mean
that 7p : Zp — Xg = IP’},-{ is a tamely ramified H-Galois cover lifting
m:Z — X and Vg C H%(Zg,Q2,/r(Dso,r)) is an H-stable Fp-vector
space of logarithmic differentials lifting V' (here Do, g C Zg is a relative
Cartier divisor lifting D).

Let Yi be an equivariant deformation of Y and (Zg, Vg) the corre-
sponding deformation datum. Choose j € Byew and a point £ € Z lying
above 7;. By the theory of tame ramification, there exists a local param-
eter z for Zp at £ such that Oz, ¢ = R][[z]] and a*z = ¢(a) - z for some
character ¢ : He — R*. We say that the deformation Yy is j-special if
every element ¢ € Vg is of the form

¢=2"1% ey +e1z+ .. .)dz
with ¢; € R and ¢y € R*. Note that this condition is independent of the
choice of z.

LEMMA 5.13. —  The equivariant deformation Yg is trivial (i.e.
isomorphic to Y ® R) if and only if it is j-special for all j € Bey-

Proof. — One direction of the claim follows immediately from
Lemma 5.6 (iii). To prove the other direction, suppose that Yy is j-special
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for every j € Bpew. We have to show that Yy is the trivial deformation.
By Theorem 5.11 (iii) it suffices to show that the completion }A’j,R of Yr at
7; is the trivial deformation of 17]-, for all j € Bpew. Fix one index j. Since
R is Artinian, we may prove triviality of f/] r by induction: suppose that
17j7R/ = 17473 ®pg R’ is trivial, where R’ := R/m7, for some n > 1. Then we
want to conclude that Y g is trivial, where R” := R/m%™. To simplify
the notation, we may even assume that R = R”.

The “difference” between }/}J r and the trivial deformation }/}J Rk R,
considered as lifts of the trivial deformation Y; ®; R', is measured by an
element 6; in

Exte(Ly)s, Oy )7 @ mg 2 (M /T4 (=Doo) )7, @) m,

see Theorem 3.11 (ii). Since }A/LR lies in the image of the local-global
morphism @ the element 6; lies in the subspace

(T2(D)" JT7(—Doo)™) 7, @1 ml = Tx . @ k(75) @5 m,

see the proof of Lemma 5.10. In other words, we may regard éj as a tangent
vector at 7;, with values in the k-vector space m%. We have to show that
0; = 0.

Choose a point £ € Z above 7;. Let z be a local parameter of Zg at &
such that 6ZR,§ = R][[z]] and a*z = ¢ (a)- z for a character ¢ : He — R*.
It follows that 6XR77'_7‘ = R[[z]], where x := 2™ and m; := |H¢|. Note that
the fiber product 175,3 := YR Xz, Spec R[[#]] is a connected component
of 1/}]-73. Let ¢1,...,¢s be a basis of Vg. We have ¢; = du;/u; for a unit
u; € R[[z]]* which is unique up to multiplication by a pth power. The
Go-torsor ?’573 — Spec R[[#]] is given by the Kummer equations

P -
Y = Ui, 1=1,...,s.

By our induction hypothesis, the induced deformation }A/j g is trivial. This
means that, for a suitable choice of the parameter z and the units u;, the
image of u; in R'[[2]] actually lies in the subalgebra k[[z]] C R'[[#]]. In other
words, we have

u; = U; + vy, u € k[[z]]*, v; € k[[2]] @ mp.
CrLAaM. — The tangent vector éj extends to a vector field 6; €
Tx -, ® m}p in a neighborhood of 7;, with values in m%, such that
(55) v; = 0]' (d’ljz)7
fori=1,...,s.
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Let us prove this claim. The class in xtg(Ly,s, Oy )r, @) mp, corre-
sponding to ; lifts to a local section 9;- of the sheaf M in a neighborhood
of 7;, via the exact sequence (40). We consider ¢} as an FF)-linear and H-
equivariant map 60; : V — k[[z]] ® m. By the definition of #; in terms of
the deformation f/] R, we have ¢’ (¢i) = vi/u; (compare with the proof of
Proposition 4.10). But since }A/] g lies in the image of the local-global mor-
phism, 9;- is actually the restriction to V' of a vector field ; on X which is
regular in a neighborhood of 7; (compare with the proof of Lemma 5.10).
The claim follows.

We can now finish the proof of the lemma. The vector field 6;
appearing in the claim we have just proved can be written as follows:

d 1 d
0; = (bp+b ) = —(bgz 7™ 4 b c) =
5 = (bo +brw + )dx mj(oZ ozt )dz’
with b, € m’. Since by assumption the deformation Y is j-special we have
du; = 2™t~ (co + 12 +...) dz with ¢y # 0. From (55) we get

aj

z
56 P =
(56) w=o

But since du; = diu; + dw; is divisible by 2™i+% =1 it follows that

(Cobo + (Goby + C1bg)2™ + --+).

a; ¢o bo = 0.

But a; is prime to p and ¢y # 0, hence by = 0. We conclude that éj =0,
which completes the proof of the lemma. a

THEOREM 5.14 (Rigidity). —  There exist, up to isomorphism, at
most a finite number of special deformation data of given type (H,x).

Moreover, every special deformation datum can be defined over a finite
field.

Proof. — For a fixed type (H, x) there exists at most a finite number
of possibilities for the signature (aj(-l)) of a special deformation datum.

Therefore, we may also fix the signature (Ul§i)). Let U C (PY)B be the
locally closed subset from Proposition 5.9 (ii). Let U’ C (P1)Brew denote
the intersection of U with the closed subset {(0,1,00)} x (P1)Buew C (P1)5.
Thus, a point on U’ corresponds to the branch locus of a normalized
special deformation datum. To prove the theorem, it suffices to show that
U’ has pure dimension 0. Suppose that U’ has an irreducible component

of dimension > 0. Then there exists an algebraically closed field k of
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characteristic p and a nonconstant morphism ¢ : SpecR — U’, with
R = E[[t]]. We will show that ¢ is constant, which gives a contradiction.

Going again through the proof of Proposition 5.9, we see that ¢
corresponds to a deformation datum (Zg,Vg) defined over R. Moreover,
the special and the generic fiber of (Zg, Vg) are special deformation data.
Applying Lemma 5.6 to the generic fiber of (Zg,Vg), we see that the
pullback (Zg/, V') of (Zr,Vg) over R’ := R/t" is a deformation of its
special fiber which is j-special, for all j € Bpew and for all n. Hence it
follows from Lemma 5.13 that the curve Yg/ corresponding to (Zg/, Vr/)
is the trivial deformation of its special fiber. By Theorem 5.7, this implies
that the branch locus of the induced G-cover Yr — Xg = IP’}%, is constant,
for all n. We conclude that ¢ : Spec R — U’ is constant, which proves the
theorem. O

5.5. — In this last section we prove a proposition which links two of
our previous results on special deformation data: the lifting property (Theo-
rem 5.7) and the local-global principle (Theorem 5.11). This proposition is
a key ingredient for the proof of the main result of [26].

Let Y be the universal equivariant deformation of Y over E, see
Theorem 5.11. The quotient scheme X := Y/G is naturally equipped
with sections TR Spec R — X lifting the critical points 7;. We may
suppose that X = ]P% and that {Tj;.i“ | 7 € Bo} = {0,1,00}. With this
normalization, we may regard the sections TR for j € Bpew simply as
elements of the ring R. Let [7;] € W(k) denote the Teichmiiller lift of
7; € k and set T := TR [7;]. By the lifting property (Theorem 5.7) we
have 7

R=W(K)[[t; | j € Buewl] = W(K)[[T} | j € Buew]l-
A priori, it is not clear that these two sets of coordinates of R are in any

way related. However, we have:

PROPOSITION 5.15. —  For all j € By there exists a unit w; € R
such that
T; =wj;-t; (mod p).

Proof. — Let R := kle] denote the ring of dual numbers. Fix some
Jo € Brew and let k : R — R be the unique W (k)-algebra morphism which
sends t;, to e and t; to 0 for j # jo. Set 7, g == /@(Tjﬁ). Then 7; g = 7j+¢€-0;
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for an element §; € k. To prove the proposition it suffices to show that

(57) 9; #0 if and only if j = jo.

Let Yg denote the equivariant deformation of Y obtained from pulling
back the universal deformation ) along k. The isomorphism class of Yy
corresponds to a class in Ext%;(ﬁy/k, Oy ). Via the isomorphism

Exté(ﬁy/k,(?y) = @ TX,-,—j X k(Tj),
jeBnew
this class may be represented by a tuple (6;), where 6; is a tangent vector
in 7; (see the proof of Lemma 5.10). By the choice of the indeterminates ¢;
and the homomorphism x we have
(58) 0; #0 if and only if j = jo.

On the other hand, it follows from Proposition 4.10 that the tuple (6;),
considered as a class in
TX(_ ZjGBo T])

HY(X,Tx (- Y 7)) = HO(X )= P Txn, @k(r),

jeB Ix(XjenT) T en,
represents the isomorphism class of the deformation (Xg;7; r). Therefore,
~ d
(59) 0; =96; - £|x=ﬁ.
Now (58) and (59) together imply (57). The proposition is proved. O

To finish, let us explain briefly the motivation behind Proposi-
tion 5.15. Let R be a complete discrete valuation ring of mixed character-
istic (0, p). Let k be the residue field of R (which we assume algebraically
closed) and K its fraction field. Let (Z, V') be a special deformation datum
over X =P} and Y — X the associated G-cover. Furthermore, let 7, r € R
be points on X = P} which lift the branch points (7;) of Y — X. By the
lifting property, there exists a unique lift Yz — Xg of Y — X with branch
points (7; r). Assuming that ¢, € R, the generic fiber Yy — X = Pk is
a tame Galois cover with Galois group

G(K) = (Z/p)® = H.

By construction, the cover Y — X g has bad reduction: the special fiber
Y is singular and the induced map ¥ — X is not separable. However, after
some blowing up we can find a certain nice model ?R - X r over R of
Yx — Xk, called the stable model, see [18] and [26].

What can we say about the stable model, and how does it depend on
the choice of the branch points 7; g7 Let us say that the stable reduction of
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Y — Xk is nice if the vanishing cycles of Yy are resolved by blowing up
Xgr = IP};: in certain disjoint closed disks with center 7; g, for j € B — Byilq
(in [25] this property is called special). If the stable reduction is nice, then
the special fiber X of X R is a comb. More precisely, X is a semistable curve
consisting of the central component X and, for each index j € B — By, a
tail X; meeting X in 7;. Using Proposition 5.15 one can show the following.

REsuLT 5.16. — The stable reduction of Y — X is nice if and
only if the branch points 7; p € R are “sufficiently close” to the Teichmiiller
lift [7;] € W(k) C R.

In the case s = dimp, V' = 1 the “if”-direction of this result was
proved in [25], using a very different kind of argument. In [26] and still
under the condition s = 1, both directions of the above result are proved,
using Proposition 5.15. The case s > 1 is similar but a bit more involved
and will be dealt with in a subsequent paper.

Roughly speaking, the singularities of Y can be described in terms
of the image of the parameters ¢; in R (under the classifying map R — Rof
the deformation Yz). Therefore, Proposition 5.15 provides a link between
the singularities of Yr and the position of the branch points of Y — Xp.
It is somewhat surprising that such a relation exists at all, because the
dependence of the cover Yr — Xpr on the branch points 7; r seems to be
of a more global nature.

A. Picard categories and Picard stacks.

In this first appendix we recall some basic facts about Picard cat-
egories and Picard stacks. The main result we need is Proposition A.2.
References are [1], Exposé XVIII and [22].

A.1. — A (strictly commutative) Picard category is a nonempty
monoid B, together with a functor
PP —P, (Y r—rty
and two functorial isomorphisms
o:(z+y)+z=x+ (y+2), TirHyZy+z
such that the following holds.
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(i) The isomorphisms o and 7 make + an associative and strictly
commutative functor, in the sense of [1], Exposé XVIII, §1.4.1.

(ii) For any object y of B, the functor x — z + y is an equivalence of
categories.

Given two Picard categories 1, P2, an additive functor from By to Po is
a functor F : P; — Po together with a functorial isomorphism

F(z+y) — F(z)+ F(y)

which is compatible with the associativity and the commutativity laws, see
[1], Exposé XVIII, §1.4.6. Given two additive functors F,G : PB; — Po,
a morphism of additive functors v : F — G is a morphism of functors
(automatically an isomorphism) such that the diagram

Flz+y) % G(z+y)

l l

Fo)+ F(y) “™ G(z)+Gly)

commutes. We denote by $Hom(P1,Pa) the corresponding category of
additive functors and by Hom(P1,JBs) its set of isomorphism classes. One
can show that Hom (P, P2) carries a natural structure of Picard category.

Let A be a complex of Abelian groups. We define a Picard category
Pic(A) as follows. Objects of Pic(A) are 1-cocycles, i.e. elements of Z1(A) =
Ker(A! N A?). Given two objects =,y € Z(A), the set of morphisms
Hom(x,y) is the set of elements f € A° such that d(f) = y — =, modulo 0-

coboundaries, i.e. elements of BY(4) = S(A~! -L5 A9). The composition
of two morphisms f : z — y and g : y — z is the sum f 4 g. The functor
+ is induced from the addition law of A'. It follows immediately from
this definition that the group of automorphisms of the “neutral object” of
Pic(A) is identified with H(A), whereas the group of isomorphism classes
of Pic(A) is identified with H'(A). Note also that Pic(A) = Pic(AlL1]),
where A% denotes the complex of amplitude [0, 1] deduced from A such
that H™ (ALY = H™(A) for n =0, 1.

Given two complexes of Abelian groups A, B, a homomorphism of
complexes ¢ : A — B gives rise to an additive functor Pic(p) : Pic(A) —
Pic(B). The functor Pic(p) is an equivalence of categories if and only
if H™(p) is an isomorphism for n = 0,1. Given two homomorphisms
v, : A — B, a homotopy ¢ ~ v gives rise to an isomorphism of additive
functors Pic(p) = Pic(wp). Therefore, the association A — Pic(A) gives rise
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to a functor from the derived category D°(24b) to the category of all (small)
Picard categories (morphisms in the latter category are isomorphism classes
of additive functors). It is shown in [1], Exposé XVIII, that this functor
becomes an equivalence of categories when restricted to the full subcategory
D0:1(Ab) of complexes of amplitude [0, 1].

Remark A.1. — Our definition of Pic(A) is a bit different from the
definition used in [1], Exposé XVIIL In loc.cit., Pic(A) is only defined for
a complex of amplitude [—1, 0]. For the application of Picard categories in
this paper, it seemed more convenient to shift degrees by 1 and to allow
arbitrary complexes.

A.2. — Let X be a topological space. (Actually, without changing
anything essential, we could let X be an arbitrary site.) We denote by
2Ab(X) the category of sheaves of Abelian groups on X. The total right
derived functor of the global section functor I'(X, -) is denoted by RI'(X, ).
For generalities about stacks, see [5] or [14].

A Picard stack over X is a stack B over X, together with a morphism
of X-stacks

T PxxPB—PB, (wyr—zty
and two functorial isomorphisms
o:(x+y)+z2z+ (y+2), TirtySy+u
such that the following holds.

(i) For each open subset U C X, the fiber P(U), together with the

restrictions of 4+, o and 7 to U, is a (strictly commutative) Picard category.

(ii) For each inclusion U C V of open subsets, the restriction functor
P(U) — P(V) is a morphism of Picard categories.

Given two Picard stacks P ,P,, an additive functor from P, to B,
is an X-functor F' : B — P, together with functorial isomorphisms
F(r +1y) = F(x)+ F(y) whose restriction to each fiber is an additive
functor. Given two additive functors F,G : ?1 — ?27 a morphism of
additive functors is a morphism of X-functors u : FF — G (automatically
an isomorphism) whose restriction to all fibers is a morphism of additive
functors. We denote by ﬁom(ﬁl , %2) the corresponding category of additive
functors and by Hom(%l,EQ) its set of isomorphism classes. It is easy to
equip Hom(P 1 %2) with a natural structure of a Picard category. Moreover,
one can show that the X-groupoid

U — Hom(B, |v, B,v)
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is itself a Picard stack, see [1], Exposé XVIIL

Let A be a complex of Abelian sheaves on X. The association
U — Pic(T'(U, A))

(where U C X runs over all open subsets of X) gives rise to a prestack
P’ (A) over X. Let Pic(A) be the stack over X associated to this prestack,
see e.g. [14], Lemme (3.2). One checks that Bic(A) is a Picard stack, in a
natural way. For each open subset U C X, the natural functor

(60) Pic(L'(U, A)) — Pic(A)
is an additive functor. In general, it is not an isomorphism.

A homomorphism ¢ : A — B of Abelian sheaves gives rise to
a morphism Pic(p) : Pic(A) — Pic(B) of Picard stacks. Moreover,
a homotopy ¢ ~ 1 gives rise to a isomorphism of additive functors
Pic(p) = Pic(rp). Therefore, the association A +— Pic(A) gives rise to
a functor from the derived category ®(X) to the category of all (small)
Picard stacks on X (morphisms in the latter category are isomorphism
classes of additive functors).

ProroOSITION A.2. — Let X be a topological space and A a sheaf
of Abelian groups on X such that H"(A) = 0 for n < 0. Then we have a
natural equivalence of Picard categories

Pic(A)(X) = Pic(RI'(X, A)).
This proposition seems to be well known. Since it is an important

step in the proof of Theorem 2.2 and we could not find a suitable reference,
we give a proof.

Proof. — The hyper-cohomology spectral sequence and the assump-
tion H"(A) = 0 for n < 0 show that

H™ (X, APy = H"(X, A) for n=0,1.

We may therefore assume that 4 = AU Let U = (Ui)icr be an
open covering of X. We choose a well-ordering on the index set I. Let
Ky := C*(U, A) be the double complex whose nth column (for n = 0,1) is
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the Cech cochain complex of A" with respect to U:
d

Hi F(UivAO) — Hz F(Ui7~’41)
Jo |o
IL.,;TW,;A)  — LT, A"

Ky la la

[Lic;cx Tk, A% — Tlicjer T(Uijk, AY)
2 2

We define a morphism of Picard categories

(61) Pic(Tot(Ky)) — Pie(A)(X),
as follows. An object of Pic(Tot(Ky)) is a datum (f;;¢:;), with f; €
I'(U;, Z'(A)) and g; ; € T'(U; j, A%), such that

(62) (QZJ) f]|U1 . f2|U7g
for all ¢ < j and
(63) 9ij — 9ik + 9k =0

for all i < j < k. Let f; denote the object of Pic(A)(U;) corresponding to
fi- By (62), g, ; corresponds to an isomorphism g; ; : E|U” = E|U”
Now (63) means that these isomorphisms satisfy the cocycle relation
Gj.k ©Gij = Gik- In other words, (ﬁ, gi.;) is a patching datum with values
in Pic(A). Since Pic(A) is a stack, there exists an object f of Pic(A)(X)
together with isomorphisms «; : f|U = ﬁ such that g; ; = o 0 a;l. By
definition, f is the image of (f;, gi,j) under (61).

Let (f/,g;;) be another object of Pic(Tot(Ky)), and let f' be the
corresponding object of Pic(A)(X). A homomorphism from (f;,g; ;) to
(fl,9i;) is a datum (h;), with h; € T(U;, A°), such that

(64) d(hi) = fi — fi
for all 7 and
(65) hjUij_ iU, :géj_gij

for all i < j. Equation (64) shows that h; corresponds to an isomorphism
hit f; = fj Moreover, by (65) the dlagram

filv., — fllu.,

fj|Ui,j - fj/|U'L]
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commutes for all 7 < j. In other words, (El) is an isomorphism of patching
data. Using again that Pic(A) is a stack, we see that there exists a unique
isomorphism A : f == f’ such that h; o a; = af o 7L|U By definition, h
is the image of (h;) under (61). This finishes the definition of (61) as a
functor. We leave it to the reader to check that (61) is indeed a morphism
of Picard categories.

Clearly, the definition of (61) is compatible with taking refinements
of the covering U. Therefore, we obtain a morphism of Picard categories

(66) lip Pic(Tot(Kz)) — Pie(A)(X).

We claim that (66) is an isomorphism. Indeed, the discussion of the previous
paragraph, leading to the definition of (61), shows that Pic(Tot(Ky)) is
isomorphic to the category of patching data for the covering U, with values
in the prestack Pic(.A)’. On the other hand, the category Pic(.A)(X) is the
direct limit over the categories of such patching data, where the limit is
taken over all possible coverings Uf; this follows from the construction of a
stack associated to a prestack, see e.g. [14], §3. This proves the claim.

To finish the proof of the proposition, it suffices to show that the
natural morphisms

Tot(Ky) — RI(X, A)
induces isomorphisms on cohomology
l%n H"(Tot(Ky)) — H"(X,.A)

for n = 0,1. This is proved in two steps. First, one compares the two
spectral sequences which compute the cohomology of Tot(K7,) on the one
hand and the hyper-cohomology groups H" (X, .4) on the other hand. Then
one uses the well known fact that Cech-cohomology agrees with ordinary
sheaf cohomology in degree n = 0,1 (see e.g. [10], Ex. I11.4.4). We omit the
details. O

B. Group cohomology for affine flat group schemes.

We show how to compute the cohomology of an affine group flat group
scheme in terms of cocycles and coboundaries, just as for abstract groups.
Reference is [9], Exposé 1.
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B.1. — Throughout this section, we fix a commutative ring and
an affine flat R-group scheme G = Spec Og. We denote by A : Og —
Og ®r Og the comultiplication and by e : Og — R the counit of G.

A (right) G-R-module is an R-module M together with an R-linear
morphism ppr : M — Og®@pr M such that (Ido, ®par)opn = (A®Idy)o
uar and (e ® Idps) o puas = Idyy. For each R-algebra R’ and o € G(R') we
obtain an R’-linear automorphism m — m? of M’ := M ®g R’ such that
m?T = (m?)7. We shall denote by Mod(R, G) the category of G-R-modules,
by &7 (R, G) the (triangulated) category of bounded below cochain complex
in Mod(R, G) (modulo homotopy) and by T (R, G) the derived category
of &7 (R, G).

Given a G-R-module M, the invariant R-submodule M€ is the set
of all m € M such that uy(m) = 1 ® m, or, what is equivalent, m? = m
for all R' and o € G(R'). The functor M + MY from Mod(R, G) to the
category of Abelian groups is obviously additive and left exact. We denote
its nth right derived functor by H™(G, -) and its total right derived functor
by RE. (For the existence of enough injectives in Mod(G, R), see the proof
of Lemma Bbelow.)

B.2. — Given an R-module M, we set
M = 0Og ®r M.
The map A ® Idy, : M — Og ®r M gives M the structure of a (right)
G-R-module. A G-R-module which is isomorphic to M for some R-module
M is called coinduced. If G is a finite group then this agrees with the usual
definition of coinduced modules.

Let M be an R-module M, P a G-R-module and ¢ : P — M an

R-linear morphism. Then ¢ := (Idp, ®p) o up : P — M is easily checked
to be G-equivariant. One checks that this construction yields a natural
isomorphism
(67) Homp (P, M) == Home(P, M).
(The inverse of (67) is defined as follows: given a G-equivariant homo-
morphism ¢ : P — M, ¢ = (e®Idpy) ot : P — M is an R-linear
morphism such that ¥ = ¢.) Moreover, the isomorphism (67) makes the
functor M +— M a right adjoint of the forgetful map from Mod(R, G) to
Mod(R).

LeEmMA B.1. — For any R-module M we have
H"(G,M): M  forn =0,
0 forn>0.
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Proof. — For n = 0, the lemma is equivalent to the exactness of the
sequence

(68) 0—M— M— Og®r M

(the first arrow sends m to 1 ® m and the second a ® m to A(a) ® m —
1®a®m). Now (68) is exact on the left because R — Og is flat, by
assumption. Exactness in the middle is proved using the properties of the
counit e : Og — R. Hence the lemma holds for n = 0.

Choose an injective resolution M — I° — I' — ... of the R-
module M. The functor M +— M , being the right adjoint of an exact
functor, preserves injectives, see e.g. [24], Proposition 2.3.11. Therefore,
M — I° — T' — ... is an injective resolution of the G-R-module M. Now
the general case of the lemma follows from the case n = 0. O

B.3. — Let M be a G-R-module. In order to compute the coho-
mology groups H"(G, M), it suffices to write down a resolution of M by
coinduced G-R-modules. We do this as follows. Set B~1(G, M) := M and
define inductively B"(G, M) := (B"~Y(M))~ for all n > 0. As R-modules,
we simply get

B"(G,M)=0¢g ®r -+ ®@r Og @rM.
(n+1)x
We define differentials 9 : B"(G, M) — B" (G, M) by setting

Iap @+ ®a, ®m) ¢:Z(_l)yao®"'®A(au)®"-®an®m
v=0

+H=1)"Mag ® -+ @ an ® par(m).
Note that § : M = B~}(G, M) — M= BY(G, M) equals pyy. It is easy to
check that
(69) M " oG vy 2 BY G M) 2
is an (augmented) complex a G-R-modules. (In fact, (69) is the (aug-
mented) cochain complex associated to M and the pair of adjoint functors
Mod(G, R) = Mod(R), see [24], §8.6.) Moreover, (69) is exact. This follows
immediately from the existence of the homotopy

5 { B"tY(G, M) — B"(G,M)
: QW® - Qa, dm — e(QO)a1®"'®an®m'

Applying the functor M +— M to the resolution (69) defines an

augmented complex of R-modules

(70) MC — G, M) L oG, M) 2
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Elements of C™(G, M) are called n-cochains with values in M. Likewise,
elements of Z"(G, M) := Ker(9) (resp. of B"(G, M) := (9)) are called
cocycles (resp. coboundaries). Note that we have an isomorphism of R-
modules

C"(G,M)=0g®g- - ®r0g®rM,

nx
such that the canonical injection C™ (G, M) — B™(G, M) sends the element
a1 ® - Qan, ®m to the element 1 ®a; ® - - - ® a, ® m. Given an R-algebra
R’, an n-cochain ¢ € C"(G, M) gives rise to a function
G(R)x -+ xGR)— M =M@gR, o= (01,...,00) — @g.

Now ¢ is a cocycles (resp. a coboundary) if and only if this function is a
cocycle (resp. a coboundary) in the traditional sense, for all R-algebras R’
(again, it suffices to take R’ flat over R). For instance, a 1-cochain ¢ is a
cocycle if and only if

Por =g+ Pr
holds for all o,7 € G(R'). It is a coboundary if and only if for all R’ there
exists an element m € M’ such that ¢, = m? —m holds for all ¢ € G(R').

It follows from Lemma B.1 that
(71) H"(G,M)=H"(C*(G,M))
for all G-R-modules M and all n > 0. The next proposition is a slight
generalization of (71).

PROPOSITION B.2. — Let M* € &7 (R,G) be a bounded below
complex of G-R-modules. Then we have a natural isomorphism of derived

complexes
RY(M*®) = Tot(C*(G, M*)).

Proof. — Let K denote the double complex B*(G,M?®). The gth
row of K is exact except at degree p = 0, where the cohomology is M4Y.
Therefore, the spectral sequence associated to K (filtered by rows) shows
that the augmentation M*® — K gives rise to a quasi-isomorphism

M*® — Tot(K).
By definition, the complex Tot(K) consists entirely of coinduced G-
R-modules, which are acyclic with respect to taking G-invariants, by
Lemma B.1. Therefore, [24], Theorem 10.5.9 implies
RY(M*) = Tot(K)“ = Tot(C*(G, M*)).
This finishes the proof of the proposition. O
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C. Sheaves of G-Oy-modules.

The goal of this last appendix is to review the definition of equivariant
hyperext groups and the construction of the two spectral sequences (79)
and (82). The standard reference is [7].

Cl. — LetG—SandY — Sbeasin§l. Let A\: G xgY —= Y
(resp. p: G Xxg Y — Y) denote the morphism defining the action of G on
Y (resp. the second projection). Given a sheaf of Oy-modules F, a lift of
the G-action from Y to F is given by an isomorphism A\*F — p*F which
satisfies certain obvious axioms, see e.g. [17], §II1.12.

Let F and G be G-Oy-modules. Let Homy (F,G) denote the R-
module of Oy-linear (but not necessarily G-equivariant) homomorphisms
from F to G. It carries a natural structure of G-R-module, defined as
follows. Let R’ be a flat R-algebra and ¢ € G(R'). Since R’ is flat over
R we have a natural isomorphism

Homy (F,G) @r R’ = Homy/(F',G’).

Given f : 7/ — G’ € Homy/ (F',G’'), we define f° via the following
commutative diagram:

F 7 g
oo | L&
0_* ]:/ ‘T*_f) O'* g/
Note that an Oy-linear morphism f : F — G is G-equivariant if and only
if it is invariant under the G-action just defined, i.e.

Homg(F,G) = Homy (F, Q)G.

C.2. — Let F be an Oy-module. We set F := wxp*F and claim
that F carries a natural structure of G-Oy-module. To define a G-action
on F, let S’ = Spec R’ be an affine S-scheme and o € G(S5’). As usual, we
indicate base change to S’ with a prime (e.g. Y/ =Y xg 5’) and identify
o with the automorphism of Y’ induced from o via the action of G on Y.
Also, welet t, : G xg'Y' =5 G’ xg Y’ denote the automorphism induced
from left translation by o on the first factor. Since p’ o t, = p’, we have a
natural isomorphism

(72) prF St
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Using the commutative diagram
G'xgY' 1 G xgY
(73) w| I
Y’ L) Y’
we obtain an isomorphism ¢, : F/ —— o*F as follows:
(74) F =l F o btz F S oty F = o F

One checks that the definition of ¢, is functorial in S’ and satisfies the rule
Yor = (T*¢s) 0 pr. This defines a lift of the G-action from Y to F. we may
therefore regard F as a G-Oy-module. A G-Oy-module isomorphic to F
for some Oy-module F is called coinduced. Compare with §B.2.

ProrosiTiON C.1.

(i) Given an Oy-module F and a G-Oy-module G, we have a natural
isomorphism of G-R-modules

Homy (G, F) = Hom;Tgy}-)

(the right hand side is the G-R-module coinduced from the R-module
Homy (G, F)).

(ii) The functor F — F is the right adjoint of the forgetful functor
Mod(Y, G) — Mod(Y).

Proof. — Given a G-Oy-module G, we have natural isomorphisms
of R-modules

(75)  Homy(G,F) = Homgxy (1*G,p*F) = Homgxy (p*G,p* F)

= Homy (G, F).
Here the first isomorphism is obtained from the adjointness of u, and p*,
the second isomorphism from the G-action on G and the third isomorphism
exists because G — S is flat. Note that both the first and the last term in
(75) carry a natural structure of G-R-module. One checks that (75) defines
an isomorphism of G-R-modules. This proves (i). Taking G-invariants and
using Lemma B.1 for n = 0, we obtain an isomorphism of R-modules

(76) Homg(G, F) = Homy (G, F).

A tedi~0us but elementary verification shows that this isomorphism makes
F — F the right adjoint of the forgetful functor Mod(Y, G) — Mod(Y'). O

TOME 55 (2005), FASCICULE 4



1162 Stefan WEWERS

CoroLLARY C.2.
(i) The category Mod(Y, G) has enough injectives.
(ii) Given a G-Oy-module G, the functor

Homy (G, ) : Mod(Y, G) — Mod(R, G)

sends injective G-Oy-modules to G-R-modules which are acyclic with
respect to the functor M — M.

C.3. — Let A, B be complexes of G-Oy-modules. We assume that .4
is bounded below and that B is bounded in both directions. Then the total
Hom complex Homg, (A, B) is a (bounded above) complex of Abelian groups
whose nth cohomology group is isomorphic to the group of homomorphisms
A — B[—n] up to homotopy, i.e.

H" (Hom (A, B)) = Homg ) (A, Bl—n]).
See e.g. [24], 2.7.4. Let 8 (Ab) denote the category of bounded above
complexes of Abelian groups, up to homotopy, and ®~(2b) its derived
category. The functor Homg (A, -) : &2(G,Y) — &£ (2Ab) is a morphism
of triangulated categories and has a total right derived functor, which we
denote by RHomg(A, -) : D°(Y,G) — D~ (Ab). The nth hyperext of A
and B is defined as
Exte:(A, B) := H"(RHomg (A, B))

see e.g. [24], §10.7. It follows from standard arguments that the functor
RHomg(-,B) : D7(Y,G) — D (Ab) is a morphism of triangulated
categories.

Ignoring the G-action, we may as well define the total Hom complex
Hom$, (A, B). By §C.1, the terms of Hom§$, (A, B) carry a natural structure
of G-R-modules such that

(77) Homg, (A, B) = Hom$. (A, B)°.

This formula displays the functor Homg, (A, ) as the composition of two
morphisms of triangulated categories

R(Y,G) — R (R,G) — & (Ab).
It follows from Corollary C.2 and [24], Theorem 10.8.2 that
(78) RHomg (A, B) = RY(RHomy (A, B)).

Therefore, the hyperext group Ext¢(A,B) can be computed via the
Grothendieck spectral sequence

(79) EY? = HP(G,Extl (A, B)) = Ext% (A, B).
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C.4. — Now assume that G — S is finite and that Y can be covered
by affine G-stable open subsets. Then by [17], Theorem 12.1, the quotient
scheme X := Y/G exists and the natural projection 7 : ¥ — X is finite.
Given a G-Oy-module F, one defines a sheaf of O x-modules F€ such that

L(V,7) =T (=" (V),F)C.

Let F, G be two G-Oy-modules. In view of §C.1 it is clear that the sheaf
Homy (F,G) is endowed with a natural action of G, i.e.with a structure of
G-Oy-module. We set

Homea(F,G) :== Homy (F,G)C.
By definition, we have

(80) HomG(]:7 g) = F(Xv HomG(f7 g))

LeMMA C.3. — The additive functor Homg(F, -) sends injective
G-Oy-modules to I'(X, - )-acyclic O x-modules.

Proof. — By the construction of injective objects of Mod(Y,G) in

§C.2, it suffices to proof the lemma for G-Oy-modules of the form Z, where
7 is an injective Oy-module. Using Proposition C.1 (ii) one shows that

Home(F,I) = w0 Homy (F,T).

It is well known that Homy (F, -) sends injective to I'(Y, -)-acyclic Oy-
modules. But since r is finite the functor 7, is exact and so 7. Homy (F,7)
is T'(X, - )-acyclic. This proves the lemma. O

Given two complexes of G-Oy-modules A and B (with A bounded
below and B bounded), one defines the (bounded above) complex of Ox-
modules Homg (A, B). We let RHomg (A, B) denote the total right derived
functor of Homg (A, -), evaluated at B, and set

Exti (A, B) .= H"(RHomg (A, B)).
As in the previous subsection, it follows from (80) and Lemma C.3 that
(81) RHomg (A, B) =2 RI'X,RHomg (A, B)).
In particular, there exists a spectral sequence
(82) HP (X, Extd (A, B)) = Ext} (A, B).
Following [7], we call (82) the local-global spectral sequence for Exty,.
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