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TOPOLOGICAL INVARIANTS OF ANALYTIC SETS

ASSOCIATED WITH NOETHERIAN FAMILIES

by Aleksandra NOWEL (1)

Introduction.

In [12] Parusiński and Szafraniec proved, that for any regular mor-
phism φ : X −→ W of real algebraic sets there exist real polynomials
g1, g2, . . . , gs on W such that for every w ∈W

χ(φ−1(w)) = sgn g1(w) + sgn g2(w) + . . .+ sgn gs(w),

where sgn g(w) denotes the sign of g(w), χ(A) denotes the Euler charac-
teristic of the set A (compare also the result of Coste and Kurdyka [4]).

Let Ω ⊂ Rn be a compact semianalytic set and let F be a collection
of real analytic functions defined in some neighbourhood of Ω. With each
ω ∈ Ω we can associate an analytic germ Yω =

⋂
f∈F f

−1(0) at ω and an
analytic germ Xω = {x | x + ω ∈ Yω} at 0. Using arguments similar to
Parusiński and Szafraniec, and the properties of Noetherian families, we
will show (Theorem 4.11) that there exist analytic functions v1, v2, . . . , vs
defined in a neighbourhood of Ω such that for each ω ∈ Ω there exists
0 < εω 	 1 such that for each 0 < ε < εω

1
2
χ(Sn−1

ε ∩Xω) =
s∑
i=1

sgn vi(ω),

(1) Research partially supported by the European Community IHP-Network RAAG
(HPRN–CT–2001–00271).
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550 ALEKSANDRA NOWEL

where Sn−1
ε denotes a sphere in Rn centered at the origin with the radius ε.

This result is proven in section 4. In fact it holds in the more
general case, where F is a family of analytic functions from an Ω–
Noetherian algebra satisfying some additional assumptions (see Remark
after Theorem 4.11). The Ω–Noetherian algebras were defined by El Khadiri
and Tougeron in [5].

Let Ω be a locally closed subset of Rn, and let O(Ω) be a subalgebra
of the algebra of analytic functions on Ω (or on a neighbourhood of
Ω) to R. Let us identify Ω with a subspace of the maximal spectrum
SM(O(Ω)). With each point from Ω we associate the maximal ideal ofO(Ω)
consisting of the functions which vanish at this point. The subalgebra O(Ω)
is called Ω–Noetherian if it is closed under derivation, R[x] ⊂ O(Ω) and Ω,
identified as above with a subspace of the maximal spectrum SM(O(Ω)),
is a Noetherian space. El Khadiri and Tougeron have given other examples
of Ω–Noetherian algebras, for instance

– the algebra of Nash functions (i.e. analytic semialgebraic functions)
on Ω, where Ω is open semialgebraic in Rn,

– the algebra R[x][f1, . . . , fq], where R[x] = R[x1, . . . , xn] is the ring of
polynomials on Rn, fi = eQi , Qi ∈ R[x].

In sections 1–3 we recall the definition and properties of Noetherian
families, proved by El Khadiri and Tougeron in [5] and prove some useful
properties of germs of some special complex analytic sets and of Noetherian
families. Finally, in section 5, we show some consequences of the main result.

I wish to express my thanks to Professor Z. Szafraniec for suggesting
the problem and for many stimulating and fruitful conversations. I am also
indebted to Professor A. Parusiński for his accurate comments and to the
referee for his helpful remarks.

1. Preliminaries.

Let A be a commutative algebra with an identity element over a
commutative field k of characteristic zero, and let Γ be a subset of the
maximal spectrum SM(A) of A. In Γ we have the topology induced by the
topology of SM(A), i.e. F is closed in Γ if F = {γ ∈ Γ | B ⊂ γ} for some
B ⊂ A.
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TOPOLOGICAL INVARIANTS OF ANALYTIC SETS 551

Following El Khadiri and Tougeron [5] we assume that A and Γ satisfy
the following conditions:

(a) for all γ ∈ Γ the canonical mapping k −→ A/γ is an isomorphism.

(b) Γ equipped with the topology of SM(A) is a Noetherian space.

This means that every decreasing sequence of closed sets in Γ is
stationary. Consequently any closed set in Γ is a union of finitely many
irreducible closed sets.

If a ∈ A and γ ∈ Γ, let a(γ) ∈ k denote the image of a under the
mapping A −→ A/γ ∼= k. If F is a subset of Γ, let I(F ) = {a ∈ A | a(γ) = 0
for all γ ∈ F}. If S is a subset of A, let V (S) = {γ ∈ Γ | a(γ) = 0 for all
a ∈ S}. Then closed sets in Γ are the sets V (S), where S ⊂ A. A closed set
F in Γ is irreducible if and only if I(F ) is a prime ideal.

Let x = (x1, . . . , xn), k = R or C, and denote by A[[x]] (resp. k[[x]])
the ring of formal power series in x with coefficients in A (resp. in k),
and by k{x} the ring of formal power series which are convergent in
some neighbourhood of the origin. If γ ∈ Γ and f =

∑
β aβx

β ∈ A[[x]],
let fγ =

∑
β aβ(γ)xβ ∈ k[[x]]. If f = (f1, . . . , fp) ∈ A[[x]]p, we write

fγ = (f1,γ , . . . , fp,γ). Finally if N is a submodule of A[[x]]p generated by
fα, let Nγ be the submodule of k[[x]]p generated by fα,γ .

El Khadiri and Tougeron have proved a lot of properties of submod-
ules of A[[x]]p (see [5]). We recall some of them.

Theorem 1.1 ([5], Proposition 6.2.1). — Let N be a submodule

of A[[x]]p. There exists a submodule N ′ ⊂ N , generated by finitely many

elements, such that Nγ = N ′γ for all γ ∈ Γ.

Theorem 1.2 ([5], Proposition 6.8). — Let I be an ideal in A[[x]].
There exists a positive integer µ such that

∀γ∈Γ (rad(Iγ))µ ⊂ Iγ .

Denote by Ac[[x]] the subring of the ring A[[x]] such that

f ∈ Ac[[x]]⇔ ∀γ∈Γ fγ ∈ k{x}.

Theorems 1.1 and 1.2 are valid if we replace A[[x]] by Ac[[x]].

Definition. — A collection N of submodules of k[[x]]p (resp. of

k{x}p) is called a Noetherian family (parameterized by (A,Γ)) if there

TOME 55 (2005), FASCICULE 2



552 ALEKSANDRA NOWEL

exists a couple (A,Γ) satisfying the conditions (a) and (b) given above,

and a submodule N of A[[x]]p (resp. Ac[[x]]p) such that N = (Nγ)γ∈Γ.

Each subcollection of a Noetherian family is a Noetherian family, a
union of two Noetherian families is a Noetherian family (if N1 and N2

are Noetherian families parametrized resp. by (A1,Γ1) and (A2,Γ2) then
N1 ∪N2 is parametrized by (A1 ⊕A2,Γ1 ∪ Γ2)).

Definition. — Let I be an ideal in R{x} generated by f1, . . . , fp
and let V (I) be the germ of the set of zeros of I at the origin. The

"Lojasiewicz exponent of I is the infimum of all the positive real numbers

α for which there exists a constant c > 0 such that
p∑
i=1

|fi(x)| � c d(x, V (I))α

in some neighbourhood of the origin (d denotes the Euclidean distance and

we put d(x, ∅) = 1).

Theorem 1.3 ([5], Proposition 8.3). — Let (Iγ)γ∈Γ be a Noetherian

family of ideals of R{x}. Then the family of the "Lojasiewicz exponents L(Iγ)
of Iγ is bounded.

Let (A,Γ) be a second couple satisfying conditions (a) and (b). A

change of parametrization is a morphism of k-algebras φ : A −→ A

such that φ∗ : SpecA −→ SpecA induces a morphism from Γ onto Γ.
If N = (Nγ)γ∈Γ is a Noetherian family and N is the submodule of A[[x]]p

(resp. Ac[[x]]p) generated by φ̃(N) then N = (N γ̄)γ̄∈Γ and (A,Γ) is a new
parametrization of this family (here φ̃ : A[[x]]p −→ A[[x]]p is a natural
extension of φ). A composition of changes of parametrization is a change
of parametrization.

Theorem 1.4 ([6], Proposition 6.6). — Let N be a submodule of

A[[x]]p. There exist a change of parametrization φ : (A,Γ) −→ (A,Γ), a fi-

nite partition (Γi)i∈I of Γ, ideals p1, . . . ps of A[[x]], submodules N1, . . . , Ns
of A[[x]]p and constants si � s, i ∈ I, such that for all γ̄ ∈ Γi if γ = φ∗(γ̄):

(1) p1,γ̄ , . . . , psi,γ̄ are prime ideals of k[[x]] and if j > si then pj,γ̄ =
k[[x]].

(2) Nj,γ̄ is pj,γ̄– primary if 1 � j � si and Nj,γ̄ = k[[x]]p if j > si.

(3) Nγ = N1,γ̄ ∩ . . .∩Nsi,γ̄ and it is a reduced primary decomposition

of Nγ .
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TOPOLOGICAL INVARIANTS OF ANALYTIC SETS 553

Theorem 1.5 ([5], Proposition 6.4). — Let N , N ′ be submodules

of A[[x]]p. There exist a change of parametrization φ : (A,Γ) −→ (A,Γ)
and a submodule N of A[[x]]p such that for all γ̄ ∈ Γ if γ = φ∗(γ̄):

N γ̄ = Nγ ∩N ′γ .

2. Germs of analytic sets.

Let f : (Cn, 0) −→ (C, 0) be a germ of a holomorphic function at the
origin and let r(z) = z21 + . . .+ z2n for z = (z1, . . . , zn) ∈ Cn. Denote by G
the germ at the origin of the analytic set⋂
i<j

{
z ∈ Cn | det

[ ∂r
∂zi

∂r
∂zj

∂f
∂zi

∂f
∂zj

]
=0

}
=

⋂
i<j

{
z ∈ Cn | det

[
zi zj
∂f
∂zi

∂f
∂zj

]
= 0

}
,

i.e. z ∈ G if and only if ∇r(z) =
(
∂r
∂z1

(z), . . . , ∂r∂zn (z)
)

and ∇f(z) =(
∂f
∂z1

(z), . . . , ∂f∂zn (z)
)

are linearly dependent.

Denote by G′ the germ of the set G \ f−1(0) at the origin. We will
show, that G′ ∩ f−1(0) = G′ ∩ r−1(0).

Lemma 2.1. — G ∩ r−1(0) ⊂ f−1(0).

Proof. — Assume that (G ∩ r−1(0)) \ (G ∩ f−1(0)) �= ∅. According to
the curve selection lemma there exists an analytic curve γ = (γ1, . . . , γn)
such that γ(0) = 0 and γ \ {0} ⊂ (G ∩ r−1(0)) \ (G ∩ f−1(0)). Then we have
r(γ(t)) ≡ 0. Hence

(1)
d

dt
r(γ(t)) =

∂r

∂z1
(γ(t))

dγ1
dt

(t) + . . .+
∂r

∂zn
(γ(t))

dγn
dt

(t) ≡ 0.

Since ∇r(z) �= 0 for z �= 0 and γ(t) ∈ G,
∀t ∃c(t) ∇f(γ(t)) = c(t)∇r(γ(t)).

Thus by (1) we have d
dtf(γ(t)) ≡ 0, so f ◦ γ = const. Since (f ◦ γ)(0) = 0,

γ ⊂ f−1(0) — a contradiction. ��

Lemma 2.2. — G′ is a germ of an analytic set.

Proof. — Germs of sets G, G∩f−1(0) are analytic, so the representa-
tive of G \ f−1(0) is an analytically constructible set. The complex closure
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554 ALEKSANDRA NOWEL

of an analytically constructible set is analytic, so the representative of the
germ G′ is an analytic set ([8], Proposition IV 8.3.5). ��

Lemma 2.3. — G′ = G1 ∪ . . . ∪ Gp, where G1, . . . ,Gp are the ir-

reducible components of G such that Gi \ f−1(0) �= ∅ for i = 1, . . . , p.
Moreover, Gi \ f−1(0) is dense in Gi.

Proof. — According to [8], Theorem IV 2.10.5, G′ = G1 ∪ . . . ∪ Gp.
Since each germ Gi is irreducible, [8], Proposition IV 2.8.3, implies that
Gi ∩ f−1(0) is nowhere dense in Gi, so Gi \ f−1(0) = Gi \ (Gi ∩ f−1(0)) is
dense in Gi. ��

Lemma 2.4. — Let G1, . . . ,Gp be defined as in Lemma 2.3. Let

Gi \r−1(0) =
⋃
Ai,k be a decomposition into finitely many disjoint analytic

submanifolds. Then for each i, k the restriction of r to the set Ai,k has no

critical points in some neighbourhood of the origin.

Proof. — Fix i, k and assume that the set of critical points of r|Ai,k
is nonempty. Then it is analytically constructible. According to the curve
selection lemma there is a curve γ such that γ(0) = 0 and γ \ {0} is
contained in the set of critical points of r|Ai,k . Then the function r|Ai,k ◦ γ
is constant. We have r(γ(0)) = r(0) = 0, so r|Ai,k ◦γ ≡ 0. But it contradicts
γ ∩ r−1(0) = ∅. So the set of critical points of r|Ai,k is empty. ��

We will say that an analytic set has a Whitney stratification, if it has
such a stratification whose every two strata satisfy Whitney conditions a
and b.

Theorem 2.5 (see e.g. [18] Theorem 19.2, [1] Theorem 9.7.11).
Any analytic set has a Whitney stratification. Any stratification (Ei)i∈I of

this set has a Whitney refinement, i.e. there exists a Whitney stratification

(Fj)j∈J such that each stratum Ei is a union of some strata of (Fj)j∈J .

Lemma 2.6. — G′ ∩ f−1(0) \ r−1(0) = ∅.

Proof. — Fix i ∈ {1, . . . , p}. We will show that
Gi ∩ f−1(0) \ r−1(0) = ∅.

The set Gi admits a Whitney stratification such that Gi ∩ f−1(0), as well
as Gi \ r−1(0) is a union of strata. According to Lemma 2.4 the restriction
r|Ai,k is a submersion for each k.

ANNALES DE L’INSTITUT FOURIER



TOPOLOGICAL INVARIANTS OF ANALYTIC SETS 555

Assume that z0 ∈ Gi∩f−1(0)\r−1(0). Let A be the stratum such that
z0 ∈ A and let

⋃
j Bj be the union of all strata Bj ⊂ Gi \ f−1(0) such that

A ⊂ Bj . According to Lemma 2.3 there is at least one nonempty stratum
satisfying this condition. Denote Z = A ∪

⋃
j Bj .

We will show, that z0 is not isolated in
⋃
j Bj ∩ r−1(r(z0)), using the

following Thom-Mather theorem:

Theorem 2.7 ([16] Theorem 4.3.1). — Let X =
⋃
Xα be an

analytic space admitting a Whitney stratification. For each x ∈ Xα, each

local embedding X ⊂ Cn in a neighbourhood of x, and each local retraction

ρ : Cn −→ Xα there exist an open neighbourhood U of x in Cn and a

homeomorphism compatible with ρ such that, denoting V = U ∩Xα and

Π2 : (ρ−1(x)∩X ∩U)×V −→ V — the projection on the second variable,

we have
X ∩ U � (ρ−1(x) ∩X ∩ U)× V
ρ|X∩U ↘ ↙ Π2

V

inducing for each Xβ containing Xα the analogous homeomorphism

Xβ ∩ U � (ρ−1(x) ∩Xβ ∩ U)× V
ρ|Xβ∩U ↘ ↙ Π2

V

.

The set Z satisfies the assumptions of the theorem. Fix Bj �= ∅ and
denote k = dimCA. Since r̃ := r|A has no critical points, there exist
r2, . . . , rk : Cn −→ C defined in some neighbourhood of z0 such that,
denoting r̃i = ri|A, d r̃(z0),d r̃2(z0), . . . ,d r̃k(z0) are linearly independent.
Take R = (r, r2, . . . , rk) : Cn −→ C

k. A is transversal to R−1(R(z0))
and crosses it at z0. Denote R̃ = R|A, then rankD R̃(z0) = k. So
R̃ : (A, z0) −→ (Ck, R(z0)) is an analytic diffeomorphism. Denote by
S : (Ck, R(z0)) −→ (A, z0) the inverse of R̃.

Let define a local retraction ρ : Cn −→ A, ρ(z) = (S ◦ R)(z).
According to Theorem 2.7 there exist a neighbourhood U of z0 and a
homeomorphism h such that, for V = U ∩A

Bj ∩ U
h� (ρ−1(z0) ∩Bj ∩ U)× V

ρ|Bj∩U ↘ ↙ Π2

V

.

We have (ρ−1(z0) ∩ Bj ∩ U) × V = (R−1(R(z0)) ∩ Bj ∩ U) × V ⊂
(r−1(r(z0))∩Bj ∩U)× V . Since A ⊂ Bj , there exist a sequence (zn) ⊂ Bj

TOME 55 (2005), FASCICULE 2



556 ALEKSANDRA NOWEL

such that zn → z0. Let (yn) ⊂ (R−1(R(z0)) ∩ Bj ∩ U) be such that
zn = h−1(yn, ρ(zn)). Then yn → z0 and (yn) ⊂ r−1(r(z0)).

Hence z0 is not isolated in
⋃
j Bj ∩ r−1(r(z0)), so by the curve

selection lemma there is a curve γ such that γ(0) = z0 and γ \ {z0} ⊂⋃
j Bj ∩ r−1(r(z0)).

Because γ ⊂ Gi ⊂ G and r|Ai,k are submersions, we can deduce as
above, using arguments from the proof of Lemma 2.1, that f is constant
along γ and f(γ(0)) = f(z0) = 0, so f ≡ 0 along γ. But γ \ {z0} ⊂
Gi \ f−1(0), a contradiction. Then G′ ∩ f−1(0) \ r−1(0) = ∅. ��

Hence we obtain

Corollary 2.8. — G′ ∩ f−1(0) = G′ ∩ r−1(0).

3. Properties of Noetherian families.

Assume that Ω ⊂ Rn is a semianalytic compact subset and denote by
A(Ω) the algebra of real analytic functions defined in a neighbourhood of
Ω. We can treat Rn as a subspace of Cn, so Ω ⊂ Cn and we denote by H(Ω)
the algebra of complex analytic functions defined in a neighbourhood of Ω.

El Khadiri and Tougeron have proven (see [5]), that if O(Ω) = A(Ω)
or H(Ω), then O(Ω) is an Ω-Noetherian algebra, so Ω is a Noetherian
space with the topology induced from SM(O(Ω)) (by identifying ω ∈ Ω
with the ideal pω = {f ∈ O(Ω) | f(ω) = 0}, {

⋂
f∈B f

−1(0) ∩ Ω}B⊂O(Ω) is
the family of closed sets in Ω), and the pair (O(Ω),Ω) satisfies conditions
(a) and (b) from the section 1. Notice that since Ω is a Noetherian space,
for every closed (with respect to the topology induced by the topology on
the maximal spectrum) subset D of Ω there exist f1, . . . , fp ∈ O(Ω) such
that D =

⋂p
i=1 f

−1
i (0)∩Ω, so D is an intersection of Ω and an analytic set.

The result of Frisch [7] says, thatA(Ω) is Noetherian and if Ω admits a
fundamental system of Stein neighborhoods, then H(Ω) is also Noetherian.

If f ∈ A(Ω) and ω ∈ Ω, we denote f̃ =
∑

α
1
α! Dα fxα, f̃ω =∑

α
1
α! Dα f(ω)xα. Of course f̃ ∈ A(Ω)c[[x]].

Define f̃Cω : (Cn, 0) −→ C as f̃Cω =
∑

α
1
α! Dα f(ω)zα, then f̃C =∑

α
1
α! Dα fzα ∈ H(Ω)c[[x]].
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TOPOLOGICAL INVARIANTS OF ANALYTIC SETS 557

Theorem 3.1. — Let f ∈ A(Ω). There is N0 > 0 such that for each

N � N0, ω ∈ Ω there exist εω > 0 and cω > 0 such that if ε ∈ (0; εω) and

x ∈ Sn−1
ε \ f̃ω

−1
(0) is a critical point of f̃ω|Sn−1

ε
then

|f̃ω(x)| � 1
cω
||x||2N .

Proof. — Let r(z) = z21 + . . . + z2n for z ∈ Cn. Let define M ij =

det

[
∂r
∂zi

∂r
∂zj

∂f̃C

∂zi

∂f̃C

∂zj

]
. Then M ij ∈ H(Ω)c[[x]], M ij

ω are germs of complex

analytic functions at the origin. Let Gω = V ((M ij
ω )i<j) for ω ∈ Ω.

According to Lemma 2.3 for each ω ∈ Ω there exist p(ω), l(ω) and a
decomposition into irreducible components Gω = G1,ω ∪ . . .∪Gp(ω),ω ∪ . . .∪
Gl(ω),ω such that G′ω := Gω \ (f̃Cω )−1(0) = G1,ω ∪ . . . ∪ Gp(ω),ω.

We have I(Gω) = I(G1,ω) ∩ . . . ∩ I(Gp(ω),ω) ∩ . . . ∩ I(Gl(ω),ω) and
I(G′ω) = I(G1,ω) ∩ . . . ∩ I(Gp(ω),ω). Denote Jj,ω = I(Gj,ω). Gj,ω are
irreducible components of a complex analytic germ Gω, so Jj,ω are prime
and I(Gω) = J1,ω ∩ . . . ∩ Jl(ω),ω is a reduced prime decomposition.

Denote by J the ideal in H(Ω)c[[x]] generated by M ij , i < j, so
Jω = (M ij

ω )i<j . Then, by the local Hilbert Nullstellensatz, rad(Jω) = I(Gω)
and then J1,ω, . . . , Jl(ω),ω are minimal prime ideals associated with the ideal
Jω. According to Theorem 1.4, there exist a change of parametrization
φ : (H(Ω),Ω) −→ (A,Γ), a finite partition (Γi)i∈I of Γ, ideals p1, . . . ps
of Ac[[x]] and constants si � s, i ∈ I, such that for all γ ∈ Γi, if
ω = φ∗(γ) then p1,γ , . . . , psi,γ are minimal prime ideals associated with
Jω. Because of uniqueness of such ideals, for each j ∈ {1, . . . , l(ω)} there
exists q ∈ {1, . . . , si} such that Jj,ω = pq,γ .

According to Theorem 1.5 there exist a change of parametrization
φ : (A,Γ) −→ (A,Γ) and ideals N

Q
of Ac[[x]], Q ⊂ {1, . . . , s}, such that

for all γ̄ ∈ Γi, if γ = φ∗(γ̄) then N
Q

γ̄ =
⋂
j∈Q pj,γ .

A finite union of Noetherian families is a Noetherian family, so let
K = (Kγ̄)γ̄∈Γ be a Noetherian family containing all families (N

Q

γ̄ )γ̄∈Γ,
Q ⊂ {1, . . . , s}. Then K contains all I(G′ω) for ω ∈ Ω. Let (Mγ̄)γ̄∈Γ denote

the Noetherian family (f̃Cω )ω∈Ω after the change of parametrization φ′ :
(H(Ω),Ω) −→ (A,Γ) which is a composition of changes of parametrization.
According to Theorem 1.2

∃N0>0 ∀N�N0 ∀γ̄∈Γ (rad(Kγ̄ +Mγ̄))N ⊂ (Kγ̄ +Mγ̄).
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558 ALEKSANDRA NOWEL

According to Corollary 2.8, for each ω ∈ Ω we have V (I(G′ω)+ (r)) =
G′ω ∩ r−1(0) = G′ω ∩ (f̃Cω )−1(0) = V (I(G′ω) + (f̃Cω )). By the local Hilbert
Nullstellensatz, rad(I(G′ω) + (r)) = rad(I(G′ω) + (f̃Cω )). For each ω ∈ Ω
there exists γ̄ ∈ Γ such that I(G′ω) = Kγ̄ , and then

(I(G′ω) + (r))N0 ⊂ (rad(I(G′ω) + (r)))N0 = (rad(I(G′ω) + (f̃Cω )))N0

= (rad(Kγ̄ +Mγ̄))N0 ⊂ (Kγ̄ +Mγ̄) = (I(G′ω) + (f̃Cω ))).

Let gi,ω be the generators of I(G′ω). Then rN0 = aω f̃Cω +
∑

i ci,ωgi,ω
for some germs of complex analytic functions aω, ci,ω.

Let 0 < εω 	 1 be such that representatives of the germs f̃ω
C

, aω
and all ci,ω, gi,ω are defined on {z ∈ Cn | ||z|| < εω}. If 0 < ε < εω and x is
a critical point of f̃ω|Sn−1

ε
such that x �∈ f̃ω

−1
(0) then x ∈ G′ω and for each

i we have gi,ω(x) = 0. Then rN0(x) = aω(x)f̃ω(x), so

∃cω>0 ∀N�N0 r
N (x) � rN0(x) = |aω(x)||f̃ω(x)| � cω|f̃ω(x)|.

Thus
|f̃ω(x)| � 1

cω
rN (x) =

1
cω
||x||2N .

��

Corollary 3.2. — Let f ∈ A(Ω). Then there is α = 2N0 + 1 such

that for each ω ∈ Ω there exists 0 < εω 	 1 such that if 0 < ε < εω and

x ∈ Sn−1
ε \ f̃ω

−1
(0) is a critical point of f̃ω|Sn−1

ε
then

|f̃ω(x)| � ||x||α.

4. Families of germs of real analytic functions.

Let k = R or k = C and let m be the maximal ideal of k[[x]] =
k[[x1, . . . , xn]]. Let Fp = ⊕pm ⊂ k[[x]]p. If g ∈ Fp, then g = (g1, . . . , gp),
where

gj =
∑
|α|�1

aαj
α!
xα (i.e. aαj = Dα gj(0)).

Let Ψ1, . . .Ψs be formal power series in x with coefficients which
depend polynomially on aαj , where |α| � 1 and 1 � j � p. If g =
(g1, . . . , gp) ∈ Fp, we denote by Ψi,g the formal power series obtained by
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putting aαj = Dα gj(0) in Ψi. Let Ig be the ideal of k[[x]] generated by
Ψ1,g, . . . ,Ψs,g.

Denote by Wh the set {g ∈ Fp | dimk(k[[x]]/Ig) > h}. Then, by
[17], Corollary II.5.2, we have Wh =

{
g ∈ Fp | dimk(Ig + mh+1/mh+1)

<
(
n+h
n

)
− h

}
. We consider k[[x]]+mh+1/mh+1 which is an affine space of

finite dimension. The space Ig+mh+1/mh+1 is its linear subspace generated
by xαΨi,g, where α ∈ Nn, 0 � |α| � h. The above description ofWh involves
only finitely many coefficients of the series.

Let Ψα,β
i,g , |β| � h, |α| � h be the coefficients at xβ in the series

xαΨi,g. Then the set Wh is the set of such g ∈ Fp, for which all the minors
of the matrix (Ψα,β

i,g ) of degree
(
n+h
n

)
− h vanish ((i, α) is a row index, β is

a column index).

Theorem 4.1 ([17], Lemma VII.5.3]). — The setsWh are algebraic

and

{g ∈ Fp | dimk(k[[x]]/Ig) <∞} = Fp \
∞⋂
h=0

Wh.

We will say that a germ of an analytic mapping F = (F 1, . . . , Fn) :
(Rn, 0) −→ (Rn, 0) has an algebraically isolated zero at the origin if
dimR R[[x]]/(P1, . . . , Pn) < ∞, where Pi =

∑
α

1
α! Dα F i(0)xα. If 0 ∈ Cn

is isolated in the inverse image of 0 for the complexification of F then the
origin is an algebraically isolated zero of F .

By deg0 F we denote the local topological degree at the origin of the
mapping F which has an isolated zero at the origin.

Recall that a closed subset of Ω has to be understood with respect to
the topology induced from SM(A(Ω)). We will say that a closed subset of
Ω is irreducible if it is not a union of two its proper closed subsets. Every
closed subset D of a Noetherian space Ω has a decomposition into finitely
many irreducible components, i.e. D =

⋃k
i=1Di, where every Di is a closed

irreducible subset of D and Di �⊂
⋃
j �=iDj .

Let D ⊂ Ω be a closed subset. Denote J = {f ∈ A(Ω) | f |D ≡ 0}, and
define

A(D) := A(Ω)/J.

If D is irreducible then J is a prime ideal and A(D) is an integral domain.

Denote by Sn(D) the set of families {Fω = (F 1
ω , . . . , F

n
ω ) : (Rn, 0) −→
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(Rn, 0)}ω∈D of analytic germs at the origin such that

∀1�i�n ∃fi∈A(Ω)c[[x]] ∀ω∈D F iω(x) = fi(ω, x).

In particular if

∀1�i�n ∃hi∈A(Ω) ∀ω∈D F iω(x) = hi(x+ ω),

then {Fω}ω∈D ∈ Sn(D).

Lemma 4.2. — Assume that a closed subset D ⊂ Ω is irreducible,

{Fω}ω∈D ∈ Sn(D) and 0 ∈ Rn is isolated in F−1
ω (0) for all ω ∈ D. Then

there exist a proper closed subset Σ ⊂ D, and a family {Gω}ω∈D ∈ Sn(D)
such that

(i) ∀ω∈D\Σ Gω has an algebraically isolated zero at the origin,

(ii) ∀ω∈D deg0 Fω = deg0Gω.

Proof. — For ω ∈ D we define the germ Gω:

Gω(x) = Fω(x) + a(xk1 , . . . , x
k
n),

where k is a positive integer, a �= 0. We have Giω(x) = fi(ω, x) + axki ,
so Giω is a real analytic germ. Let ciα ∈ A(D) be residue classes of
1
α! DαGiω(0) ∈ A(Ω), and let associate with Giω the formal power series

Pi(ω, x) =
∑
α

ciα(ω)xα ∈ A(D)c[[x]].

According to Theorem 4.1 the set {ω ∈ D | dimR(R[[x]]/(P1(ω, ·), . . . ,
Pn(ω, ·))) <∞} = D\

⋂∞
h=0 Σh, where Σh = {ω∈D|dimR(R[[x]]/(P1(ω, ·),

. . . , Pn(ω, ·))) > h} are closed in D. Indeed, Σh is the intersection of the
zero sets of some compositions of ciα and polynomials. So Σ =

⋂∞
h=0 Σh

is a closed subset of D such that the origin is algebraically isolated in
G−1
ω (0) ⊂ Rn for ω ∈ D \ Σ.

Using arguments similar as in the proof of [15], Lemma 1.3, we can
show, that Σ is a proper subset of D. We have

Pi(ω, x) = Giω(x) = F iω(x) + axki = fi(ω, x) + axki

for x sufficiently close to the origin. Fix ω0 ∈ D. The set

A = {a ∈ R\{0}|dimR
(
R[[x]]/(f1(ω0, x) + axk1 , . . . , fn(ω0, x) + axkn)

)
>h}

is finite for h sufficiently large.
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Indeed, denote Hi
a(x) = afi(ω0, x)+xki for a ∈ R. Then Hi

0 = xki and
we have dimR(R[[x]]/(xk1 , . . . , x

k
n)) = kn. Then according to Theorem 4.1

the set
A′ =

{
a ∈ R | dimR

(
R[[x]]/(H1

a , . . . , H
n
a )

)
> h

}
is algebraic and 0 �∈ A′ for h > kn, so A′ is finite for h > kn. If a �= 0 then
we have H 1

a
(x) = 1

aPi(ω0, x), so A is also finite for h > kn.

Take a �∈ A in the definition of Gω, then

ω0 �∈ Σh = {ω ∈ D | dimR (R[[x]]/(P1(ω, ·), . . . , Pn(ω, ·))) > h} ,
so Σh �= D for h sufficiently large and Σ is a proper subset of D.

Let Iω ⊂ R{x} be the ideal generated by germs F 1
ω , . . . , F

n
ω . Theo-

rem 1.3 implies that the TLojasiewicz exponent of Iω is bounded:

∃M ∀ω∈D αω = inf{α | ∃c>0

n∑
i=1

|F iω(x)| � c d(x, V0(Iω))α} �M.

The origin is isolated in the zero set of Fω, so

∃M ∀ω∈D ∃cω>0

n∑
i=1

|F iω(x)| � cωd(x, V0(Iω))αω =cωd(x, {0})αω � cω||x||M

for x near 0.

Hence if we take k > M in the definition of Gω then there exists
cω > 0 such that

||tGω(x) + (1− t)Fω(x)|| = ||Fω(x) + at(xk1 , . . . , x
k
n)||

� cω||x||M − at||(xk1 , . . . , xkn)|| � cω
2
||x||M ,

where 0 � t � 1, x near 0 (see [12]).

Then deg0 Fω = deg0Gω. ��

Lemma 4.3. — Under the assumptions of Lemma 4.2 there exist

q1, . . . , qt ∈ A(Ω) and a proper closed subset Σ ⊂ D such that for ω ∈ D\Σ
deg0 Fω = sgn q1(ω) + . . .+ sgn qt(ω).

Proof. — According to Lemma 4.2 we can assume that {Fω}ω∈D is
a family in Sn(D) for which there exists a proper closed subset Σ′ ⊂ D
such that Fω has an algebraically isolated zero at the origin for ω ∈ D \Σ′.

Taking A = A(D) (an integral domain) we can follow the arguments
of [12], Lemma 3.3 (in particular studying deg0 Fω in the context of
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Eisenbud and Levine Theorem). They imply that there exist a proper
closed subset Σ ⊂ D such that Σ′ ⊂ Σ, and a symmetric matrix T whose
entries belong to A(D) such that for every ω ∈ D \ Σ the matrix T (ω) is
non-degenerate and deg0 Fω = signature T (ω). Let q̃1, . . . , q̃t ∈ A(D) be
the elements of the diagonal of T after making T diagonal by a change
of variables over the rational fractions on A(D) and multiplying by the
squares of the denominators of the entries. Then, if we enlarge Σ in such a
way, that the zeros of the denominators belong to Σ, and take qi ∈ A(Ω)
such that q̃i is the residue class of qi, i = 1, . . . t, we have

deg0 Fω = sgn q1(ω) + . . .+ sgn qt(ω)

for ω ∈ D \ Σ. ��

Lemma 4.4. — Assume that Ω̃ ⊂ Ω is a closed subset and 0 ∈ Rn
is isolated in F−1

ω (0) for ω ∈ Ω̃. Then there exist v1, . . . , vs ∈ A(Ω) and a

proper closed subset Σ ⊂ Ω̃ such that for ω ∈ Ω̃ \ Σ we have

deg0 Fω = sgn v1(ω) + . . .+ sgn vs(ω).

Proof. — Induction on the number of irreducible components of Ω̃.

If Ω̃ is irreducible then Lemma 4.3 implies the result.

Assume that Ω̃ = D1 ∪ D2 ∪ . . . ∪ Dm is a decomposition of Ω̃ into
irreducible components. Denote Ω′ = D2 ∪ . . . ∪ Dm. Let h1 ∈ A(Ω),
h2 ∈ A(Ω) be non-negative and such that

h1 ≡ 0 on D1, h1 �≡ 0 on Ω′,

h2 ≡ 0 on Ω′, h2 �≡ 0 on D1.

According to Lemma 4.3 and the inductive assumption, there exist
q1, . . . , qt, p1, . . . , pt′ ∈ A(Ω) and proper closed subsets Σ1 ⊂ D1, Σ2 ⊂ Ω′

such that for ω ∈ D1 \ Σ1 we have

deg0 Fω = sgn q1(ω) + . . .+ sgn qt(ω)

and for ω ∈ Ω′ \ Σ2 we have

deg0 Fω = sgn p1(ω) + . . .+ sgn pt′(ω).

Let Σ = Σ1 ∪ Σ2 ∪ (h−1
1 (0) ∩ Ω′) ∪ (h−1

2 (0) ∩D1), then

deg0 Fω =
t∑

i=1

sgnh2(ω)qi(ω) +
t′∑
j=1

sgnh1(ω)pj(ω)
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for ω ∈ Ω̃ \ Σ. We take s = t + t′, vi(ω) = h2(ω)qi(ω) for i = 1, . . . t and
vi(ω) = h1(ω)pi−t(ω) for i = t+ 1, . . . s. ��

We will use below the following fact (see [12]):

Let h ∈ A(Ω) be non-negative and such that h−1(0)∩Ω = Σ (such h
exists because Ω is a Noetherian space). Then∑

sgnh(ω)vi(ω) =
∑

sgn vi(ω)

for ω ∈ Ω \ Σ and ∑
sgnh(ω)vi(ω) = 0

for ω ∈ Σ.

Similarly, let p1, . . . , pr ∈ A(Ω), then∑
sgn pj(ω) +

∑
sgn(−h(ω)pj(ω)) = 0

for ω ∈ Ω \ Σ and∑
sgn pj(ω) +

∑
sgn(−h(ω)pj(ω)) =

∑
sgn pj(ω)

for ω ∈ Σ.

So we have∑
sgnh(ω)vi(ω) +

∑
sgn pj(ω) +

∑
sgn(−h(ω)pj(ω))

=
{ ∑

sgn vi(ω), ω ∈ Ω \ Σ∑
sgn pj(ω), ω ∈ Σ.

Theorem 4.5. — Let {Fω}ω∈Ω ∈ Sn(Ω) and let 0 ∈ Rn be isolated

in F−1
ω (0) for each ω ∈ Ω. Then there exist v1, . . . , vs ∈ A(Ω) such that for

ω ∈ Ω
deg0 Fω = sgn v1(ω) + . . .+ sgn vs(ω).

Proof. — According to Lemma 4.4 there exist a proper closed subset
Σ1 ⊂ Ω and u1, . . . , us(1) ∈ A(Ω) such that for ω ∈ Ω \ Σ1

deg0 Fω = sgnu1(ω) + . . .+ sgnus(1)(ω).

Let Ω1 = Σ1; using Lemma 4.4 again, we obtain Σ2 ⊂ Σ1 and
w1, . . . , ws(2) ∈ A(Ω) such that for ω ∈ Ω1 \ Σ2

deg0 Fω = sgnw1(ω) + . . .+ sgnws(2)(ω).

Continuing this construction we obtain a descending family of proper closed
subsets

Ω ⊃ Σ1 ⊃ Σ2 ⊃ . . .
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Ω is a Noetherian space, so this family has to be finite and for some positive
integer k we have Σk = ∅.

Now we apply the above fact and the proof is complete. ��

Let us recall that if f ∈ A(Ω) then we denote f̃ =
∑

α
1
α! Dα fxα ∈

A(Ω)c[[x]], and if h =
∑

α hαx
α ∈ A(Ω)[[x]] then we denote hω =∑

α hα(ω)xα.

Let F ⊂ A(Ω). For each ω ∈ Ω let Iω ⊂ R{x} = R{x1, . . . , xn} denote
the ideal generated by

{
f̃ω | f ∈ F

}
, and let Xω denote a representative of

V0(Iω). We will show, that there exist v1, v2, . . . , vs ∈ A(Ω) such that

∀ω∈Ω ∃0<εω�1 ∀0<ε<εω
1
2
χ(Sn−1

ε ∩Xω) =
s∑
i=1

sgn vi(ω),

where Sn−1
ε = {x ∈ Rn | ||x|| = ε} and χ(A) is the Euler characteristic of

the set A.

Lemma 4.6. — There exist h1, h2, . . . , hq ∈ A(Ω)c[[x]] such that for

ω ∈ Ω
Xω = V0(h1,ω, . . . hq,ω).

Proof. — Denote by I the ideal in A(Ω)c[[x]] generated by the set
{h̃ |h ∈ F}. Theorem 1.1 implies that there is an ideal I ′ = (h1, . . . , hq) ⊂
A(Ω)c[[x]] generated by finitely many elements such that

∀ω∈Ω Iω = I ′ω,

where I ′ω = (h1,ω, . . . , hq,ω). We have

Xω = V0(Iω) = V0(I ′ω) = V0(h1,ω, . . . , hq,ω).

��

Remark. — Since A(Ω) is Noetherian, this lemma is clear for A(Ω),
but it is valid for any Ω–Noetherian algebra instead of A(Ω).

Corollary 4.7. — There exists h = h2
1 + . . . + h2

q ∈ A(Ω)c[[x]]
such that Xω = V0(hω) for each ω ∈ Ω.

Now we will show that for any h ∈ A(Ω)c[[x]] such that h(0) = 0
there exists such k > 0 that for all ω ∈ Ω there exists εω > 0 such that

gω(x) = hω(x)− (x2
1 + . . .+ x2

n)k
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has an isolated critical point at the origin and for 0 < ε < εω

χ(Sn−1
ε ∩ {hω � 0}) = 1− deg0∇gω,

where ∇gω =
(
∂gω
∂x1
, . . . , ∂gω∂xn

)
: (Rn, 0) −→ (Rn, 0).

We will strictly follow the proof of [14], Theorem 1.

Denote r(x) = x2
1+. . .+x2

n. Assume that hω, r are the representatives
of germs defined on an open neighbourhood U of the origin. Define

Vω={(x, ε, y) ∈ U×R×R | r(x) = ε2, rank(d r(x),dhω(x))� 1, y= hω(x)}.
Let π : Rn ×R× R −→ R× R be the projection. Vω is an analytic set and
π : Vω −→ π(Vω) is proper in some neighbourhood of the origin. Hence
π(Vω) is closed and subanalytic in some neighbourhood of the origin.

Denote Y1 = R × {0}, Y ω2 = π(Vω) \ Y1. Then Y ω2 is subanalytic. If
ε �= 0 then

π(Vω) ∩ {ε} × R = {ε} × {the set of critical values of hω|Sn−1
ε
}.

Since hω is analytic, π(Vω)∩{ε}×R is finite. Hence dimπ(Vω) = dimY ω2 =
1, and then 0 is an isolated point of Y1 ∩ Y ω2 .

According to Corollary 3.2. there exists a constant α > 0 such that
for ω ∈ Ω

|y| = |hω(x)| � ||x||α = εα

for each (ε, y) ∈ Y ω2 such that ε < εω and y is sufficiently close to the origin.
Let k > α be an integer. Define gω(x) = hω(x)− rk(x).

Set

V ′ω = {(x, ε, y) ∈ U×R×R | r(x) = ε2, rank(d r(x),d gω(x)) � 1, y=gω(x)}.
Because rank(d r(x),d gω(x)) = rank(d r(x),dhω(x)),

V ′ω = {(x, ε, y) ∈ U × R× R | r(x) = ε2, rank(d r(x),dhω(x)) � 1,

y = hω(x)− ε2k}.
Define G(ε, y) = (ε, y − ε2k). Then π(V ′ω) = G(π(Vω)), so we have

π(V ′ω) ∩ R× {0} = {(0, 0)}
in some neighbourhood of the origin. Hence, if ε �= 0 is sufficiently close
to the origin, 0 is a regular value of gω|Sn−1

ε
and then gω has an isolated

critical point at the origin.

According to [14], Lemma 1, we have

χ(Sn−1
ε ∩ {hω � 0}) = 1− deg0∇gω.
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Hence, applying Theorem 4.5 and the fact, that for ω ∈ Ω and
sufficiently small ε > 0 if h(0) �= 0 then χ(Sn−1

ε ∩ {hω � 0}) is equal
to 0 or 2, we obtain:

Theorem 4.8. — If f ∈ A(Ω) then there exist v1, v2, . . . , vs ∈ A(Ω)
such that for ω ∈ Ω there exists 0 < εω 	 1 such that for 0 < ε < εω

χ(Sn−1
ω,ε ∩ {f � 0}) = χ(Sn−1

ε ∩ {f̃ω � 0}) =
s∑
i=1

sgn vi(ω),

where Sn−1
ω,ε denotes a sphere in Rn centered at ω with the radius ε.

Lemma 4.9. — If f ∈ A(Ω) then there exist h1, h2, . . . , hs ∈ A(Ω)
such that for ω ∈ Ω there exists 0 < εω 	 1 such that for 0 < ε < εω
1
2
(χ(Sn−1

ω,ε ∩ {f � 0})± χ(Sn−1
ω,ε ∩ {f � 0}))

=
1
2
(χ(Sn−1

ε ∩ {f̃ω � 0})± χ(Sn−1
ε ∩ {f̃ω � 0})) =

s∑
i=1

sgnhi(ω).

Proof. — Let define g(ω, t) = tf(ω), where ω belongs to some
neighbourhood of Ω, t ∈ [−1; 1]. The set Ω × [−1, 1] is compact and
semianalytic, so g ∈ A(Ω× [−1, 1]).

Then g � 0 if f � 0 and t � 0 or if f � 0 and t � 0. Hence for t > 0
χ(Sn−1

ω,ε ∩ {f � 0}) = 2− χ(Sn(ω,t),ε ∩ {g � 0})
and

χ(Sn−1
ω,ε ∩ {f � 0}) = 2− χ(Sn(ω,−t),ε ∩ {g � 0})

for ε sufficiently small.

According to Theorem 4.8 there exist g1, g2, . . . , gs in A(Ω× [−1; 1])
such that

∀(ω,t)∈Ω×[−1;1] ∃0<ε(ω,t)�1 ∀0<ε<ε(ω,t) χ(Sn(ω,t),ε∩{g � 0}) =
s∑
i=1

sgn gi(ω, t).

For 0 < ε < ε(ω,t) we obtain
1
2
(χ({f � 0} ∩ Sn−1

ω,ε )− χ({f � 0} ∩ Sn−1
ω,ε ))

=
1
2

lim
t→0+

(2− χ(Sn(ω,t),ε ∩ {g � 0})− 2 + χ(Sn(ω,−t),ε ∩ {g � 0}))

=
1
2

lim
t→0+

(χ(Sn(ω,−t),ε ∩ {g � 0})− χ(Sn(ω,t),ε ∩ {g � 0}))

=
1
2

lim
t→0+

s∑
i=1

(sgn gi(ω,−t)− sgn gi(ω, t)).
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Let Ω = D1 ∪ . . . ∪ Dm be the decomposition into irreducible
components. Fix j. We can assume, that gi �≡ 0 on Dj × [−1; 1]. For
all i = 1, 2, . . . , s there exists hi ∈ A(Ω × [−1; 1]) and a non–negative
integer ki such that gi(ω, t) = tkihi(ω, t), and hi �≡ 0 on Dj ×{0}. Let
Σ := {ω ∈ Dj | ∃i=1,...,s hi(ω, 0) = 0}, then Σ is proper and closed subset
of Dj . For ω ∈ Dj \Σ

1
2

lim
t→0+

s∑
i=1

(sgn gi(ω,−t)− sgn gi(ω, t)) =
s∑
i=1

sgnh′i(ω),

where h′i(ω) = −hi(ω, 0) if ki is odd, and h′i(ω) = 0 if ki is even. Obviously
h′i ∈ A(Ω).

In the other hand
1
2
(χ({f � 0} ∩ Sn−1

ω,ε ) + χ({f � 0} ∩ Sn−1
ω,ε ))

=
1
2

lim
t→0+

(2− χ(Sn(ω,t),t ∩ {g � 0}) + 2− χ(Sn(ω,−t),t ∩ {g � 0}))

=
1
2

lim
t→0+

(4− χ(Sn(ω,−t),t ∩ {g � 0})− χ(Sn(ω,t),t ∩ {g � 0}))

= 2− 1
2

lim
t→0+

s∑
i=1

(sgn gi(ω,−t) + sgn gi(ω, t)).

As above for ω ∈ Dj \Σ

1
2

lim
t→0+

s∑
i=1

(sgn gi(ω,−t) + sgn gi(ω, t)) =
s∑
i=1

sgnh′′i (ω),

where h′′i (ω) = hi(ω, 0) if ki is even, and h′′i (ω) = 0 if ki is odd.

We have proven that 1
2 (χ({f � 0} ∩ Sn−1

ω,ε ) ± χ({f � 0} ∩ Sn−1
ω,ε )) is

a sum of signs of analytic functions on Dj \Σ. As in proofs of Lemma 4.4
and Theorem 4.5, proceeding by induction we can complete the proof. ��

Corollary 4.10. — If f ∈ A(Ω) then there exist g1, g2, . . . , gq ∈
A(Ω) such that for ω ∈ Ω there exists 0 < εω 	 1 such that for each

0 < ε < εω

1
2
χ(Sn−1

ω,ε ∩ V0(f)) =
1
2
χ(Sn−1

ε ∩ V0(f̃ω)) =
q∑
i=1

sgn gi(ω).

Proof. — We have

χ(Sn−1
ε ∩ V0(f̃ω)) = χ(Sn−1

ε ∩ {f̃ω � 0}) + χ(Sn−1
ε ∩ {f̃ω � 0})− χ(Sn−1

ε ),
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so according to Lemma 4.9

1
2
χ(Sn−1

ε ∩ V0(f̃ω)) =
s∑
i=1

hi(ω)− 1 + (−1)n−1

2
.

��

Corollary 4.7 and Corollary 4.10 imply:

Theorem 4.11. — There exist v1, v2, . . . , vq ∈ A(Ω) such that

∀ω∈Ω ∃0<εω�1 ∀0<ε<εω
1
2
χ(Sn−1

ε ∩Xω) =
q∑
i=1

sgn vi(ω).

Remark. — Following the proof of the Lemma 4.9 one can check that
this result is true also if instead of A(Ω) we take any Ω–Noetherian algebra
O(Ω) (Ω is a locally closed subset of Rn) such that:

1) there exists a subset I ⊂ R containing a neighbourhood of 0 such
that O(Ω × I) is Ω × I–Noetherian and there is a natural inclusion
O(Ω) ⊂ O(Ω× I).

2) For g ∈ O(Ω × I) and an irreducible component D of Ω if g �≡ 0
on D × I then there exist h ∈ O(Ω × I) and a non-negative integer
k that g(ω, t) = tkh(ω, t) for ω ∈ D and t sufficiently close to 0,
h(·, 0) ∈ O(Ω), and h �≡ 0 on D × {0}.
The algebra of Nash functions on an open semialgebraic set Ω ⊂ Rn

satisfies these assumptions.

For the algebra R[x][f1, . . . , fq] defined in the Introduction we can
define the algebra R[x, t][F1, . . . , Fq], where Fi : Rn × [−1; 1] −→ R,
Fi(x, t) = fi(x). It is Rn×[−1; 1]–Noetherian and F1, . . . , Fq do not depend
on the last variable, so it has the property 2).

5. Sums of signs of real analytic functions.

Let Y ⊂ R
n be a real compact semianalytic set. Suppose that a

function φ : Y −→ Z admits a presentation as a finite sum

φ =
∑
i

mi1Yi ,

where the mi’s are integers, the Yi’s are semianalytic subsets of Y and
where 1Yi denotes the characteristic function of the subset Yi.
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We can choose Yi such that they are compact semianalytic subsets of
Y . Following [9] and [2] we define the Euler integral, the link of φ, and the
duality operator D on φ: ∫

Y

φ =
∑
i

miχ(Yi),

Λφ(y) =
∫
Y

φ1Sn−1
y,ε
,

where ε is sufficiently small,

Dφ(y) = φ(y)− Λφ(y).

Let Ω, as above, be a compact semianalytic subset of Rn. We will say,
that a function g : Ω −→ Z is a sum of signs of analytic functions if there
exist v1, v2, . . . , vs ∈ A(Ω) such that g(ω) =

∑s
i=1 sgn vi(ω). Then in fact g

is defined on a compact semianalytic neighbourhood Y of Ω. In that case,
for ω ∈ intY ⊃ Ω we have:

Λg(ω) =
∫
Y

g1Sn−1
ω,ε

=
∫
Sn−1
ω,ε

g =
s∑
i=1

(
χ(Ai ∩ Sk−1

ω,ε )− χ(Bi ∩ Sk−1
ω,ε )

)
where Ai = {vi � 0}, Bi = {vi � 0}, ε is sufficiently small.

Using Theorem 4.11, Lemma 4.9, and arguments like in [12], Corollary
6.3 and Theorem 6.4, we can show similar results as the main result of [4].

Suppose that f is an analytic function defined in a neighbourhood of
Ω. Then X = f−1(0) is an analytic set defined in a neighbourhood of Ω.

According to Theorem 4.11, there exist v1, v2, . . . , vq ∈ A(Ω) such
that for each ω ∈ Ω there exists 0 < εω 	 1 such that for each 0 < ε < εω,
1
2χ(Sn−1

ε ∩Xω) =
∑q

i=1 sgn vi(ω). Let Ω = Ω1∪ . . .Ωm be a decomposition
into irreducible components. Assume that vi does not vanish identically on
Ω1 for i = 1, . . . , l � q. Taking v = v1v2 . . . vl and Σ = {ω ∈ Ω1 | v(ω) =
0} ∪

⋃m
i=2 Ωi we obtain:

Corollary 5.1. — There exist a proper closed subset Σ ⊂ Ω, an

integer µ = l− 1, and an analytic function v ∈ A(Ω), such that v does not

vanish on Ω \ Σ and

∀ω∈Ω\Σ ∃0<εω�1 ∀0<ε<εω
1
2
χ(Sn−1

ε ∩Xω) = µ+ sgn v(ω) (mod 4).

In particular, for such ω, 1
2χ(Sn−1

ε ∩Xω) = µ+ 1 (mod 2).

Theorem 5.2. — If g : Ω −→ Z is a sum of signs of analytic

functions v1, v2, . . . , vs ∈ A(Ω) (in particular if g(ω) = 1
2χ(Sn−1

ε ∩ Xω)),
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then the function 1
2Λg, as well as 1

2 (g + D g), is integer–valued and it is a

sum of signs of analytic functions.

Proof. — We have

Λg(ω) =
s∑
i=1

(
χ({vi(ω) � 0} ∩ Sn−1

ω,ε )− χ({vi(ω) � 0} ∩ Sn−1
ω,ε )

)
for ε sufficiently small, so the theorem is implied by Lemma 4.9. ��

So, proceeding the same way as McCrory and Parusiński in [10] one
may get a large family of topological invariants associated with Ω ⊂ X.
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