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EINSTEIN METRICS ON

RATIONAL HOMOLOGY 7-SPHERES

by Ch. P. BOYER, K. GALICKI &#x26; M. NAKAMAYE

Ann. Inst. Fourier, Grenoble
52, 5 (2002), 1569-1584

1. Introduction.

Dimension seven appears to be rather special when it comes to

examples of compact Einstein manifolds. It is perhaps the prominent
role such manifolds have played in physics ever since the early days
of Kaluza-Klein supergravity that made both theoretical physicists and
mathematicians alike particularly interested in them. Discoveries of many
different constructions followed as a result of this interest.

Arguably, today a special place among all compact Einstein 7-

manifolds is reserved for the so-called Sasakian-Einstein spaces. They are
defined to be Riemannian manifolds with the property that the metric cone
on them is a Calabi-Yau 4-fold and, in particular, they are always of positive
scalar curvature. All regular Sasakian-Einstein manifolds are circle bundles
of Fano 3-folds that admit Kahler-Einstein metrics. Non-regular ones fiber
over compact Kahler-Einstein Fano 3-folds with orbifold singularities. An
interesting sub-family of the family of Sasakian-Einstein 7-manifolds con-
sists of the so-called 3-Sasakian spaces. They are characterized by fact that
their metric cone is not only Calabi-Yau, but also hyperkahler and are all
orbifold fibrations over compact Kahler-Einstein Fano 3-folds which admit
a complex contact structure.

During the preparation of this work the first two authors were partially supported by
NSF grant DMS-9970904, and third author by NSF grant DMS-0070190.
Keywords: Einstein metrics - Sasakian structures - Homology spheres.
Math. classification: 53C25 - 53C12.
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Regular and non-regular examples of both Sasakian-Einstein and 3-
Sasakian manifolds are now plentiful and they were extensively studied
by the first two authors [BG1], [BG2]. There is an example of a regular
Sasakian-Einstein (4n + 3)-manifold which is worthy of some further

discussion. It is the homogeneous Stiefel manifold of 2-frames in (2n + 1)-
dimensional Euclidean space, = SO(2n + 1 ) /,S’O (2n - 1 ) which
is a circle bundle over the oriented Grassmannian, G2(R2n+1). ._From the
point of view of an algebraic geometer it is a classical fact that G2(IR2n+1)
is diffeomorphic to the complex quadric Q2n-1 in which is well-

known to be Fano and to admit a Kahler-Einstein metric. It is perhaps
less well-known that the quadric Q2n-, has the same cohomology groups
as but differs in the ring structure. Hence, is a rational

homology sphere with Z2. Now it has been known
for quite some time that V2(IR2n+1) carries a Sasakian-Einstein structure
[BFGK], [BG1]. Up to date, apart from S2n+1, V2(IR2n+1), and the 3-

Sasakian homogeneous 11-manifold G’2/5p(l), we are not aware of any
other examples of simply connected rational homology spheres which are
also known to admit Sasakian-Einstein structures. In this paper we shall

demonstrate that for n = 2, quite to the contrary, there are many examples
of such structures, 184 to be precise. These examples are obtained as

hypersurfaces in certain weighted projective 4-spaces, but we certainly
expect the phenomena to occur in arbitrary dimension.

The key to this construction is a recent paper of Johnson and Kollar

[JK2] which is based on the previous work of Demailly and Kollar [DK].
[JK2] gives a list of 4442 quasi-smooth Fano 3-folds Z that anticanonically
embed in weighted projective 4-spaces P(w). Moreover, they show that
1936 of these 3-folds admit Kahler-Einstein metrics. According to our
general theory [BG1] such Fano 3-folds give rise to Sasakian-Einstein

metrics on smooth 7-manifolds M7. Moreover, these 7-manifolds arise as
links of isolated hypersurface singularities associated to certain weighted
homogeneous polynomials in C5. As in [JK1] Johnson and Kollar [JK2] only
consider the case when the orbifold Fano index is one, and as the authors

showed in [BGN1] for log del Pezzo surfaces, there should be many more
interesting examples of quasi-smooth Fano 3-folds with higher orbifold Fano
index. This is currently under study.

In this note we prove

THEOREM A. - There are 1936 distinct Sasakian-Einstein struc-

tures on certain 2-connected 7-manifolds " d realized as links of weighted
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homogeneous polynomials in (C5 with weight vector w = (wo, w2, w3, w4)
and degree d. In particular, there are 184 2-connected rational homology
spheres which are listed in a table found on the first two authors web pages.

We have not answered the question as to whether two distinct or non-
conjugate Sasakian-Einstein structures on the same link M7 could belong
to the same underlying Riemannian metric g. Indeed, this can happen, but
if g is not the standard round metric on S7 then by a Theorem of Tachibana
and Yu [TaYu], the two Sasakian-Einstein structures must belong to a 3-
Sasakian structure. But then by a Theorem of Galicki and Salamon [GS],
we must have b3 = 0, so M7 must be a rational homology sphere. However,
we do not know whether any of the rational homology 7-spheres discussed
here admit 3-Sasakian structures.

2. The Sasakian geometry of links of weighted
homogeneous polynomials.

In this section we briefly review the Sasakian geometry of links
of isolated hypersurface singularities defined by weighted homogeneous
polynomials. Consider the affine space en+1 together with a weighted C*-
action given by (zo,..., zn) H (aw zp, ... , where the weights Wj
are positive integers. It is convenient to view the weights as the components
of a vector w E (z+)n+1, and we shall assume that they are ordered
wo x wn and that gcd(wo, ... , wn ) - 1. Let f be a quasi-
homogeneous polynomial, that is f ~ C[o,..., in] and satisfies

where d E Z+ is the degree of f. We are interested in the weighted affine
cone C f defined by the equation f (zo, ... , zn) = 0. We shall assume that
the origin in CC~+1 is an isolated singularity, in fact the only singularity, of
f. Then the link L f defined by

where

is the unit sphere in en+1, is a smooth manifold of dimension 2n - 1.

Furthermore, it is well-known [Mil] that the link L f is (n - 2)-connected.
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On there is a well-known [YK] "weighted" Sasakian structure
which in the standard coordinates 1

is determined by

and the standard Sasakian structure (ç, 1], I&#x3E;, g) on ,S’2n+1. The embedding
L~- ~ s2n+1 induces a Sasakian structure on L f [BG3].

Given a sequence w = (wo, ... , w~,) of ordered positive integers
one can form the graded polynomial ring S(w) = C[zo,...,z,,], where
zi has grading or weight wi. The weighted projective space [Dol], [Fle]
P(w) = is defined to be the scheme Proj(S(w)). It is

the quotient space where C*(w) is the weighted
action defined in 2.1, or equivalently, P(w) is the quotient of the weighted
Sasakian sphere (s2n+ 1 , g"") by the weighted circle
action generated by ~w. As such P(w) is also a compact complex
orbifold with an induced Kahler structure. We have from [BG3]

THEOREM 2.3. - The quadruple (w, gw) gives L f a quasi-
regular Sasakian structure such that there is a commutative diagram

where the horizontal arrows are Sasakian and Kiihlerian embeddings,
respectively, and the vertical arrows are principal V bundles and orbifold

Riemannian submersions. Moreover, if is Fano, L f is the total space of
the principal V-bundle over the orbifold whose first Chern class in

where I is the index.

We should also mention that pulls back to the basic first Chern
class cB E HB (,~~w ) and TI, is the connection in this V-bundle whose

curvature is where ww is the Kahler form on Zj .
Now conditions on the weights that guarantee that the hypersurface

C f C en+1 have only an isolated singularity at the origin are well-known
[Fle], [JK1]. These conditions become more complicated as the dimension
increases [Fle], [JK2]; however, in this paper we are only interested in the
n = 4 case of hypersurfaces in a weighted complex projective 4-space.
These conditions, known as quasi-smoothness conditions guarantee that
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Zj is smooth in the orbifold sense, that is, at a vertex Pi E P(w) the
preimage of Zj in the orbifold chart of P(w) is smooth. It is easy to see
that one can formulate all these conditions as follows [Fle], [JK2]:

Quasi-smoothness conditions 2.4.

I. For each i = 0, ~ ~ ~ , 4 there is a j and a monomial E C~(d) .
Here j = i is possible.

II. For all distinct i, j either there is a monomial 0(d) or there
exist monomials E O( d) with ~1~, l ~ ~ li, jl l.

III. For every i, j there exists a monomial of degree d that does not
involve either zi or zj.

There is another condition apart from quasi-smoothness that assures
us that the adjunction theory behaves correctly, and that P(w) does not
have any orbifold singularities of codimension 1. It is [Dol], [Fle]

Well-formedness condition 2.5.

IV. For each i we have gcd(wo, ~ ~ ~ , 7bi, w4) - 1. Here the A means

skip that element.

Condition IV guarantees that the canonical V-bundle K,~ is deter-

mined in terms of the degree and index by

where

In this note we shall only consider the anticanonically embedded Fano
3-folds of [JK2], that is, we shall assume hereafter that I - = 1. The

examples we consider are from the list sporadic.txt of Johnson and Kollar

[JK2] which is found at http : //www . math . princeton . edu/ " j m j ohnso .

3. The topology of the link 

The topology of a link L f of an isolated hypersurface singularity is
encoded in the characteristic polynomial A (t) of the monodromy map. A (t)
is an important link invariant that generalizes the Alexander polynomial of
a knot, and is often called the "Alexander polynomial" of the link [HZ]. Let
us recall the well-known construction of Milnor [Mil] concerning isolated
hypersurface singularities: There is a fibration of whose
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fiber F is an open manifold that is homotopy equivalent to a bouquet of
n-spheres ,S’n V ,S’’~ ~ ~ ~ V The Milnor number p of L f is the number of

sn,s in the bouquet. It is an invariant of the link which can be calculated
explicitly in terms of the degree d and weights (wo, ..., wn) by the formula
[MO]

The closure F of F has the same homotopy type as F and is a compact
manifold whose boundary is precisely the link L f . So the reduced homology
of F and F is only non-zero in dimension n and Z~. Using the
Wang sequence of the Milnor fibration together with Alexander-Poincare
duality gives the exact sequence [Mil]
(3.2)

where h* is the monodromy map (or characteristic map) induced by the
SIW action. From this we see that Hn (L f, Z) = ker(I - h* ) is a free Abelian
group, and coker(I - h*) which in general has torsion,
but whose free part is isomorphic to ker(I - h* ) . There is a well-known
algorithm due to Milnor and Orlik [MO] for computing the free part of
Hn-1 (L ¡, Z) in terms of the characteristic polynomial A (t) = det (tff - h*)
of the monodromy map. The Betti number equals
the number of factors of (t - 1) in A(t). Generally, finding the torsion
is much more difficult. However, in the case of rational homology spheres,
bn (L j) = 0, the group is a torsion group of order

It is not our purpose in this note to give a systematic study of the
Johnson-Kollar list [JK2]. This requires a computer program for computing
the Betti numbers which is currently under study. Here we are content
with giving an algorithm for finding special cases when rational homology
spheres occur. We have written a MAPLE program which allows us to
search the [JK2] list, sporadic.txt and pick out certain rational homology
spheres. We have found two distinct conditions on the weights that allow us
to find rational homology spheres and they are described in the lemmas and
corollaries below. These conditions may determine all rational homology
spheres on the [JK2] list, but we do not have a proof of this. The first and
simplest of the two conditions is that the weights are all relatively prime
to the degree.
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LEMMA 3.3. - Let w = be the weights of a

quasi-smooth Fano 3-fold, of degree d and index 1. Suppose further
that gcd(wi, d) = 1 for all i = 0, ~ ~ ~ , 4. Then there exists an integer N(w)
such that the Alexander polynomial of the link has the form

Hence, the Betti number b3 of the link is given by 
N(w) - 1.

Proof. The Milnor and Orlik [MO] algorithm for computing the
characteristic polynomial of the monodromy operator for weighted homo-

geneous polynomials is as follows: First associate to any monic polynomial
F with roots cxl, ..., ak E C* its divisor

as an element of the integral ring Z[C*] and let An = 1). The
rational weights wi used in [MO] are related to our integer weights wi by
wi = w , and we write the wi = f/ in irreducible form. The divisor div A
is given by 

which can be reduced to the form

foi some integers aj upon using the relations AaAb = gcd(a, 
The characteristic polynomial is then determined from its divisor by

and the third Betti number is given by

In our case we have gcd(wi, d) - 1 so equation (3.5) must take the
form

where N(w) is an integer.
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For the Maple program we need a convenient formula for the integer
N(w) in terms of the weights and degree. We find

where

We should remark here that although it is far from manifest in

equation (3.8), under the hypothesis of Lemma 3.3 the function N(w)
is invariant under a permutation of the weights, i.e., if ~5 denotes the

permutation group on 5 letters, then ~V(cr(w)) = N(w) for any a e ~5.
We have an immediate

COROLLARY 3.9. - Let MW,d be the link of an isolated hypersur-
face singularity defined by a weighted homogeneous polynomial f with
well-formed weights w = and degree d which satisfy

1 for all i - 0,...,4. Then is a rational llomology
sphere if and only if N(w) = 1. Furtllermore, in tllis case the Milnor num-
ber J1 = d - 1, and the order Z) equals the degree d.

Proof. The only part that we need to compute is the order of H3.
Since for a 2-connected rational homology sphere 0, the
exact sequence (3.2) shows [Mil] that the order of H3(MW,d, Z) equals 
But from (3.6) and (3.7) we see that in our special case the characteristic
polynomial takes the form

from which the result follows. D

We now describe the second type of condition.

LEMMA 3.10. - Let w = the weights of a

quasi-smooth Fano 3-fold, of degree d and index 1. Suppose further that
the degree can be written as d = m3m2, where m2 and m3 are relatively
prime, and that the "rational weights" w take the form ’3 for 3 values2

of i and m2 for the other 2 values of i. Then there exist positive integers
l - l (w), and n - n(w), depending on the weights w, such that the
Alexander polynomial 0(t) of the link MW d takes the form
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Hence,

Proof. Computing as in the proof of Lemma 3.3, we see that
from the Milnor-Orlik procedure [MO] that the divisor of the Alexander
polynomial must take the form

for some positive integers l(w) and n(w) depending on the weights. The
above form of the Alexander polynomial then follows from equations (3.5)
and (3.6). The explicit form of the functions l(w) and n(vv) are also easily
calculated. Let denote the 3 indices whose rational weights take
the form m3 and similarly let j1, j2 denote the indices corresponding to theV,

rational weights m2. Then one findsV3

The expression for b3 follows directly from the expression for A(t). 0

COROLLARY 3.14. - Let w = (WO,W1,W2,W3,W4) be the weights
of a quasi-smooth Fano 3-fold, Z j of degree d and index 1. Suppose further
that the hypothesis of Lemma 3.10 is satisfied, then is a rational

homology sphere if and only if ~(w) = 1. Furthermore, in this case the
Milnor number J1 = (m3 - 1)(n(w)m2 + 1), and the order Z)
is 

’

is 3 .

Proof. As in the proof of Corollary 3.9 this follows from Lemma
3.10 by cancelling the t - 1 factors in A(t) and evaluating at t = 1. 0

Remark 3.15. - One can also write d = m4m1 or d = 

where in each case the ms are pairwise relatively prime positive integers.
Also in the first case d/w2 - m4/vi for 4 values of i and d/wj = 
for the remaining index. In the second case Tn2,1/vi and d/wj =
m2,2/Vj for two pairs of index and d/wk = m1/vk for the remaining index.
In both cases one finds rational homology spheres without any further
conditions; however, one can also easily show that the weights are not well-
formed in either case.
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4. Examples of 74. Examples of 

We have constructed a table of 184 rational homology spheres that
admit Sasakian-Einstein metrics. This table can be viewed and/or down-
loaded at the following URL:
http://www.math.unm.edu/~cboyer/publications/7mantable.ps.

Alternatively, the same table is part of an earlier preprint version of this
article available as math.DG/0108113 at http : //xxx. lanl . gov or as MPI-
2001-69 at http : //www . mpim-bonn . mpg . de.

In this section we give a discussion of some examples listed there.
First we mention that our table lists the weights w = (wo, WI, W2, W3, W4),
degree d, Milnor number J1, and the order of of the rational

homology 7-sphere MW d. It lists M7, w d Is in increasing order of their weights
beginning with wo. The first entry has weights (17,34,75,125,175) while
the last has weights (357, 388, 2231, 2975, 5593) . In the first entry the order
of H3 is huge, 1712 a number over 500 trillion, while the lowest order of H3
is 132 = 169. In general the orders of H3 tend to be quite large.

From a quick perusal of the table, it is easy to notice the existence

of twins. These are rational homology 7-spheres with the same degree
d, Milnor number and order of H3. Twins often occur as adjacent
listings with the same wo, but this is not always the case as with twins
d - ~H3~ - 10881, J1 = 10880 and wo - 101 and 109, and the twins

d - ~ H3 ~ - 7777 with wo - 141 and wo - 167. Twins may also be

members of a larger set, such as the septuplets with d = = 5761 and

p = 5760. These have wo = 157,157,185,205,214,253,271, respectively.
Since twins have the same Milnor number, it is tempting to conjecture
that twins correspond to homeomorphic or even diffeomorphic links, but
we have no proof as of yet. In fact, except for cases where IH31 contains no
primes of order larger than one in its prime decomposition, we don’t even
know that twins have isomorphic H3’s.

Another interesting fact is that of the 184 rational homology 7-spheres
listed only 10 have even degree, while the remaining 174 have odd degree,
and the degree is even if and only if the order of H3 is even. In addition
all 174 rational homology 7-spheres with odd degree have ~H3~ = 1 mod(8).
In [BGN4] we constructed positive Sasakian structures on homotopy 9-
spheres using the rational homology 7-spheres listed in the Table. There
we showed that the exotic Kervaire sphere can only occur when the degree
of the rational homology sphere is even (also see [BGN2]).
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Also of interest are invariants of the underlying contact, and almost
contact structures. The underlying almost contact structures are classified

[Sa] by homotopy classes of maps [M7, SO(8)/U(4)], and Morita [Mo]
shows that for Brieskorn spheres this is a function of the Milnor number

p. It seems reasonable that a similar result holds true in our case. There

are candidates for this in the table. For example the rational homology
7-spheres with weights w - (196,2337,7595,10127,17917) and degree
d - 38171, and with weights w == (147,207,230,245,299) and degree
d = 1127 both have IH31 = 74, so they could be diffeomorphic. But they
have very different Milnor numbers, namely, 37440 and 1152, respectively,
so they could belong to distinct almost contact structures. Similarly there
are 4 rational homology 7-spheres with ] H3 = 972, two are twins having the
same Milnor number, but the other two have different Milnor numbers both
different than the Milnor number of the twins. Moreover, twins probably
belong to the same underlying almost contact structures, but could possibly
belong to distinct contact structures. It appears that nothing is known

beyond homotopy spheres [Usl], [Us2] about distinct contact structures
within the same underlying almost contact structures.

5. Some comments on regular rational homology spheres.

In this section we discuss some rational homology spheres that are
regular, in particular the homogeneous ones. The following result follows
easily from previous work [BG1] together with the well-known classification
of del Pezzo surfaces:

PROPOSITION 5.1. - Let S = (g,ç,r¡,it» be a regular positive
Sasakian structure on a smooth compact 5-manifold M5. Then M5 is a
rational homology sphere if and only if M5 is covered by s5 and S is
homologous to the standard Sasakian structure with the round metric go.

It is well-known that the standard Sasakian structure is a homoge-
neous Sasakian-Einstein structure. Dimension seven is a bit more interest-

ing :

THEOREM 5.2. - Let S = (g, ~, 71, ib) be a regular positive Sasakian
structure on a smooth compact simply connected 7-manifold M7. Then M7
is a rational homology sphere if and only if it is one of the following:
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1. M7 = ,S’7 and S is homologous to the standard Sasakian structure
with the round metric.

2. M7 = the Stiefel manifold of 2-frames in and S is homol-

ogous to the standard homogeneous Sasakian-Einstein structure on

[BG2].
3. M7 is a circle bundle over a smooth variety V5 of degree 5 in Cp6

with a compatible Sasakian structure S.

4. M7 is a circle bundle over a smooth variety V22 of degree 22 in 
with a compatible Sasakian structure S.

Furthermore, M7 admits a homogeneous Sasakian-Einstein structure if and
only if M7 = ,S’7 or 

Proof. - By [BG 1] M7 is a regular rational homology sphere with
a Sasakian structure S if and only if it is the total space of an bundle

over a smooth projective 3-fold Z with the same rational homology groups
as projective space CP . Furthermore, S is positive [BGN3] if and only if
.~ is Fano. Thus, Z must occur on Iskovskikh’s list [Isk] (see Remark 5.3
below) of smooth Fano 3-folds of the first kind, and there are precisely
four which have the same rational cohomology groups as This gives
the four cases above. The last statement follows from Corollary 4.1.3 of

[BG2]. 0

Remarks 5.3. - (1) Case 4 in Theorem 5.2 has an interesting his-
tory. The 3-fold V22 was missed by Fano in his original classification of
smooth 3-folds with an ample anti-canonical line bundle. It was then found
by Iskovskikh [Isk] in his study of Fano’s work, but a mistake was made
and not all were found. Mukai and Umemura [MU] (See also [IsPr]) pro-
duced a V22 that is an equivariant compactification of SL(2, e)jll that was
missed by Iskovskikh. Here I is the icosahedral group. Later Prokhorov

(see Proposition 4.3.11 of [IsPr]) showed that the Mukai-Umemura V22
completes the Fano-Iskovskikh classification of Fano 3-folds. Recently Tian

[Til], [Ti2] showed that there are deformations Pa of the Mukai-Umemura
V22 which do not admit a Kahler-Einstein structure, giving a counterex-

ample to the folklore conjecture that every compact Kahler manifold with
no holomorphic vector fields admits a compatible Kahler-Einstein metric.

Thus, the Sasakian circle bundle over Pa does not admit a compatible
Sasakian-Einstein metric. (2) In the four cases of Theorem 5.2, the corre-
sponding Fano 3-folds are precisely those Fano 3-folds that admit an almost
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homogeneous with respect to the group SL(2, C). (See [IsPr], p. 116).
There is a straightforward procedure for finding all rational homology

spheres M~2n+1 that admit a homogeneous Sasakian-Einstein structure. By
Theorem 3.2 of ~BG1~ M2n+1 must fiber over a generalized flag manifold
G/P, where G is a complex semi-simple Lie group, and P is a parabolic
subgroup. In order that M2n+1 be a rational homology sphere, it is

necessary that G/P have the rational homology of a projective space.
Hence, we may restrict ourselves to the case where G is simple and P
is maximal parabolic. The procedure for computing the cohomology ring
of G/P is outlined in Baston and Eastwood [BE]. All G/P’s with G simple
are realized by crossing out nodes in each Dynkin diagram of G. When
P is maximal parabolic only one node is crossed out. The rank of the

cohomology groups is determined by the Hasse diagram WP which is the
coset space Wg /Wp where Wg is the Weyl group of the Lie algebra g of G,
and Wp is the Weyl group of the Levi factor of the Lie algebra p of P. Then
the cohomology groups of G/P will have the same rank as CP~ if and only
if WP has precisely one element of length l for each l = 1, ... , n. One then
needs to check all maximal parabolics for all Dynkin diagrams, and compute
the Hasse diagram for each case. There are many cases and repetitions
can and do occur. Here we mention the Stiefel manifolds V2(R 2n+,) which
are circle bundles over the odd quadrics Q2n-1 and the homogeneous 3-
Sasakian rational homology sphere G2/S’p(1)+ (cf. [BGP] and Remark
5.6(2) below). A Gysin sequence or spectral sequence argument shows that

We have

PROPOSITION 5.5. - The Stiefel manifold V2(IR2n+1) and 
are simply connected rational homology spheres which admit homogeneous
Sasakian-Einstein structures.

Remarks 5.6. - (1) Since YZ (II~2’~+1 ) can be represented as the

link of the quadric hypersurface singularity, 5.3 can be derived from the
Milnor-Orlik algorithm described in Section 3. (2) There are two non-
conjugate ,S’p(1) subgroups of the exceptional Lie group G2, denoted in
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[BGP] as Sp(l)±. The quotient G2/5p(l)+ has a homogeneous 3-Sasakian
structure, whereas the quotient G2/9p(l)- does not. It does, however, have
a homogeneous Sasakian-Einstein structure, and as homogeneous Sasakian-
Einstein manifolds 

There is an obvious corollary of Theorem 4.2.6 and Proposition 5.4.4
of [BG2], viz.

COROLLARY 5.7. - Let M4n+3 be a rational homology sphere
that admits a 3-Sasakian homogeneous structure. Then M4n+3 is either
s4n+3 Rp4n+3, or G21sp(l)+.
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