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0. Introduction.

Let / be a holomorphic Siegel modular form of weight I for the
congruence subgroup Fo(N) in Sp^ which is a Hecke eigenform. The aim
of this article is to study certain special values of the standard L-function
D^\f,s) attached to / and of twists D^^f.s^) of the L-function by
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1376 S. BOCHERER, C.-G. SCHMIDT

Dirichlet characters ^, where M denotes a common multiple of N and the
conductor of ^, and the Euler factors at primes dividing M are removed.
The analytic properties of these L-functions have been investigated by
several authors (cf. [I], [6], [14], [22]) and are more or less well-known.
Also special values D^^f^t^) of the L- function have been proven to
become algebraic numbers after multiplication by explicitely given complex
numbers under certain restricting conditions (cf. [15], [36]); in particular
the behaviour of these algebraic numbers under the action of the absolute
Galois group Gal(Q/Q) is known. We do remove these restrictions in the
Appendix. Our main object is for a fixed rational prime number p to
interpolate p-adically the essentially (i.e., up to an explicit factor) algebraic
special L-values D^^/, t, \) as t and \ vary. In fact we prove the existence
of two p-adic (by definition bounded) measures /i and v attached to /
provided that / satisfies a certain p-ordinarity condition (Theorem 9.3).
Such a condition guarantees the occurence of a p-adic unit root in a
certain p-Euler polynomial and is quite familiar from other situations. The
special L-values under consideration are in a sense all critical values, which
basically only can exist for I > n . By a different method Panchishkin [21]
got a related result assuming that n is even and I > 2(n+1). For n = 1 our
result was known by [23], where moreover a simple relationship between
the two measures [i and v was proven. However some twists had to be
excluded in that paper. Since our new result holds for all twists, we get an
improvement even for n = 1 (for the incomplete L-function with finitely
many bad Euler factors removed). In general we cannot relate p, and v since
the functional equation of the complex L-function has not yet been worked
out as explicitely as necessary for our purposes.

The main body of our paper (i.e., Sections 1-7) provides background
material on Siegel modular forms. Some of the results are new (and perhaps
of independent interest), others are more or less well known (but cannot be
found in the literature in the generality needed here). At some points our
results are formulated in a more general setting than actually necessary
for the purposes of this paper; we think this is convenient for future
generalizations and refinements of our main results. As an example we
mention that our setting is general enough to make the transition from our
p-adic interpolation to 6'-adic interpolation in the sense of [20] a routine
exercise.

As a starting point we need (as always) a good integral representation
for the twisted L-function in question. Here good means that the automor-
phic form appearing in the integrand should be independent of the Dirich-
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p-ADIC MEASURES ATTACHED TO SIEGEL MODULAR FORMS 1377

let character. There are basically two different integral representations of
standard L- functions for automorphic forms on the symplectic group Sp(n):
The method of Andrianov/Kalinin [1] (and its representation-theoretic ver-
sion by Piatetski-Shapiro/Rallis [22]) and the method of "doubling the
variables" (as presented in a classical setting in [6] and in representation-
theoretic terms in [14]). The former method immediately generalizes to
twists by Dirichlet characters, but it has the disadvantage that it involves
Eisenstein series of integral or half-integral weight depending on the parity
of n; therefore the cases n even or odd must often be treated separately (e.g.
the Fourier expansions of Eisenstein series are quite different for integral
and half-integral weights; this is the main reason, why Panchishkin [20],
[21] only treats the case of even n). One of the main points in our paper is
to show that the method of doubling the variables admits a modification
which produces a good integral representation for twists of the standard
L-function. This is essentially done in Section 2 (in the framework of holo-
morphic Siegel modular forms ) and involves in a crucial way the set of
variables which are put zero in the unmodified version. This method is new
and of independent interest. In Section 3 we describe a Hecke algebra and
Euler factors for "bad primes". We avoid holomorphic projection in the
sense of Sturm [36] by using holomorphic differential operators introduced
in [4], see Section 1. The Fourier expansions of certain Siegel type Eisen-
stein series is investigated in Sections 5 and 7; it is remarkable that we
only need information about the Fourier coefficients of maximal rank. This
allows us to stay essentially selfcontained and to avoid the use of the more
sophisticated results ofShimura [28] and Feit [11]. Sections 4 and 6 contain
straightforward computations.

Preliminaries.

For matrices A and B we denote by A* the transposed matrix and
AtBA by B[A] (if it makes sense); for an invertible matrix A we write
A"^ instead of (A"1)*. It will be clear from the context, whether F
means an arithmetic group or the Gamma function. We also use Fn(s) :==
^^n^ir^-^).

For generalities on Siegel modular forms we refer to [12] or [2]. We
denote by (M,Z) ^ M(Z) := (AZ + B)(CZ 4- D)~1 the action of the
group G?+Sp(n,]R) of proper symplectic similitudes on Siege? s upper half
space IHn where as usual M = ( ^ ^ ). For any function / on IHn, any
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1378 S. BOCHERER, C.-G. SCHMIDT

M e G^Sp^IR) we write

/|^M(Z) = det(M)^f(M{Z))det{CZ + D^det^CZ + D)

and /|a^ for f\a^M'^ if / depends on several variables, we indicate by
/|^^M that Z is the variable relevant at this moment. Sometimes we
write j(M,Z) instead of det(CZ + D). The Petersson scalar product of
two cusp forms / and g of weight I will be denoted by (f,g). We do
not use the normalized version of this scalar product, therefore we use
(sometimes) the notation {f,g)r to indicate that we mean the integral of
fg • det{lm{Z))1 over a fundamental domain for the congruence group F.
We shall mainly be concerned with the subgroups FQ^N) and r°(7v) of
the modular group Sp(n,ZZ), defined by the property that the block C
(respectively B) in the lower left corner (respectively in the upper right
corner ) is congruent to 0 modulo N. For a Dirichlet character (p mod
N we denote by M^(To(N),(p) the space of holomorphic Siegel modular
forms of degree n, weight I and nebentype (^ and by S^(ro{N),(p) the
corresponding subspace of cusp forms. For two natural numbers L and
R we define an operator UL(R) acting on L-periodic functions F with
Fourier expansion F(Z) = ETCA. ̂ T^e27"-^^) by {F\UL(R)) {Z) =
ET€A. ̂ ^ -^e27"-^^). Here An denotes the set of all half-integral
symmetric matrices of size n and A^ , A^~ are the subsets of matrices
of maximal rank and of positive definite matrices respectively. We write
U(R) for U-i(R). This operator U(R) describes a "Hecke operator" acting
onM^(ro(7V),^)ifJ?|7V°°.

1. Differential operators.

We review (mainly without proofs) the basic properties of certain
holomorphic differential operators introduced in [4]. Those operators act
on functions defined on JH.^n and have some automorphy properties for the
two copies of Sp(n, IR) embedded in Sp(2n, IR) in the usual way:

(1.1) Sp(n,IR) T .

' ( a

On

C

> \0n

On

In

On

On

b
On

d
On

On\

On

On

In/

' a ^
c d e Sp(n, M)
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(1.2) Sp(n , IR)^ :=^

'/In
On

On

. \0n

On

a

On
c

0
On

In

On

On\

b

On

d /

' a b
'c iO6^^)

The differential operators are built up from the operators (with 1 ̂  i,j ^
2n)

(1.3) 9z,=

0
9zu

1 9
29z,

z = j

^3ij

which we put together in the symmetric 2n x 2n matrix

'9i 82 \(1.4) 9=
9s 9 4

where the 9z are block matrices of size n, which correspond to the decom-
position

3=
z\ z-2

< ^3 ^4 .

of IHsn into block matrices (with ^3 = z^).

In [4, p. 86] certain polynominals A(r,g), r + q = n in the <9^ were
defined, their coefficients being polynomials in the entries of z^\ we just
quote from [loc.cit.] without explaining the notation
(15)

A(r, q)= ̂  (-1)6 Q ̂  9^ n ((l^ n ̂  9^) (Ad^ 9,) 9^)
a+b=q ' '

in particular

(1.6) A(n,0) =det(92)
A(0,n) =det(z2)det(9).(1.7)

Using the (standard) notation

( , ^ ( 9-1\ r,(s+2±1)-(^,)...(^^)=-^———{(1.8) C ^ ) = s l s + ^ \ . . . i s + ^ r,(s+^)
TOME 50 (2000), FASCICULE 5



1380 S. BOCHERER, C.-G. SCHMIDT

we define (with a normalization slightly different from [loc.cit.]) for any
a e C

(1.9) ^:= ^ (-^f^^fa-n+^A^g) .
r+g=n V^ V ^/

This operator satisfies the important relations:

(1.10) S),,, (F|^ A^) = CD,,, F) |,+i^ MT

(1.11) ^ (F|^ M^) = CD,,, F) |,+^ M^

(1.12) ^a(F\V)={^F)\V

for all /? e C, all F € C'°°(IH2n) and all M € Sp(n, M); in (1.12) V denotes
the operator

(1.13) (F|V)(3)=F(Y^4 ^)VW2 ^1/7
For ^ e IN we put

(1.14) ^a •'= ̂ n^-1 0 ... 0 ̂

and

(1-15) 2» ̂  := (2)^)
2:2=0

In particular, 3) ^ ^ maps ((7°°-) automorphic forms of type (a, /3) on IH2n
to functions on IHn x IHy,, which are automorphic of type (a + v, (3) with
respect to z\ and 2^4. If F is a holomorphic modular form on IHsn, then
0

^ ^,0^ becomes a cusp form with respect to z\ and z^ (if i/ > 0).

For 1 C C^271 we define a polynominal V^aW ^ the entries
tij(l^i^j <^2n) o f^by
(1.16)

^ ^a ^tr(TZ)) = ̂ W^71^74^ -I = f^ T2) withr, e c^).
V / \i2 l ^ j

The ^P^o, are homogenous polynomials of degree ni/.

For X, Y € C7'1'71, m even, the polynomial

/ YtY YtV \(i.i7) Q(x,y)=^^(^ ^^

is a harmonic form of degree u in both matrix variables X and Y and it
is symmetric in X and Y [loc.cit. Satz 15]. Since 0(m,C) acts irreducibly
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P-ADIC MEASURES ATTACHED TO SIEGEL MODULAR FORMS 1381

on the space of all such harmonic forms, this implies that (at least for
0

m=2k^ 2n) the operator S) ̂  is (up to a constant) uniquely determined
by the transformation properties (1.10), (1.11), (1.12) at z^ = 0.

0

^ ^,a is a polynomial in the <9^, homogenous of degree nv with at
most one term free of the entries of <9i and 84, namely the term

(l-l8) c^det{9,r

with a certain constant c^; this can be seen e.g. from (1.16) and (1.10)
by looking at T of type

(1.19) ^f0 ' J^.rec^).
\ 1 ^n /

To determine the constant c^ explicitely we first observe that (for
arbitrary a, s € €)

(1.20) S),,, (det(^n = (-irCn (J) c^ (a - ̂  J) det^)5-1

which implies

(1.21) s) ̂  (det^n = (f[ c^ (n) <,,
\ 1 ~ / /\^=l /

=(-irn(^(t)^(—+-t)).
In particular we shall apply these differential operators to functions of type

(1.22) /,(3) := det (zi + 22 + z'2 + ̂ r^, s € C.

The following formulas will be used (see [loc. cit. p. 97]):

(1-23) A(r,q)f,=0forq>0

(1-24) A(n,0)/,=G»(-s)/,+i

(125) ^ f - ^"(s+t/) ^(^^-i) .( ) '̂̂  - "T^T • r^-t) •/s+l/;

to get the last formula from (1.23) and (1.24) one has to use the elementary
formula

(1.26) Cn(-s)=(-l)nCn(s-n+lY
\ z z /

TOME 50 (2000), FASCICULE 5



1382 S. BOCHERER, C.-G. SCHMIDT

In the sequel we shall also use a "disturbed version" of the operator £) ̂ ,
namely (for s € C arbitrary)

0 0

(1-27) ^ ̂ s •= del (^ del (^)5 S) ̂ ^ (del (2))-5 x __) .

It is clear that this operator has exactly the same transformation properties
as £) ^ ^. Moreover these two operators are essentially the same as far as
(for k = a e IN) their behaviour with respect to the Petersson scalar
product against holomorphic modular forms is concerned.

To see this, we first remark that the operator D ̂  ̂  is a homogenous
polynomial of degree nv in three sets of variables, namely the entries of
^/f1, the entries of y^1 and the Qij\,^ (1 ^ i ^ j ^ 2n).

A structure theorem of Shimura about nearly holomorphic functions
(or more precisely its proof [32, Prop. 3.4], [33, Prop. 3.3] implies the
validity of an operator identity of type

(1.28) p,(k) det (y^8 del (^ ^ ̂  (del (2))-5 x __)
nv
v-^ /^m - ^= ̂  (iD^^ID^)^^).
ij=0i,j=0

Here the D^ are polynominals in the 9^ ^(1 ^ r ^ t ^ 2n) (with
coefficients depending on k and s) mapping scalar valued automorphic
forms on IHsn to certain vector-valued forms on Mn x Mn and the ID^
are (non-holomorphic) differential operators mapping vector valued auto-
morphic forms to scalar-valued ones (Shimura's notation is O^D^). The
ID^ (ID^ respectively) are homogenous polynomials in the entries of y^1

and 5i (y^1 and 84 resp.) of degree i (j resp.). The polynomial ps{k) in
(1.28) assures that the identity is valid for all k (not just for k large enough
as in Shimura's papers). We use the normalization ID^ = ID^ = 1, there-
fore the summand in (1.28) for i = j = 0 is just D^050); this operator has

0

exactly the same properties as £) ̂ , therefore (by the uniqueness property
mentioned earlier) we obtain (at least for k ^ n)

(1-29) Z)(°'°) = d,(k) X) ̂

with a certain complex number ds(k). We should mention that Garrett and
Harris consider similar kinds of decompositions of differential operators in
[13, §2].

ANNALES DE L'lNSTITUT FOURIER



p-ADIC MEASURES ATTACHED TO SIEGEL MODULAR FORMS 1383

On the other hand Shimura (see [29], [30], [34], [35]), by studying
the adjoint operators of O^D^ , showed that holomorphic modular forms
are always orthogonal (w.r.t. Petersson scalar product) to elements of the
image of 9c^\ i > 0.

If r is a congruence subgroup of Sp(n, ZS), g and h holomorphic cusp
forms in ^"^(r) and F : ffi^n —> C a C^-automorphic form of weight k
for a group containing F^ x F^ and satisfying a suitable growth condition,
we get (at least for k ^ n)

(1.30) Ps{k)U^^g\ ,/A =d^k)((^^g\ ,/A .
\ \ " / r / r \ \ / r / r

To determine ps{k) and ds(k) (or merely their quotient) it is sufficient to
compare the coefficients of del (Q^Y on both sides of (1.28); this gives

(1.31) PsWc^, = <W<fc

which implies

n ̂  ^(fe) ^ <,fc+« ^ rT C n ( k + s - n + v - l j )
v ' / P.W c^ 11 ^ (A-n+^- f ) •

For later use we state here some arithmetic properties of the ̂ ^ which
are immediate consequences of the considerations above when combined
with the simple observation that the operator

(1.33) 2^. S) ^
0

I/

n.o;

is a polynomial with integer coeffizients in a, and the 9zj (1 ^ i < j ^ 2n)
evaluated at z-z = 0.

Remark 1.1. — For a 6 ZZ, the 4^ • ̂ ^(T) are polynomials in the
entries tij(l ^ i < j -^ 2n) of 1 with coefficients in 2Z. They satisfy the
congruence

(1.34) 4n^^((^) = (2^^^) det (22^ mod L

for any integer L and any half-integral
/ m m \ i i

T = ( ^ ) with -Ti , -r4 both half-integral.
\ 1 l^ ) L L

We also mention that the integer (2n^/(7^) in (1.35) is certainly nonzero
for a > n.

TOME 50 (2000), FASCICULE 5



1384 S. BOCHERER, C.-G. SCHMIDT

2. Twisted Eisenstein series.

For a Dirichlet character ^ mod M, M > 1, a weight k C IN with
^(-1) = (-1)^ and a complex parameter s with Re(s) > 0 we define an
Eisenstein series

(2.1) IF^Z, M, ̂  5) and IF^(Z, M, ̂  ^) := del (ITIF^Z, M, ̂  s)

of degree n (with Z = X + %V € IHn) by

(2.2) IF^(Z,M,^5)= ^ ^(det^det^Z-h^-^ldet^Z+D)!-25;
{C-,D}

here {(7, D} runs over all "non-associated coprime symmetric pairs" with
det C coprime to M.

A more conceptual definition is as follows:
(2.3)

V^Z, M, ̂ ,s)= Y^ ^(R) j(R, Z)^ det (Im (R (Z))3)
fleT"(M)oo\'r"(M)

with

r"(M)=(°" - l")^o(M)={(A5)eSp(n,Z)|A=OmodMl,
\ ^n ^n / ^ \ ̂  J-^ / J

r"(M)^=((°" -^^^(M)^0" -1")
^ \ ^n ^n / \ in ^n /

= } { c D } e sp^7 7L^ C=0,B=.0 mod M^

and

(2.4) W = ̂ (detC) for R = (^ ^ e T^M).

It is well-known that this series converges for k + 2Re(s) > n -j- 1 and (as a
function of s) has a meromorphic continuation to the whole complex plane.

A key ingredient in our subsequent calculations is the following
variant of Proposition 5 in [3]:

PROPOSITION 2.1. — A complete set of representatives forT^M)^
T^M) is given by

f2^ [ ( a b^ ( w t ^n\(a (3^ \
^ [{c d) [^ W^)^ J ( 1 ) - ( 1 1 ) - ( 1 1 1 )J

ANNALES DE L'lNSTITUT FOURIER



P-ADIC MEASURES ATTACHED TO SIEGEL MODULAR FORMS 1385

with

e T"(M)oo \ T"(M),(i) (^ ^) er"(M)oo\r"(M), (ii) (̂  ^ er"(M)oo\T"(M),

(iii)̂ ^1 "2)
l\^3 ^4/

o;2=OmodM 1 /f/G£(n,Z) M • Z^ M
6GL(2n,Z) (de^,M)=l}/{( O^ GL(n,2Z))}

Proof.— [loc. cit].

Remark 2.1.

a) A useful reformulation of (iii) is:

The "first column" ( ^ } ofW runs through

{f^eZ^^ (UJ1) primitive, (detc^M) = 1, ̂  e Z^^/GL^ZS)}.
IV^S/ \C<;3/ J

b) Suppose that mi = ( ) e ^2n(M) is decomposed as in the

proposition above. Then

€=(c^ * ) withiy-^f'1 "2)
\ On ^47 ) \U3 U^)

and therefore

(2.6) ^det€j = ̂ (detc)^(det7) ^2 (del ̂ )ip (del W)~\

Making use of (2.6) and the (obvious) relations

(2.7) 3 [W]==f 3 b] *) , 3e lH2n ,\ * */

^ ^((^ ^)^)=^w-\
(2.9) ^(detW) = det(TV)A; for W <E GL(2n, 7L\

we obtain from Proposition 2.1 (in the same way as in [3, Section 3]) an
expression for the Eisenstein series of degree 2n (essentially the Fourier-
Jacobi-expansion for the decomposition of

(2.10) • 5 = ( z l ^effi^
\ ^3 ^4 /

TOME 50 (2000), FASCICULE 5



1386 S. BOCHERER, C.-G. SCHMIDT

into n- rowed block matrices):

(2.11) IF^(3,M,^)

= E E ^(det^i)^)
^er-(M)oo\r-(M) (^)ez2n,n/^(^)

jw^r'ij^^)!-25 xiF^ f^o) hi ,M,̂ ) .
\ L^sJ /

As mentioned above, ( ̂  ) must satisfy the additional conditions that ( a;l )
is primitive and that det uj\ is coprime to M.

We want to twist these Eisenstein series of degree 2n in a certain way
by a Dirichlet character. To do this, we first observe that for

= ( a ^ ^ Sp(n,R), XeR^\7 6 )(2.12) R=( . ^ Sp(n

(2.13) I V = ( ^ ^)eGL(2n , ]R)
\ ̂ 3 ^4 /

the relation

(wt ^"W12" ^ ^-f12" ^V^ 02n^1
^o^ Ty-1^ ^^ î  7 V ° ^ Wlo^ iv-1^

holds with

(2•15) w = [ --rX^i + a;3 -7Xta22 + ̂ 4 J

....(-̂  ^>.
In particular, the symmetric matrix 5' has integral entries, if W €
OL(2n,Z), X = § with X € TL^^.N e IN and J? € Sp(n, Z) with a =
0 mod TV2.

This implies that for any X € Z^'^ and any N € IN with TV^M we
have (with the same additional conditions on uj\, ̂  as before)

, /i °" ^ \
(2.17) ]F^(3,M,̂ ) i2n ^ o»

fc \02n i2n /

ANNALES DE L'lNSTITUT FOURIER



P-AD1C MEASURES ATTACHED TO SIEGEL MODULAR FORMS 1387

E E E ^(det^)^(J?)
j?=(^ ;;;)(= T^M^T^M) o;i ez^'^/GL^z) o;3 ez^'71)

j^z^ W^T28 ̂  (^ (3) [ ^ | ,M^A\ [^3-77^ij )
Here we tacitly used the fact that the matrix 5' from (2.16) does not

k
contribute anything because W^{z^,M^,s) is a periodic function of
^i C 1H .̂

Now let \ be a Dirichlet character mod TV, TV^M and consider

(2.18) ^ x(detX)]F^(-,M,^) f12- 5^))
XeZ(——)modN f c v u 2 n 12n /

where S(X) denotes the 2n-rowed symmetric matrix

On X\

xt oj-(2.19)

We put 0)3 := 7Vc<;3 — ^XtuJ^ .

If 0:1,7 are fixed and ^3, X are varing as in (2.17) and (2.18) then 04)3
runs through all elements of TL^^ with the properties

(2.20) ( ~1 ) primitive, det ̂  coprime to N
\^3/

and we have

(2.21) x(detX) =x(det^3)x(det7)x(det(-a;i)).

Collecting all these facts (writing 0:3 again instead of 0)3) we obtain

PROPOSITION 2.2.— For a Dirichlet character ip mod M, M > 1, a
Dirichlet character \ mod TV, TV^M and A; 6 IN with ^(-1) = (-1)^, the
twisted Eisenstein series (2.18) can be written as (for Re(s) ^> 0^)

(2-22) E E E
^er^A^ocAr^M) c^i GZ^'^/G'L^Z) a;3ez(n•n)

^2 (det 0:1) x (det (-^i)) x (det 0:3) rW ̂ Wj(^ ̂ 4)-' |j W ^4: l-2s

x^f^(3)ff^)1^^^).
\ L \ N / J /

TOME 50 (2000), FASCICULE 5



1388 S. BOCHERER, C.-G. SCHMIDT

Here 0:1, uj^ satisfy the additional conditions

(2.23) ^ j primitive, deto;i coprime^oM, det c<;3 coprime to N.

Remark 2.2.— It is obvious from the expansion (2.22) that the
twisted Eisenstein series (2.18) has the transformation properties of an
automorphic form for the group ̂ (M)1 (and then by symmetry also for
^(M)^ with nebentype \^.

This can also be seen directly from the definition (2.18) by a slightly
different, but similar computation. Actually this twisting process makes
sense not only for these Eisenstein series, but also for any automorphic
form on Man with respect to r^(M).

For future purposes we now change notation:

We put

(2.24) (p := -0^ ( Dirichlet character mod M)

and we work with (p and \ (instead of -0 and \).

The expression

^(detc^i) x (det(-o;i)) ̂  (det ̂ 3) X^W W

becomes

X (-^(x^Xdet^i) x (det^s) W

and ^(-1) = (-1)^ becomes ^(-1) = (-l)^(-l).

With the notations above and I == k 4- ^, v ^ 0 we define a function
on ]H^ x Mn (with 2; = a- -h ̂ , w = ^ + iv) by

(2.25) ^(w, z, M, TV, y., ̂ , s) := det(^)s det^)8 2) ̂

E x(detX)IF,\(-,M,^,.) f12- ^p)))^ 0).
e1^) A°2n l2n 7 1 ^ 0 wy
r mod N /

The remark above implies that this function (when considered as a function
of z or w) defines an element of (7°°M^(ro(M), (p).
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An elementary calculation (using basic properties of the differential
0

operator 2) ^ j^) shows that (2.25) is equal to

r^^.r_(*_^
rn(k+S) T n ^ + S - ^ )

x E E E
fi€T"(M)oo\T"(M) ^i6Z(".")/GL(n,Z;) 0:3 €%("•">

(^(det^i) ̂  (detc^) W det^det^N-^

xW^ (z [0:1] + R (w) [^] , M, v.x, s)

- fc,l/
where we use an auxiliary function JF^ on IHyi, denned by

(2.27) IF^(^M^x^)

^ (^(det^^det (cz + ̂ -^-^Idet (c^ + d)^28

(: ;)er"(M)oo\r-(M)

= ^(W) W)) i^W^de^z + (H)-fc-l/|det(^ + ^H)]-2'.
^

Here 9^ == 9^ = c"1^ runs through all rational symmetric matrices
and ^(^H) = |detc| is the absolute value of the product of the denom-
inators of the elementary divisors of 9 .̂ We remark, that the condition
"det(c) coprimetoM" is taken care of by the factor (^) (i/(9t)).

For a cusp form g 6 S^(ro(M),(^) we want to compute (for
Re(5) ^> 0) the scalar product

(2.28) (g, C^ (*, -z, M, N, ̂  x, s)}_ , . •
\ I 1 Q\M.)

It is clear that by (2.28) we define an element of C^'M^(ro(M), (p).

The expansion (2.26) allows us to apply the usual "unfolding trick":

The scalar product (2.28) is equal to

'2-29' T£^•^^^^t!--
x [ g (Qn ~ l n } { w ) { I d e t ^ / — — 1 ^ ^

./r^A^ooNIHn l\]-n Un /
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where { } stands for

^ det(a;l)'det(a;3)l/(x^2)(deta;l)^(deta;3)
^1^3

P^ (-z [^i] + w [^] , M^^s) det^)5.

We now proceed in essentially the same way as in [6, §5]:

We apply the unfolding trick again, this time with respect to the
summation over 0:3: we integrate over ffl^modM (instead of Mn mod
T^M)^) and we change the summation over ̂  e TL^^ into summation
over 0:3 <E GL(n,'&)\'Z{n'n) (the additional conditions on ^1,^3 remain
valid). A factor 2 comes in because -l2n acts trivially on ffl^.

Up to elementary factors the contribution of a fixed pair (^1,0:3) to
(2.29) is

(r\ or»\ / / n ^ \ / \(2-30) / g I 1 (w)x
J / \ ln OH /

IH^ mod M

^det^-^+wl^j+^^det^-^+wl^]^^)!-2 5

det^)^5-71-1^^.

We decompose 91 as

(2.31) ^ = fHi + ̂ 2 with ^2 C ̂  Z^ [^3].

This allows us to apply the unfolding trick again (for the summation with
respect to 9^2); the integral (2.30) becomes

-_- / ( j ^ . \ —2l—4s f /n 1 \
(2.32) Vdetf^) / o ("" -1")

^ { N } J^ A1" O n )

det (-z [^s1] N2 + fHi [o;3-1] N2 + w)

x[det(-z [h;!^1] N'2 +W.i [a»3-l] N2 +w\~2sdet(v)l+s-n-ldudv.

The Selberg reproducing formula for holomorphic functions (in the version
stated in [6]) yields for each summand of (2.32)

(2.33) (-1) ̂  2n("+l)-2"s-"^ 1^(1 + s - n - 1) det^s)-2'-48 (N")21^
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^n IT?. \ / r —1-1 ,,o -- r 11 o^xdet (y [u^N] Vs g ( °" 1" ) (^ [o,̂ -1] N2 - ̂  [̂ -1] Ar2)
l \ n ^ /

with

(2.34) ^)^^2-^ ^»(s+ l+^)v / r»(s+n+i)
denoting the well-known integral of Hua [16].

We decompose the summation over 9li into

(2.35) <Hi=9lo+1[^3],

Wo € Q^ mod 2Z^[^], 1 € Z^)[^] mod ^Z^"^].

An easy calculation shows that

(2.36) ^g (on -l")(^^3-l]A^2-<Ho[^-l]^2-7V2<^)
<r / \ -L^ ^n /^ iz v-1-^ ^

n(n+l

M-^<7 ^on -^^f^M^s-^i ^w\^ YM o, y v^ylA o, c^r1 y
^M
7V2

det (^CL/f1) .

Summarizing all these computations (and simplifying the constants) we
obtain

(2.37) (^^(*,-^M,^^x^))
ro(M)

±11 r»(i+s-j) r^(i+s-^1)^J_ n(n+l) »(n+l)=(-l)T2-2—+l-2n^

i \ ( fc+s)r»(fc+s- j)
X^(-l)" (^n)2fc+.+2,-n-l ̂ ^^-^

x E E E (X^)(det^)
a,ieZ(».")/GL(n,ZS) ws £ GL(n,Z)\Z(".») iHo e Q^"> modZ^"'^]

X(deto;3) (^X) (^(^o)) ^(Sno)"*"2^^^!)"'1-2^^^)"^25

Xff
'On -In'

M 0.,.
(7 M UJ^UJ\ UJs^^

I \ Un ^>3^1\
-1
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We mention again, that ^1,0:3 have to satisfy the additional conditions

f^i\
[ } primitive, det uj^ coprime to M, det 0:3 coprime to TV.
\^3/

Appendix: The trivial character.

For the trivial character \ = 1 the construction considered above
does not produce the kind of result needed later on. In this appendix we
therefore present a modified twisting process, which is also interesting in
its own right.

We fix a prime p with p^M; for 0 ^ i ^ n we consider the double
coset

(2.38) GL(n, Z) (\-1 ^ °^ ) GL{n^ 7L) = |j GL(n, Z)^..

Instead of (2.18) we now look at

(2.18Q ^n(-.M^s^:=^^^M^s) (12n s^}^ / ^^^):=^]^]F^(-,M,^,.
j X \k\^ni X k V°2n l2n /

where X runs over TL^^ g^/TL^^.

The same computation as in the proof of Proposition 2.2 shows that
(2.18') is equal to

(2-39) EEEEE^^^^i)^)^^)^
j X R o/i o;3

x \j (r, Z4)|-25 Î n (^ (3) [f^ )L M, ̂  s)\ LV^/J /
with

(2.40) a;3 == o;3 — 7X^1 .

These 0)3 can be described in a better way:

LEMMA 2.1. — If one fixes cji in its right coset modulo GL{n, 2Z), then
there is a permutation j i—> j such that for j fixed, puj^ runs precisely over
those elements ofTL^^p - ̂ -t which are coprime to 0:1.
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Proof.— Exercise on integral matrices (left to the reader).

We may combine the construction (2.18') with the previous twisting
process (2.18) in an obvious way:

Let N = TV' ' p be given with N ' coprime top.N^M. Let \ be a
Dirichlet character mod TV'; generalizing (2.25) we define (withO ^ i ̂  n)

(2.25') (^(w^M^^^z)

:= det(^deW £) ̂  E E E ^ (detx)
xez^'71) j x e Z(n '•'^)o t/Z(n 'n)
X mod TV7 's^3 '

F;,(-,M,̂ ,.) (f1'" ^^'V12" s<\xl')\\{^ 0).
AV^n ^n / \02n l2n 7 7 ^ 0 ^/

Then (2.37) becomes

(2.37') (g, ̂  (*, -z, M, JV', ̂ , x, 5, z)\N / ro(M)

^ /_^^3^ii+i.2n^s^i2 r»(^+5- j ) r^ (5+^-^ 1 )
rn( fc+s)r«(A+s- j)

XX(-l)" (^/p)»(2fc+-+2-"-l) M^^^^^

x E E E E (X^2) (̂ i) ̂ (det^s) (^X) (^(9^)))
J t»i 0)3 iRo

X^^)-''-2^^^!)-25-^^^)-''-^

Xd ( 0 '^Uf M \\ (tj3tu;l -̂̂ O -̂
^{M o f ^ ^ N ^ ) ^ 0 ^1

The summation is over

î e TL^^/GL^TL), ^ e GL(n,Z)\2Z(n'n\

^oCQ^ mod Z^H

and subject to the additional conditions

/^i\
) primitive, del (c^i) coprime ^o M, ^(^Ho) coprime ̂ oM

\^3/

0:3 e TL^^pg^ , det^s) coprime to TV' .
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3. Hecke operators.

In order to define automorphic -L-functions properly, we need some
notations on Hecke algebras, in particular we must define a certain Hecke
subalgebra for the bad primes. For standard facts about Hecke pairs,
Hecke algebras etc. we refer to [2], [12]. Let ^ be the abstract €-Hecke
algebra associated to the Hecke pair (Sp(n,Q), F^(M)). As a vector space
this is the set of all finite formal linear combinations of all double cosets
^Wg^W, 9 ^ Sp(n,Q). We are interested in very special double
cosets, namely those of type

(3-1) QM)(^ ^)r^(M), weM^)\

where M^(ZS)* denotes the non-singular integral matrices of size n; of
course W may be chosen as an elementary divisor matrix.

We denote by ^° the C-linear span of all these double cosets; we shall
soon see that this is indeed a subalgebra of ^.

We first remark that the left cosets in double cosets of type (3.1) have
"upper triangular" representatives
(3.2)

ron(M) (V ^} ron(M) = U^W^ 9i = f * *) € Sp(n,Q)
\ u " / \ ^n * /

(by direct calculation). From this we may obtain (e.g. by counting the
number of left cosets on both sides) that for all V, W e Af^(ZS)* with
coprime determinants

(3.3) r;(M)( '̂ ^)r;(M).r;(M)(^' ^)r;(M)

=r;(M)((^'- ^)r;w.

For M > 1 not all upper triangular matrices occur as a representatives of
left cosets. We first look at the "bad primes" :

LEMMA 3.1.— Each double coset ^(M)^"' ^)r^(M) with
det(W)\M°° decomposes into left cosets according to

(3.0 UrS^- W;R}
W,R v /

ANNALES DE L'lNSTITUT FOURIER



P-ADIC MEASURES ATTACHED TO SIEGEL MODULAR FORMS 1395

with

GL(n, 7L) W GL(n, 7L) = \J GL(n, 7L) W and R = ̂  e 7L^ /7L^ [W}.
w

Proof. — Elementary calculation.

Using (3.3) we may combine Lemma 3.1 with similar results in [7] on
the case of "good primes" (i.e., det(lV) coprime to M):

COROLLARY 3.1. — The set of upper triangular matrices in Sp(n, Q),
which occur in double cosets of type (3.1) is equal to
(3.5)
17 o;3 tuJ{ uj^ BUJ^\\ 0:1, ^3 e Mn(7LY, ̂  coprimeto ̂  1
1\ 0 ^3^r1 ) | B e Q^\ det(o;i) and v{B) both coprime to MJ

We omit the (easy) proof.

We remark that from an upper triangular matrix in (3.5) we cannot
easily rediscover the elementary divisor matrix W describing its double
coset, we only have the relation [7, Prop. 4]

det(lY) = ±det(^i) det(^) ^(B).

The set (3.5) is a semigroup, therefore ^° is indeed a Hecke algebra.
It is commutative, because

(3.7) g ^ ( ° ^V^0 -1'!v / " \-1 0 ) y \M 0 )

is an involutive anti-automorphism of f)°.

As a consequence of (3.3) we get as usual a decomposition (restricted
tensor product) of our Hecke algebra into "p-components":

(3-8) ^(g)^M,p
P

the p-component being defined by double cosets (3.1) with det(lV) = power
of the prime p.

The structure of these jp-components is well known for p coprime to
M:

(3.9) ^p^W1,...,^1]^
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with Wn denoting the Weyl group generated by the permutations of the
Xi and the mappings (1 ^ j < n)

(3.10) X,——X^ Xi^X, ( z^ j ) .

Prom Lemma 3.1 we get

COROLLARY 3.2. — Forp\M the Hecke algebra f)°^^ is isomorphic to
the Hecke algebra attached to the Hecke pair

(cLn (7L W\ HM,(Z), GLn(7L)\,

the isomorphism being given by

(w-t n \
(3.11) r^(M) ^ ^\ r^(M) ̂  GLn(7L)W GL,(2Z).

In terms of the Satake isomorphism this means

(3.12) ^^C[Xi,...,X^.

For the explicit description of the Satake isomorphisms (3.9) and (3.12) in
terms of left cosets we refer to [12], however we shall use a normalization
of the Satake isomorphism (3.12) different from [12].

For w € 7L we define

(3.13) HM^n^^
p\M

note that

(3.14) r?(M)(^ ^r?(M)^det(W)

does not define an algebra homomorphism from f)° to €, but (del W) M
does.

For a double coset (3.1) we define a Hecke operator TM(W) acting on
C°°M^r^M)^)by

(3.15) f\TM(W):=^(detM{W)^etai)fi(a^ (3i}
. H \ 7 z Oi j
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with

w^CT ^(^Uwo^; ^)-
The reader should convince himself that det(o^) detM(W) is always M-
integral and coprime to M and that equation (3.15) defines a homomor-
phism from ^° to End ( C°°M^ (I^(M), -0)).

For r\M and a cusp form / € S^(To(M)^) let us consider (with
Re(s) > 0)

(3.16) ^f^MWdetW-8

D

where D = diag(di,... ,dn), di > 0, runs over all elementary divisor
matrices of size n, ^[c^+i, with (detP, r) = 1.

Using (3.5) and (3.6) we may describe the action of the operator (3.16)
as follows:

(3-17) E* E* E
^i6M»(Z)-/GL»(2Z) ^eGL^CZ)\M^CZ) B g Q^"> mod Z^"'[^3]

^(B)-s|det^l|-s|det^3|-s^(((det(^l)det(a;3)l/(B))Mdet(^3)-ldet(^l))

, /^-^i ^-^^-^
^H o ^r1 y

Here ^* indicates that uj\^ 0:3 have to satisfy the extra conditions

0:1 coprime to 0:3; det uj\ coprime to M; del 0:3 coprime to r .

Assume now that / is an eigenform of all the operators TM(D),
(detD, r) = 1:

(3.18) / |TM(^)=AD(/)/.

The mapping

(3.19) r^(M)(^~1 ^\T^M)^\o(f)

induces (for all p coprime to r) homomorphisms \p : ̂ ^ —> €, which
are parameterized by "Satake parameters"

^•"^^p forpfM

î,p, • . • , ̂ n,p forpjM, p \ r.
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Of course the operator (3.16) is also built up from its "p-components" and
it follows from Tamagawa's rationality theorem [37] for local Hecke series
(p[M) and the rationality theorem proven in [7] that (3.16) is equal to

(3.2o) npiM i n (i - A,^-^")
''*- \i=\

(i-p-^no-p21-25)
i=l

p\M \ (i -p-^) n (i - ̂ pp-8^) (i - a^p-8^) /.

In order to get smooth formulas, we have normalized the Satake-isomorphism
for the GLn- Hecke- algebra as follows:

A
n / Y \ kv

^(Ar1!!^)
v=\ v ' /

(3.21) A =
\ 0 pk

which differs from [12, IV, §2] by the factor det(A)"+1.

For / as above, we now define the (standard-) -L-function by

(3.22) D^if^s)

.^ TT 1 TT _____________1_____________
^U 1 - ̂ p)p-« H ^ _ ̂  ̂ p-s^ (i _ ^(p) ̂ lp-,)

and the r'-complement L- function | r ' := ]~[p j by
\ P\M
\ P \ r

(3.23) ^(/.^n nd^^ ^'(/,«).
With all these notations we can now give the main result of this chapter,
reformulating (2.37) in terms of Euler products:

THEOREM 3.1.— Let (p be a Dirichlet character modM > 1, \
a Dirichlet character mod N , N^M, I = k + v e IN with ^(—1) =
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(-l)^-!) and g\^ ( ̂  ^ ) e S\, (r^(M), ^) an eigenform of the Hecke
algebra n ̂ M,p- Then w3 have for My := Y[P and R-e(,s) » 0;

pfN ' p|M
Ptw

(3.24) (5, (£^(*, -f, M, N, y, ̂  s))^ ^

^ ^l^(s) . ».2fc+^+2.-n-l ̂ -»(^)-" (_^n

£(fc + 2s, w) ( > M x{ i )

———'^C-o^^——.^I.C-o1)!^^)
with

£Cs^) = L(s^) Y[ L (2s - 2i^2)
i=l

and

^^^^^^ii.^^^i r,(/+^-j)r^(^+.-^i)
^ n ( k ^ s ) ^ n ( k + s - 1 j )

COROLLARY 3.3. — The twisted L-function

D^M^(n\ f 0 -1} s ^
Vg u \M 0 ) ' s ' x )

has a meromorphic continuation to the whole complex plane.

In fact, Theorem 3.1 produces a whole series of integral representa-
tions of our twisted L-function (depending on the choice of k and v). Using
standard properties of Eisenstein series we may deduce the corollary from
any of these integral representations - if we take for granted that (for v > 0)
the differential operators ̂ ,k^s ^° not destroy the "slow growth" of the
Eisenstein series. This is not completely obvious, so we give a sketch of
proof here:

In [26] a differential operator ZY, r ^ 1 is introduced (generalizing
the well-known operators of Maafi [18]), which maps Eisenstein series
like IF^(Z,M,^,5) to vector-valued Eisenstein series. For each monomial
A G €[<9^] of degree r there is a component of that vector-valued Eisenstein
series, which has AIF^(Z, M, ̂ , s) as its "main term", the remaining terms
being sums of terms like
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(derivative of IF^(Z, M, ̂ , s) of degree < r) x (elementary function of Y).

Now we use that the vector-valued Eisenstein series are also of "slow
growth", which then implies that the derivatives ̂  fc!F^(Z, M, ̂ , s) and
also ̂ ^^J^ ̂  ̂  ^) are still of slow growth.

Appendix: The trivial character.

There is also a version of Theorem 3.1 for (2.37'):

Under the same assumption as in Theorem 3.1 (but with \ a Dirichlet
character mod TV', N = N ' p , p coprime to TV') we have

(3.26) ^ €^(*, -^ M, TV', ̂  ̂  ̂  z)^ ̂

= £(F )̂ (N•.)-<2———>MBia^(-lr

^"•"''(^.(^ -o1).*^'-"^)
v — f c — 2 s ^—s:^X (det(p5^t)) det (p^.*))-'-28 ^

3 M C_ jy(n,n) /ny(i
^0 t ^sym / ̂ s:^0 e Z^^/Z^^P^.*]

1

g\ ( ° -1} u(^} (^ ^}
^{M 0 ) ^N^) ^ 0» pg^ ) •

The sum over j and 9^0 equals

(3.27) ^"-W-T^I^ ~o1) ^ 'Jtf'
A^ TM

P^-n-i

=x(prl-^)(pn-rk-2s^^ -^ y ' M\
'N2 ) '

where A^ is the eigenvalue for the Hecke operator TM (lnni ° ).

Using the "Tamagawa-identity"

(3.28) U(l - W = ̂ (-iyp-^V X,X1

1=1 1=0
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we can now deduce from (3.26) the following modified version of Theo-
rem 3.1

(3.24') ( <7, ̂ (-lYp^ p— ̂  (*, -^ M, TV', ̂  ̂  ̂  i) )
/ro(M)1=0

== .(̂ W (^——————-^ M^ ,(-!)»

^(M,Mo)^^ -^,k+2s-n^(-irp-^

xmi-^p-^p-2^!^ -o1) ^(^).
In other words, the right hand sides of (3.24) and (3.24') differ by the factor

(3.29) (-1)^-^ f[ (l-^xWp-^1-28) .
1=1

4. Trace and shift operators.

We now apply Theorem 3.1 to the special situation which is of interest
for us:

Let S be a square-free number, p\S and /o = fo,s ^ ^(ro(A^5'),(^);
we assume that /o,5 is an eigenform for the Hecke algebras

(4.1) <^,g and ^ ̂ ^
q ^ N S q\S

and also an eigenform of U(L) for all L\S00:

(4.2) fo\U(L)=a(L)fo.

Furthermore let \ be a Dirichlet character modRN with <^(—1) =
(-l)^(-l) and Ro\S^ where J?o :- n,|^9.

We put M = R2^ -jj-; now we may apply Theorem 3.1 to

(4.3) ^^(^ "^^(I^M),^)
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(with N being replaced by RN, r ' by -j^; we consider ^ as a Dirichlet
character mod M).

At the same time we move the whole situation from Fo(M) to r°(M)
by applying (^ ^).

Using the (obvious) relations

H \ 0 M ^('M "O1)-^1^0-
, , 1 0 \ /O -1

9\l n ^ ) = f o 1 O / '

0 -1\ / -i \m r |
= (--1-) Jo|^

'1 0 '
0 M^l^l 0

we obtain from (3.24)

(4.4)
'o -r w ( \ 0 \ [ z ( \ 0f u ~1 \ f^^t - A/T DAT -\ 1 u \ / 1 u

^^l oj'^^-2'^^^^'8),^ M ) , 0 M r°(M)
n(n-)-l)-nt

'w^^^'^^i) '
^-W-^.(^}D("-*\f,^,.-,,Sf,^ ^.

Later on, we shall further modify (4.4) by taking the scalar product
of both sides against a suitably chosen element ho of S^(^0(N2S), (^). The
following lemmas will be useful:

LEMMA 4.1. — For /o, M etc. as above and any h G ^(^(TV2^), (?)
we have

(4.5) </o

1 0 \
i \ 0 N2S ) ' ^o(N:is)

Proof (standard).

1 0
(4-6) <^(; °M)^=(^^

( 1 0 '
i \ 0 M •j,h

^o(N2s)
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where 7 runs over r°(M) \ ̂ 0(N2S) (trace operator); we may choose

(4.7) { f1" N2ST} r=T<eZ^)mod^l1A 0 !„ ; fio J

as a set of representatives for 7. The lemma follows easily from the equation

(\ 0\ /I N^T-^ (\ T \ /I 0 \
^ [O M)[o 1 )=[o fj[o N ^ s ) -

In the next lemma we put

(4.9) (^(w, z) := (^(w, ̂  M, J?7V, (^, x, s) ;

in fact, the only property of this function, which we need at the mo-
ment, is that it can be considered as an element of C^M^r^M),^) (g)
C^M^M),^).

We denote by ^ the operator (/ ^\ (z) == /(-^); this operator
satisfies the commutation law

'4-"" W)l.(: ^'^(-'c -.>.

in particular, / i—> /|^ induces an isomorphism (over R) between
(—^^^(M),^) and C^M^F^M)^).

LEMMA 4.2.— For fo, M, €(z,w) etc. as above and any h G
S^('^0(N2S)^) we have

(4.11)

((f. f° -1
\i \ i o

-a
.'Ro

<£(*,*)|^

>2 \ 7^(7^•+l)—?^-^

/O

z (\ 0
^ ^0 M

<0 -1
< 1 0

<! 0
,0 M

r°(M) / ro(M)

1^(*,*)|^ ,/i)
ro(N25) / ro(N25)

with

^r^^V^i o \ | - / i o \/ R ' 2 \ w /R2\
^w)=^w)\ZU(—) U —

\ ^0 / \ ^0 / i Y O ^5'7 I z \ 0 N 2 s } '

Proof. — We may apply the same procedure as in the proof of
Lemma 4.1.
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These computations imply that for any h € S'^(ro(N2S), (p) we obtain
(using the lemmas above) a "level N2 5"' -identity from (4.4):

G "o1)-^)(4.12) «/o i\l 0 ,?(*,*) ^
r°(N^s) / r°(^s)

•(-ir^-iy,"^•'.;(s) (J^7v)"(2'^+l/+2s-»-l)(A^2.?)2ii2±?^ (-l)"^(-i)"&(k + 2s, w)

°(f )^^(/.,^ —)(/.,G )̂,.)
^(TV2^)

In the final part of this section we want to make the identity (4.12)
somewhat more flexible. Let J?i, R^ be natural numbers with Ri\S00; the
Ri will be specified later on.

Using standard properties of the Petersson scalar product and the
fact that /o is an eigenfunction of U{R-^) we obtain

(4.13) a(^)(/o 0 -o1)^-')i \ 1 0 r°(N2.s')

= (MU(R,) '0 -1-
1 0 ,i?(*,-^)

r0^^

=(f\(o^ ^Y^-^U^sW\ I \ 1 U / ^
r°(7V25')

On the other hand, writing just c for the factor occuring in (4.12) we get

(4.14) a(^)c(/o^ ^),/.)
r°(7V2s')

-(/o|^(; ^),/.)

=c(/^(i ^)^(W)

r°(JV25)

"'(^((i Ary'^^w
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/.,(; -A^;
r°(N^s)

,h\UN2s(R2
ro(N2s•)

/o 0 -o1)^.-^i V i o ^(N^S)
U^s(R2),h

^ ( N ' - ' S )

^.i0! n1)'^*'*)!2^2^2)!2^ '^
• ^ v / /r°(^s) /ro^.s)

Of course U^s^R^)* denotes the adjoint operator of [^23(^2).

Summarizing these results, we get for Ri\S°°, R^S^ and any h e
S^(r°(N2 S),y) the identity

(4.15) /o
/n —1 \ \ w \

,(l o)^*'*^) -h); v u 7 /r°(/v^) /ro(^s)

^^ (^^^-.-,̂ ^^^

/ OD2 \

x^-l)^-!)"^——— a(J?i)a(^)
\ "o /

xD(M'^^k+2s-n^(f» ( 1 0,).^
\ I \U 1\ ^ ^ / r°(N25)

with

' ? ^5 A? 05 -ll/l5 J

:=<£i•/L,,^,J^27V25-,J^A^,y,^
\ rt0

"W

')

:G

z /7;2
U[—R

\RQ

1 0 \
0 N2sj

0
w

,(

w

1 0 \
0 N 2 S } '

We finally mention that we can also make the same manipulation starting
from (3.24') instead of (3.24) and produce a result (4.157), (4.16'), which
we do not want to write down explicitely.
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5. Fourier expansion and regularity.

We first go back to the general setting of section 2 and study the
behavior of W^Z, M, ̂ , s) for

(5.1) m = 2n, k = n -h t, t^ 1,

'0 a Dirichlet character mod M, M > 1 with^(-l) = (—1)^

at two values of 5, namely

(5.2) 5o := 0 and 5i := m-+-[ - k = 1 - t.
^ ^

For the applications we have in mind it is however more convenient
to consider the normalized Eisenstein series

(5.3) IF^(Z, M, ̂  s) := ^(k + 25, ̂ ) x IF^(Z, M, ̂ , s).

We remark that £(A; + 2s, -0) is of order zero at s = SQ (at s = si however
the situation is more complicated).

We describe the Fourier expansion of IF^(Z, M, -0, s) in some detail:

(5.4) IEt(Z,M^)= ^ a^M^^e27-^^)
leAm

with

(5.5) a'^(Y,M^,1,s)

t_-\\kn<ym m(fc+2s)
= rj(fc4-.)r^) ^(y)s^(y^)Sing^((I^+2.^).

Here ^^(^T) is (for a,f3 e C with Re(a), Re(/?) sufficiently large) the
confluent hypergeometric function defined as in [18, §18] and

(5.6) Sing^Cl, 5, VQ = £(5, ̂ ) x Sing^^, 5, ̂ )

is the normalized "singular series" with

(5.7) Sing^, ̂ ) - ^ ^WM^)-^^).
^eQ^^^od!
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For T e A^ (= set of the 1 C Ay^ of maximal rank) the main properties
of the normalized singular series are summarized below (for proofs see [5],
[28], [II], [17]); for T <E A^ we denote by CT the quadratic character

(5.8) ^):=(W^W\

PROPOSITION 5.1.— For every T e A^ and every prime q there
is a polynomial B^{x^) € 7L\x\ of degree ^ m - 1 with the following
properties:

a) B^^x, 1) depends only on 1 mod q.

b) degree (B^(x,t!) ^ g , where m - g = rank ofl over ]Fq.

c) B^(x^)=lifq^det(2(I).

d) Sing^Cl,^) := L(s - n,c^^) x ^B^(^(q)q-s^) satisfies the
q

important relation

(5.9) Sing^ )̂

^ ^(det^ldetGI^^^Sing^^G-1]^^)
G'eG'i^m^viDCr)

where ̂ (l) is the "set of divisors ofT":

ID^) = {G e Mm(7LY | ̂ [G-1] e A^}.

We note that (5.9) is a finite sum.

Remark 5.1.— The properties listed above imply that for any
^[de^l) there exists an integer d^l) such that

(5.10) n^-5,^ ^ ^-^(w
q b|det(2T)

b>0

COROLLARY 5.1.— For all T e A^ and aii s e C, Re(5) > 0, we
have

(5.11) Sing^s^)= ^ ^
G€GL(m,Z)\ID(<S') b|det(2i[G-1])

&>0

^(det^ldetGl^'^s-n^G-i^r^,'!).
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In particular, Singy^l, s, ̂ ) has an meromorphic continuation to the whole
complex plane and Singy^l, s, ̂ ) is regular at s = n +1 unless 1=1 and
63- ̂  has trivial conductor.

At s = k 4- 2^i = n + 1 — t it is always regular.

A theorem of Shimura [27, Thm. 4.2] implies that for <! € A^ with
signature (p, 9), p 4- 9 = m we have

(5.12) ^,(y, T) = r, ̂  - m^ ) r, (a - m^ )

x (entire function of(a,/3) e C2) .

Therefore the "archimedian part"

, . h^W)
{ ) I^(A;+5)I^(5)

of the Fourier coefficient (5.5) with 1 € A^ has a zero of order ^ ^ - [j]
at s = SQ and has a zero of order ^ ^ — [1^~] at s = .§1 .

This statement (combined with Corollary 5.1) implies

PROPOSITION 5.2. — Let ? € A^; then
a) For a2i t ^ 1 a^(V, M, ̂ , 1,5) is regular at s = 0.

For t^ 2 it is equal to zero unless I > 0.

For t = 1 the same is true at least if (i/^o 7^ 1.

Moreover we have for all 1 > 0 and all t ^ 1 the explicit formula

(5.13) a^M^^O) = A^(det2<I)fc-^Smg^(<I^^)e-27^tr^y)

with
^m

(5.16) A^-I)^———^.
1 m^"^

b) At s = «i the function ^(Y.M,'^,'?',^) is regular and equal to
zero unless T > 0. For T > 0 we have the explicit formula

(5.15) a^M,^,^) = B^Sing^((I,n+ 1 - t^e27^^)

with
on+mt

(5.16) B^ = ( - 1 ) ^ . .i,^2712.
^m(rz+ ^)
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The explicit formulae (5.13)-(5.16) follow from [27, 4.35.K]; for t large
enough (5.13) and (5.14) are also in [18, §18]. The proof of Proposition
5.2 follows in a straightforward way from (*) and standard properties of
Dirichlet L-series. We mention two crucial points:

i) To prove the regularity of a^(V,M,^,5) at SQ for the case t = 1,
one has to observe that for ? > 0 the character e^ ̂  is odd.

ii) If T is of signature (m — 1,1), the archimedian part (*) does not
necessarily vanish at s = s i. In that case however Singy^^, 5, ̂ ) is zero at
s = n -(-1 — t because of L(l — ^, e<r ̂ ) = 0.

To see this one has to observe that for this T the signature of e^ -0
is t + 1 mod 2. For t = 1 one has to take into acount that e^tf) is not the
trivial character.

For k = n -4- t there are no singular modular forms of degree 2n and weight
A;, therefore the action of a € Aut(C) on such modular forms can be read
off from the action of a on the non-singular Fourier coefficients.

COROLLARY 5.2.— Let a e Aut(C).

a) JfIF^(Z, M, '0, 0) is a holomorphic Siegel modular form, then

(5-17) (A^-^^^y
-^A^W-^^^

where rj € (Z/MZ)* is defined by

(5.18) ^(e2^^) = e27^^.

b) IfIF^(Z, M, '0,5i) is a holomorphic Siegel modular form, then

(5.19) (——IEt(Z,M^,so)) =——IF^(Z,M,r,so).
\ ^m / ^m

This follows easily from Proposition 5.2; to prove a.) one must use
the Galois properties of quotients of type

L(k — n,e^^)
(5.20)

(Tr^—GOc^o)

and the fact that for ? € A^ we have G((e^ )o) € f de^^) i x (Q^.
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Remark 5.2. — The assumption that the Eisenstein series defines a
holomorphic Siegel modular form is not really necessary in the statement
above: Essentially the corollary is a statement about the Galois behaviour
of the T-Fourier coefficients of W^Z, M, ̂ , s) at SQ and si for T e A^.

6. Gaufi sums and the twisting process.

To study the effect of the twisting process introduced in Section 2 on
Fourier expansions we first explain the properties of certain Gaufi sums.

For any T € TL^^ and any Dirichlet character ^modL we define

(6.1) G,(T,L,x) •= E ^det^e27^-^).
XC7L mod L

Special cases of such GauB sums were formerly studied by Christian [8], [9]
(using analytic tools).

PROPOSITION 6.1. — If\ is primitive mod L we get

(6.2) GnCr^x) = L^n-l^{detT)G(x)n'

Proof (Sketch). — We may assume that T is of type T = ( T °\Te
^(n-l,n-l)^

We expand det(X) as
n

(6.3) det (X) = ̂ (-ly^Xjndet (X,n)
j=i

where Xjn is the (n — l)-rowed matrix obtained from X by omitting the
j'-th row and the n-th column.

Because of

(6.4) tr ( ̂  T'x} = ̂  txnn + ̂  tr (TXnn)

we may first consider the following subsum (where Xnn and the first n — 1
columns of X are fixed)

/ n \

(6.5) ^ XE^1)^"^"^^"))-
(a;ln,...,a;n-l,n)e2Zn- lmodL \J'=1
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Standard properties of GauB sums attached to primitive characters imply
that (6.5) is zero unless

(6.6) det(X^) =...= det(Xn-^n) = OmodL.

If (6.6) is satisfied, (6.5) equals

(6-7) ^-^(Xn^^detXnn).

Moreover, if det(X^) is coprime to L, (6.6) implies that the first (n-1)
entries of the last row of X must be zero mod L.

Therefore we get

(6.8) G,(T, L, x) = L^G, (^ L, x) Gn-i (T, L, x).

Using G^(tn,L,\) = \(tn)G(\) we obtain Proposition 6.1 from (6.8) by
induction.

Gaufi sums like (6.1) arise naturally by the twisting process of
Section 2: Starting from any periodic C^-function F on Hsn (3 = X+z2))

(6.9) F(3)= ^ aCT^e2^")
'2'€A2n

we define (with \ as above)

(6.10) F^(3):= ^ ^det^Fl^f12- ^W)
XeZ^^modL V02n 12n ^

where S(X) = ̂  (on, x).
^ \ A ^n /

It is obvious that

(6.11) F^)(3)= ̂  G,(2^2,L,x)a(^,^))62-^tr(TX)
?eA2n

'"•-"^(^ ?)•
Suppose now that in addition F is a holomorphic function of 3, so we can
define F^, a e Aut(C) by acting on the Fourier coefficients of F.

If \ is a Dirichlet character mod L, then

(6.12) G^,W = ̂ G^2T^W

where rj is an integer mod L with a (e27"/^) = e27^/1'.
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This implies

(6.13) (F^y = _1 p^ .
v / v / XW

We should also mention that the action of a € Aut(C) is also compatible
0

with the differential operators S) ^ ^:

(6.14) ((27TZ)— 2) ̂ F^ = (27TZ)— 2) ̂ (F-).

Appendix: The trivial character.

To compute the exponential sums, which occur in the modified
twisting process, we start with a general remark (p a fixed prime).

Let (p and ^ denote the characteristic functions on GL(n^ Q) of the
subsets of those A with del A € TLp and del A € TL^ (respectively).

Obviously, for A e GL(n, Q)

(6.15) ^(A)=^^(X-*A),
x

where X runs over &L(n, %)\{X € Z^'^ |det X = p - power}.

By considering y? and ^ as GL(n, ̂ -left-invariant functions on
GL(n^ Q), we may describe the relation (6.15) in terms of GLn-Hecke
operators.

Using Tamagawa's rationality theorem for the standard GLn -Hecke
series we also have the relation

(6.16) ^(A) = ̂ -lypV ^v(g^A)
i=0 j

(with using the same notations as in Section 2).

Now we consider, for non-singular T € T L ' ^ the exponential sum

(6.17) ^(-lYp^p-1^ ^ ^tr(TX)

1=0 j X^.^L^^g~t /Z^^)
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The exponential sum over X is zero unless g^T G ZZ^'^, in which case
its value is p^, hence (6.17) equals

(6.18) ^(-1)^^ ̂  ̂ r) = ^(T).
t=0 j

If T is singular, then (6.17) is zero, so in any case (6.17) picks out those T
with det(r) coprime to p.

7. Fourier expansions IT.

We now return to the notations of Section 4 and make two additional
assumptions; the first one is

(7.1) N is coprime to S (and therefore coprime to R);

this implies that the Dirichlet character \modRN may be written as a
product

(7.2) X - X ° ' X i .

where
)(° is a Dirichlet character mod N and

\\ is a Dirichlet character mod R.
Therefore

(7.3) G,(T, RN^ x) = X^Rr XiW • Gn(T, ̂  x°) • G,(r, R, xi).

The second assumption is

(7.4) ^i is primitive mod R.

This allows us to compute the Gaufi sum Gn(T,R^\\) explicitely as in
Proposition 6.1. As a new ingredient we introduce a natural number L with
L\S°°'. Starting now from a primitive Dirichlet character ^i with conductor
c(xi) = R\L, we want to compute the Fourier expansion offl(w, z) in (4.16)
(and of some variant) as explicitely as possible with

/ r \ 2
(7.5) Ri=R2= p - -RO.\H^

Of course we are mainly interested in s = SQ and s = «i.
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We first observe that for an arbitrary function on IHsn of the form

(7.6) ^(3)= ^ aCT^e27^^
<s'eA2n

with

(7.7) y^ = twist of S in the sense of (2.18)

the Fourier expansion of

f78) ^ ( z ^^^UfL^^mL2} z ( 1 ° \ w ( l ^ \
^ " V O w ) I L/(L ) I L/(L ) ^0 N ^ ) i [o N ^ s )

equals

(7.9) R'1^ G^ir^sr^x^Rr xi^r
/ / T2rp m \

E E E Gn(2T2,^X°)xXi(det(2T2))a _ 1 •_ ,
Ti e A» T4 € An 2T2 € ZS(".") V\ 2 4 /

((L2N2S)-lyl 0 \\ ^tr(r^+T4H)
^ 0 (L2^^-1^^6

( r 2/T' rp \

In particular, if c(^i) = J? 7^ 1, only those 1 = ^,1 ,2^ I contribute,
-'2 " - t4/

which are of maximal rank, i. e. T € A^.

The Fourier expansion of

(7.10) £(fc + 2s. yx) ̂ (w, z, R^2 s , RN, y, x. s)
Ro

U(L2) z ( l 0 } ( 1 0 }U{L ) i \0 N 2 S ) , [o N 2 s )
^U^L2) |"'t/(L2)

at s = 0 in the case c(^i) 7^ 1 can now easily be computed to be

(7.11) A^(2m)nvR'.(N2SrlnG(xlrxoWnXl{N)n ^ ^
Tl € A^ T4 € A.;:

^ (p^(<^)G„(2^2,^,^o)xl (det(2T2))x
/' r« \

2T2e2Z(n•n): T==( 1 2 leA4 '
\ T, 1/^47
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^ (^'(det^de^-IlG-^^-^L^-n^..^)
GeGL(2n,'Z)\]DW J

x ^ (^W^^,?^-1]))^^1^^.
b|det2[G-1] /

b>0

This is true at least for k > n, where for k = n -+-1 we impose the extra
condition

(7-12) {vx)l +1.

At s = si we look at the Fourier expansion of

(7.13) £(fc+2s,^) 3^ (w^ (..^^N28-^^}^}
\ \ ^ ) )

^rKr^^TKT2} z ( 1 o \ |»"/ i o \
' U(L ) 1 U{L ) \Q N ^ s ) ^ [o N ^ s ) -

It is important to note that we apply the differential operator £> ̂  to an

Eisenstein series of type IF^ (and not £» ̂ ^ to IF^J.

The Fourier expansion of (7.13) at s = s-i is

(7.14) B^m^R'^^Sr^GWx^RTxiW ^ ^
Ti € A;t T4 € A.t-

( E Vn,kWGn(2T^N,x°)xi(det2T^

2^.€Z(".");a-=fz'2Tl T 2 ^ € A +
Y T, L2^} 2"

x E (w)2(detG')|detG|2t-l£(l-t,^ ^)
G e G£(2n,Z)\]D(3')

x E (^(^fr-^^^d^, ̂ [G-1])^tr(rlz+T4w).
b|det(2T[G'-l]) /

b>0

We describe now the analogues of these expansions for the modified twisting
process under the assumptions N coprime to S, R = R' • p, R' coprime to
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p, R\S00

\' a Dirichlet character mod W ' N
X' == X° • X'l where x0 is a Dirichlet character modN

%[ a primitive Dirichlet character mod Rf.

With some number L such that R\L we look at the Fourier expansions of

(7.107) Z{k^2s^) Y,(-l)^p^-^p-^n^^z^Rlp)2N2 s

z=o ^o

R'N^^^^U^^U^L2)

at s = 0, and

z / I 0 \ [w /I 0 '
z Y O AT2 5' ) \i \0 N ' 2 S

(7.13') ^(k 4- 25, ̂ ) ̂  .,. ( E(-l)^i^^~m E
\ i=0 j

W^^.^R^N2—^
\ ^o .

(x')
^2n ^^)^
V02n l2n } ) ^/ 2:2=0

|^£/(L2) |"'(7(L2)
^ /I 0 \ l"' /I 0 '
; \ 0 N^S )\i [o N2S

at s = si.

The Fourier expansion of (7.10') is given by

(7.11')

A^(27r^r(J^/)2I^l(^5)-^"G(x/^)"XO(^)"X/lW" E E
Ti e A.;- T4 e A;f

E .̂(-I) G,(2T2, TV, x°)x'i(det 2T^

2^2e2;(n'n): <^=(LT1 T2) eA^
ptdet(2(S') T2 £'T4

E (^(det^de^IG-1^-^ L^-^e^^^x')
G € GZ/(2n,Z)\]D(3:)

E 2wz tr(Tiz+T4w)
(^W^d^^G-^e^

b |detT[G-ll
b>0
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where for k = n + 1 we impose the extra condition

(7.15) WW1-

The corresponding expansion for (7.137) is

(7.14')

B2fc„(27r^r(7^/)2i^(^25)-i"G(x/l)"XOW"x/lW" E E
Ti € A;t Ti 6 A;t-

^ <P^(1)G»(2T2,N,x°)x'i(det2r2)

2^2€Z("•" ): 3'=(Z'T1 '^eA^
ptdet(2I) r2 "4

x E (^/)2 (detG') Id^^l24'1 ^(1 - ̂ ^K,-!,^)
G 6 G£(2n,2Z)\ID(T)

x E (^W^^^^.^-De^"——4".
&|detT[G- 1 ]

b>0

We summarize the results of this section (using all the results obtained so
far in this paper):

PROPOSITION 7.1. — Using the basic notations

l=:k-^-^ k=n+t, ^ l , 7Ve lN

*S' € IN square free, coprime to N

we assume that fo e S^(ro(NS), ( p ) is an eigenform of the operators U{q)
for q\S and of the Hecke algebra (g)' ^^o 0 Sj^g .

q\NS 'v q\S

We fix numbers R and L with R\L\S°° (and in the modified case a
prime p such that R = R ' ' p, W coprime to p ) and a Dirichlet character \
with

X(-l) = (-l)^(-l)

^ = ̂ ° . ̂  ^° a Dirichlet character mod N

^i a primitive Dirichlet character mod R

(in the modified case, %' = \° - ̂ [, \[ primitive mod R ' ) .
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Then (7.10), (7.13) and (7.10'), (7.13') with Fourier expansions given
in (7.11), (7.14) and (7.11'), (7.14') define functions

(7.16) s(^ w) C M^r° (TV2 5), ̂ ) 0 A^(r° (7V2^), ̂ )

ffor z/ > 0 they are actually cusp forms, for k = n + 1 in (7.10), (7.10') we
exclude (<^)2 = 1, (^')2 = 1 respectively^

with the property, that for any h G ^(r^TV2^),^) the double scalar
product

(7.17) ^/o

is equal to

case (7.10)

(7.18) ^,,(0) (7W)"1

^ -O1),^,*)^
r°(w2s) / r°(N^s)

(2fc+^-n-l) (^2^ ̂ 11-^ ^(_i)n(_^n(

^^'(^-"•^(o^)
ro(N25')

case ^7.13^)

(7.19) (̂ (.). p^1) .(TZJV)"^")^2^1^1^11-^^!)"'^-!)^-x/ / 1\n

\ ^s^) / s=si

><»(^)^,*>(A,»,1.^)(/^(; ^),^
^(JV2^)

case (7.10')

(7.20) ^(0) (7^/p^•)"(2fc+'/-"-l) (Ar2^) "^^ - ̂  ^(-l)"(-l)"^

xa(^)D(^)(/o,fe-^)(-l)"P-2^

xrK1-^?)?-^1)^ (; ^),^
i=l \ i \ / / ^(TV2^)
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case (7.13')

(7.21)

k.OO- ̂ ) (^^)"<l/+")(^25)=isi^x(-l)"(-l)"^
\ a's\^) / 5=5,

S)^^xa 7p^2 JDV "o^ao^+i-^xK-irp—^
'1 0x^(l-A^)p-n+fc)//o (; ^),^

2=1 \ I v / /
0 N2^

i=l \ \i v '" / / TO{N2S)

We should remark here, that f^^(s) p5^ is regular in s = s-^ and ^li^(s)
is regular in s = 0.

8. Twists and congruences for Fourier coefficients.

To begin with we recall some facts about p-adic L-functions and
p-adic measures. We fix a prime p and an embedding of the algebraic closure
QofQ into Qp. Thus we can for instance interprete any Dirichlet character
z^ as a Q -valued function. Kubota and Leopold! have proven the existence
of a p-adic function Lp(s, ̂ ), continuous for s E TLp \ {1} and even at s = 1
if^ is not of the second kind (i.e., -0 is not a character ofp-power conductor
c^ and p-power order), satisfying the following interpolation property:

(8.1) Lp(l - n, VQ = L(l - n, ̂ -n). (1 - ̂ -"(p)?71-1)

for integers n ^ 1 in terms of the classical L-function involving the
Teichmuller character at p. Recall that these special L-values are linked
with Bernoulli numbers by the identity

(8.2) L(l-n,^)=--B^,
Hi

and that this value is zero in case n and ip have different parity, i.e.,
n =E 6 + 1 mod 2 where 6 = 6^ equals 0 or 1 according as '0(—1) = {~^)6-
Note also that the functional equation of the L-function tells us:

(8.3) L(l -n^)= (27^^)-n(n - l)!̂ -^^) ,̂̂ )
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for integers n > 1 with n = 6 mod 2. Here the Gauss sum G(^) is given by

(8.4) GW:= ^ ^(^.expf27^).
\ c-j/, /x mod c.0 ' T '

Let n € 2Z^ denote a topological generator (for instance u = 1 + p)
and put ̂ ,(r) := ^(u)(l+r)-lif^is of the second kind and ̂ (T) := 1
otherwise. There exists a unique power series G^(T) € ZZp[^][[T]] such that
we have

(8.5) G^(T)=g^(T)).

By the well-known correspondence between measures and power series
(see for instance [38,12.2]) any (p-l)-tuple of power series G(i)(T) e 0[[T}}
for i = 1,... ,p — 1 with coefficients in the ring of integers of some finite
extension ofQ uniquely determines an 0- valued measure d^i on 7L^ such
that

(8.6) / ^a)(a}sd^=g^(u)us-l)
Jzf

for all characters -0 whose restriction to A := iip-\ C Z^ coincides with
uj\ and where (a) = a'^'^a) denotes the projection from 7L^ to 1+p ZZp.
For the remainder of this section we make the following

HYPOTHESIS 1. — ^ is a primitive Dirichlet character whose conduc-
tor is not a power of p.

Thus the character a^'0 is never of the second kind for any i, and by
(8.1), (8.4), (8.5), (8.6) there is a unique ZZp['0]-valued measure dp,^ such
that for all characters \ of p-power conductor we have

(8.7) ( xWd^ = (1 - ̂ XW) • L{1 - n, ̂ ).
Jz^

Moreover fixing n we can form the measures

(8.8) c ,̂n) W := a" . d/^) (a)

and express the p-adic integral in (8.7) as a finite sum using the corre-
sponding set functions /^(^,n) on compact open subsets of 7L^. By a Fourier
transformation we get for arbitrary p-powers L > 1:

(8.9) ^^(a+L2Z^)=_—— ^ ^(a). (1 -^xW)' L(l -n,^
' v / X,cJL
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hence for all integers t ^ 0 we have the functions M]- : {7Z^/L)X —> Q(^)
given by

^\a) := ^ xW - ̂ (P)?-') ' L(t, ̂ )
X^\L

with the congruence property

(8.10) M^^rEOmod L.
P

Moreover by (8.8) these functions are related by

(8.11) M^(a) = a-* • M^\a) mod L2.

Note that we can as well define functions M ] ' for positive integers t simply
by applying the functional equation (8.3) and restricting the summation to
characters of the right parity with respect to t. (For t ^ 0 we could have
made the same restriction, since the remaining summands vanish anyway.)
So for t > 0 set

M^\a) := ———^ ^x(a)c^l2G((^)o)(l - (^)oW-1) • ̂  (^)o)
^ / x

where we sum over all \ with c^ [ L and of parity 6^ = t mod 2.
This is equal to M ^ ^ a ) , and therefore enjoys the analogous congruence
properties as in (8.10) and (8.11):

(8.10Q M^(a)=0mod L,

(8.11') M^\a) = a'-1 • M^\a) mod L-.

We now want to apply these congruences to the Fourier coefficients
which occur in (7.10) resp. (7.100') in the previous section. So let t :=
k — n ̂  1 and let us assume (in the notation of Section 7) from now on:

HYPOTHESIS 2. — The character (<^^0)2 has non-trivial conductor,
i.e. the associated primitive character ((^X0)2^ ^ non-trivial.

Also we specialize to S' = p and therefore L is always a power of p in
the sequel. Remember that y? resp. \° is a character defined modulo Np
resp. modulo TV, and that p does not divide the conductor of (p. Hence the
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character e^G-^X0 which occurs in the L-function in (7.10) never has a
p-power conductor. Therefore the associated primitive character

^ •= (^1[G-i]^X°)o

satisfies Hypothesis 1 and we can apply the machinery of p-adic integration
as previously described. We now write \ for ^i. Note that for non-trivial \
in (7.10) we could only encounter a non-trivial Fourier coefficient for those
T which satisfy the congruence condition

(8.12) de^T) ^Omodp,

since otherwise det^) = Omodp implies that the factor ^(det(2r2))
vanishes. Moreover for the trivial character \ = 1 by (7.10') the same
holds true. Similarly the summation over G in (7.10) resp. (7.10') may be
restricted to those G satisfying

(8.13) det(G) 9^ Omodp,

since the character (p is defined modulo Np, hence the factor (^)2 {det(G))
vanishes if det(C7) is divisible by p.

Remark 8.1. — For I and G subject to (8.12) and (8.13) the quadratic
character £^[G-1} is defined modulo some integer prime to p and moreover
we have

^[G-1]^) = 1-

Proof.— Since L is divisible by p we easily get that (—I)71 •
de^TiG"1]) is a square modulo p, hence the assertion.

We further make the obvious

Remark 8.2.— For T subject to (8.12) the conductor of ^ =
(£(s[G-l}(^XO)o ls n0^ divisible by p hence we have the following decom-
position of Gauss sums:

GW=^VX{^)'GW-G(X)'

Under the same assumption our function Mj^ can now be written in
the form

(8.14) Mjt\a)=^-ct^2GW

^X(o-1^) • 4-1. ̂ ) • G{x) • (1 - ̂ (P)^) • L{tM.X

x
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Remark 8.3.— For T and G subject to (8.12) and (8.13) the factor
V^(c^) • (1 — ^(p)^"1) ls independent of 1 and G by Remark 8.1.

Since c*~1 • 2 • G(^)) is a p-adic unit (8.10') becomes equivalent to the
congruences

(8.15) M^(a) = 0 mod -^ M^(a) EE a^M^a) mod ^,

for all integers a not divisible by p, where

M^fo)-^-^ '
.̂̂  -- '(2^

^("K'WW^) • G(X) • (1 - (w°x)oW-1) • ̂ ,^).
x

Note that this implies the same congruences but where we have replaced
the L-function for the primitive characters ̂ \ by an incomplete L-function
with the Euler factors at a fixed set of primes removed. This type of
argument occured already in [[23] (3.18), (3.19)]. Moreover (8.11) and
(8. II') hold true also for these incomplete L- functions.

For fixed \°\(p let now HL^(Z^W) := 7i^ ( z ^ w ) denote the function
in (7.10) for non-trivial \ resp. the function in (7.10') for \ = 1. Remember
that the index \ here is the \\ in (7.10). We want to consider the Fourier
expansion of the following linear combinations:

^(a,L)M := -I ̂ (a)^"1'2^ • (^)o(^)x°(^)-"
x

^r(i - (^^^W-1)^^)

where \ runs over all characters of conductor c^ | L which fulfill the
additional parity condition

(8.16) W°X(-1) = (-l)^".

When we want to emphasize the dependence on t we write H , ^ for H^a^L) •

THEOREM 8.4. — The function

^(a,L)M := (A^)-1 . (2^)————^ . (t- 1)! •7^,L)(W,Z)
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has a Fourier expansion of the form

^(a,L)(^) = E aa,L(Ti,T4) • exp (-^1^(7^ + T^w)\
Ti,T4eA;S: v p //

whose coefficients Oa^T^^T^) belong to the number field

^:=Q(^X°^Ov)

and have bounded p-adic absolute value independent of a and L (and of
T\,T^). For p ^ 2 these coefficients are even p-integral.

Proof.— We just plug in the Fourier expansion (7.10) resp. (7.10')
of the functions H^z.w) into the definition of H^L)- With the same
summation conventions as in (7.10) we get

^a,L(Ti,T4) = (2^)-* • N-2^ . (t - 1)!

E ^C1) • Gn(2T^N^°) . (^(detG). de^G-1]^-1^1

1(r2),G,b

•(wo)W•&-(:•^,3:[G-l])•^^(aA^")4-l(^)o(cJ.G(x)•Mdet(2^2))
x

.x(det(G2) . b) . (1 - (^rx)o(pV-1) • L^e^G-^X°x)'

Note that we only sum over <! = ^(ra)^^ such that p does not divide
det(2T2) • det(G) • b in view of (8.12) and (8.13). Thus for any fixed tripel
(^,G,b) in this expression by (8.15) the term

^ G^b) := det(2<I[G-l])fc- ̂  ———II ̂  ̂ (a^ndet(G)2.det(2^2)-l)
v m) x

•4~1 • (^)o(^) • G(x) ' (1 - (w^oW-1) • ^(^^[G-I]^X°X)

is in fact p-integral and moreover belongs to K which easily can be verified.
Now we can write

(8.17) a^(ri,T4) = N-2^ . ̂  ̂ ,(1). ̂ ,g,b) . /3(T,<^)
1,^,fc

with p-integral numbers ^,g,b) € K. Recall that the ̂ ^ are polyno-
mials with coefficients in Z[j], hence the expression in (8.17) is p-integral
for p ^ 2 and has at least bounded 2-adic absolute value for p = 2. This
completes the proof of Theorem 8.4.
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By the same method we treat now the functions in (7.13) resp. (7.13'),
which we denote by U'^^z, w) := H'^z, w). Note that again we only need
to sum over (!, G subject to (8.12) and (8.13). We define

^a^M^-E^)'^ 2- 'G{xrn'xo{^rn^L^^f)
-" (w,z) := r- ' > Y(a

x

where \ runs over all characters of conductor c^ \ L satifying the parity
condition

(8.18) W°X(-1) = (-l)^1.

Again we sometimes write T^/^ for H'/ r\-\a^Li) \o'i^)

THEOREM 8.5. — The normalized function

)̂M == «)-1 . -^ •H[^{z,w)

has a Fourier expansion whose coefficients a^(Ti,T4) belong to the
number field K/ := Q^X^CAO anc^ have bounded p-adic absolute value
independent of (a, L). For p ^ 2 these coefficients are even p-integraL

Proof. — By definition we have similar as for o;a^(Ti, T4) the formula

<LW^) = N2^ . E ̂ .(T). Gn{2T^N^°)
T,G,b

x(^o)(det(G)26). IdetGI2*-1 . ̂ -(n+l) . d(6,T[G-1])

x ̂  ̂ xiabN^etG2 . det(2T2)-1). L(l - t,^[G-i]^°x).
x

Remember that we only sum over 1,0,6 such that p does not divide
b - det(G) • det(2T2). Note also that the Euler factor at p is removed from
the L-function since (p is defined modulo Np. So we can apply (8.10) to
the last line of this formula, again by observing that (8.10) remains true if
we replace the L-function in (8.10) by an incomplete L-function with the
Euler factors at a fixed set of primes removed (see [23, (3.18), (3.19)]). This
completes the proof exactly as in the proof of the previous theorem.

Eventually we describe a relationship between the functions 'H(a,L)
resp. fi[a,L) ^or ^O^g t ' We recall from Remark 1.1 the congruence
property of the polynomials ̂  ̂ (T) saying

4" • VW) = 2" • <, • de^)- mod L
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for any 1 occuring as summation index in (7.10) and (7.12), where 2nl/ 'c^ ^
is a certain rational integer in (^ independent of L. If 0 = (9^ is the ring
ofp-integral elements of a number field K, which we always imbed into Q ,
let M.(0) denote the 0-module in

M = M(C) := M^r0^2?),^)02

consisting of all elements with all Fourier coefficients in 0. By Theorem
8.4 and Theorem 8.5 there is a constant 2-power 2^ such that 2^ •
^(a,L),2^^ e M(0) for all a,L. We say that gi,g2 € M(0)
are congruent modulo L and write gi = g2 mod L, if this congruence
simultaneously holds for the Fourier coefficients of gi, g2 •

THEOREM 8.6. — The functions in the previous theorems satisfy the
congruence

l-n-l , ̂ W _ l-n-t . / 9Ar\n(t-l) t-1 /^(l) .1 r
^n^+l (̂a,!.) = ̂ n.n^-t {~^ly ) • ^ ' ^(a,!/) moa Ll^

respectively

l-n-l ^ nj'{t} _ l-n-t ^ (^-n^rn \l-t ^(1) ^^ T
^,71+1 '-{a.L) = cn,n+* ^ iv a) ^(a,!/) moa ̂

for t = 1,..., I — n and L a p-power with p -^ 2. For p = 2 these congruences
hold when we multiply both sides by the constant 2-power 2^ from above.

Proof.— These congruences follow immediately from (8.11) and
(8.11') extended to L-functions with non-primitive characters, applied to
the explicit formuli for the Fourier coefficients Oa,L = o^aL an^ aaL= a^ti
as displayed in the proofs of Theorems 8.4 and 8.5. Note that ^^(l)
is taken care of in both cases by the congruence quoted above, which
completes the proof of the theorem.

Since by (1.11) and (1.4) we know that

l-n-l .
. -71,71+1 ^ 77f 1^•= -r^zt ezu^

^n+t -

we can reformulate the congruences of the theorem as follows.

COROLLARY 8.7. — Let H^L} :== (-l)n(t+l)•^•(27V)-nt•7^(^)^ and

^SL) '= ̂  ' W2)^ • ̂ i^LY Then we have

^L)-^1'^)^^
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and

^D^^-^modL

for p 7^ 2, and for p = 2 these congruences hold for a suitable constant
2-power multiple.

We remark that by a straightforward computation we get

(8.19) «.»(-i)-" n ''"-'^T''1'"""^'
I.J.LH rd-n+ly).!•((-»-<,)

and

_ /^-n((-i). fr rq+f-j)
t - ( ) Ura+i-j)-

9. P-adic interpolation of special L-values.

We now return to the situation in the third section. We fix a modular
form / € ^(ro(AO^

f(z) = ̂  a(T) . (27rztr(rz)),
TCA^

which is an eigenform of the "good" Hecke algebra ^q\N^°N q- ^so we nx

a prime p which does not divide N . In order to simplify the handling of
formuli we put S := p. The technique for dealing with special L-values
as developped in previous sections demands that in a first step we must
pass from our given modular form / to a form /o ^ S1^ (Fo (Np) ,<^) as in
Proposition 7.1. So we first discuss how this change of forms effects the
Satake parameters at p.

Let M = Mp denote the module generated by / under the action
of the Hecke algebra "H0^ and of the operator U(p). Of course M is
a submodule of 5^(ro(A^p),^). Let /o ^ M be an eigenform (i.e., in
particular /o 7^ 0) of all the corresponding Hecke operators. We denote by
PI,PT"-> 0n,p the Satake parameters of /o for the action of H°^ and by /?o,p
the eigenvalue of the operator U(p). The following proposition describes the
relation between the p-Satake parameters ao,p,..., On,p and the parameters
A),p? "">0n,p-
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PROPOSITION 9.1. — jFor / and /o a^ above we have

f[(i - ̂ MP)Y)(I - ̂ ~\P)Y) = n(1 - ̂ w -a^'
%=1 i=l

Proof.— We need some more notation. For any g € Mn,(ZZ) with a
p-power determinant we denote by b(T) \ SLn{7L)gSLn(7L) the T-Fourier
coefficient of the image of a modular form

^b(T)exp(2mti(Tz)) e S^Np)^-1)
T

under the Hecke operator corresponding to 5'Z/n(Z)p5'I^(ZZ) as in Corol-
lary 3.3. Note that the passage between 5'Lyi(2Z) and G'Ln(Z) does not
create problems but it is convenient in order to avoid ambiguities arising
from the nebentype character ^-1. More explicitely we have

(9.1) b(T) | SLn(7L)gSLn(7L) = det^)7^1-^^^.])
3

with SLn('Z)gSLn('Z) = Uj S'Ln(Z)/ij. We also need a second action of
this Hecke algebra on the Fourier coefficients b(T) (or on any SLnCZi)-
invariant function defined on the space of symmetric matrices):

(9.2) b(T)\\SL^7L)gSLn(7L) := ̂ b(T[h^}}.

With these notations we can now describe the Fourier expansion of /o ==
STGA^" c(T)exp{2mti(Tz)) as follows. There are finitely many gr e
Mn(Z) ofp-power determinant, algebraic numbers \r and p-powers tr such
that for all T € A^ we have

(9.3) c(T) = ̂  \ra(trT) | SLn(7L}grSLn{7L).
r

The Fourier coefficients c(T) satisfy the following relations:
n

(9.4) ^ c(^[.X])det(X)-ldet(X)n4-ly^(detx) = ]^(1 - ̂ A^),
X i=l

(9.5) c^T) = ̂ c(r) = pn^-n(n+l)/2^ ..... ̂

where in (9.4) X runs over [X C X,(Z); det(X) = p - power} /5Ln(ZZ).

To prove the proposition we try to describe the right hand side of (9.4)
in terms of the a^p. We start from the well-known "Andrianov-identity"
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[2], [7] for the Fourier coefficients of / (p may be any prime not dividing
N):

(9.6) ^ a(^[X])det(X)"+l-^yl/•'(detx)
x

= B;(Y,T) . f[(i - a^o'wna - a^^wn
1=1

x<nil fE(-l)y(^~l)/2+^o2^(p)^^) •
\z=0 /

Here again X runs as in (9.4), B^(Y,T) is a polynomial in Y (with
coefficients depending on T; this polynomial is equal to 1 if T is p-
imprimitive, i.e., p~1 - T € An) and TT^ denotes the double coset

7T, := SLn(7L) f171-1 \ SLn{7L) =[\SL^7L)g^.
\ P ' ^z /

Now we fix some T = p2^ with To G Ay^ and we consider
(9.7)
a(T)||7r, = ̂ a^rol^.1]) = ̂ a(rob^-1]) ̂ p^-^^—^^ro)!!^-,.

J J

In other words we can write the right hand side of the Andrianov-identity
in terms of the |-action. Using the commutativity of the Hecke algebra
in question and the fact that the Fourier coefficients c(...) arise from the
a(...) via the [-action of that Hecke algebra, we get from (9.6) the following
relation for the Fourier coefficients of /o (with T = p2TQ as above):

(9.8) ^ c^X^detiX)^1-1^^^
x

= f[(i - a^o'wno - ̂ o'w^)
1=1

xc(To) I ̂ (-l)ipi(i-1^2+il+(n-iW-n-l\^iVo2i(p)Yi.
i

Now we use that /o is an eigenform with p-parameters /?i,... ,/3yi, hence

c(To) | TT, = A,c(To), A, ̂ p^1)-^1)/2^^,...,^),
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where £',(...) is the i-th elementary symmetric polynomial. Using

c^T) = /^(To) = p"'-»("+i)/2^..... ̂
and

(/?1 • . . . • A.)-1^-^/?!, . . . ,/3») = ̂ (/?i-1, . . . ,^1)

we obtain after some elementary calculation

(9.9) c(7o) | ̂ (-l)ip^i-1^2+il+(n-iW-n-l^n.^2i(p)Yi

= c^To). II(1 -^rWOW
1=1

The proposition follows by comparing (9.4) with (9.8) (and using (9.9));
we tacitly use that there exists a To with c^To) ̂  0, a fact which follows
easily from (9.5).

Remark 9.2.— We should point out that the ao,p, ...,0'^p are well
defined only up to the action of the Weyl group Wn, generated by the
permutations of the Xi (1 ^ i ̂  n) and by the substitutions (1 ^ j ^ n)

Xo ̂  XoX^X, ̂  X^\X, ̂  X,

for i -^ j .

If we want to describe the relation between the a, and the (3i more
explicitely than in our proposition we may put

(9-10) ^'•=M'^1

for (1 ^ i ^ n). In this way the 0.1 are now defined up to the action of the
subgroup Sn C Wn. Combining the well-known relation

Q^OI • ... • On = ̂ W ' p^-^-H)^

with (9.10) we obtain from (9.5) the relation

(9tn) ^=/3o2.

Remark 9.3. — By an argument similar to the computation in [20,
Chap. 2, 3] we see that /3o must be among the reciprocal roots of the p-
spinor polynomial of /. Therefore we have indeed OQ = /3o unless -OQ is
also among the reciprocal roots of the spinor polynomial.
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DEFINITION.— We call a Hecke eigenform f € S^(ro(N),7p) p-
regular for a prime p \ N if our module M == Mp C S^(ro(Np)^)
contains an eigenform fo ^ 0 with Satake p-parameters (3o, {3\,..., f3n such
that \W= |^-^+D/2^ . „ . ̂ ) ̂  ̂

Recall that M := M^r^A^p),^)02 denotes the space of modular
forms g(;2,w) which as a function of z (or w) belong to M^r^TV2?),^).
Assuming that / is p-regular we have to consider the following C-valued
function T = Fj on M.'.

((fo \i [ ^ o ) 5 g ^ ̂ ^(^p)'/0 1 ^ [ o Tv2^ )^o(N2p)
jr/g.^ .— ____^_____Z———————————————^————^.Z—————vo/ '— / f f \2

^^^^/^(N2^)

Note that ^r is IR-linear and for an arbitrary complex scalar A satisfies
^(Ag) = A • ^'(g). For an arbitrary Dirichlet character -0 we introduce the
modified p-Euler factor

-, „ TTt1-^)^'?"')^.^-n (i.̂ )̂ -.) •
where the /3's are the Satake parameters as in Section 3. Note that this
p-Euler factor equals 1 if p divides the conductor of '4 ' . Recall that by
Proposition 7.1 we know

(9.12)

^K^) = Oo,/o)-1 -^(o) • (^'^-^"(-in-i)'"
•(A^)"^-1)^4^2) • Ep{t,x°x) •^((p^-y)" • -D^1'^/,*,^)

for any character ^ whose conductor c^ is a power of p.

Similarly by Proposition 7.1 we have

(9.13)

^S) = </o,/o)-1 • "i,^i)^ • (N^^-^^WW
(IS^\K)

.{Nc^1-^ . a(pL^2) . E^l - ̂  xx0) • ̂ ( 7-^)' • ̂ (7VP) (/. 1 - ̂  X^)
IP^x^

for all characters \ of p-power conductor. Note that the values ^(HL^)
resp. F^H'^ ) only depend on L by the factor a(L4). Hence we get
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Remark 9.4. — The values JF(o(L-4) . H^x) and ^'(o'(^~4) • U^^
do not depend on L.

As a consequence we can define C-valued distributions fi^) on ̂
(one for each t) by prescribing their integrals on finite characters \ to be
given by the formula

(9.14) ( xd^^aW-^x
J^

^(4-l-z^^(^)o(^).xo(^)-n^^(l-(w^)o(^^^^^

where \ fulfills (8.16) and c^ divides L. For \ not of the parity (8.16) one
demands the integral to be equal to zero. In other words we have

(9.15) ^(a+LZp) =a(L)-4 . ̂  ̂ (<^).

Similarly we define distributions ^{\-t} by setting

(9.14') / x^(i-t) -a^)-4.^^1^^^0^)^^))-71-^)
JTL^

for \ of parity (8.18) and anyp-power L =. 0 mod c^. Otherwise the integral
has to be zero. For this distribution we get

(9.15Q /^_,)(a + £Zp) = a(£)-4 . ̂ - . W'^).

Now let /C denote the field generated over K by o'(p), Ci(p)p and all
Fourier coefficients of /o? /<?• We may choose / and /o in such a way that /C
is an algebraic number field. We normalize our distributions by replacing
in (9.15) and in (9.15') the functions H^ ̂  and ^H^\\ by their multiples

H\t) and H( ' as defined in Corollary 8.7. Thus we create distributions{a,Li) \a"»f-i)
ji(^\ and /A(i-(). By the theorem of the appendix these distributions have
algebraic values in /C and our main result essentially says that they are
even p-adically bounded, i.e., they are p-adic measures. To formulate our
result let

^••'^^•fi^'-^
' / j==i

and
n

A^^^ir'^W-s+l-j)
J=l
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where as usual Fc(s) :== 2 • (27^)~s^(s). Further for any character \ of
p-power conductor c^ we let

A-(X) == c^-2^11 . a(c^)-2 . (x°([p^]) • X(-1)G(X))-"

and

)̂:»(̂ ).(c,).̂ ,̂

where [a, b} denotes the least common multiple of the integers a, b. Even-
tually we let

E^s^X0) - (1 - (w^)o(pV-1) • E^XX°).

and^-(...):=^(...).

THEOREM 9.5. — Suppose that f is p-regular with eigenvalue a(p) of
fo under the action ofU(p). Then

a) there is a unique p-adic measure p, on 7L^ with values in JC such
that for t = 1 , . . . , /— n and for each character \ of p-power conductor c^
with parity y?^^°(—l) = (—l)*^ we have

I xWx-^x) = c^A^x) • E^t^X0)-^^ • D^\f^xX5).
JTL^ \Jouo)

whereas the integral vanishes for the opposite parity;

b) there is also a unique measure v on 7L^ with values in JC such
that for t = 1,..., I — n and for each \ of p-power conductor c^ with parity
Wa°(-l) = (-l)^^1 we have

\ \(x)xt~ld1/(x)
JTL^

^^-^-(^•^-(l-^xx^T^^^^a,!-^^),\jouo)

whereas the integral vanishes for the opposite parity.

Remark 9.6. — a) For even degree n and under the additional as-
sumption for the weight I > 2n+2 the theorem essentially had been proven
by Panchishkin [20], [21] by a different technique.

b) For degree n = 1, which is the elliptic modular case, the result was
also known by [23]. Since in that case one knows the functional equation
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for the complex L-function, the two measures d[i and dv could be easily
related. For n > 1 the same phenomenon is expected to hold true.

c) Since in [23] the integrals of characters \ against the measures were
only known to be given by the above formuli for all but two exceptional
characters, our theorem is even an improvement for n == 1.

Proof of Theorem 9.5. — The proof relies on the following lemma
whose proof will be given below.

LEMMA 9.7. — There is a finitely generated 0-submodule in C con-
taining" ^{M^O}) for 0 = Ofc ^ in the previous section. In particular,
there is a constant C, in fact a power ofp such that for any 1~t = 'H^; we
have

^(H} 6 C~1 • 0.

Hence by Corollary 8.7 we get

(9.16) F{C • 7^) = o1-* • 7(C • U^) mod L

and

(9.16') T(C . H^) = a*-1 . T(C . H^) mod L.

Since a(L) was supposed to be a unit in 0, Lemma 9.7 immediately implies
that the distributions jl^} ana A(i-t) are bounded, i.e. p-adic measures,
which moreover by (9.16) and (9.16') are related by

(9.17) d^{x) = x^ . dA(i)(:r)

and

(9.17') dA(i-t)(^) = xt~l • d[i^{x).

Now integrating characters \ against these measures using (9.12) and (9.13)
a little computation easily leads to a certain multiple of the formula in
b). Thus d^(x) is an appropriate multiple of xdji^(x) and dv{x) is an
appropriate multiple of dfi^(x), which finishes the proof of the theorem.

Proof of Lemma 9.7. — Essentially all follows by linear algebra. There
is a basis ̂ i , . . . ,<^ of M^(r°(pN2),(/?) with Fourier coefficients in Q(</?) (see
[24]). On the other hand there are matrices 7i , . . . , Td € A^ such that the
map

M^r^pN2)^) -^Cd,g= ̂ aC^27"^" ̂  (a(T<))
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is bijective. Note that singular forms do not occur here because of I > n.
We consider now two C-linear isomorphisms <I>, 1> of M with C^2:

$ : g(z,w) = ̂ dij ' gi(z)gj(w) ̂  (a^-)

and

!> : g(^,w) = ̂ a(T,T). e^^7^-)) ̂  (a(r,,T,)).
T,r

Both $ and <i> commute with the action of Aut(C); therefore the matrix
describing the isomorphism <1> o <J>~1 : C^ —> C^ has coefficients in Q(y?),
hence for a suitable p-power C' we find

<S>(M(0)) C (^ o ̂ -^(^(^((O))) C ($ o l^-1)^2) C C'-1 • C^2.

For any g e M(0) we therefore have g = ]^a^ • gi(z)gj(w) with
a^ € C"-^ and

—_^° 1 ^ (, i o ) '̂ °(p^2) ' ̂ ^0 Ho »A^2 )^°(p^2)
J^(g) = ̂  a,, ———^———— /-—————————^—— t-—— /-————— .

\Jo,Jo;ro(p7V2)

This completes the proof of the lemma.

Appendix: Properties of critical values.

Let / e 5^(Fo(M), (p) be a Hecke eigenform for ^p\M^°M,p and X a^
Dirichlet character; we define 6 € {0,1} by ^(-l)^(-l) = (-l)71-^. The
following set of integers r will be called critical for D^\f^ s, \):

(Al) {-I + n -h 1 ^ r ^ 0|r - 6 odd} U {0 < r ̂  ^ - n\r - 6 even},

(A2) {-I + n + 1 ^ r ^ 0|r - 6 even} U {0 < r ̂  Z - n|r - 6 odd}.

We point out that there are no critical values in this sense for small
weights (i.e., I ^ n). For more sophisticated notions of "critical values"
we refer to [10] or [21]; we only mention here that the sets (Al) and (A2)
coincide with the set of those r € ZZ for which 7(5) as well as 7(1 — s) are

TOME 50 (2000), FASCICULE 5
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regular at s = r with

w8 +6) n ̂ (^+l ~J) for n even
7(5) = {

F^s + 1 - 6) ]̂  Ic(5 + ( - j) for n odd,
j=i

where - as usual - F^(s) = Tr-tr(j) and rcO?) = 2(27^)-s^(s).

The aim of this appendix is to show that for critical r the standard
L-function (more precisely the standard L-function suitably modified at
some bad primes) is regular at s = r and its value is (up to a power of
TT and the square of the Petersson norm) an algebraic number with good
Galois properties. Results of this type can be found at many places in the
literature [25], [15], [36], [19] but all with certain restrictions which we want
to avoid. Our approach is a variant of [4, §6] Our proof has the remarkable
property that it does not really involve the Siegel type Eisenstein series
on Sp(2n) themselves, but only its Fourier coefficients of maximal rank;
therefore our method may be of independant interest and (perhaps) useful
for other purposes as well.

PROPOSITION.— Let l,k,v,i be as usual, (p (\ respectively) be a
Dirichlet character mod M (N respectively) and 0 / / e 5^(ro(M),^)
a Hecke eigenform for ®q\M^M,q'j furthermore let p be a prime dividing
M such that f is an eigenform for U(p) with nonzero eigenvalue 7?. Then
p(M)^ ̂  ̂  jg regular in s = t and s = 1 — t ifp\c(\). Ifp is coprime to
c(^), we assume in addition that f is an eigenform of f)M,p with Satake
parameters /3i , . . . , (3n', we may assume that N == N ' p with N/ coprime to
p. Then

(A3) (f[(l - ftxW-5)) D^\f^s^)
\i=l )

is regular in s = t and s = 1 — t, where \1 is the corresponding character
mod 7v'.

Proof. — We consider the case p|c(^) first: By enlarging M and N if
necessary we may assume that M = N2. We then start from (3.24) with
/ = g\i ( ̂  ~Q j and apply U{p) to both sides of (3.24). Then only those
T G Azn which are of maximal rank can contribute to the Fourier expansion
of (^^(w.^M,^,^,^,^)!^^). The result follows from Proposition 5.2
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and the simple observation that fl.i^(s) is of order zero in s = 0 and
s == s-i = ̂ —t.l!p does not divide c(x) we may assume that M == (N/p)2px

with some nonnegative integer A; the assertion follows then in the same way
as above by starting from (3.24').

The statement about the Galois behaviour of the standard-L-function
is (essentially) an easy consequence of the following elementary lemma:

LEMMA.— Let (p and x be Dirichlet characters mod M and N.
Assume that for all a € Aut(C) we have modular forms G(z, w, ̂ >0, x^) €
M^(To(M), ̂ pa) <S) M^(Fo(M), (^a), which are symmetric with respect to z
and w and satisfy

(A4) G(z, w, ̂  xY = ̂  X, ̂ )G{^ w, ̂ , x")

for a certain complex number a((p, x, a). Furthermore let V and W be linear
endomorphisms of 5^(Fi(M)) which map subspaces of type S^(To{M)^)
into 5^(ro(M),'0)and commute there with the action of 0p\M^M,p- We
assume that for anyg e S^(ro(M), (^cr), which is an eigenform of(8)p^f^)M,p
an equation

(A5) (^ G(-^ *, ̂ , x")) = c(g^ x^V

holds with a certain complex number c(g,\)°. Then for any 0p^M^)M,p-
eigenform g € 5^(Fo(M),0) such that (f is an eigenform of WV with
eigenvalue A(cr) we have

io^W aW^^
(A6) a^x.^W^x^W - C(9'XY (^——•

Proof. — Let {gj} be an orthogonal basis of 5^(ro(M), (p) consisting
of eigenforms 0p^M^M,p; we may assume that g = g^ furthermore let {hr}
be a basis of Sln(^o{M),(p)±. With certain coefficients dr,t and br,t we have

(A7) G(^w,^x)

-E^^^^^^'T^ + E^rWW +^b^W9^
j \9^9j) ^ ^

The symmetry of G implies that brj = 0 for all r,j. We now interchange
the roles of z and w and apply ap on both sides:
(A8)
„/ »„.„ v~\ / \oa•ow3l ' V^)9j ^1 , V^ opi.cFoi \z,opi \
G(z, w, y, xy = ̂  c{g^xY p———, ^p——+2^ ar,^?p(2)/lt (w)-

• \^J ? ̂ J / y. ^
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We compute (^|^G^(-^ *,<^)} in two different ways: On one hand
we get

(A,) E^^r^^P^ +2:.;,,(,°iW<
and on the other hand

(Al^ ^ x, ̂ )W|^ x^g^wv.
Comparing these two expressions we get the assertion of the lemma.

THEOREM. — Under the same assertions as in the proposition above,
we have for all a C Aut(C):

Case (a):

(All) (G(x)~n~lG(^-n-Wn^k Dw {9' ̂  x) \
\ {9.9} )

= ^CYa)~n~ l^(^ tT)~n~ lT^(n+ l)fc D{M} ̂ t 'x^
{g^gP^P}

with d = jn(n 4-1) — Ink —nv— k; in the special case t = 1 we impose the
additional condition (^^o i=- 1.
Case (b):

(A12) (G^^GW^^ D(M) ̂  1 " ̂  x) Y
\ {9.9) )

= G^r-G^r^^0^^^-^{g17^?^?}

with d = -^n(n + 1) - nv.

These assertions hold true if p\c{\); in the case p \ c(\) however we
must replace D^^g, s, \) by

(A13) (f[(l -AX'(P)P1-5)) D^\f^s^Y
\i=l )

Proof. — We prove this only for the case p\c(-\) (the other case will
be left to the reader), so we assume that M = N2.
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For any a € Aut(C) we denote by rj = rj^ an integer with
a(exp(^)) = exp(^). We also mention the following properties of Gaufi
sums:

(Ai4) GW = ̂ W^G^)
(A15) Gn(T^N^r = xW^nCr^x') with T e 7L^\

To prove a) we define

(A16) G = G(^w^x) - (W'A^TT^-V1)-1

^ yx)^^ ̂  M, TV, ̂  x, ̂ i^ol^^l'^h).

From (A15) and Corollary (5.2) we have

(A17) G^w^^r = ̂ (^-lXCT(^+l)-l^(^w^a,x<7)

and therefore

(A18) a(^ X, ̂  = ̂ (»))-lX<T(»?n+l)-l•

Using

(A19) A^ = 2 " T T 2 ^ 6 Tr27^-"2 x Q"
r2n(fc)

(A20) f^ € ^"Tr21^11 x Q"

we get from (3.24) (with d as in the theorem) by transfering ^U^p) into
its adjoint operator U(p)*

(A21) {g,G(-z,^,v,x)}

e ̂ ^"^(^(ffTO*!, (^ ~o1) ̂  - n>xp)

Xff|E/(p)*|,(^ ~^\U(p)x^.

Hence we have

(A22) V = U ( p r ( ^ ~^U(p),

^ W={OM ~01)-
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We tacitly use the commutation rules WU(pY = U{p)W in the sequel.
We get

(A24) c(g,x)=i(n+l)k^D(M)(g\^(^ -^),fe-n,^)

=i("+^dQ(M)^^_^^p_

This implies

(A25) (^W = ._n(n+i). (^^D^^k-n^Y
\ {9,9} } { ) \ (g,g) ) •

On the other hand, the lemma tells us that (A25) is equal to

^26) a^X^pY^W^")^)
(g^W,g^P}

We consider each of the terms on the right hand side separately:

(A27) a((p, x, ffpY = (yr^X-l)^^'7^1),

(A28) WW^"") =i(n+l)k^^dD(M\ga,k-n,x<T),

(A29) A(a) = (-l)"'(^(p)2)'7,

(A30) (ff'l^ffi^^) = ̂ (T?")^)2)^,^).

We briefly point out the key steps in proving these equations:

By definition we have a(tp, ̂ , ap) = ̂ (^p)"1^'7^^'1)"1; we may
use -r)a as r]ap to get (A27). The equation (A28) follows from the general
equality (already used in (A24))

D(M\g\W,s'>^p = DW(g,s,^).

To prove (A29) we use

A(a)^ =ga\U(p2^ ̂  _°^) = (-l)^(p)2)y.

Finally, (A30) involves (see [36, Lemma 5])

gp(7p\iW=^(r]n)(g\lW)p(TP.

Putting these things together we see that {^(pYY cancels in (A26)
and we get for (A26)

to-X-D^^^'t^^X-i)-''""""'^''^-''^''.
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Using the fact

(_l)^+l)(_l)^(^n+l)(_l)^l

and the property (A14) of GauB sums, we obtain part(a) of the theorem.

The proof of (b) goes along the same lines: We take

G(^ w, ̂  x) = {W B^) -1 £(1 - ̂  w)E^ w)

with

E(z^w) = D^ (iF^M,^^) ^(p)!-^).
\ / s=s^

Now we proceed in the same way as in case (a) using again (3.24), Corollary
(5.2) and (1.30). We omit the details.
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