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SL., THE CUBIC AND THE QUARTIC

by Yannis Y. PAPAGEORGIOU

Introduction.

A basic problem in representation theory is that of branching: How do
the irreducible representations of a given group decompose upon restriction
to a given subgroup? Over the past fifty or so years, much work has been
devoted to understanding this question [K], [KT], [LP1], [LP2], [LDE]. If our
groups are reductive, and representations rational, then it is known how to
solve this problem ‘in principle’. This caveat is of course rather prevalent
in Lie theory, and is the difference between knowing how to calculate
something, and actually calculating it... As for explicit formulas, few are
known, and the rules which are known, such as Kostant’s multiplicity
formula and the Littlewood-Richardson rule, among others, are unwiedly
as regards computation.

The goal of this study is modest: the action of SL, on the space
of binary cubics yields an embedding of SL; into Sp,, and our goal
is to describe how the finite dimensional Sp,-modules decompose upon
restriction to this SLy. There are two main parts to our description. The
first is a numerical multiplicity formula. In contrast to the known examples
cited above, one is able to calculate with this formula. This is the content
of §2. The second approach is more algebro-geometric in nature.

Let N C SLy, U C Sp, be maximal unipotent subgroups, and consider
R(Sp4 /U), the ring of regular functions on the variety Sp, /U. This ring is
a model for the rational representations of Sp,, and so provides the natural
geometric setting in which to understand the branching rule. We shall
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describe a minimal system of generators for the subalgebra of N-invariant
functions. To completely understand the geometric branching one would
have to compute a resolution for this ring, so ours is a first step in this
direction. ..

As R(Sp, /U) may be realized as a quotient of the polynomial
ring P(C* @ C®), our first task is to provide a system of generators
for P(C* @ C5)N. The calculation of a generating set for this algebra was
first made by Gordan in his important paper [G], (see also [GI], [Gu]), and
was subsequently refined by Sylvester [S]. This huge computation should be
considered as one of the high points of invariant theory in the 19th century.
Our calculation is based on a new algorithm described in §1. Although our
result is rougher than the classical one, it does have the benefit of making
the situation more transparent than do the classical methods. Using the
numerics of §2, and the structure of the ring R(Sp, /U) we are able to refine
the generating system of P(C*@®C®)% to one for R(Sp, /U)". An extremely
pleasing aspect of this refinement is that the numerics and structure are
strong enough so that we do no have to make any explicit calculations
involving these functions.

Aknowledgements. — This work is a version of my doctoral
dissertation, Yale University, 1996, which was done under the supervision of
Roger Howe. I would like to thank Professor Howe for his many suggestions,
and his generosity with his time. Anyone who knows his work will feel his
influence thoughout the following pages. ..

I would also like to thank the reader for several suggestions which, I
feel, have improved this manuscript; in particular, the remarks following 2.4
and 3.2 are due to questions he posed. Finally, I thank Bram Broer for
listening to me as this paper was revised. . .

0.1. Preliminaries.

0.1.0. — We have tried to keep this work as a self-contained as
possible, and in those cases in which we do not give full explanations,
references are provided.

We do assume that the reader knows some basic facts on the
representation theory of complex semisimple Lie algebras and groups,
the most important and relevant fact being the theorem of the highest
weight (see [Hum)).
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0.1.1. — Let G be a reductive group and U a maximal unipotent
subgroup. Let V be a finite-dimensional G-module and denote by P(V') the
algebra of polynomial functions on V. Then G acts on P(V) in the usual
way:

(0.1.1.1) g-p(v) =p(g~"-v).

The space P(V)C¢ will denote the algebra of G-invariant polynomial
functions. P(V)V will denote the algebra of highest weight vectors which
we also call (after Sylvester) the algebra of covariants.

In case V is a variety upon which G acts, R(V') will denote the ring
of regular functions on V and the invariants and covariants are defined in
an analogous manner.

0.1.2. — Since we shall be studying representations of SLy(C), we
remind the reader that the irreducible finite dimensional representations
of SL, ara parametrized by nonnegative integers k; which we denote by V.
Remember that dim V;, = k + 1.

We shall of course also be discussing the finite dimensional
representations of Sp,(C). The irreducible representations here are
parametrized by pairs of integers (m,n) where m > n > 0, and we
denote these by a‘(lm’"). Note that the fundamental representations are in
this case o{"? = C* and o{"'") = C5.

0.1.3. — Let V be a finite dimensional SLs-module, and consider
P(V). This space has a natural grading given by the usual degree. Consider
the subalgebra of covariants P(V)N. In addition to the grading given by
degree, this subalgebra admits another grading which we call the SLo-
grading. Since P(V)" consists of highest weight vectors, the SLy-grading
is simply the grading by SLs-highest weight.

1.1. A lemma.

1.1.0. — Let A denote an algebra upon which SL; acts semisimply
by algebra automorphisms. We shall call such an algebra a rational SL,-
algebra. Let A, denote the isotypic component of A consisting of all
SL.-submodules of highest weight n. Then we have

A= )" A,

n€Z+
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Clebsch-Gordan tells us that this is not a grading in general. However,
putting

A = Z‘A"’

k<n

we obtain a filtration on A from which we may construct the associated
graded algebra in the usual way: put A" = A™ /A™=1 and set

grsp, A= z A"

nE€Ly

Then grg;, A is a graded algebra upon which SL; acts by algebra
automorphisms, and each homogeneous component A" is naturally
isomorphic to the isotypic component A,, as SLa-modules.

Now let B be a graded algebra, i.e., B= >, B™. Then there is a
unique rational SLp-algebra C such that n€Zy

1) CN = B as graded algebras;

2) C is graded and the homogeneous component C™ consists of all
SLy-submodules of highest weight n.

We note that if A is a rational SLs-algebra such that AN = B as
graded algebras, then grg;, A = C.

1.1.1. — Let V and W denote finite dimensional representations
of SLy. Our goal in the next several sections will be to show how one
may obtain a set of generators for the algebra of simultaneous covariants
P(V & W)V from knowledge of generating sets for P(V)N and P(W)N.

Let my, ..., mx be the weights of the generators of P(V)" which are
not invariants, and let my1,..., Mg, similarly denote those of P(W)N.
Set

Zl = Z/le X oo X Z/me,
ZQ = Z/mk+1Z X oo X Z/mk_‘.gZ,

and let Z be their product. Finally, let P, (V & W) denote the quotient
of P(V@W ) by the ideal generated by P(V)St2 and P(W)SL2. The following
is the essential result which will enable us to calculate the simultaneous
covariants:
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LeMMA. — There is a surjection of SLy-graded algebras
Zz
(1.1.1.1) grsr,, ’P((Cz)k*l) — grg, P. (Ve W).

We must explain how Z acts on P((C?)*¥+%). Firstly, each factor acts
componentwise, and the action of the factor Z/m;Z on P(C?) is simply
by scalar dilation by the m;-th roots of unity. In fact, since we have
the SLy-module decomposition

P(C?) ~ Z Vi,

320

where V; denotes the irreducible SL;-module with highest weight j,
restricting to the Z/m;Z-invariants one gets

P(CHE™E =S " Vi,

320

Let P_(V) (respectively, P,(W)) denote the quotient of P(V)
(respectively, P(W)) by the ideal generated by P(V)SLz (respectively,
P(W)SL2). Then it is clear that there are surjective SLa-module maps

(1.1.1.2) P((CHF)* —P.(V)
and
(1.1.1.3) P((C)H* — P, (W).

Combining these, we obtain a surjective SLa xS Ls-module map
(1.1.1.4) P((C)? — P (Vaw).

This of course is also a surjective SLa-module map, where SL; is diagonally
embedded inside SLg xSLs. The highest weight theory tells us that
restriction to the N-invariants yields a surjective homomorphism, so the
lemma, follows from the discussion of 1.1.0.

1.1.2. — The importance of the above lemma is that it yields the
following
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CoroLLARY. — The associated map
(1.1.2.1) (P3N —p (vow)y

takes a set of generators of (P((C?)*+¢)2)N to a set of generators of the
algebra P, (V & W)N.

Thus, we have reduced the calculation of generating set of covariants
in P(V @& W) to the calculation of the invariants of the finite abelian
group Z inside the algebra P((C2)*+¢)N,

Remark. — This situation generalizes immediately to the case of
general reductive algebraic groups, and this will be the focus of a future

paper.

1.1.3. — The algebra P((C?)**+4)N was classically well-understood,
and has the following presentation in terms of generators and relations:
let z;1, ;2 denote the standard coordinates on the i-th copy of C2, and
define

for1<i,7<k+¢.

Zi1 Tj1

5¢j =
Ti2 Tj2

The generators are then given by

T; = Ti1 for1<i<k+/¢
and
5¢j for1<i,j<k+¢

The ideal of relations is genérated by

(1.1.31) :r:z&JT — .’L'j&ir + xréij =0
and
(1132) 61'_7'61'8 — 5127‘6]'8 + 61136]'7‘ =0.

1.1.4. — We proceed to calculate the Z-invariants in P((C2)k+4)N,
At first we shall disregard the relations (1.1.3.1), (1.1.3.2), and work in the
polynomial algebra generated by x;,6,s for 1 <i <k+£,1<r<s<k+/4.
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Remember that Z/m;Z only acts on the i-th copy of C2, and therefore
affects only z; and 6,5 with either r = 4 or s = i. Let { € Z/m;Z, and
consider the monomial

(1.1.4.1) II =%t
7, r<s
ai+ Y brg
The effect of ¢ on this monomial is just scalar multiplication by { ~<s |
where the summation runs over all (r, s) such that either one or the other
equals 7. Therefore, for this monomial to be invariant under Z, we need

(1.1.4.2) a;+Y b =0 (mod m;)
r<s
wherer =ior s =14,foreachi=1,...,k+£.

We can do a little better as regards the set of (r,s) over which the
sums vary for each i. First note that there is an obvious restriction on the
pairs (r,s): since the first k covariants come from P, (V) and the last £
come from P, (W), the map (1.1.2.1) actually factors through the quotient
of (P((C?)*+¢)N)Z by the ideal Z(6) generated by those 6, for which
1<r<s<kork+1<r<s<k+¥ Henceif 1 <i <k we only need to
look at the congruence

k+e
(1.1.4.3) a; + Z bij =0 (mod my),
j=k+1

while if £ + 1 < 4 < k + ¢, the relevant congruence is

k
(1.1.4.4) a; + ijj =0 (mod m;).

j=1
The set of solutions to the system defined by (1.1.4.3) and (1.1.4.4) is an
additive submonoid of Z'f“ke. Moreover, finding a set of generators for
this monoid will clearly yield a set of generators for the Z-invariants. It is
not hard to give an initial region where to look for these monoid generators:
firstly, it is clear that x;" must be a generator for each ¢, and secondly,
as the smallest power of 6,5 which is a solution to the system is the least
common multiple of m, and mg, l.c.m.{m,., ms}, we see that we can restrict
our attention to the box

B(V,W) defined by 0 < a; <m;, 0<bs <lecm.{m,,ms}
where 1<i<k+¥¢ 1<r<k and k+1<s<k+¢
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There is another way that we can simplify our search for solutions
to (1.1.4.3) and (1.1.4.4). Up to now, we have not taken into account either
of the relations (1.1.3.1) and (1.1.3.2). These tell us that

xi(sj'r = :L'jéir - xréija
5ij5rs = 61‘1'6_7'5 - 61136]'7‘,

which imply that we do not need to consider certain monomials. The effect
of these relations is that they further restrict an initial search for solutions
to certain faces of the box.

1.1.5. — Algorithm:
1) Find all solutions to (1.1.4.3), (1.1.4.4) inside B(V, W).
2) Find all indecomposable solutions from the list obtained in 1.

The output, of course, is a system of generators for the Z-invariants.
Combining this with the map (1.1.2.1) yields a set of generators for
P(Ve W)V

Remark. — The system of generators for the Z-invariants is minimal.
However, the map (1.1.2.1) in general does have a kernel, so the generators
obtained for P(V @ W)Y do not necessarily form a minimal system. We
shall see in §3 that this method is good enough for our purposes.

1.2. A remembrance of things past...

1.2.0. — The covariants of the binary cubic and of the binary quartic
were intensively studied in the middle of the 19th century by several
mathematicians. In the excellent survey article of Meyer [M] we find that
the early work was done in a piecemeal fashion.

“Ftwas friher (1844) hatte schon FEisenstein die einfachsten Inva-
rianten und Covarianten einer kubischen und biquadratischen bindren
Form erkannt; es hatte Hesse, in eleganter Handhabung des von
Jacobi zur Vollendung gebrachten Determinantenapparats, der nach
thm benannten Covariante ein eingehendes Studium gewidmet und die
Rolle aufgedeckt, welche dieselbe in der Theorie der ebenen Curven,
insonderheit derer von der 8. Ordnung spielt.”

By 1854, Cayley had already completely understood both these
algebras of covariants. From his Memoirs on Quantics in the Philosophical
Transactions of the same year, one finds a description not only of the
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generators in each case, but also of the relations they satisfy. Most probably
he had knowledge of these at an earlier date [S], pp. 343-345.

We shall recall the descriptions of these algebras, and discuss the
structure of a certain quotient in the quartic case which will be of concern
in the subsequent study.

1.2.1. — We do not derive a system of generators and relations for
either the algebra of covariants of the cubic, P(C*)V, or for P(C%)", the
covariants of the quartic, but simply content ourselves with descriptions of
these algebras. These can be found in many places; for classical descriptions,
Salmon’s treatise [S] is excellent, or for a modern point of view, one can
look at Springer’s exposition [Sp].

The algebras P(C*)N and P(C®)"N have bigradings given by SLo-
weight and degree. It turns out that in both these cases, the generators of
the algebra, of covariants are specified by their bidegrees.

In the cubic case, there are four generators which we denote by
a, 8,7, 6 with bidegrees (3,1), (2,2), (3,3) and (0,4) respectively. Moreover,
these satisfy one relation of the form

(1.2.1.1) ?6+ B3 ++%=0.

The quartic case is not much more complicated. Precisely, there are
five generators a, b, ¢, d, e with bidegrees (4,1), (4,2), (0,2), (6,3) and (0,3)
respectively and these satisfy the relation

(1.2.1.2.) a®e + a’bc + b® 4+ d* = 0.

1.2.2. — At this point we need to recall some facts about the structure
of P(C3) as an Os-module. Firstly, recall that Os is defined as the isometry
group of a nondegenerate symmetric bilinear form on C®, and hence fixes
the associated quadratic form r2? under its action on P(C®). Let A denote
the Laplacian dual to r%; then A is an Os-invariant differential operator.
The invariance of A tells us that the subspace of harmonics H(C®) = ker A
is preserved by Os. Let H™(C5) = H(C5) N P™(C®), and let T denote the
ideal generated by r2. Then the classical theory of spherical harmonics
tells us that each homogeneous component H™(C®) is an irreducible Os-
module, and that P(C®) = H(C®) & Z. Finally, note that multiplication in
the algebra H(C®) ~ P(C®)/Z can be realized by the usual multiplication
in P(C®) followed by harmonic projection, the latter a rather unpleasant
complication for explicit calculation.
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1.2.3. — Since the harmonics of fixed degrees are irreducible Os-
modules, we wish to understand the algebra of harmonic SLsy-covariants,
H(C®)N. Of course, this follows immediately from the description
of P(C%)N. The first thing to note is that since the action of SLy on C°
yields an embedding SLs — Os, the quadratic invariant ¢ is none other
than the invariant form 2. Moreover, it is not difficult to decompose the
first three homogeneous components to see that the covariants a,b,d,e
each have nonzero harmonic projection. Finally, since ¢ = 0 in H(C5), the
relation (1.2.1.2) becomes

(1.2.3.1) ade+ b +d?=0.
LemMA. — The algebra H(C®)N of harmonic covariants is isomor-
phic to

Cla,b,d, €]/ (a’e + b> + d?).
1.3. An example.

1.3.0. — Using our algorithm, we shall make a first approximation
to the calculation of a set of generators for the SLa-covariants in R(Sp, /U)
by computing a set of generators for P(C* @ C%)V.

1.3.1. — As we saw in 1.2, the covariants of positive weight in
P(C4N and P(C®)N have weights 3, 2, 3 and 4 ,4, 6 respectively. Following
the notations of 1.1, the system (1.1.4.3), (1.1.4.4) translates to our present
situation as
ar+big+bis +bie =0 (3),
az +bag +bas + b6 =0 (2),
a3 +bzg +b3s +b36 =0 (3),
ag+big+bag+b34 =0 (4),
as +bis +bos +bas =0 (4),
ag + big + b +b3g =0 (6).

We seek solutions to this system inside the box B(C*,C®) C Z1® defined by

(1.3.1.1)

0<a; <3, 0<a2<2 0<a3<3,
0<as<4, 0<a5<4, 0<ap<6,
(1.3.1.2) 0<biy <12, 0<bis<12, 0<by<6,
0<ba<4, 0<byps<4, 0<by<6,
0<b34 <12, 0<b35<12, 0< b3 <6.
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1.3.2. — As we noted in 1.1.4, the relations (1.1.3.1) and (1.1.3.2)
restrict the search for solutions to (1.3.1.1) to certain faces of the integral
cone Z%°. Let us first consider a relation of the form (1.1.3.2):

6ij6rs - 6117'6]'5 + 5i35jr =0.

Remember that for §,; to be nonzero modulo Z(6), we need 1 < a < 3,
4 < b < 6. If 6, and 6;5; are both nonzero, this implies that 6;; and &,
must be zero, so that our relation becomes

(1.3.2.1) 8irbjs = 8is0jr.
As (1.1.3.1) has the form
Zi0jr — Tj0ir + 2,65 = 0,
if 6;r and 6, are both nonzero, then §;; is forced to be zero, so

(1.3.2.2) (Ei(Sjr = Z‘j&;r.

In terms of the exponents, (1.3.2.1) can be taken to mean that
either b;; = 0 or b;, = 0, while (1.3.2.2) implies that we may take either
a; =0 or by, = 0.

In the case under consideration, there are 9 relations of the form
(1.3.2.1) and 18 of type (1.3.2.2), hence, there are many choices of which
exponents to take to be zero. The choices we made for our calculations
were the following: considering b;, + bjs, at least one of these must be zero
if (¢,7;4, ) is one of the following vectors:

(1,4;2,5), (1,6;2,4), (2,4;3,5),
(1.3.2.3) (1,52,6), (1,6;3,4), (2,6;3,4),
(1,5;3,4), (1,6;3,5), (2,6;3,5).

Furthermore, if we consider now a; + b;r, either a; = 0 or b;, = 0 whenever
(5;¢,r) is one of

(2;1,4), (%1,5), (21,6), (3;1,4), (3;1,5), (3;1,6),

(1.3.2.4) < (32,4), (3;2,5), (3;2,6), (51,4), (5:2,4), (5;3,4),
(6;1,4), (6;1,5), (6;2,4), (6;2,5), (6;3,4), (6;3,5).
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1.3.3. — The relations among the generators of P(C*)" and H(C5)V
also contribute to reducing calculations. Relation (1.2.1.1) says that v can
appear with power at most one, while (1.2.3.1) indicates that the same is
true for d. These relations in turn restrict the congruences

a3z +bgs+b3s +b3e =0 (3),
ag + big + bag + bzg =0 (6),

to the following equalities:

(1.3.3.1) a3 + bzg + b3s + bzg =0 or 3,

(1.3.3.2) ae + big + bog + bzg =0 or 6.

1.3.4. — The calculation of the solutions to (1.3.1.1) in the box
B(C*,C®) subject to the restrictions introduced in 1.3.2 and 1.3.3 is a
simple matter. To find the indecomposable solutions one just needs to
check which solutions may be written as a sum of two others. This is
not so difficult, but it is time-consuming. So as not to have to check all
possibilities, we use a norm. If (a;,b,s) is a solution to (1.3.1.1), its norm
is defined as the sum of its coordinates, Y a; + > bys. Since norms are
additive, given a solution, to determine its indecomposability, one only has
to consider pairs of solutions with suitable norms.

1.3.5. — Implementation of the algorithm yields 123 generators for
the Z-invariants. To calculate their bidegrees is easy: write

w; = a; + bjg + bis + big for i=1,2,3;
wW; = a; + by + byj + bs; for j =4,5,6;

then the bidegree of the monomial []z% 6% is given by

(%wl + wa + ws, %w4+ %w5+ %wﬁ).

In the tables below we arrange the generators for the Z-invariants.
In each table, the SLo-weight is fixed and specified below the table,
and the generators are located in their bidegree homogeneous components.
Remember that each z; has SLa-weight one and each 8, is an SLa-invariant.
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6 612 635635 632
5 6146% | 634616836 | 614816636636
614635635
804655 | 614676036 | 674624636636
4 834615 | 635635835
634615835
8% | 613 674634 633
3 674615634 8%
636636
9 89463, | 63463483
835
1 8%,
0
0| 2 4 6 8 10 | 12
0
$45145§55§4 x55?6535536 w56§5‘5§66§6
$15%5 3716%45‘116536 z16%45166§6626 x45§45§65§6
65,63
1075035
x66§66§6 1'15%4515535 x25§66§6
:L’45%5524(525 m16%65§6
21814615 | 24635634625
w66%652§6
$55%5 ‘”15?4 3315?45::;'4
1315%56%5 (E25256§5
$55§5
€483, | 163,63, 72624634
1 3 5 7 9

41
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5 1:1:1555?6535526
4 2363461665 | 2367461663663
$1w66?6 $1$46145f‘55§4 1%5165%6536
AT 1%6‘1166%6 %663
3 :L‘]_.’L'G(S%G(Sgﬁ
23674615635
23636
365 23615635
2 T26% ToT50355
af6ly | 2361463
! )
0 x3
0 2 4 6
5 [L’l.’bséfstsgsﬁzeégﬁ
4 x%5146345:2366§6
3
2
1
0
8 10
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3 8 3 5 ¢3 3 3 ¢3 2 3 5
5 €3614675 | €3614675635 | 25625036036 | T125016055036
363 3
5616625656
3 2 ¢4 3
4 2361467662 | 73624636636
363 262 €2 362 2 2 3 3
3 rgbie | 106016056 | 1635034035 | T1T4615654055
363 2 3 263 €2
x6636 .’L‘2x6626(536 x2x4625634635
262 2 2
262
262 2 2
262
T383034
3
0| =y T3
3 5 7 9
3
365 362 3
5 .1‘1.’175516525526 1‘133‘5516525626636
3 4 €2 3 2 ¢3 2.2 3 €3
462 3 3
Tgb36 T12301461563;5
2,204 2.2 3
3 TirEh16 125016036
3 4 363
2 .’L'g .’L‘2$§625
1 .1'3 $2$2524
0
0 2 4 6 8
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2
o $1$g(516525(536

462 2,3 2 2.3 3
:L'1:L'6516 $1$6616626 $1x4615624625
462
376636

2.3 2.3
2| xix5615 | x375035

—

2 2
.1‘1.’1:3514 z3x2634

3|28 | 2213626 3| 2223616 | T323636
2 2
1 1
0 0
0 2 1 3
6 7

2.1. Numerics.

2.1.1. — The main result of this section is a numerical description of
the decomposition of an irreducible finite dimensional representation of Sp,
upon restriction to SLs. The formula we obtain is strikingly simple and
compact.

In order to state the theorem, we need to introduce some notation;
we shall be brief and not discuss the provenance of these objects until the
subsequent sections.

2.1.2. — Let po3(z) denote the number of partitions of the
nonnegative integer z into 2’s and 3’s. Note in particular that pos(z)
is zero if z is negative. We can obtain a simple formula for ps3(¢) rather
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easily. Since the least common multiple of 2 and 3 is 6, one can deduce the
fact that pe3(€ + 6) = p23(¢) + 1. From this we obtain

pas(f) = [g] +1-6(0)

where [$¢] is the greatest integer part of $¢ and where 6;(¢) = 1 if

£ = 1 mod 6, 0 otherwise. Although the right-hand side makes sense for
any ¢, we emphasize that pa3 can only be nonzero on nonnegative integers £.
Set

P(z) = szs(%z —0);

£>20

since pa3 may only be nonzero on nonnegative integers, the right-hand side
is actually a finite sum, so P(z) makes sense.

Finally, define

(2.1.2.1)  H(k,m,n) = P(3(m—n)+4n — k)
—P(3(m—n)+2n—k—2)
—P((m—n)+4n—k—2)
+P((m—n) —2n—k —8)

and

(2.1.2.2) V(k,m,n) = P(4n+ 3(m —n) — k)
—P4n+(m—n) -k —2)
—P2n+3(m—n)—k—2)
+ P(2n— (m —n) —k —6).

2.1.3. — Set u(k,m,n) = dim Homgy, (Vk,a‘(lm’")); this is just the

multiplicity of Vi in o{™™.

THEOREM (the Branching Rule). — One has

H(k,m,n) ifm > 3n—6,

ey m,m) = { .
V(k,m,n) ifm <3n+8.
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Remark. — Note that for m in the strip 3n — 6 < m < 3n + 8 the last
terms in the formulas (2.1.2.1), (2.1.2.2) both vanish, so that for such m,
H(k,m,n) =V (k,m,n).

2.2. A tensor product decomposition.

2.2.1. — If (m,n) sits in the interior of the fundamental Weyl
chamber of Spy, it is easy to see that

(2.2‘1‘1) O_L(il,O) ®0_‘(1m,'n,) _ U£m+1,n) eaO_A(l'm.,n+l) 69(J_‘(tm—l,n) ea(J_‘(lm,n—l)’
and if we agree that af{”b) = 0if (a, b) is not dominant, the Weyl dimension
formula tells us that this is the decomposition of this tensor product for
any dominant (m,n).

The importance of this relation is that it will yield a homogeneous
difference equation to which our branching rule will be the unique solution.
More precisely, if kK > 3 and (m,n) is in the interior of the Weyl chamber,
Clebsch-Gordan tells us that

(2.2.1.2)  p(k-3,m,n)+ pu(k —1,m,n)
+ p(k +1,m,n) + u(k + 3,m,n)
= pu(k,m+1,n) + p(k,m,n+1)
+ p(k,m —1,n) + p(k,m,n — 1).

Of course, if k < 3, or if (m,n) lies on the wall of the Weyl chamber, then
the analogue of equation (2.2.1.2) will be different, and in fact one easily
sees that including the aforementioned, there are twelve such equations.
These variations may be accounted for by specifying initial conditions to
the difference equation given by (2.2.1.2), as we shall see in our discussion.
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2.2.2. — Let f(k,m,n) be a Z,-valued function defined on the
integral cone in Z3 given by k > —3, m > n — 1 and n > —1. Define the
difference operator D on such functions by
(2.2.2.1) Df(k,m,n) =f(k—3,m,n)+ f(k—1,m,n)

+ f(k+1,m,n) + f(k+3,m,n)
~ (f(k,m+1,n) + f(k,m,n +1)
+ f(k,m —1,n) + f(k,m,n —1)).

Consider the homogeneous difference equation

(2.2.2.2) Df(k,m,n) =0
subject to the initial conditions
( f(k,m,0) = H(k,m,0) for all k, m;
f(k,m,m) =V (k,m,m) for all k, m;
flk,m,-1)=0 for all k, m;
f(k,m,m+1)=0 for all k, m;
(2.2.2.3)  f(=1,m,n) =0 for all m,n;
—H(0,m,n) form >3n—2,
f(_27m7 n) = {
-V (0,m,n) form < 3n+4;
—H(1,m,n) form >3n-—1,
f(—B,m, n) = {
\ -V(1,m,n) form <3n+3.

These boundary conditions at first look rather unnatural, but closer
inspection should convince the reader the last seven should take care
of the degeneracies incurred by the special tensor product decompositions,
whereas the first two will describe the branching rules of the cubic and
quartic respectively, as we shall show in the next sections. ..

2.3. Rules on the faces.

2.3.1. — Recall from 1.2.1 that the generators of the covariants of
the cubic are specified by SLo-weight and degree: o = (3,1), 8 = (2,2),
v = (3,3) and § = (0,4), and these satisfy the relation a?§ + 33 + 2 = 0.
Using this relation it is possible to describe a linear basis for the algebra of
covariants. There are several possible choices for such a basis. Our choice
enables us to easily count how many basis elements of fixed weight and
degree there are, and hence obtain a branching rule for the cubic case.
We take as basis for P(C*) all monomials of the form o*@*y*, B*y*6*
and af*y*6*.
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2.3.2. — To understand how many copies of the SLs-module V, there
are inside the Sp,-module 0_‘(115,0), we must count the number of monomials

of the above type of weight k and degree #.

First note that the monomials B*v* are the only ones lying on the
ray k = ¢, where £ > 0. Multiplication of these by o™ has the effect of
translating this ray to k = ¢ + 2m, with £ > m; multiplication by §™
translates k = ¢, £ > 0 to k = £ — 4n, £ > 4n, and the monomials aB*v*6*
all lie on the ray k = £ — 4n + 2 where £ > 4n + 1.

2.3.3. — Counting the number of monomials of a fixed degree £ along
the ray k = £ is very simple: since only monomials of the form 3*~v* lie here,
the number of such is clearly the number po3(¢) of partitions of ¢ into 2’s
and 3’s.

2.3.4. — From 2.3.2 and 2.3.3 it is clear that u(k,£,0) will vary as a
suitable translate of po3 as k varies along a ray. We wish to understand how
w(k, €, 0) varies for fixed ¢, so fix £ and first consider k > ¢, i.e. k = £+ 2m.
Since (£+2m, £) = (£—m,£—m)+(3m,m), u(€+2m,¢,0) = p(l—m,£—m,0)
yielding

3£-k).

,u(€+2m,£,0) =p23( )

For k < ¢, there are two cases to consider:

o First, if k = £ — 4n 4 2, we have
f—dn+2)=Ff—-4n—-1,£—4n—1)+ (3,1) + (0,4n),
so for the multiplicities we get
ul—4n+2,£,0) = u(f —4n — 1,4 — 4n — 1,0),

which we may also write as u(¢ + 2n — 1,4 + 2n — 1,0) — n since
+2n—-1,4+2n—-1)=(£—4n -1, — 4n — 1) + (6n,6n).

e The second case is that in which ¥ = ¢ — 4n. Here we have
(£ — 4n,€) = (£ — 4n, £ — 4n) + (0,4n), which on the level of multiplicities
becomes

p(l —4n,2,0) = p(¢ — 4n, £ — 4n,0) = p(€ + 2n,£ + 2n,0) — n.

Writing these multiplicities in terms of £ and k& we obtain the
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LemMA (Branching Rule for the Cubic). — One has

u(k, £,0) = H(k,£,0).

2.3.5. — Recall from 1.2.3, that H*(C®) is isomorphic to the
Sp,-module a(e ©) that the algebra of harmonic SLs-covariants is again
generated by elements specified by SLo-weight and degree: a = (4,1),

= (4,2), d = (6,3), e = (0,3), and that these satisfy the relation
ale + b3 + d? = 0. Our basis of H(C%)N will consist of monomials of the
following types:

a*b*d*, b*d*e*, ab*d*e*, a’*b*d*e*.

2.3.6. — Using the above basis as in the analysis of the cubic case,
the analogue for the quartic easily follows.

LeMmMA (Branching Rule for the Quartic). — One has
wu(k,,€) =V(k,£,20).
2.4. Solving the initial value problem.
2.4.1. — Suppose that H and V satisfy the appropriate initial
conditions from (2.2.2.3). To show that they will satisfy (2.2.2.2) in the

appropriate regions is then a purely formal calculation: considering H, the
left-hand side of (2.2.1.2) is equal to

P(3(m —n)+4n — (k — 3)) (3(m n +2n—(k 3) —2)
—P((m-n)+4n—(k-3)—2) +P((m—n)—2n—(k—3)—-38)
+P(3(m n) +4n— (k- 1)) (3(m n +2n—(k—1)—2)
—P((m-n)+4n—(k—1)-2) (( -2n—(k-1) - 8)
+P(3(m n) +4n — (k+ 1)) (3m n+2n—(k+1)—2)
—P(m-n)+4n—(k+1)—2) (( —2n—(k+1) —8)
(3(m n) +4n — (k + 3)) (3(m n) +2n—(k+3)—2)
—P((m-n)+4n—(k+3)—2) +P((m—n)—2n—(k+3)-28),
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while the right-hand side is

PB(m+1—-n)+4n—k)—P(3(m+1—-n)+2n—k—2)
—P((m+1-n)+4n—k—-2)+P((m+1-n)—2n—k—8)
(3 —(n+1)+4(n+1) - )
PB(m—-(n+1)+2(n+1)—k-2)

(( —(n+1)+4(n+1)—k —)
+P((m—(n+1))—2(m+1) — k—8)
+P(3(m—-1-n)+4n—k) —P(3(m—-1-n)+2n—k—2)
P((m—1-n)+4n—k—-2)+P((m—-1-n)—2n—k-8)
+ P(3(m — (n~ 1)) +4(n — 1) ~ k)

(3(m (n—1)+2(n—1)—k—2)
P((m—-(n—1)+4(n—-1)—k—2)
+P((m——(n—1)-—2(n—1)—k—8),

and comparing the two tells us precisely that H satisfies (2.2.2.2). Similarly
one obtains the analogous fact for V. Thus, the theorem will follow if we can
show that the H and V satisfy the remaining initial conditions of (2.2.2.3).

2.4.2. — Immediately from their definitions one obtains, for all k, m,

H(k,m,-1)=0 and V(k,m,m+1)=

2.4.3. — As the verification of the remaining conditions is a simple
task, which unfortunately involves many cases and calculations. We shall
show what happens for H, and then state the analogues for V. Beginning
with the fifth condition of (2.2.2.3),

H(-1,m,n)
=P@B3m—-n—-1)+4n+4) — P3(m—-n—1)+2n+2)
—P((m—-n-1)+4n)+ P((m—-n—1)—2n—6)
=p23(g(m—n— 1)+2n+2) +-~-+p23(g(m—-n— 1)+n+2)
— (p2s(3(m—n—1)+2n) +---+pas(3(m—n—1)—n-2)),

and putting w = %(m -n-1),v=n,

v v
(24.3.1) H(-1,m,n) = Zp23(3w +v+24+4) - Zp23(3w — 3v + 99).
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To explain the appearance of the last summand, we hope the reader will
believe the fact that

p23(x) + pas(z — 1) + pas(z — 2) = pa3(3z).
We claim that for each ¢,

(243.2)  pasBw+2v+2-0)+p3Bw+v+2+29)
= p23(3w + 6v — 92) + p23(3w —3v+ 9@)

Clearly the identity will follow from this claim.

Let ¢ denote the function on Z defined by

o) = [§] +1-6()

where 6,(d) is as in 2.1.2. Since g(d) agrees with po3(d) for d > —4,d = -6
and since q is periodic on all of Z (in contrast to py3 which is 0 for d < 0),
we find it much more convenient to verify the claim for g replacing p23, and
then worry about the implications for po3.

This verification, as all the subsequent ones, is rather tedious, but we
include one case here to convince our reader.

First note that it is clear that we only need to check the claimed
identity (2.4.3.2) for 0 < v, £ < 5 by periodicity modulo 6. If £ = 0,
then (2.4.3.2) becomes

qBw+2v+2)+qBw+v+2)
= q(3w + 6v) + (3w — 3v) = q(3w) + ¢(3w + 3v).

Fixing v in the above range, it is trivial to check the resulting six identities:

q(3w + 2) + q(3w + 2) = ¢(3w) + ¢(3w),
q(Bw + 4) + ¢(3w + 3) = q(3w) + ¢(3w + 3),
q(3w + 6) + ¢(3w + 4) = ¢(3w) + ¢(3w + 6),
q(Bw + 8) + ¢(3w + 5) = ¢(3w) + ¢(3w + 9),
q(3w + 10) + ¢(3w + 6) = q(3w) + ¢(3w + 12),
q(3w + 12) + q(B3w + 7) = q(3w) + ¢(3w + 15).
To minimize effort we note that one only needs to check these for two

consecutive w’s since q(3z + y) has period 2 as a function of z for fixed y.
Similarly for the remaining cases for £.
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Thus, the analogue of (2.4.3.1) with g, instead of py3, is identically
zero for any w and v. To see what this tells us about (2.4.3.1) itself, note
that the summand in (2.4.3.1) with smallest argument (assuming w,v > 0)
is pa3(3w — 3v) = p23(3(w — v)). Furthermore, note that pe3(3z) = ¢(3z)
only for > —2; hence (2.4.3.1) is valid whenever w — v > —2, which gives
us m > 3n — 3. To summarize:

H(-1,m,n) =0 in theregion m > 3n —3.

2.4.4. — We continue our assault on the desired identities. . .

H(0,m,n) + H(-2,m,n)
= P(3(m — n) +4m) — P(3(m — n) + 2n — 2)
—P((m—n)+4n—2) + P((m —n) —2n —8)
+ P(3(m —n) + 4n +2) — P(3(m — n) + 2n)
— P((m —n) +4n) + P((m —n) — 2n — 6),

and putting 3 (m — n) = w, n = v, we have

(2.44.1) H(0,m,n)+ H(-2,m,n)
= p23(3w +2v) + - - + p(3w + v)
— (p2s(w +2v— 1) + -+ + paz(w — v — 3))
+pos(Bw+2v+1)+ -+ pa3s(Bw+v+1)
— (p2s(w +2v) + - -+ + pag(w — v — 2))

v

=Y psBu v+ - pa(3w—3v—3+90)
£=0 =0

+ pa(Bu v+ 14— pas(3w - 3v+90).
£=0 £=0

Again, putting everything in terms of ¢ we get
(2442) ) qBuw+v+-) ¢Bw—-3v-3+9)
£=0 £=0

+> qBw+v+1+£) - q(Bw—3v+90).
=0 =0
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But note that from 2.4.3 we may conclude that

v

D qBw—3v+9)=> q@Bw+v+2+0)
£=0 £=0
and

D qBw-3v-3+9)=> qBw+v-1+9)
=0 =0

s0 (2.4.4.2) becomes

q(Bw +2v) —q(Bw+v —1) + qBw+v+1) — ¢(Bw + 2v + 2)

and to check that this is identically zero is a trivial matter.

As before, to translate this back into (2.4.4.1), we see that the
smallest argument is 3(w — v — 1), and just as before, we may replace q
by p23 whenever w — v — 1 > —2, yielding m > 3n — 2.

2.4.5. — The calculation showing H(1,m,n) + H(-3,m,n) = 0 is
very similar to that of 2.4.4

H(1,m,n)+ H(-3,m,n)
= P(3(m —n)+4n — 1) — P(3(m — n) + 2n — 3)
—P((m—n)+4n—3)+ P((m —n) —2n—9)
+ P(3(m —n)+4n+3) + P(3(m —n) +2n+ 1)
— P((m —n)+4n+1) + P((m —n) — 2n — 5),

and putting w = %(m —n — 1), v =n we obtain

szg(?)w +v+1 +£) - Zp23(3w —3v+3+ 9[)
£=0 =0

+3 pas(Bw+v+3+£) = pas(3w—3v+3+90).

Using the calculation of 2.4.3 this becomes
(245.1) > puBu+v+1+0 - puBw+v—1+4)
=0 £=0

+ puaBu+v+3+0) - puButv+5+0).
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Replacing po3 by ¢, the identity to be verified becomes

qBw+2v+5) +q(Bw+2v+4) + g(Bw +v) + ¢(Bw + v — 1)
=qBw+2v+1)+q(Bw+2v) +qBw+v+4) +q(Bw+v+3)
which is easily checked. The only point which remains is the determination

of the region in which (2.4.5.1) is identically zero — just as before the
condition is w — v — 1 > —2 which translates to m > 3n — 1.

2.4.6. — The results of 2.4.3 through 2.4.5 show that H satisfies the
initial conditions in the region m > 3n — 2. The observant reader might
wonder why we have m > 3n — 2 instead of m > 3n — 1. The answer is
simple: the parity of SLa-types occurring on lines of the form m = 3n + j
is determined by the parity of j, so, while the identities of 2.4.3 and 2.4.5
hold simultaneously only for m > 3n — 1, since no odd SLj-type occurs
on m = 3n — 2, the three identities of 2.4.3, 2.4.4, 2.4.5 are valid in the
region m > 3n — 2.

2.4.7. — Since the arguments for V are exactly as those in the
previous sections for H, we shall leave them to the interested reader, and
simply state the results here:

V(-1,m,n) =0 when m < 3n+ 5,
V(0,m,n) + V(-2,m,n) =0 when m < 3n + 4,
V(1,m,n)+V(-3,m,n) =0 when m < 3n+ 3.

As in the discussion of 2.4.6, it follows that these identities for V are
simultaneously valid in the region m < 3n + 4.

2.4.8. — It is easy to see that since H satisfies the initial conditions
in the region m > 3n — 2, for k£ > 0, we have

DH(k,m,n) = 0 in the region m > 3n — 5,
and similarly from 2.4.7,

DV (k,m,n) =0 in the region m < 3n+ 7.
In other words, the theorem follows. . .

Remark. — The reader wizened in the lore of Lie theory may ask:
Why not simply use the Weyl character formula? for there is even a very
simple form that the formula takes...
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The character formula tells us that at the element of the maximal
torus in Sp, with eigenvalues x, y, y~!, ™!, the character of a‘(lm'") is
given by
rmt2 _ x—(m+2) 1 x—(n—}—l)
ymt2 _ym(mA2) gntl = (nt1)

2 1

22—-272 z-2”
——1

Y-y ? yy

Restricting to the torus of SLy yields z = t3, y = t, and the determinants
split as

(tm+n+3 _ t—m-n—3)(tm—-n+1 _ t-—m+n—1)(tm+2 _ t—m—2)(tn+1 _ t—n—l)
(8 —t=3) (82 - t=2)(t —t71)?

which implies that we may calculate p(k,m,n) as the coefficient of t**! in
the polynomial

(tm+n+3 _ t—m—n—S)(tm—n+1 _ t—m+n—1)(tm+2 _ t~m—2)(tn+1 _ t-—n—l) '
(3 —t=3)(% —72)(t —¢71)

To calculate this coefficient, one must understand the form of this
polynomial in the various cases depending upon how the denominator
divides the numerator. This is elementary, and one may obtain a collection of
formulas describing the branching rule. But there are several difficulties with
this approach. Firstly, in the rule given in Theorem 2.1, the multiplicities
are determined by the two functions H(k,m,n) and V(k,m,n), whereas
using the character method, one has more than ten different formulas. ..
Moreover, the regions on which these formulas are valid, depending on
certain congruences, are more complicated than the two nice domains
one obtains using our approach, implying that the organization of these
formulas is also much more complicated... Furthermore, there is a lot of
overlap in these regions of definition in the character approach, hence much
redundancy; our regions also overlap, but the common domain of definition
is very simple, and on this domain we see from the formulas easily that
the restrictions agree. Of course, these two approaches will yield the same
answer, but to go from the answer of the character formula approach to
the one derived above is a bit of work, and not illuminating in any way;
at least from our discussion above, one can see that our formula is really a
result of our method of proof — the two simple recursion formulas implied
by 2.2.1.2...
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3.1. Refinement of an old result.

3.1.1. — In this section we describe the geometric branching rule:
the determination of a minimal set of generators for R(NV \ Sp, /U), where,
as usual, N is a maximal unipotent subgroup of SLs. Since R(N \ Sp, /U)
is isomorphic to the algebra of SLj-covariants inside R(Sp, /U), we may
view this result as a refinement of the classical computation of Gordan [G],
or, of course, of our calculation in 1.3.

This ring is triply-graded by SLg-weight and Sp,-weight — if the
former is k and the latter (m,n), as in §2, we write the triple-grading
as (k,m,n). The fact that it is graded by SLo-weight is clear, as it is an
algebra of SLy covariants; the fact that it is graded by Sp,-weight is also
well-known but shall be explained in 3.2.1 for completeness.

Our result is summarized in the

THEOREM. — R(N \ Spy /U) is minimally generated by the following
elements which are specified by their triple gradings :

(0,4,0), (0,3,3), (0,6,2), (0,9,3),
(1,2,1), (1,4,1), (1,5,2), (1,7,2),
2,3,1), (2,5,1),

)

)

)
(2,2,0), ( )
(3,1,0), (3,3,0), (3,3,2),
4,1,1), (4,2,2), (4,4,2),
(5,2,1),
(6,3,3).

Note that the numerical branching rule tells us that this algebra has
dimension one in each of the above triply homogeneous components.

3.2. Some properties of R(G/U).

3.2.1. — Let G be a connected reductive group over C, A C G a
maximal torus and U a maximal unipotent subgroup normalized by A.
The group G acts by left translation on the quotient space G/U, hence
also on the ring of regular functions R(G/U). Let A+ denote the lattice
of dominant characters of A, and if A € ;1\4', let V) denote the irreducible
G-module with highest weight A. The theorem of the highest weight tells
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us that dim VU = 1, so by Frobenius reciprocity, R(G/U) has the following
decomposition as a G-module:

(3.2.1.1) R(G/U) ~ Z Va.

AcA+

The decomposition (3.2.1.1) also describes the decomposition of
R(G/U) into eigenspaces for the action of the torus A by right translation,
and because of this, R(G/U) has an A*-grading

(3.2.1.2) WAV, C Vagp.
Since G/U is an irreducible variety, R(G/U) is an integral domain.

3.2.2. — In our study we shall need more information about the
nature of multiplication inside the ring R(Sp, /U).

ProposiTION. — If G is a connected, simply connected group over C,
then R(G/U) is a unique factorization domain.

The proof of this propostion is not difficult: the fact that R(G) is
a unique factorization domain when G is simply connected is basically a
consequence of the Bruhat decomposition; then as R(G/U) consists of those
functions on G which are right-invariant under translation by U, the facts
that U has no nontrivial multiplicative characters and is connected ensure
that this property passes to R(G/U). For details, see [H-Per|, [KKLV].

3.2.3. — The observant reader may have looked at the title of the
previous section and wondered: why a refinement of an old result? This
is so because R(Sp, /U) may be realized as a quotient of P(C* @ C?%)...
The fact is that each bidegree homogeneous component P(™™ (C* @ C®)
decomposes as an Sp,-module as

(3.2.3.1) Pmm) (€4 @ C5) ~ o{™ ™™ @ lower order terms,

where the order is the usual one on the set of dominant weights. Projection
onto these highest Sp,-modules, the so-called Cartan component, yields a
surjective Sp,-equivariant map

3.2.3.2 P(C*e CY — ol@t),
4
a>b>0
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This projection is of course an algebra map, and as its image is Z_z,_—
graded, we get an equivariant graded algebra isomorphism of the image
with R(Sp, /U). In order to avoid possible confusion, it is important to
note that the gradings on P(C* @ C®) by bidegree and on R(Sp, /U) by At
are precisely related by (3.2.3.1).

We may even be more precise about the map (3.2.3.2). Let Z denote
its kernel. It is a consequence of a theorem of M. Brion [Br| that as an
(Sp,-invariant) ideal, Z is generated by quadratic elements. Explicitly, these
are the invariant form sitting inside P(%?)(C* @ C®) and by the copy of C*
lying in P(1:1)(C* @ C%). From these remarks we see that we have a rather
good description of R(Sp4 /U).

Remark. — It would be both interesting and satisfying to give a
description of a generating set of IV, as we have explicit descriptions of
P(C* @ C%)N and R(Sp, /U)"N. In order to do so, we would need to use
our description of the generating system of the Z-invariants, but there
is a difficulty: understanding how the images of the Z-invariants lie with
respect to the Sp,-structure in P(C* & C®). In fact, it is not at all evident
how to determine this, since it is not even clear how to give a formula for
the map (1.1.2.1), and moreover, a given Z-invariant may have projections
both on and off the Cartan component in P(C* @& C%)... To get around
this problem, we would need to give a more structured description of
the Z-invariants, a task which is beyond the scope of the present study...

3.3. The invariants.

3.3.1. — Our first step in obtaining a system of generators
for R(N\Sp,/U) will be to describe the subalgebra R(SLy\Sp,/U)
of SLo-invariants.

3.3.2. — Let 2 € P?((C*)?) denote the symplectic form defining Sp,
and denote by A its associated Laplacian. Classical invariant theory tells us
that r2 is the only Sp,-invariant polynomial in P((C*)?), and if H((C*)?)
denotes the subspace annihilated by A, the harmonics, then we may write

(83.2.1) P((€4?) = H((C*?) @ P(r?),

where P(r?) consists of all polynomials in 72. Moreover, the natural action
of GLy on P((C*)?) commutes with that of Sp,, and this action preserves
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the space of harmonics. Hence there is a description of H((C*)?) as
an Sp, X GL2 module:

(3.3.2.2) H(CH?) = 3 of*P @ pi?

a>b>0
where pga’b) denotes the irreducible representation of GL, with highest
weight (a,b), a > b > 0. Note that in this parametrization, the standard
representation of GLy has weight (1,0), while the character determinant
has weight (1, 1).

The decomposition 3.3.2.2 implies that we may regard oia’b) as

consisting of GL; highest weight vectors, and in fact, the subspace of
harmonic GLy highest weight vectors is a model for the representations
of Spy:

(3.3.2.3) H((CH?2)V2 ~ Z o?

a>b>0

as Sp, modules, where Uz denotes a maximal unipotent subgroup of GL5.

The space H((C*)?) has a natural algebra structure. This product
may be explicitly described as the usual multiplication of polynomials
followed by projection to the subspace of harmonics. This may also be seen
by a perhaps more familiar description of the harmonics as

(3.3.2.4) H((C*?) = P((CH?)/(r?),

where (72) denotes the ideal generated by r2. In terms of this identification
it is easily seen that the multiplication just described is the same as the
usual multiplication on the quotient. Moreover, as this ideal is prime, the
multiplication in the space of harmonics is non-degenerate. For further
details, the reader is referred to [H-Per|, [H-Rem].

The subspace H((C*)2)Vz of harmonic GL; highest weight vectors
then clearly becomes a subalgebra, and this subalgebra is of course isomor-
phic to R(Sp, /U). Therefore to calculate the SLo-invariants in R(Sp, /U),
it is the same to calculate the GLy-covariants inside H((C*)2)SLz.

3.3.3. — To determine the structure of R(SLy\Spy /U) we first
recall an old result of Salmon’s [S] on the invariant theory of a system of
two cubics. For a modern derivation, see [Sch].
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ProposITION. — The algebra P((C*)?)5!2 is generated by the GLq-

modules pgl’l), p§4’0) and pg3‘3), degrees 2, 4 and 6 respectively.
(1,1)

It is clear that py ' is just 72, and that the GLo-highest weight vector
in pgm) is just § € P4(C*)SL2 (as in 1.2.1). Let R denote the GLy highest
weight vector with weight (3,3); since p(0,3,3) = 1, we see that R has
nonzero projection onto H((C*)2) and we denote its harmonic projection

also by R.

This reduces our problem to finding the GLg-covariants in the
polynomial algebra generated by the subspaces pgl’o) ~ C3% and pg3’3) ~ C.
Since p§3’3) is one-dimensional, we really only need to look for the covariants
of GL; in P(C®) — the covariants of the quartic — which is something we
understand well. Let § = 61,...,05 be an eigenbasis of C® with respect to
the standard torus of GLg. The weights of these vectors are, respectively,
(4,0), (3,1), (2,2), (1,3) and (0,4). Let a(6) = 8, b(b), c(8), d(8), e(d)
be the generators of the covariants of the quartic as in (1.2.2). These
have GLq-weight (4,0), (6,2), (4,4), (9,3) and (6,6) respectively. Since
1(0,4,4) = 0, we must have ¢(§) = 0 (mod r2?) and as pu(0,6,6) = 1
it follows that e(6) = R? (mod r?). Hence the relation of the harmonic
quartic (1.2.3.1) becomes

(3.3.3.1) 83R? 4+ b3(8) + d*(8) = 0.

To summarize:

LEMMA. — One has
R(SLy\ Sps /U) ~ C[8, R, b(8),d(8)] / (63R? + b°(8) + d*(6))

and these generators are specified by their bidegrees (4,0), (3,3), (6,2)
and (9, 3).

Remarks.

1) It is interesting to note that the presentation of this algebra is very
similar to both those of the covariants of the cubic 1.2.1 and, of course, of
the harmonic quartic 1.2.3.

2) The calculation of the algebra R(SL; \ Sp, /U) is not new. It may
be found in the thesis of E.Ioannidis (University of Grenoble, 1986,
unpublished), a student of D. Luna, and has also been computed by F. Knop.
As far as we know, however, our derivation is new.
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3.4. The structure of certain modules.

3.4.1. — Let V;, C R(Sp, /U) denote the subspace of all SL; highest
weight vectors of weight k; then Vo = R(SL2 \ Sp, /U) is the subalgebra of
invariants. Multiplication of a covariant of weight k by an invariant is again
a covariant of weight k:

(3.4.1.1) Vo - Vi = Vi.

Hence Vi is a module over Yy, for each k.

The calculation of 1.3 tells us that the highest weight possible for a
generator of R(N \ Sp, /U) is 7. It is then clear that a system of Vg-module

generators for the modules Vi, k = 0,...,7, will contain a set of generators
for R(N \ Sp, /U).

3.4.2. — It is easier to work with polynomial rings, so let A C Vg be
the polynomial subalgebra generated by (0,4,0), (0,3,3) and (0,6,2). Since
(0,9,3) = d(6) is quadratic over A by (3.3.3.1), we have

(3.4.2.1) Vo = A® Ad(5).

Instead of studying the Vi as modules over V, we shall study them
as modules over A. Note that the polynomials (0,4,0), (0,3,3) and (0,6,2)
are all primes by 3.2.3.

3.4.3. — Multiplication by (0,4,0) realizes aflm_‘t’n) as an SLg-sub-

(m,m)
4

module of o . We also have

(0’ 3, 3)U§m—3,n—3) c U‘(im,n)
and it is clear that
(0,4,0)0i™ %™ 1 (0,3,3)0{™ >3 = (0,4,0)(0,3,3)0{™ "™,
Therefore, we may think of the function

(3.4.3.1) k(k,m,n) = pu(k,m,n) — u(k,m — 4,n)
— u(k,m—3,n—3)+ pu(k,m —7,n—3)

as measuring the dimension of the complement of
(0,4,0)05™ ™ 4 (0,3,3)0{™ 3" C g{mm)

inside V.
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3.4.4. — We study the functions k(k, m,n) for k = 1,...,7 to propose
sets of generators for the A-modules Vi. Although these numerics are not
quite enough to guarantee that the systems we obtain are generating sets,
using a little more structure we will be able to show that in certain cases
they indeed are.

The tables below indicate the values of k(k,m,n) for the various k.
We include only the calculation for k = 1; the computations for the other
cases are extremely similar.

First consider the region m > 3n + 1, and put m = 3n + 25 + 1. Then

(3.44.1) w(1,m,n) = H(1,m,n)
=pa3(5n+3j+ 1)+ -+ pas(dn+ 35+ 1)
— (P23Bn+37 — 1)+ +p2s(j — 3))
and
(3.4.4.2) H(1,m —4,n)=p23(5n+3j —5)+ -+ pa3(4n +3j — 5)
— (p2s(Bn+j —3) + - +p2s(j — 5)).

Subtracting 3.4.4.2 from 3.4.4.1, we get, using the identity pss(2z) = [3z],

(3.4.4.3) H(1,m,n) — H(1,m —4,n)
= (n+1) — (p23(6n + 25 — 2) — pa3(2j — 8))
{ 1 ifj=0,
“lo ifj>1.
This tells us that

1 ifj=0,

3.4.45 k(1,3n+25+1,n) =
(34045 (an+2i+1m={ 277
Similarly, if we look now at the region m < 3n—1, and set m = 3n—2j—1,

(3446) V(L m, n) = p23(5n - 33 — 2) 4+ .. +p23(3n _ _7 _ 1)
— (p2a(dn = 3§ = 3) + -+ pas(j — 2))
and
— (;D23(4n —3j—6)+--+pa(j— 5))
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Now using the identity p3(3z) = [%x], we obtain that

1 ifj=0
(3.4.4.8) V(1,m,n)-V(1,m-3,n-3)= { . J
0 ifj>1
and so
1 ifj=0
(3.4.4.9) k(1,3n — 25— 1,n) = { . ]
0 ifj>1.
The calculations for £k = 2,...,7 are completely analogous and so

are omitted. We tabulate the results below. For each fixed k£ from 0 to 7,
these tables indicate the value k(k,m,n). We have k(k,m,n) = 0 if the
position (m,n) is blank.

O = N Wk ot g o3

0123 456 789 10 11 12 13 14 m
k=0

S = N W O N 003
—

0123 456 7 8 9 10 11 12 13 14 m
k=1
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0 1

0123 456 789 10 11 12 13 14 m

k=2
1 1
1 1 1
1 1 1 1
1 1 1 1
0 1 1
1 1

01 23 456 78 9 10 11 12 13 14 m

k=3

0123 456 7 8 9 10 11 12 13 14 m

k=4



O =N WU N 0 3
O NWKR TN I

O NWKR DI 0 3
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0123 456 7 89 10 11 12 13 14 m

k=5
1 1
1 1 1
1 1 1 1 1
1 1 1 1 1 1
0 2 2 1 1 1

0123456 789 1011 12 13 14 m

k=6
1
1 1
1 1 1 1
1 1 1 1 1
1 2 1 1 1 1
1 2 2 1 1 1

012 3 456 7 8 9 10 11 12 13 14 m

k=7

65
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Since multiplication by (0,6,2) translates a covariant of weight k
in oim’") to one of the same weight in aim+6’"+2), it is easy to propose

a system of .4-module generators in each case.

3.4.5. — If H(k,m,n) — H(k,m — 4,n) = 1, since (0,4,0) is not
a zero-divisor, then the complement of the weight k covariants in a‘(lm’")

to those in (0,4,0)0™ *™ has dimension 1. Hence, if the subspace of

weight k covariants not divisible by (0,4,0) in aﬁm—s’"_m is nonzero,
(0,6,2)0™ %" must span the complement of (0,4,0)o\™ ™ C g{™™

inside V. The analogue holds for the complement of (0,3, 3)0‘({"_3’"_3)

C aflm’") inside Vi in case V(k,m,n) — V(k,m — 3,n — 3) = 1 and the
subspace of weight k covariants in o™ ~%"~2 not divisible by (0,3,3) is not
identically zero. This implies that if we are looking for additional generators
for V, as an A-module, we may disregard components (k,m,n) satisfying

the above conditions.

We summarize for each k = 1,...,7, for which (m,n) we have
(3.4.5.1) H(k,m,n) — H(k,m —4,n) = 1,
(3.4.5.2) V(k,m,n) —V(k,m—-3,n-3)=1,

respectively. The proofs of these identities are tedious calculations of the
kind encountered in 3.4.4.

Equality (3.4.5.1) holds in the following cases:

k= m= |n2> k= m= |n2>
1 |3n+1 1 3n+5| 0
3n+2| 0 5 [3n+3| O

2 3n 1 3n+1| 1
3n+3| 0 3n+6| 0

3 3n+1| O 6 [3n+4| O
3n+4| 0 3n+2| 1

4 [3n+2| 1 3n+7] 0
3n 1 7 |3n+5| 0
3n+3 1
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Equality (3.4.5.2) is valid for the following values of k, m,n:

k= | m= [n> k=| m= |n>
1 |3n-1 1 3n—3| 2
2 |3n—-2| 2 5 3n—-5] 3

3n—1 2 3n—4 3
3 3n—-3| 2 6 3n—6| 3

3n—2| 1 3n-5| 3
4 n—-4| 2 7 3n—5| 4

3.4.6. — It is not hard to see that in the regions in which k = 0,
multiplication by (0,4, 0) or by (0,3, 3) (appropriately) is in fact surjective.
This means that if there were additional .A-module generators, they would
be situated in the region in which x > 0.

For £k = 1,...,4, the argument of 3.4.5 clearly eliminates the
possibility of any additional generators. Hence these are all free A-modules.
For completeness, we list their generators:

k (m,n)
(2,1),(4,1),(5,2),(7,2)

21 (2,0),(3,1),(5,1),(4,2),(6,2),(7,3)
(1,0),(3,0),(4,1),(6,1)

3
(3,2),(5,2),(6,3),(8,3)
(4,0),(1,1),(3,1),(5,1),(7,1)
4
(27 2)5 (47 2)7 (61 2)? (87 2), (57 3)
3.4.7. — Unfortunately, the argument of 3.4.5 does not apply

uniformly in the cases k = 5,6, 7. This is because (3.4.5.1) and (3.4.5.2) do
not hold in the whole region x > 0 for such k. More specifically, there are
triply homogeneous components in which the images both of multiplication
by (0,4,0) and by (0,3,3) have codimension 2, and so 3.4.5 does not apply ...
As we may see from the tables in 3.4.5, in the case k = 5, these components
lie on the linem =3n—1,fork=6,onm=3n+1,3n—1 and 3n — 3.
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Ultimately, however, we are interested in algebra generators for
R(N\Spy /U), not for A-module generators, so we consider the tables
of 1.3 to see where algebra generators may be situated. We remind the
reader that since we are considering 01(4""") C R(Sps/U), in terms of
P(C* @ C®), we may think of this as the Sp,-module with highest highest
weight in the homogeneous component of bidegree (m — n,n).

Since the argument of 3.4.5 eliminates potential additional .A-module
generators (and therefore potential additional algebra generators), applying
it to the relevant cases for k = 5 leaves us with one remaining case: that in
which (m,n) = (8,3).

To get rid of this case, note that the image of the weight 4 covariants

in a§6’2) under multiplication by (1,2,1) has dimension 2 in the subspace of
(8v3) (530) N
4 4 is not

4(18’3) is

weight 5 covariants in o, . Since the weight 5 covariant in o
divisible by (1,2,1), its image under multiplication by (0,3,3) in o
not divisible by (1,2,1) either, so unique factorization implies that these 3
polynomials are linearly independent. Thus, to locate algebra generators of
weight 5, we only need to look for them in the proposed set of .A-module

generators for Vs.

For the cases k = 6,7, comparison with the appropriate tables in 1.3
tells us that we only need to look in the proposed systems of A-module
generators. These are listed below for k = 5,6, 7.

k (m,n)
(3,0),(5,0),(2,1),(4,1),(6,1),(8,1),
5 (3’ 2)?(5’2)17(5’2)27(77 2)a

(4,3),(6,3),(7,4)
(2,0)(4,0),(6,0),(3,1),(5,1),(7,1),

6 (4,2), (4,2)2,(6,2)1,(6,2)2,
(3,3),(5,3),(7,3),(6,4), (8,4)
(5,0),(7,0),(2,1), (4,1)1,(4,1)2,(6,1),
(8,1),(10,1),(3,2), (5,2)1, (5, 2)2,
(7,2)1,(7,2)2,(9,2), (4, 3), (6,3)1, (6,3)2
(5,4),(7,4),(8,5)




SL,, THE CUBIC AND THE QUARTIC 69

3.4.8. — Finally we are in a position to prove that the algebra
R(N \Spy /U) is generated as stated in 3.1.1.

Firstly, note that the generators of A, (0,9,3), and the generators of
V1 over A must all be contained in a generating set for R(N \ Sp, /U). To
reduce the above lists for £ > 2, we must determine which covariants can
be expressed as products of lower weight covariants. If u(k, m,n) = 1, then
this is a straightforward matter since R(Sp, /U) is an integral domain.
Comparing the lists of 3.4.7 with those of §1.3, we see that the only cases
which are more complicated have u(k, m,n) = 2, and these are

(3,6,3),(3,8,3),
(5,5,2), (5,6,3),
(6a 5a 3)7
(7,6,3).

But these cases are also easily dealt with. Using the fact that R(Sp, /U)
is a unique factorization domain, one can easily show linear independence
of the appropriate polynomials. For example, consider (7,6,3): unique
factorization implies that any two of (3,1,0)(3,3,2)(1,2,1), (1,2,1)3(5,2,1)
and (1,2,1)(2,3,1)(4,1,1) are linearly independent. The other cases are just
as simple.

(3.4.8.1) (k,m,n) =

3.4.9. — So far we have avoided saying anything about the relations
between these generators, but it is clear that the numerics and the structural
properties of R(Sp, /U) will yield information about these. There are three
obvious sources for the relations. The first comes from the .A-module
structures of the modules Vi. Although we have not determined these
structures explicitly for k = 5,6, 7, it is clear that these modules cannot be
free over A — looking at the tables in 3.4.4, we see that multiplication by
(0,6,2) takes the components with x = 2 to components in which k = 1, so
relations must occur. The second source of relations is the structure of the
modules Vj, over the full algebra of invariants V. Here it is clear that none
of the modules Vy is free for £ > 1; in fact, multiplication of any covariant
generator by (0,9,3) implies a relation. Finally, taking into consideration
products of covariants of nonzero weights will also say something concerning
the relations. For example, consider the homogeneous component (3,7,2);
this has dimension 2 and it is easy to see that it is spanned by (0,4,0)(3,3,2)
and (0,6,2)(3,1,0). However, (2,2,0)(1,5,2) has the same grading and so
must be expressible as a linear combination of the previous two products...
We do expect that most, if not all, the relations can be determined in these
manners.
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