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THE INDEX OF A VECTOR FIELD TANGENT
TO A HYPERSURFACE AND THE SIGNATURE

OF THE RELATIVE JACOBIAN DETERMINANT

by X. GOMEZ-MONT and P. MARDESIC

The (Poincare-Hopf) index of a holomorphic vector field X =
n Q
V Xk—— on C77^1, with an isolated singularity at 0 may be computed
k=o ^k
as the dimension of the algebra obtained from the ring of germs of holo-
morphic functions on C7^1 at 0 by dividing by the ideal generated by the
coordinate functions X^ of X:

B = Bx := 0cn+1^., Indc î,o(X) = dimcBx.

n g
The index of a real analytic vector field X = V, X1^-— on R71"^1

fc=o 9xk
with an algebraically isolated singularity at 0 may be computed from the
algebra obtained from the ring of germs of real analytic functions on M71'̂ 1

at 0 by dividing by the ideal generated by the coordinate functions X^:

TiR _ -DR ._ A^+1,0
B -^-(XO,.,^)-

The index in this case is the signature of the non-degenerate bilinear form
obtained by composition of the product in the algebra B^ with a linear
map £:
i -i \ ^ \. "R^ v "R^ __»> "R^ ^ . TO)
W < 5 >• -DX x -"X ——^ "X ——^ K

Supported by CONACYT-CNRS and CONACYT 3398-E9307.
Key words: Index of a vector field — Singularity of a hypersurface — Singularity of a

vector field - Local algebra - Socle - Bilinear form.
Math. classification: 58C27 - 58F14 - 13H10 .



1524 X. GOMEZ-MONT & P. MARDESIC

with £{JX) > 0, where

J X := det[DX] = det \9X^] e Bx
L dXk -I

is the class of the Jacobian determinant ofX ([I], [4], [10]). The ideal (JX)
generated by the Jacobian determinant plays a fundamental role in these
rings. It is 1-dimensional and minimal in the sense that it is contained in
all non-zero ideals. The nature of this ideal allows the definition of the
non-degenerate pairing (1).

Assume that the above holomorphic vector field X is tangent to a
hypersurface V with an isolated singularity at 0, defined as the zero set
of the holomorphic function / and that n > 1. The tangency condition is
expressed algebraically as

df(X)=f^f,Xk=f^ A : = ^ h=hx:=dt(X)e0^o.
fc==o oxk •/

If one considers this relation in the ring B^, it says that / and h
annihilate each other, and so we have the inclusions

(2) 0 C (/) C AmiB )̂ C Bx.

These inclusions give rise to the following geometric points:

(3) spec ^ B x (^ c spec B^ c spec BxAmiB^ W (f)
The middle point is obtained by imposing on the zero set Spec Bjc of X
the condition / = 0. One obtains the smaller point by imposing the further
conditions contained in Ami-Q^(h).

The formula in [5] says that, when studying the index of X\y at 0, one
Byshould "measure" for n even with the smaller point Spec ———-——, and

AmiB^ W
Byfor n odd with the larger point Spec —— (see Theorem 5). The difference

between the size of these two subpoints of the zero set of X is bounded by
(D^n+l Q

dim •——————, a number which is independent of X.
U U O ^ ' ^ J n )

The problem we address in this paper is to extend the method
of computing the index at a singular point of a hypersurface from the
holomorphic category to the real analytic (or C°°) category. To do this, we
introduce the relative Jacobian determinant of X:

j / Y \ _ ^^ ^ BxJf{X):- -̂ - e -^^
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and show in Theorem 3 that it has similar properties as the Jacobian deter-
Bxminant: It generates a 1-dimensional minimal non-zero ideal in -——————.

AmiB^ W
We are then able with its help to introduce a non-degenerate pairing in the
smaller point of (3), and hence to count "with sign" the size of the smaller
point.

Denote by 3t(V) the space of germs of real analytic vector fields X
on (M^^O) tangent to V with an algebraically isolated singularity at 0.
Let V = f~l(0), where / is a real analytic function having an algebraically
isolated critical point at 0. Define the signature function

Sgn^o : W -. Z

by setting Sgn^o(X) = 0 if hx = 0 € Bx and for hx ^ 0 € Bx define
Sgnj ̂ o(X) as the signature of the bilinear form

By -BY • -D y t -rr^-̂ ">/,• _____^___ V _____"___ __>. _____"___ ^ ID

AnngR (H) AnngR (fe) AnngR (h)

obtained using any linear map £ with i(JfX) > 0. This definition is
independent of the chosen £ ([4] p. 26) and it depends only on the restriction
ofXtoV (Theorem 6).

The method we present gives an algebraic procedure to compute the
(Poincare-Hopf) index of real analytic vector fields on singular hypersur-
faces in M^ ([2], [7]) with n even:

THEOREM 1. — Let n C N be even, V = /"^O) C M^1 be a
real hypersurface with an algebraically isolated singularity at 0. Then the
signature function Sgn^o satisfies the law of conservation of number:

(4) Sgn^oW == Sgn^o(^) + ^ Ind^(X,|y),
Xp(t)=0
/(p)=o

peK^-.co}

for Xt tangent to V, close to X and p close to 0. The signature function
coincides with the (Poincare-Hopf) index function Indy^y^o of X\y at
0 after normalizing by adding an integer K that depends only on the
smoothing V used to compute the index:

Sgn^oW = Indy,y/,oW + K, \/X C X(V).

Formula (4) is valid for n odd under the further assumption that the
•o

family of algebras -———— is equidimensional (Theorem 6).
AnnBt(^)
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Remark. — In the case of vector fields tangent to an odd dimensional
real hypersurface V a function satisfying the law of conservation (4) has
been constructed in [6]. This function is given as the difference between
the signatures of two non-degenerate forms. The first term is Sgn^o as m
the even-dimensional case. The second term is defined in a similar way, but
using the algebra

x R ^ A^+^O ,. ^ 9f

~(/o , . . . Jn) 5 J % -^ '
instead of B11 and the relative Hessian of / instead of the relative
Jacobian determinant of X.

1. The algebra B.

Let Xf be a holomorphic family of holomorphic vector fields on the
closed unit ball B C C71'̂ 1 parametrized by a connected and reduced
analytic space T and let each vector field Xf have isolated singularities
on B and be non-vanishing on the boundary of B. Let 0 € T and assume
that XQ vanishes only at 0. Denote the Jacobian determinant of Xf by
JXt '.= detDXt. For every fixed value of t consider the finite dimensional
semi-local algebra
(1.1)
p» ._ r jO /o °B \ _ /T\ °{B,pt) ._ /T\ P
Dt '- n. l^S.^o yn\) ~ \ff TyO————y^n\ •- W Dt^

\ (^,. . . ,A^J/ s y ( r , \ m 1 t 5 ' " 5 t j s y ( \ n\i^tCPt}^} {A((pt)=0}

having the above decomposition as a direct sum of local algebras. This
decomposition corresponds to the geometric decomposition of Xf = 0 as
a finite number of different points, where the dimension of the algebra
over a point corresponds to the multiplicity at that point. The Jacobian
determinant decomposes as a sum
(1.2) JXf= ^ Jp^XtCBt

{Xt{pt)=0}

obtained by considering the class of JXt in each local ring of (1.1). Each
JptXt generates a 1-dimensional ideal in Bf, which is contained in the
corresponding local algebra 'Bt,pf This ideal is then the socle of the
corresponding local algebra ([4]).

Let Z be the subvariety of T x B defined by X^ = . . . = XJ1 = 0, Oz
its structure sheaf, and TT : Z —> T the projection to the first factor. Then
TT is a finite map. Hence
(1.3) B := TT^OZ
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is a coherent sheaf on T ([8]).

PROPOSITION 2. — Under the above hypothesis for Xt, we have:

(i) B is a locally free sheaf of rank u,; i.e. the family of algebras
{Bf} forms a holomorphic vector bundle of dimension /^, where the algebra
structure is holomorphic in t.

(ii) If tn —^ 0 G T, pt^ e B are zeroes of X^ converging to 0 6 B
with dimc^tn.pt = z/? then

(1.4) ^J^X^=^JX^

where the limit is taken in the vector bundle {B^}.

(iii) If Lt : Bt —> C is a holomorphic family of linear maps such that
Lo(JXo) ̂  0 then L^Jp^Xt) ̂  0, for t € T ' near 0. The family of bilinear
forms

< , ^'.BtXBt—^Bt-^C

is holomorphic and non-degenerate for t € T", with (1.1) an orthogonal
decomposition.

Proof. — That B is locally free follows from the continuity of the
intersection multiplicity ([9], p. 664, [3], p. 59). This sheaf corresponds to
the sections of a holomorphic vector bundle, where the vector space over
the point t is B ®OT ^t ^ Bf (see (1.1)).

Now that we know that the family of algebras forms a holomorphic
vector bundle, with multiplication varying holomorphically, we can consider
the associated projective spaces Proj B(. The property that the vector space
generated by a non-zero element is an ideal is a closed analytic condition.
It is not difficult to show that in the semilocal algebras (1.1) the only
such elements are the socles of each factor. Over 0 we only have 1 point,
which is the socle of Bo. Hence the family of 1-dimensional spaces (Jp^X^)
converges to the 1-dimensional space (JXo), and hence the only question
that remains is what is the value of the constant (s) in the limit. To find this
out, it is enough to apply a linear functional which is non-zero on J^XQ.
Explicitely, the residue map ([9] p. 649)

_ _ _ ^ / v / l ^ / * gdzQ A . . . A dzn
Res,:B,-^C, Rest{g)=(——) / '————^—L,

V27TZ/ J^^} X y . . . X J 1

will do this for us. The (partial) Jacobian determinant Jp^X^ takes
the value 0 on zeroes of Xf different from the chosen pt^ and hence
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ReSt^(Jp^Xf^) = v is the local intersection multiplicity ([9] p. 663) at
pt^. Similarly Reso(Jo^o) == A1 is the local intersection multiplicity at 0.
This proves (1.4) and (ii).

To prove (iii), note that (1.4) implies that, for small fixed t, the
components Jp^Xf in the decomposition (1.2) of the Jacobian determinant
are almost parallel, but linearly independent (since they belong to different
sumands in (1.1)). The second part follows from [4] and is a consequence of
the fact that (JXo) is the 1-dimensional socle in Bo and that the pairing
< , >t is continuous. D

2. The algebra ̂ |̂ .

Let / be a holomorphic function defined on the unit ball B C C72"^1

with the property that V := f'1^) is a. variety that has 0 as its unique
singular point. Assume also that the previously introduced family of
holomorphic vector fields Xf is tangent to the variety V: Xt{p) G TpV,
p € V. That is, there exists a holomorphic family of holomorphic functions
ht on B such that

(2.1) df(Xf) = Y,W = htf^ hi := ^{Xi}.
j=o J

Multiplication by / or by ht gives endomorphisms of the locally free
sheaf B in (1.3), inducing exact sequences

(2.2) 0 -^ Ann^(/) —.23-^B^^^O,

(2.3) 0 —— Anns(^) —— B ^B —— B —— 0.
^t)

The images of the maps are isomorphic to the sheaf of ideals (/) and (/if),
respectively. Condition (2.1) then implies

0 C (/) C Ann0(/ii) C B
and so we obtain surjective sheaf morphisms of algebras

(2l4) B ~^ (7) ~" Ann^)'

Fix t C r. The maps in (2.2) and (2.3) are represented by diagonal
blocks in the decomposition (1.1). Hence we obtain the decomposition

f2 ̂  Bt = ff^ Btfpt

AnnB^ ^o^1111^^)'
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•o
We now show that the smaller point Spec ———t——- has a natural

AnnB,(^)
family of non-degenerate bilinear forms. To define it, we will introduce a
relative Jacobian determinant JfXf.

THEOREM 3. — Let f be a holomorphic function on the unit ball
B C C^1 with 0 as its only critical point, Xt a holomorphic vector field on
B tangent to V := /"^(O) with isolated zeroes on {p^o = 0,pt,i^ • • • ?Pt,A;}?
none of them on the boundary of B. Then:

(i) The contribution of ptj to the sum in (2.5) is trivial for points
ptj in B — V, non-trivial for points on V — {0} and for the point 0 it is
non-trivial if and only ifht 7^ 0 € B^o-

-D

(ii) Assume that hi -^ 0 € Bf, then the element JfXf € ———t——r
Ann-B,(ht)

defined as the class of elements g € Bf satisfying ght = JXf € B^ is well
defined. The decomposition (2.5) induces a decomposition

(2.6) JfXt := JfftXt + ... + Jf^Xt.
•D

If the corresponding factor -——J?t". is non-trivial, then Jf jXt gen-
Ann B^^ht)

erates a 1-dimensional ideal in -———'p^——- which is the socle and the
AmiB,,^. (ht)

minimal non-zero ideal. For ptj € V — {0}, the relative Jacobian deter-
minant equals the Jacobian determinant of the restriction X\y of X to
V.

•D

(iii) Let i : -—————- —^ C be any linear mapping such that
Ann-BtW

£(JfjXt) 7^ 0, for j = 0 , . . . , k, and define the bilinear form

(27) < > • ^t x Bf • Bf a
' i ' AnnBj^) AnnB,(^t) AnnB,(^i)

Then < , >^ is a non-degenerate bilinear form having (2.5) as an orthogonal
decomposition.

Proof. — Ifptj ^ V then / is a unit in the local ring and so by (2.1)
we have ht = 0 C B^p^.. Hence Anna^p . (ht) = B^p^. and there is no
contribution to the sum in (2.5) from these points.

We now show that

(2.8) AmiB,,̂ . (h) = (/) C B ,̂ p^ e V - {0}.
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Since / is contained in the maximal ideal we will then have that ht -^ 0
(otherwise Anne^ . (ht) = B^p^.). By the implicit function theorem we
may choose coordinates (wo, . . . ,Wn) around ptj so that / = WQ, and in
these coordinates we have

(2.9) Xt = woly^+y^ 9 ,^ = w°.9wo ^ 9wk

By additivity of the intersection multiplicity ([9], p. 664) it follows

T T-» ,. Oi^n+i o ,. Oc^^o
dim B ,̂, = dim ̂ ^W\...,W^ = dlm ̂ W\... ,TV")

,. ______0(Cn+l^Q______^ __________O^n+l^Q__________

(IV0,^,...,^) - (wo.wolV0,^1,...,^71)
, ,. Oc^^o ,. ^t,ptj , ,. Bfp ,+ dim ——.———.. —————— = dim . + dim ———.{WO,WQWO,Wl,...,Wn) (/) (ht)

But this then means that (/) and (h) have complementary dimen-
sions in Bt,p^.. Since on the other hand inclusions (2) hold, it follows
AnnB^^.(/it)'=(/)cB^,.

For ptft = 0 we have that hi = 0 G B^o if and only if its annihilator
is the full ring. This proves (i).

To prove (ii), note that the decomposition (1.1) decomposes the mul-
tiplication into blocks, allowing to reduce the problem to each component.
For any j the ideal (JXf) C B^p^. is 1-dimensional and it is the socle and
minimal non-zero ideal. If ht 7^ 0 in B^ ., then (JXf) C (^t), so that
there exists g G Bt^ . such that

(2.10) ghf=JXt^Bt^.

The element g G B^p^ is not uniquely defined. However, the difference of
any two elements satisfying (2.10) belongs to Anne^p . (/^)? showing that

•Q

the class JfjXt := [g} € -—— t ; p t . , is well defined. If ^ = 0 G B^, , ,
AnnB^p^. (ht)

then pfj = 0, as shown in claim (i), and we set Jf^Xf = 0.

We now prove that (JfjXf) is the socle of a non-trivial component
•D

-———'pt)J . . We begin with the case pt 7 7^ O. In this case V is smooth at
Anne,,?^. (ht)
the point and by choosing new coordinates around this point and computing
directly JXf in (2.9) we obtain that it is equal to J(Xt\v)h. So, in this
case the relative Jacobian determinant is the Jacobian determinant of the
restriction (Xt\v)- Now the assertion follows from the C^-case ([4]).
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Consider now the point p = 0, and assume ht ^ 0 G B^o- By
definition the socle of a local algebra is the annihilator of the maximal

•D

ideal. The maximal ideal in -—————r is generated by the classes [x-\
Ann-B^^ht)

of the generators x^ j = 0 , . . . ,n , of the maximal ideal in O^n+i^. We
prove first that Jf^Xf is in the socle. We have to prove that [xj}JfftXt =

-D
0 e -A—^t0-^ that is that (xjJfoXt)hxt = 0 (E B^o. But Xj(Jffth,) =

Ann(tiXt)
XjJoXt == 0, since JoXi is in the socle of B^o- So Jf^Xt is in the socle

•D ' ' -D

of -7——y——^ O11 the other han(i if 0 ^ [g] C -,——t2c—— belongs
AmiB,,o(^) AnnB^o(^)

to the socle, then [g}[xj] = 0, for j = 0 , . . . ,n . But this means that
gxj € AmiBt,o(^Xt) ^'e. gxjht = 0, j = 0, . . . ,n, implying that ̂  is in
the socle of B^o- As the socle (B^,o) = (<^(A) is 1-dimensional, it follows
that ght = XJoXt, A C C* (since [^] 7^ 0). Hence {\~^g)ht = JoXt, so that
[A"1^] == JfftXt by the definition of Jf^Xf. So we obtain [p] = XJfXf.
This proves (ii).

To prove (iii), it suffices to prove that given any 0 7^ g G
•D "D

———t^——- there exists e e -,——t>pt)J , such that < g,e >^ 0. As
AnnB,,^^. (^) AnnBt,p^• (/l*)
(JfjXf) is the minimal ideal, there exists e G Bt^ ^., such that ge = JfjXf.
This implies < ^, e >^= £(JfjXt) •^ 0, as claimed. D

Since B is locally free, the maps in (2.2) and (2.3) may be represented
by ^ x IJL matrices with holomorphic functions on T as entries. If we restrict
to the subvarieties where the rank of these matrix maps is constant, then
the kernel and cokernel sheaves will also be locally free.

We now show that under the equidimensional hypothesis in (2.3),
the family of non-degenerate bilinear forms defined on the smaller point
Spec ————7— varies holomorphically with respect to external parameters:

AniiBtW

PROPOSITION 4. — Let f and the family of holomorphic vector
fields Xf, t € T, be as above and assume that ho ̂  0 € Bo. Assume further

-D

that the finite dimensional algebras -———-— form a holomorphic vector
AnnB,(^t)

bundle (with fixed rank) over T. Then after shrinking T around 0 we have:
-D

(i) The elements JfXt € -———— defined by Proposition 3 form
AmBtW

a holomorphic section of the vector bundle.

(ii) Iftn—^O^T and p^ € B are zeroes of X^ converging to 0 € B
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p»
with dime -,———n>ptn . = v, then

^^tn,^^)

(2.11) }imJf^X^=^JfX^
T'n—>" fJb

r Bf i
where the hmit is taken in the vector bundle { -———-—- } .

LAmiBj^tP
-Q

(iii) For any holomorphic family ofC-linear maps it: -———-—- —> C
AmiB^t)

such that (.t{JfXf} ¥• 0 the family of bilinear forms (e^, kt)t '-= ^t{^-t^t) is a
holomorphic family of non-degenerate bilinear forms.

Proof. — The Jacobian determinant JXf is a holomorphic function
on T x B, and by restriction to Z and pushforward to r, Tr^JXt gives rise
to a holomorphic section over T of the locally free sheaf B in (1.3). The
equidimensional hypothesis implies that from the sequence (2.3) we obtain
an injective non-zero morphism

(2.12) 0 — — , g , ^B
Anns(ht)

of locally free sheaves. The Jacobian determinant is contained in the image
of ht since for each t the components (1.2) of the Jacobian determinant
generate the socles of the components in (1.1) and {hf^ ^.) -^ 0 at any
point which has a non-trivial component in (2.5). Since the families Bf

•o
and -——t——- are vector bundles, we can solve holomorphically on t, and

AnnBt {ht)
hence the relative Jacobian JfXf is holomorphic in T. This proves (i).

Relation (2.11) follows from the similar relation for the Jacobian
determinant (1.4) after composing with the inverse of the inclusion (2.12).
Hence we obtain (ii). Claim (iii) is a consequence of (2.11) and of (iii) of
Theorem 3. D

The equidimensional hypothesis in Proposition 4 is satisfied in general
for n even since the formula in [5] can be stated as:

THEOREM 5. — Under the above hypothesis on f and Xf:

(i) For n even the sheaves in (2.3) are locally free; let r :=
rank-————.

Ann]s(ht)

(ii) For n odd the sheaves in (2.2) are locally free; let r := rank ——.
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The index of Xo\v at 0 can then be measured by the rank r, after
(_/(r'Ti-|-l r\

normalizing by adding the constant term (—I)71 dime 77—.——~c~'
U U O T - ' U n )

Proof. — The index in [5] satisfies the law of conservation of number,
which is equivalent to the locally freeness ([3], p. 58). Claim (i) follows from
[5] by using (2.3):

OB OB Bf
dim W,..,XD - dim (/,,X?,...,X?) = dim Ann^-

The rest is direct from the index formula in [5]. D

3. The algebra . B R . . . .0 AnrinR [h)

Let / be a real analytic function defining a holomorphic function
on the closed unit ball B C C71'^1 with 0 as its only critical point on B^
V := /^(O) C B and Vp := V D M7^1. Let Xf be a real analytic family
of real analytic vector fields tangent to VR parametrized by a reduced real
analytic space T, 0 G T, and let Xf be a holomorphic family of holomorphic
vector fields tangent to V extending the above family in a neighbourhood
of 0 € T, parametrized by the complex reduced analytic space Tc. Assume
that Xf defines a holomorphic family of vector fields on the closed unit ball
B C C71"1"1, each having isolated singularities on B and non-vanishing on
the boundary of B and that XQ vanishes only at 0. Define as before

ô n

Bt := H° (B, UB ) , dfW = ̂  f^ := fh,.
v t 5 • • • 5 t ) ^Q

THEOREM 6. — Under the above hypothesis, assume also that
Btho 4- 0 € Bo and that the finite dimensional algebras -———— form

AnnB,(^t)
a holomorphic vector bundle (with fixed rank ^) over Tc. Then after
shrinking T around 0 we have:

(i) The invariant spaces of the complex conjugation map

/31) -. B^ _, B^
' AnnB,(fat) Annual)

r Bf -J+
define a real analytic vector bundle -———-—- over T oflSi-algebras of

-y LAnnB,(^)JR
1^-dimension fi^.
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•o
(ii) The decomposition (2.5) of -———— induces a direct sum

Ann-B^ht)
decomposition

^ [AnI^]^^^6^^'
where each component Dj corresponds to a real point on V and each
component Ek corresponds to a pair of conjugate points on V —Vs.. For
pj 7^ 0 and any k we have
(3.3)

__4»^p__ r 0c»+i,p, C'o+i.p, 1+
3 (f,x?,...,xy)' ^ [(f,x^...,xy)(B(f,x?,...,xy)\R

[ Tf - I

(iii) For any real analytic family ofR-linear maps £f '• -7——t——^ -^
Ann-B^(ht)m

M such that ^{JfXo) > 0 the family of bilinear forms (e^, kt)t ''= ^t^kf)
is a real analytic family of non-degenerate bilinear forms.

(iv) The restriction of the above bilinear form to a component Dj
corresponding to a point in V — {0} coincides with the Eisenbud-Levine
bilinear form of the restriction of Xf to V, and its signature corresponds
to the Poincare-Hopf index of Xt\v- The restriction to a component Ek
corresponding to a pair of conjugate points in V — V^ has index 0.

(v) The signature Sgn^o(^t) satisfies the law of conservation of
number (4) for this family.

(vi) The signature Sgn^o(X) depends only on the restriction ofX to
V, i.e. Sgn^o(X) = Sgn^o(X + fY), for X,X + fY with an algebraically
isolated singularity at 0.

Proof. — The complex conjugation map (3.1) is induced from the
map

Y ^ d i z 1 —> Y ^ d i z 1 .

Claim (i) is elementary linear algebra. Complex conjugation leaves invariant
the components in (2.5) corresponding to real points and it permutes the
components associated with p k ^ p k ^ C7^1 — R71'^1. Hence the sum of these
two last components is invariant, and the decomposition in (3.2) and (3.3)
is obtained from the (+l)-eigenspaces of the restriction of the conjugation
map to the above mentioned invariant subspaces. Relation (3.3) follows
from (2.8). This proves (ii).

r R "i +
Since multiplication is analytic in the vector bundle -——<-—- ,

iAnn-Bt(ht)m
claim (iii) follows from the continuity of the bilinear forms and Proposition
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4. The first part of (iv) follows from (ii) of Theorem 3. The second part

follows from [4] p. 27, since Ek is a local ring with residue field C = —k-.
Here 9Jt is the maximal ideal. Note that the compatibility of orientations
is deduced from (2.11), since the factor is a positive number.

Claim (v) now follows easily, since the signature at 0 and at t coincide
due to the non degeneracy of the bilinear form and its continuity. For t^O
we have an orthogonal decomposition (3.2), and so using (iv) we obtain
formula (4), where the non-real points contribute nothing to the sum since
the contribution of each pair of conjugate points to the signature is 0.

To prove (vi) we begin with:

LEMMA 7.

(i) Let XQ and X\ = XQ + fY be two real analytic vector fields
tangent to V, having an algebraically isolated singularity at 0. Then there
exists a real analytic family of real analytic vector fields {XQ +/Ys} tangent
to V, with an algebraically isolated singularity at 0 parametrized by a
connected parameter space containing both vector fields.

(ii) Let XQ and Xi be two real analytic vector fields tangent to the
above hypersurface V and having an algebraically isolated singularity at
0. Then there exists a real analytic family of real analytic vector fields
tangent to V, with an algebraically isolated singularity at 0 parametrized
by a connected parameter space containing both vector fields.

Proof. — The proofs of both statements run in parallel lines. We
will provide linear families of vector fields connecting XQ and Xi. We will
prove that in order to have a family with algebraically isolated singularities
connecting XQ and Xi it suffices to avoid a set Land2 of codimension at
least 2.

The first condition defining Land2 is that "an external zero lands
at 0". The second condition is that "this external zero landing at 0 is of
multiplicity at least T. Removing this set of parameter values does not
disconnect our (linear) family. Hence, neither does removing the smaller
set of those parameter values with an algebraically isolated singularity
disconnect the family.

r\

Let B be a small ball around 0. For (i), let Wj := f——, j == 0 , . . . , n,
ox j

Wn-^i := fY and Wn^-2 = fZ where Z is chosen so that XQ + Wn-}-2 has
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a simple singular point p € B — V (i.e. det[D(Xo + iyn-f-2)](p) 7^ 0). For
this case we have m = n + 2. For (ii), let FFi , . . . , Wm be a finite collection
of real analytic vector fields on B tangent to V such that for every point
p € B — V the collection of values IVi(p),... , Wm{p) generates the tangent
space TpB and for q € V — {0} they generate TqV. Set Wo := X\. Assume
also that at least one of the vector fields Wj is such that XQ + Wj has
a simple singular point p € B — V, and for some k 7^ j the vector field
XQ + Wfc has a simple singular point q e V — {0}. These vector fields can
be easily obtained using Cartan's Theorem A [8].

Consider the family of vector fields
m

f^Ws := XQ + ̂  SjWj }, S := (5o, . . . , Sm) C R^,

J=0

as well as the complexified family with s € C771"^1. Define the variety W by

W := {(s, z) e C^1 x B I W^z) = 0},

and let TT^ be the projections to the factors. The fibers of the map TT^ over
B—V are (m — n)-dimensional affine spaces, since they are defined by n-\-\
independent equations in m + 1 variables. Let

Wi := W n [C7^1 x (B - V)} C C17^1 x B.

The variety Wi is irreducible, since it is the closure of an irreducible variety
(fibration by affine spaces over B — V). It is then an irreducible component
of W of dimension m + 1 = (m — n) + (n -j- 1). Similarly, let

W2 := wnp^1 x (Y-{O})].
For case (i), W"2 is empty, since by shrinking B sufficiently Ws\v = X\v
will have no zeroes in V — {0}. For case (ii), the fibers over V — {0} of the
projection map TT^ are (m + 1 — n)-dimensional affine spaces, since thet are
defined by n independent equations in m+1 variables. Hence Ws is in case
(ii) an irreducible variety of dimension m + 1 = (m + 1 — n) + n.

Denote by Wo = C7^1 x {0} the zero section. Clearly W =
Wo U Wi U W2 is its decomposition into irreducible components, all of
them of dimension m + 1. The set

Land1 := [Wo H Wi] U [Wo H W2] C Wo ̂  C^

has dimension at most m, since it is properly contained in the varieties
W/c of dimension m + 1. The set Land1 viewed as a subvariety of the
parameter space C771"1'1 corresponds to those vector fields for which a zero
has "landed", either from B - V or from V - {0}.
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Let W2, for k = 1,2, be the closure in C77^1 x B of

W2 := W2 := {(s.ri e Wfc - Wo n Wj, I det[DW^p) = 0} C W,.

By the choice of the generating vector fields Wj, W2 is properly contained
in Wfc, and so if non-empty, it has dimension m. Hence its intersection
with Wo

Land2 := [W2 H Wo] C Wo ̂  C^

will have at most dimension m - 1, thus showing that Land2 has codimen-
sion at least 2 in Wo. This subvariety corresponds then to those parameter
values for which a point of multiplicity at least 2 has "landed". The ana-
lytic variety of C771"^1 parametrizing vector fields such that the dimension
of its zero set has positive dimension at 0 is contained in Land2 and so has
codimension at least 2 for this family parametrized by C171^1.

Recall that an algebraically isolated singularity for a real analytic vec-
tor fields is equivalent to having its complexification with an isolated singu-
larity. Hence the set of vector fields parametrized by M77^1 with non alge-
braically isolated singularities is contained in the subvariety Land2 DR77^1

of codimension at least 2. Hence its complement is connected in R77^1. D

To finish the proof of (vi), note that Theorem 5 implies that one of the
2 points in (2.4) satisfies the law of conservation of number. The difference

between the sizes of these points is —nBtv t / , a number that depends

only on the restriction of XQ + fYs\v = XQ\V, since it is the dimension of
the non-zero homology of the complex

O^^o^^o^...^^^^1 -0
obtained by contracting differential forms on V with Ws\v ([5], Theorem
2.6). Hence for this family, both points in (2.4) satisfy a law of conservation
of number, and we may apply to this family (i-v) of Theorem 6. By (i) of
Theorem 3, the only points which give a non-trivial contribution to (2.5)
are the points on V. But since Ws\v = ^o\v^ there are no additional
singular points on V — {0}. Hence the decomposition in (2.5) has only one
component, the one corresponding to 0. This shows that the component at
0 remains equidimensional throughout the deformation. Claim (vi) now
follows from (i) of Lemma 7 and the continuity of the non-degenerate
bilinear pairing < , >s ((iii) of Theorem 6). D

Proof of Theorem 1. — By Theorem 5, the equidimensional hypoth-
esis needed to use Theorem 6 is always satisfied for n even. Both the index
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and the signature satisfy a law of conservation of number (4), and so the dif-
ference of these functions is locally constant. Since the space of real analytic
vector fields with an algebraically isolated singularity at 0 is connected, by
(ii) of Lemma 7, this difference is (globally) a constant. D

The reduction of the C°° case to the real analytic case, under
the assumption that the ideals ( / o ? ' • ", fn) and (X°,.. . , X71) have finite
codimension in the ring of germs of C°° functions, is carried out in [4].
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