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THE BERGMAN KERNEL OF THE
MINIMAL BALL AND APPLICATIONS

by K. OELJEKLAUS, P. PFLUG & E.H. YOUSSFI

1. Introduction.

Let B, be the domain in C",n > 2, defined by

B, :={z€C":|z|? + |z 02| <1},

n 2
where z ® z := Y 22. This is the ball of radius % with respect to the
—

J
2
Nu(z) ==/ |_z|_+2|_z0_z|, zeC".

The norm N, was introduced by Hahn and Pflug [HP], and was shown to
be the smallest norm in C" that extends the euclidean norm in R™ under
certain restrictions. The automorphism group of B, is compact and its
identity component is Aut(B,) = S - SO(n,R), where the S'-action is
diagonal and the SO(n,R)-action is the matrix multiplication, see [K] or
[OY]. This shows that for n > 3, the ball B, is not biholomorphic to any
Reinhardt domain. For n = 2, B, is linearly biholomorphic to the Reinhardt
triangle {(z1,22) € C? : |21| + |22| < 1}.

norm

The main purpose of this note is to establish the following

Key words: Bergman kernel - Minimal ball - Proper holomorphic mapping.
Math. classification: 32H10 - 32H35.
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THEOREM. — The Bergman kernel of B, is given by the formula
KB: (z’ w)
3 (n+1\ pno1-2jv5 N %2
_ 1 Ej2=0 (2]+1)X Y7 (2TLX—(’I’L—2])[X _Y])
" n(n+1)V(B,) (X2 —Y)ntl ’
where

X=1-<z,w>, and Y = (ze2)Uew,

and V' (B,) is the Lebesgue volume of B,.

In particular, when n = 2, the Bergman kernel of B, is
KB.. (Z, w)
_ 23(0-<zw>)P(1+<zw>)+ (ze2)uew(5 -3 < zw>)
2 (1- < z,w >)2 — (z 0 2)WoW)° '
It should be noted that for n = 2 this formula can be obtained from the

Bergman kernel of the above mentioned Reinhardt triangle whose Bergman
kernel can be found in ([JP], p. 176).

Remark. — To the best of our knowledge, the domain B, is the first
bounded domain in C™ which is neither Reinhardt nor homogeneous, and
for which we have an explicit formula for its Bergman kernel.

2. Preparatory results.

Let G be a semi-simple complex Lie group and K a maximal compact
subgroup of G. Suppose that G acts irreducibly on a finite dimensional
complex vector space Ej via a representation (II5, Fx) with dominant
weight A and dominant vector va. Assume further that Fj is furnished
with a K-invariant hermitian scalar product [-,-]. If G = KAN is the
Iwasawa decomposition of G, let ¢ denote the sum of the roots associated
with the complex decomposition in the Lie algebra g of G. If a is the Lie
algebra of A, then we have the following orthogonal decomposition with
respect to the Cartan-Killing form

a=aA€Bak,

where ap is the annihilator of A. If Hy is the unique vector in a,{ such that
A(Hp) =1, we set

(2.1) o := 29(H).
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Let M* be the intersection of the G-orbit of vp and the unit ball in Ej.
In his work [Lo], Loeb proved that the Bergman kernel of the manifold

M* with an invariant form on M* is given for ( = IIz(g1)va,n =
A (g2)va, 91,92 € G, by

(22) Ku-(¢,m) = D (25 + o)Ta(5)[ ),
j=0

where T (j) is the dimension of the representation with dominant weight
JA.

Here we consider the special case G = SO(n + 1,C) with its natural
linear representation on the complex hermitian space (C"*! < .- >),
where A is the dominant weight associated to this representation and

VA = \/7-2-(1,1',0, -++,0). The intersection of the G-orbit of vy and the unit
ball in C**! is M* = M \ {0}, where

M:={2=(21,""",2n41) €EC"" : 2| < 1,20 2 = 0}.
Then by formula (2.2), we see that the Bergman kernel of M* with respect
to an SO(n+1, C)-invariant form a(z)Aa(z) is given (up to a multiplicative

constant) by

oo

(233) K- (¢,m) = Y (24 +0)Ta(5) < G >,
3=0
for ¢(,n € M*.
LEMMA 2.1. — If a(z) is an SO(n+ 1, C)-invariant nonzero n-form

on M* (the invariant n-from o is unique up to a constant), then the

Bergman kernel of M* with respect to the invariant form o(z) A a(2) is
given (up to a multiplicative constant) by

_2(n+1)<(m>+2n—2

Ky+ =
M (Cﬂl) (1_ < C»ﬂ >)n+1
_ 4n 2n 42
B (1— < Cﬂ? >)n+1 (1_ < 4,77 >)n’
for {,n € M*.
Proof. — Using the notations above, a calculation involving the Weyl

character formula implies that
. n+2j—1/mn—-2+3j
Ty = PEE L (2

1 j ), for all positive integers j.



918 K. OELJEKLAUS, P. PFLUG & E.H. YOUSSFI

See ([FH], pp. 267-315). In addition, some computing shows that ¢ = 2n—2.
See ([FH], pp. 399-414). The lemma now follows from (2.3). O

LEMMA 2.2. — The n-form on (C\ {0})"+!

1)1 —
a(z) == Z ) dzi Ao Ndzj A Ndzpga,
= A

induces by restriction an SO(n + 1,C)-invariant and holomorphic n-form
o on M*.

Proof. — Let A € SO(n+1,C), z € M* and set w = Az. Denote by
Ajr, the n x n matrix obtained from A by deleting the jth row and the kth
column. Since A € SO(n + 1,C), Cramer’s rule gives that

(24) Qi = (—1)k+jdetAjk.
Note also that for z € M* and z; # 0, then

(2.5) Z dzl on T,M*,
l#j

where T,M* denotes the tangent space of M* at the point z. Denote by
A*a the pull-back of a. Then

n+1 j_1

(A*a)(z Z

NG =
=)= detAjpdzi A+ Adzk - Ndznga
k=1
n+1 n+1 )k+

=Z (=1)*~ 12

dwy A+ Adwj A+ A dwny

w;
=1

detAjpdzy A Adzg A+ A dzny
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n+1 n+1
by (2.4) = z:(—l)k_1 Z %dh AN ANdzg N+~ Ndzpyr
i J

n+1 n+1
by (25) = Z(—l)k Z %dzl VACERWAN dzj_l A de A (Z ;dzl)
k=1 j=1 7 I#; 77

/\de+1/\"'(7;Z\k/\"'/\dZn+1
n+1 n+1 as
=S (=) IS (1Y R ds A Adz Ao Ad
Z( ) Z( ) 2w, x4 z; Zn+1

n+1 J 1 n+l .
z ( Z aszk) dzy N+ A dzj N+ Ndzpy1

n+1
= Z( 1) —dz1 Ao Ndzj A Ndzpgpr = a2).

That the restriction of a to M* is holomorphic can be seen by evaluating
the form a on the n-fold exterior power of the tangent space. O

3. Proper holomorphic mappings from M into C".

Consider the projection pr : C**! — C” defined by
pr(z1, s Zn41) = (21,7, Zn)-

The restriction F' := pr|y of pr to M gives a proper holomorphic mapping
of degree 2 from M onto B.. Let W be the branching locus of F' and V
the image of W under F. Denote by ¢ and v the two local inverses of F'
defined for z = (21, --,2n) € B, \ V by

p(2) = (ziVz 0 2)
P(2) = (z,—ivz 0 2).

LEMMA 3.1. — Ifp:=(p1, ", ¢n+1) and ¢ := (Y1, -, Yn41) are
the local inverses of F' defined on B, \ V, then

(3.1) o*(a) = \l;i( D)z A - A don
(3.2) ¥* (@) = = (C1)rdz A - A day.

—l\/zez
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Proof. — The pull back of a under ¢ is

n+1 (_l)j_l

dwy A+ Adwj A+ A dwn

~ (-1 = (="
=Y dz1A -+ Adzj Adzp Adwn i1+ dziA -+ Adzp.
= wj Wn+1

Butfor1<j<n
(-1 -
dzi Ao ANdz; A+ Ndzp A dpnir

J

(—1)i-1 — "L
=-—"—dzy A ANdz; N\ Nd2zy, N | — d
Zj “1 % #n ( ;wnﬂ Zk)

(-1 ~
= dzy Ao Ndz; A+ Ndzp ANdz;
n+1
(~1)p+nd
- Wn+1
_ (_1)ndz1 A Ndzp

Wn+1

dzy A+ Ndzj A+ Adzg

Thus

o*(a) = (ﬂ + (=" n >dzl/\'~/\dzn

Wn+1 Wn+1
1+n
Wn41
1+n

= s Ve A Az,

Similarily one has that

P (@) =

Il

(=D)"dzy A=+ ANdzp

14+n

____._|nd2]/\.../\dz.
—‘Z'\/Z..Z( )
D

If Py~ denotes the Bergman projection of M* with respect to the
volume form a(z) A a(z), and if P, denotes the Bergman projection of B.,
then we have the following transformation rule

LeEMMA 3.2. — Ifp:= (1, ,Pn+1) and ¥ = (Y1, -+, Pn41) are
the local inverses of F' defined locally on B, \ V, then
Py+(znt1(h o F))(2) = zn+1((Ps.h) 0 F)(z)
for all h € L?(B,), where V is the image of the branching locus of F.
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Proof. — First observe that the lemma holds for all holomorphic
functions h € L?(B.). Indeed, by virtue of Lemma 3.1 we have that

| Jensa(ho F)@)Paz) A2
— [ lGn(io )EPa() A
M \W
— [ lenn(@h()Pe @) A ¢ @w)
B.\V
[ Wonsa@)h(@) P (@)(w) A ¥ @)(w)
B.\V
= 2(n+1)? / Ih(w)[2 dv(w) < +oo.
B.\V

Thus z,41(ho F)(2) € L2(M*, a(2) A a(2)).

Next let f € L2(M*, a(z) A a(z)) be a holomorphic function, and let
g be an element of the space C§°(B. \ V) of all C*-function with compact
support in B, \ V. Then

/ ()2 ( %9 oF) (2)alz )AW

5. Pnr1(0) awj sl By
so that by integration by parts we obtain that

B\ﬂ(ln+l(%oF)> =0, for all j=1,---,n
J

Since the space
— 99 . 00
’H._{a y 19 €C; (IB*\V)}

is dense in the orthogonal complement in L?(B,) of the subspace LZ(B.)
of all square integrable holomorphic functions on B,, the lemma follows. [J

LEMMA 3.3. — If ¢ and % are as before, then
o erKe. (F(2).0) = (n 4 1)’ [KM* (z:0w)) | Ku- (z@(w))} ,
Pn+1(w) VYnt1(w)
z € M*,w € B,.

Proof. — Let w € B, \ V and let » > 0 be chosen so small that
w+rA™ C B, \ V, where A is the unit disc in C. By Remark 6.1.4 in [JP],
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there is a C*°-function u : C™ — [0, +00) with compact support in w+rA™
such that

PB*'U, = KB* (,’U))
By virtue of Lemma 3.2 we see that for z € M*,

zn+1K8, (F(2),w) = 2n+1(Pp.u)(F(2)) = Pus (2n+1(u o F)(2))

- /M 10 F)(Q) Kiv (20) (¢) A a(0)

i [ [Eue@) | K om)]
=n+1) -/B. (71)[ Pn+1(n) " Ynt1(n) Jd(n)

— (n+1)? (KM. (z.0(w)) | K (z,w(w))) |

Ony1(w) Yny1(w)

and the lemma is proved. O

4. Proof of the main result.

Proof of the theorem. — For z,w € B, \ V, set

si=1-<z,w>, t:=ppt1(2)pnt1(w)
r:=<z,w>+t and y:=<z,w> —t.

Then using the notations in the main theorem we have X = s and Y = ¢2.
By Lemma 2.1 we see that for some positive constant C' we have

R (e o) =© (= = )

so that by Lemma 3.3 we obtain that

Kp, (2,w) =4C(n + 1)2%3—5(2, where

2n n+1

flu) = (I —u)nt1 - 1—u)n
On the other hand,

f@—fy) _ s+ —(s—t)"" n+1(s+)"—(s—t)"
s—y t(s? —t2)nt! 2 t(s2 —t2)r
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and
(s+t)"t = (s =)™t (s+t)nt! —snt! G t)tt — gntl
t B t —t
+1
=n (n+1)sn+l—1t]—l
=1 J
n+1
+ (n+1)sn+1—3( t)]—l
—~\ j
]_
n+1
_ (n+1) nH=j [l ()i
—~\ j
]-—
n
= Z (: + i)s""“[t’c + (—t)¥)
per L
ki n+1
=23 (1) "
k=0 +
Similarily we have that
[z
s+ —(s—=8)" _, - ( n )sn—l-2kt2k.
t P 2k+1

Therefore,

2] (n+1y\ ,_
f@) - fly) ko (2k+1)s 2ok

z—y (s2 — 2)n+
Ek":T_O‘] ( n )sn—1—2kt2k
i+ 1) 2k +1
(32 _ t2)"’
n n—2k/n+1
But (2k+1) Tt (2k+1)' Thus
(2] (n+1\ nok,2k
f@) = fy) _ "2k (gp 3 1)
T—y (32 _t2)n+1
(2, n+1\ 1 okok2 2
St (n—2k) (g s - 1)
- (52 — ¢2)n+1
(3] ( n+1 )Sn—1—2kt2k[2ns — (n— 2k)(s? — t2)]
F=0\2k+1

(32 _ t2)n+1
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It follows that

K]B* (Zv w)

(2 (n+1\ pno1okyk —n — 2 _
5l (2k+ l)X Y*[2nX — (n — 2k)(X2 — V)]
(Xz _ Y)n+1 !

where X and Y are as in the statement of the theorem. To compute the
constant we use the formula

=4C(n+1)?

1= [ Kg,(0,w)dV(w).
]B*
O
5. Applications.
THEOREM 5.1. — Let D C C™ be a pseudoconvex domain with

C?-boundary and let f : D — B, be a proper holomorphic mapping. Then
Af C V(f) where

A=Af:={2€D: f(z)e f(z) =0}, V(f) :={z € D:det f'(z) =0}

Proof. — Observe that A is an analytic subset of D. Assume that
there exists a point a € A with det f'(a) # 0. To get a contradiction it
suffices to show that:

if 22 € A,2¥ — 2° € 0D, then det f'(2") — 0.

We choose a ball B(z%,5) , 0 < n < 1 so that n(n+2) > n+1,
and a defining function 7 of D N B(2%s) such that 7 = —(—r)" is
plurisubharmonic on D N B(z%, s); this can be achieved using a result of
Diederich-Fornaess [DF]. Moreover, we may assume that f(z*) — w® €
H N dB., where H:= {¢ € C": (e { = 0}.

Assuming that f is a mapping with multiplicity m, we know by
Pinchuk [Pi2] that
mKp(z,2) 2 | det f'(2)|*Ks. (f(2), f(2)), 2 € D.

It is well known that Kp(z,2) < Cidist (z,0D)~(»t1) 2 € D. Hence we
get

|det f'(2)[* < Cz (Ka. (f(2), £())) ™" dist (z,0D)~"+1).



THE BERGMAN KERNEL OF THE MINIMAL BALL 925

Now we apply the theorem to obtain that
|det f(2")|? < C3(1 — |f(2*)*)"*?/dist (z,0D)"*!, v >> 1.
Fix s’ < s and define on D the following function:

v(z) = {max{F(z), |2 — 2P = s”}if 2 € DN B, ),
|z — 202 — &%, if z€ D\ B(2%, ).

It is clear that v is plurisubharmonic on D and that v(z) = 7(z) for

z€ DN B(2% "), 0 < 8" < &' sufficiently small.

For w € B, we put p(w) := max{v(z) : 2z € D,f(z) = w}.
Obviously, p is plurisubharmonic on B,. In particular, for v >> 1 we have
p(f(2")) = v(2") =7(2").

Exploiting that B, is balanced and the Hopf-Lemma on HN B, leads

to the following estimate: p(f(z")) < Cu(|f(z¥)|? = 1), v >> 1; C4 > 0
independent of 2. Therefore

[det f/(2*)|? < Cs(—r(2*))""*2) /dist (z¥,0D)"*! — 0, if v — oo,

which leads to that contradiction we mentioned at the beginning of the
proof. O

COROLLARY 5.2. — There are no unbranched proper holomorphic
mappings from D onto B, for any bounded pseudoconvex domain with a
C?- boundary; in particular, such a D is never biholomorphically equivalent
to B.,.

Moreover, if D is assumed to be strongly pseudoconvex we get even
more:

THEOREM 5.3. — Let D C C™ be a strongly pseudoconvex domain
with C%-boundary. If f : D — B, is a proper holomorphic mapping, then
A=V(f).

Proof. — Assume the inclusion V(f) C A is not correct. Then, by
the maximum principle, there is a sequence z* € V(f), 2¥ — 2° € 4D
such that |f(2”) e f(2¥)| > C > 0. Without loss of generality we assume
that f(z*) — w®. Since |w® @ w®| > 0 we conclude that w® is a strongly
pseudoconvex boundary point of B,. By Theorem 3 of [Ber| there is a
neighborhood U = U(2°) such that f extends to a continuous mapping on
U N D. Then using Theorem 3’ of [Pil] we obtain that f € C*(D N U).
Finally using Theorem 1 of [Pi2] we finally get the contradiction to the fact
that 20 € V(f). O
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We recall that a bounded domain 2 is said to satisfy condition (Q)
if the Bergman projection of Q maps C$°(£2) into the space O() of all
holomorphic functions on a neighborhood of Q. It was proved recently in
[Th] that Q satisfies condition @ is if and only if that for every compact
subset L of €2, there is an open neighborhood U = U(L) of Q such that
the Bergman kernel Kq(z,w) of  extends to be holomorphic on U as a
function of z for each w € L, and Kq, is continuous on U x L.

LEMMA 5.4. — The ball B, satisfies condition (Q).

Proof. — For z,w € B,, we have
(1- < z,w >)% - (zoz)(wow)’ >1-<z,w> |2 —|zez||wew

> (1= |ellw])? — |z  2[[w o ]

> (1 [ellul - Ve zlyToewl)
> (1 VEPF e alv/P  wewl)

where the last inequality holds because of Cauchy-Schwarz’s inequality.
Therefore for some positive constant C we have

|KB. (2, w)| < ¢ an7a> for all z,w € B,.

(1 —V0zP+ |z ez|\/lw|?+ |we w|)
This shows that B, satisfies condition (Q). O

THEOREM 5.5. — Let D C C™ be an arbitrary bounded circular
domain which contains the origin.

(1) If f : B« — D is a proper holomorphic mapping, then f extends
holomorphically to a neighborhood of B,.

(2) If D is smooth then there is no proper holomorphic mapping from B,
into D.

Proof. — Since, by Lemma 5.4, B, satisfies condition @, part (1) of
the theorem becomes a consequence of Theorem 2 of [Bel]. To see that
part (2) of theorem holds, it is enough to notice that if there is proper
holomorphic mapping f : B, — D, and if p is a defining function of D,
then po f is a defining function for B,, which will imply that B, is smooth
and thus leads to a contradiction. d

THEOREM 5.6. — Let L be a compact subset of B, and let (
be a boundary point of B.. Then every holomorphic function f in a
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neighborhood of L is the uniform limit of functions in the complex span of
the functions 5

WKB,(-,C), BEeNG.

Proof. — Since B, is a Runge domain and satisfies condition (Q) the
proposition follows from Theorem 2.5 of [Th]. O
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