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BERNSTEIN CLASSES

by N. ROYTWARF and Y. YOMDIN

1. INTRODUCTION

Let f^ C C be a bounded domain, K C f^ - a compact, and let / be
analytic in ^ and continuous on Q.

We call the ratio

B(/,^)=m_ax|/|/max|/|
f2 K

the Bernstein constant of / on (K^ f2).

This definition is motivated by one of the classical Bernstein's in-
equalities: let p(x) be a polynomial of degree d. Then

max \p(x)\ ^^maxk)(a;)|,
xeEp [—1,1]

where Ep C C is the ellipse with the focuses at —1,1 and the semiaxes R.
In other words, B(P, [-1,1], ER) ̂  7^. ([3]).

A kind of an inversion of this result is true: it is well-known, that the
number of zeros of / on K C Q is bounded from above by 7 log B(/, JC, f^),
where 7 depends only on the couple K C n. (See 2.2 below.) This fact has
been intensively used in transcendental number theory, in particular in the
estimates of the number of zeros of exponential sums. (See [48], where also
some survey of a vast literature on the subject is given.)

Bounding the number of zeroes of certain analytic functions is also
one of the central questions in a vast field of investigations around the

This research was partially supported by the Israel Science Foundation, Grant No.
101/95-1 and by the Minerva Foundation.
Key words: Bernstein inequality - Algebraic functions - Taylor coefficients.
Math. classification: 14H99 - 30C55 - 30B10 - 34A20 - 34A25 - 34C15.



826 N. ROYTWARF & Y. YOMDIN

second part of the Hubert's 16-th problem (which asks for the maximal
possible number of limit cycles in a system x = P(x,y), y = Q(x,y) on
the plane, with P and Q polynomials of degree d. See [I], [II], [13], [21],
[22], [27], [28], [30], [32], [36], [37], [40], [56].

Various approaches have been used to produce some partial infor-
mation on this problem: Khovanskii's theory of fewnomials and Pfaffian
functions ([33], [25]), Gabrielov's existence result for the bound on the
number of components of semianalytic families ([23], [20]), etc. Recently
Bernstein inequalities have been applied to an infinitesimal version of the
above problem in [31], [32], [37] (see also [38]).

Besides bounding the number of zeroes, recently some other impor-
tant applications for the Bernstein-type inequality have been found, in par-
ticular, in PDE's ([16], [17], [18], [19]), in Dynamical Systems ([50], [51],
[52], [53]) and in Potential Theory ([5], [6], [46]).

The main purpose of the present paper is to show that the Bernstein
constant can be a convenient tool in the analysis of much wider classes
of functions, then those treated traditionally. We present several natural
such classes for which the Bernstein constant can be effectively estimated.
Roughly, the following classes are considered:

1. Algebraic functions.
2. Solutions of algebraic differential equations.
3. Functions, whose Taylor coefficients satisfy "Lipschitzian" recur-

rency relations.
4. Functions, whose Taylor coefficients are polynomials or rational

functions in the parameters of the problem.

Notice that functions of classes 1 and 2, as well as most of the
functions, naturally appearing in analysis, belong to both the classes 3
and 4.

In this paper we show in detail, how to bound Bernstein constant for
functions in classes 1, 2, 3, and describe shortly a situation for the class 4.
The complete proofs for the class 4 are given in [21], [7], [8]. An alternative
approach to the classes 1 and 2, which sometimes produces sharper results,
is given in [7].

The following main results are obtained:

1. A stronger version of the Fefferman-Narasimhan inequality for alge-
braic functions ([16], [17], [18], [19]) is obtained. In particular, this answers
a question, posed in [17].
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2. A similar inequality is obtained for much larger classes of functions
(classes 2 and 3 above). Notice however, that these results, being quite
general, are not very sharp. A much sharper inequality, which is a direct
generalization of Fefferman-Narasimhan's one to the solutions of first order
algebraic differential equations, is obtained in [7].

3. A stronger version of the result of [5] is obtained.

We would like this paper to also be a kind of a survey of some new
approaches to bounding the Bernstein constant, so we discuss without proof
some results of [7], [8], [21], [41], [45] and [53], [55].

Since the paper is rather long, let us present now its content in more
detail.

We restrict ourselves in this paper almost completely to the special
case of (K^) == (VR-^^R^) - the couple of disks of radii -Ri, R^^
respectively, centered at 0 € C.

Part 2 is devoted to general properties of the Bernstein Classes. In
2.1 two types of Bernstein classes, B1 and B2, are defined. B1 consists
of functions with the uniformly bounded Bernstein constant. B2 consists
of functions, whose Taylor coefficients, starting from d + 1, are uniformly
bounded through the first d Taylor coefficients. We prove that these two
types of classes essentially coincide.

In Section 2.2 we state a bound on the number of zeros of functions in
2?1, mentioned above, and then, prove a corresponding bound for functions
in B2 using an equivalence of B1 and £?2, established in 2.1.

Finally, in Section 2.3 we prove, using some classical results on p-
valent functions, that both the properties above are essentially equivalent
to the following property of /: for any c G C, the number of solutions of
/ = c in the disk is uniformly bounded.

Part 3 is devoted to algebraic functions. Recently Bernstein-type in-
equalities for algebraic functions found applications in differential equations
(see [16]-[19]), in potential theory ([5], [6], [46]) and in dynamical systems
([50] [53]). In particular, Fefferman and Narasimhan ([16], [17], [18], [19])
proved Bernstein-type inequalities for restrictions of real polynomials to
real algebraic manifolds. L. Bos, N. Levenberg, P. Milman and B.A. Taylor
in [5] gave a characterization of algebraic sets in terms of Bernstein and
Markov-type inequalities for restrictions of polynomials to these sets.
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The constants in the inequalities in [16], [17], [18], [5] depend on the
"measure of nondegeneracy" of the algebraic manifold at the origin (and,
of course, on the degrees of the polynomials involved). We prove in Section
3.3 a stronger version of these results: the Bernstein inequality is true
for algebraic functions in the maximal disk of their regularity, with the
constants, depending on the degree only. (Below we call such an inequality
a "structural" one.)

The proof is based on the equivalence of the Bernstein bound and
the bound on the number of solutions of / == c, combined with the Bezout
theorem.

In Section 3.4, the result of 3.3 is extended to algebraic functions in
several variables, providing in particular stronger versions of the results
from [5], [16], [17], [18].

However, in most of the applications we have in mind, the situation is
quite opposite to that of algebraic functions: we want to bound the number
of solutions of / = c by bounding the Bernstein constant B(/), and not
vice-versa.

Considering algebraic functions as a model example, we discuss in
3.5 some alternative approaches, which allow one to bound the Bernstein
constant without knowing the bound on the number of zeros.

In part 4 solutions of analytic differential equations are considered.
Usually in this situation one can produce a differential inequality, which
helps to compare the values of the function on two sets, one smaller and
one bigger. This approach is classical (see [34], [29]), and recently it was
further developed in [31], [32], [37]. In contrast to the method applied in
[31], where only the number of zeros is bounded for equations of higher
orders, we use the equivalence of the classes B1 and B2 and thus bound
Bernstein constant directly for solutions of equations of any order. We also
extend the results of [31], [32], [37], obtained for linear equations to the
non-linear ones.

In part 5 a somewhat "dual" situation is considered. We discuss func-
tions, whose Taylor coefficients satisfy "Lipschitzian" recurrency relations.
Using the equivalence of the classes B1 and B2 also here we obtain explicit
bounds on Bernstein constants.

In part 6 we discuss shortly the approach, developed in [21] [22],
00

[7], [8]. We deal here with families f\(x) = £ (^(A).^ of analytic
_ k^^u

functions, whose Taylor coefficients Ofc(A) are polynomials in A. Following
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the pioneering work of Bautin [2], we relate the structure of the ideals,
generated by afc(A) in the ring of polynomials in A, with the analytic
properties of jf\, in particular, with the property of f\ to belong to the
Bernstein classes B2 and B1.

It is important to notice that most of the functions we want to inves-
tigate, can be treated by any one of the above approaches. In particular,
this is true for algebraic functions, and each of the results of parts 4, 5
and 6 produces a Bernstein inequality for algebraic functions. However,
the constants in each of these inequalities depend not only on the degree,
but also on the "size" of the data.

We consider a question of obtaining Bernstein-type inequalities with
the constants, depending on the degree only, for solutions of algebraic
differential equations as a very important one. At present (except for the
case of algebraic functions) we have only very partial results in this direction
(see [8], [41], [43]).

The authors would like to thank J.-P. Fran^oise, A. Gabrielov,
M. Gromov, Yu. IPyashenko, I. Laine, P. Milman, R. Narasimhan, S.
Yakovenko and many others for inspiring discussions.

In particular, the idea of the first proof of the existence of a Bernstein-
type inequality for algebraic functions, with the constant depending only
on the degree, was suggested to us by M. Gromov (see [45] and Section 3.5
below). A possibility of "inverting" the bound on the number of zeroes and
combining it with the Bezout theorem for algebraic functions (which is used
in Section 3.3 below) was proposed to us by P. Milman and S. Yakovenko.

In conclusion, we would like to thank the referee for correcting a
mistake in the initial version of the paper, which allowed for a serious
improvement of the results and presentation.

2. BERNSTEIN CLASSES - B1 AND B2

Let T>R denote, as above, the closed disk of radius R > 0, centered at
0 € C. In this paper we mostly restrict ourselves to the Bernstein classes
with respect to a couple of such disks.

2.1. Definition of B1, B2 and their equivalence.

DEFINITION 2.1.1. — Let J? > 0, 0 < a < 1 and K > 0 be given and
let f be holomorphic in a neighbourhood of DR. We say that f belongs to
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the Bernstein class B\^^ if max|/|/max|/| ^ K for, in other words, if
' ' ^R v^p

B{f,aDR^R)^K).

DEFINITION 2.1.2. — Let a natural N, R > 0 and c > 0 be given,
00

and let f(z) = Yj a^ be an analytic function in a neighbourhood of
0 e C. We say that f belongs to the Bernstein class B^ ^ ^ if for any
j > N , \aj\R^c max a^R1.

z=0,---,N

The following theorem shows that the classes B1 and B2, essentially
coincide:

THEOREM 2.1.3. — Let f € B2^ ̂ . Then f is analytic in an open disk

Vp, and for any R' < Randa < 1 andK = — (l + a(>~a ^ + -c(3-\
a^ \ I—a 1 — p )

where f3 == R1/R^ f belongs to B^, ̂  ^.

Conversely, if / belongs to Bp^^ ^, then it belongs to B^ ^^ with
N = [(log K - log(l - a) + I)/ log(l/a)], c = 3J<7(1 - a)2. In particular,
for a = 1 N = [log K + 2] and c = 12K.

Proof. — For / e B^j^^ the convergence of f(x) = Y^aiX'1 in-
' ' 1=0

side T>p is immediate. Let m = max|/|. Then by the Cauchy formula,
^c^R'

\ai\ ^ m/(aR1)'1' for any z. In particular, for i = 0 ,"- ,7V, [a^R1 ^
m/a^R'/PY ^ m / a N ( R / / R ) N . Hence for any j^ N + 1,

\a,\R3 ^cm/a^^^R'lR^ .

Now we can bound |/| on T>pi as follows:

N oo

igax|/|^H^+ ^ \a,\R^
R/ i=0 J'=N+1

N y -. M 00

^E (-ory) Ri + (^/^(P'/R^) E ^R'/Ry
i=o v / j=N+i

1 1-a^1 cm f3
-^ JY) . ——— __________ 4- ___ '

Q^ 1-a a^ 1 - / 3
_ m 0(1-^) c/3
~ ^(1+ 1-a + T"^^ ^ = J R / J R •
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Remark. — One can show that K above can be chosen also as
1 / ca/3 c/3 \

~~N [ ' 1———Q ~^ 1——o )' wmcil m some cases gives a better estimate.
Oi \ ± — Oif3 1. — fJ /

To prove an opposite inclusion, assume that / € B^ ^ ^. We want to
prove, that / € B^ ^ ̂  with the same J?, and with N and c as given in the
statement of the theorem.

00

Let / = ^aiX\ Let us fix some natural N. Denote by a the
1=0

max {\ai\R^}.FoTPN(x)= f>^ , we have: max|P^(.z-)| ^ af^(aR/RY
z=0,--',N ^o -D^R i^Q

FT oo

^ -,——. Denote by a the mox\R(x)\, where R{x) = S cnx1. Then
i — Oi 'DaR i=N-{-l

max I / I ^ a+-——, and since / e B\ ̂  ^, we get max |/| < K(a-^- ).
VaR 1 — OL ' ' T)R \ 1 — Oi)

By the Cauchy inequality, we obtain now

(*) [aj\Rj^K(a+ —°—}^ for any j.
\ 1-a/

This inequality would give us the required bound on \dj\R3, would
we know a. So let us continue as follows:

00 ^ v 00

a^max ^ a^ ^ x ( a + ——— ) ^ (aR/R)1

voiR j=N+l \ l- a /^^+l

(**) / a \ a^1

= K [a + ,—— • -—— , or
\ 1 — a j I—a

/ Ka^^ aa^
a 1 - -——— <

V 1-a j - (l-a)2-

Ka1^'^1 1Let us fix N in such a way, that ———— < -; it is enough to take
N = [(log K - log(l - a) + l)/log(l/a)], where logarithm is taken with
the basis 2. In particular, for a = 1/2 we have N = [log K + 2]. This is
the choice, given in the statement of the theorem.

For this specific TV, (**) gives

2aa7v+l 2a
a€ -———r^ ^(1-a)2 " (1-a)2 '

Now we return to (*) and obtain \aAR3 ^ Ka -———— < ————
(1 — a)2 (1 — a)2

for any j. This completes the proof of Theorem 2.1.3.
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The equivalence of the classes B1 and B2, established by Theorem
2.1.3, allows one to combine different techniques in investigating functions
in Bernstein classes. In particular, if a function satisfies a certain first order
homogeneous differential equation, one can usually compare its values on a
smaller and a bigger disks, using a corresponding differential inequality. In
this case the classes B1 are appropriate. On the other hand, if the Taylor
coefficients of a certain function satisfy "Lipschitzian" recurrency relations,
this function can be shown to belong to some of the I^-classes.

The following simple proposition compares the Taylor polynomial
(of an appropriate degree) and the remainder term for functions in the
Bernstein classes. Here, clearly, the B2 classes are appropriate.

N
PROPOSITION 2.1.4. — Let f € B^ ̂ , and let P(x} = ^azX'1 be

' ' 1=0
00

the N-th order Taylor polynomial of f, and R(x) = ^ ajx3 - the
j=N+l

corresponding remainder term. Let \\P\\R = max 1^1^. Then for any
i=0,---,N
cQ^1

R' < R and /? = R ' / R ^ max|^)| < \\P\\R • ———.
v^ 1 - /3

Proof. — By the definition of the class B2, for any j ̂  7V+1, \dj \R3 ^
c||P||i?. Hence for any x € T>R' ,

00 rl/^+l

TO^IIPh E <-?W=11^' ———•1 - ( 3J=N+1

In this paper we usually do not consider more complicated domains,
than concentric disks. However, in the next proposition we replace the
inner disk by the real segment. This proposition is used in Sections 3.3
- 3.4 below, to obtain real versions of Bernstein inequalities in one and
several variables.

Let R > r > 0 be given. Consider Ir C "Dp, Ir = [-r,r]. Let /
0

be a function, analytic in T>p and continuous on VR. Assume that for
any a < 1, / € B\^^.y with K{a) = K^l/a)1^. (This assumption
is motivated by the form of the constant K in Theorem 2.1.3. See also
Remark 2 below.)

PROPOSITION 2.1.5. — Let /, R, r, K\ be as above. Then the
Bernstein constant B^f^I^Vp) does not exceed K^R/r^^, with K =
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^[p - -),P = Wr + ^/(R/r)2 - I) 1 / 2 . In particular, for r = 1 R,

B^I^W^K2^.

Proof. — It will be convenient to rescale the domain in such a way
that r' = 1, W = R / r , and to assume that max |/| = 1.

ii

We apply a transformation x = -0(w) = - (w + — ) and consider
2 V w/

g{w) = /(^(w)). ^ transfsorms any circle Sp of radius p in the w-plane

into the ellipse Ep with the focuses -1, 1 and the semiaxes - ( p + -) and
2i \ p /

=h- ( p — - ) . In particular, the unit circle 5i is transformed to the interval2 \ p /
h'

Define p^ by the equation

1) 1̂ * + -^) = Rf^ or ^* = Rl + ̂ /2 - 1-z \ P*/

The ellipse Ep^ is the maximal one, contained in VR'. Now let
1 ley

p = /v . Consider the following three concentric circles in the w-plane:
5i, Sp and 5p2. By assumptions for g{w) = /('0(w)), max |^(w)| = I.

'̂ 'i
Denote max \g{w)\ by a. Since the ellipse i^(Sp) contains the disk of radius

Sp

K = 2^ ~ p) 5 l/l/p" ^ a- Now for ao = ^ I R t ' f e ^^^(l/ao)^ ^

assumptions. Hence max|/| ^ ^(l/ao)^ • a (*).
^H'

Since the ellipse '0(p2) = Ep^ is contained in VR', we conclude that
max \g(w)\ ̂  K^R'l^a.

sp2

Now we apply Hadamard's inequality, which asserts, that the function
log max \g(w)\ is a convex function of log t. Since the maxima of \g(w)\

St
on S'i and Sp are 1 and a, and max \g{w)\ ^ K-t{Rf/K)Na, we get

Sp2

2 log a ^ log a + log J-Ci + 7Vlog(I?7^) or a ^ K ^ R ' / ^ . By (*) above
we conclude that max |/| (which is the Bernstein constant under question)

^R'

does not exceed K ^ { R ' / ' ̂ \ with R' = R/r and K = - ( p - ^-\ with

p=(R/r+^Wr)2~l^.

For R/r = _ we obtain B(/,J^/2,P^) ^ X^2^.
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Remark 1. — The bound above is not sharp. Using more accurate
computations, involving estimates of the Lorent coefficients of /(^(w))
through the majorizing series f(u + ^), one can improve it significantly.
In particular, K^ can be replaced by K\.

Remark 2. — Hadamard inequality, quoted above, produces the fol-
lowing general property of Bernstein constants: if we write £?(/, VaR^ ̂ n)
as aN (for an appropriate TV), then for any f3 > a,

BCf.P^.P^/^.

2.2. Zeros of functions in Bernstein classes.

The most important property of the functions in the Bernstein classes
is that they demonstrate "effectively - polynomial-like" behaviour. In other
words, for any property of polynomials one can expect that the functions
in 51, B2 will have this property, with a "correction term", uniformly
bounded in terms of the constants of the Bernstein class.

Many examples of such properties can be given. Proposition 2.1.4
above gives, probably, the simplest one: a "relative error" in an approxi-
mation of a function / € B]^ ^ ^ by its TV-th degree Taylor polynomial is
effectively bounded through TV, R and c. In this section we discuss one of
the most important results of this type - the bounds on the number of zeros
for functions in Bernstein classes.

These results are mostly well-known and appear in different forms in
various parts of the theory of analytic functions. In particular, as it has
been mentioned in the introduction, for any K C Q, K^ ^-compact,
the number of zeros in K of any /, analytic in f^ and continuous on f^, is
bounded by 7 log B(/, K, f^), with 7 depending only on K C ^2, (we remind
that the Bernstein constant B(/, K, fl.) is defined as max |/|/ max |/|). This

f2 K
inequality is closely related to the classical Jensen inequality. The proof of
one of its versions can be found in [31].

For the case f2 = Pj^, K = T>^n (to which we mostly restrict
ourselves in this paper), the most precise bound we are aware of, belongs
to Van der Poorten [48]:

LEMMA 2.2.1 ([48], Lemma 1, S = R). — Let f e B^^. Then the
number of zeros off on T>aR does not exceed log K/\og[{l + a2)/2a}.
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Now we want to prove a similar result for functions in B2. There
are several possible ways to do this. First, one can compare the N-th
order Taylor polynomial and the function itself, using Proposition 2.1.4.
Alternatively, one can use very similar results, obtained by Hayman [29].
However, both these approaches require introduction of some techniques,
which are not related to the rest of the paper. Instead we obtain the required
bound, combining the equivalence of B2 and B1, given by Theorem 2.1.3,
and Lemma 2.2.1. This way is, probably the simplest, technically, but the
bounds it produces are far from being sharp.

PROPOSITION 2.2.2. — Let f E ^j%c- Then for ^y RI < R the
number of zeros off in Pj^ does not exceed (*)

( (^\ 1 , ( 0(1-0^) C7 \\N • min log - + — log 1 + —————)- + ———a \ \o;/ N \ 1-a 1-7///M^my
where the minimum is taken for a varying between R\/R and 1 and
7 = R^/aR < 1.

Proof. — For any a, R ^ / R < a < 1, let R' = -Ri. Then by Theorema1 / o;n _ (^N\ \
2.1.3, / belongs to B^ ̂ , with K = -^ I 1 + \_^ + y—— ).

where 7 = R ' / R = R^/aR.

By Lemma 2.2.1, the number of zeroes of/on T>p^ = VaR' is bounded
by log K/\og[(l + a2)/2a\, which gives the expression (*).

Now substituting to (*) some special values of R^ and a, we get the
following bounds:

LEMMA 2.2.3. — Let f C B2^ ̂ . Put R^ = - R, R^= R/2 max(c, 2)
and Rs = J?/23Nmax(c,2). Then the number of zeroes off in Vp^ VR^
and VR^ does not exceed 5N + log5M(2 + c), 5N +10 and N , respectively.

Proof. — For R^ = -R put a = -. Then 7 = - and we get (remember
4 z z

that the logarithms are with the basis 2):

# { / = 0 on P^K^V(1+ ^ log(l+l+c))/log H

= ^-^^+log5/4(2+c)^57V+log5/4(2+c).
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For R-i = R/2 max(c, 2) we still put a = 1/2. Hence 7 = R^/aR =
o————;—^- = ——-,—-r. We get for the number of zeroes of f on Dp,2a max(c,2) max(c,2) •• "2

the bound
N(l+ jf log(2+2))/log 5/4 < 5^+10.

Finally, let Rs = fi/23jvmax(c,2). We put a = 1/2^ and hence
7 = I/ max(c, 2). For the number of zeroes of / on P^g we get the bound

N(3N+ — log(l+l+2)) /(3AT-l)

==N(1+^V(1-^)^N(1+^+^)
2 2

^ ^ + — — + _ < A ^ 4 - 1 (assuming N > 2).
0-/V o

But the number of zeroes is an integer, and hence it does not exceed N.
Lemma 2.2.3 is proved.

2.3. Local valency and Bernstein classes.

The following classical result can be found in [4], (see also [29]):
CO

THEOREM A. — Suppose that f(x) = ̂  a^^^ is p-valent in PR, i.e.
k=o

that f{z) is regular in VR and assumes no value more than p times there.
Then for j > p

(**) \aj\R3 ^(A/p)2^ max [a,\R\
i=l,---,p

with A - an absolute constant.

Clearly the inequality (**) is very similar to the definition of B2.
(One can define a finer scale of classes B2 using this inequality.) However,
chosing any R' < R, we get:

COROLLARY 2.3.1. — Let f be p-valent in PR. Then for any R' < R
the derivative f belongs to B2 ^ ,, with c = (A/p)2? max (R'/RY-Pj2^

' ' ' j>p+i
^ (A/p)2^ • [{2p+l)/e}2^1{R/Rf)P[l/£n(R/Rf)}2P+l.

Proof. — By (**),

^^-^(A/p)2^2^1 max |m,|^-1.
z=l,...,p
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Therefore for R' < R we get

837

\ja,\(R'y-\R/R'y-1 ̂  (A/pfPfP^WRr-1 • max I^K^)1-1, or
1=1,•••,p

I^K^^-^^/^-^A/p)2^2^1. max |m,|W-1.
1=1,•••,p

Now an easy computation of the max (R' /Ry~Pj2P~{~l completes the proof.
j>p+i

Clearly, if the derivative // belongs to B^_^^ then / + a e B^ ^ ^
for any constant a. Conversely, if / + a € B^ ^ ^ for any a, then
\aj\R3 ^ c juax \ai\R\ and hence the derivative // belongs to B^_^

on any smaller disk. (This statement can be easily generalized: f^ G B2

if and only if / + P.s-1 e B2 for any polynomial Ps-i of degree 5-1. Easy
examples show that / € B2 does not imply any conclusion about //.) Now
combining these remarks with Lemma 2.2.3 above we obtain the following
result:

THEOREM 2.3.2. — Iff isp-valent on PR, then f belongs to B2^ ^ ^
on any smaller disk Vp^ with c as given in corollary 2.3.1. Iff e B2^^ \,
then f is p-valent on V^, with Rs as denned in Lemma 2.2.3.

In the rest of this paper the usual approach will be to prove that
a certain function belongs to the Bernstein classes, in order to bound the
number of its zeroes. However, for an important class of algebraic functions
the number of zeroes is bounded by Bezout theorem, and the equivalence
above can be used in an opposite direction. This will be done in the next
section.

3. BERNSTEIN TYPE INEQUALITIES
FOR ALGEBRAIC FUNCTIONS

A problem of computing Bernstein constant of algebraic functions has
recently appeared in several quite different situations.

In [16], [19] this problem is investigated in relation with estimates of
a symbol of some pseudodifferential operators. In [5] this problem is con-
nected with some results in Potential Theory and with a characterization of
algebraic subsets. In [50], [51] and [52] various forms of Bernstein inequal-
ity are used to prove results on a "C^-reparametrization" of semialgebraic
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sets, which, in turn allow one to control the complexity growth in iterations
of smooth mappings. It was exactly the absence of the Bernstein inequal-
ity for algebraic functions, which restricted the results of [52] to one and
two-dimensional dynamics only.

Let us consider first of all some special cases and examples of the
problem, which will clarify a possible statement of a general result.

3.1. Some examples.

In general, by algebraic functions we shall understand restrictions of
polynomials to algebraic subsets in C71, (see 3.2 and 3.3 below). For one
variable an algebraic function y = ̂ (x) can be equivalently defined as a
(multivalued) function, satisfying an equation P{x,y) = P{x,^(x}) = 0,
with P - a polynomial in x and y. It is convenient to write this equation in
a form

(3.1) PdWy^pd-iWy^ + • • • -^Pi(x)y-^po(x) = 0,

with pj(x) - polynomials in x of degree m.

For d == 1 and pi(x) = 1 we obtain polynomials y = —po(x) of degree
m. As it was shown below, the classical Bernstein inequalities imply that for
any R and a < 1, these polynomials belong to B\ ̂  /i/^m and to B2^ ^ ^.

If pi (a-) ^ 1, we obtain rational functions y = -po{x)/p-^(x) with the
numerator and the denominator of the degree at most m.

Let us assume that 0 e C is not a pole of y and that the nearest pole
is at the distance R > 0 from the origin. Then for any Rf < R and a < 1
we can ask for the Bernstein constant of y on (VaR') c T^R')'

PROPOSITION 3.1.1. — y = p(x)/q(x), with deg p, deg q ^ m, and
the nearest pole at the distance R > 0 from the origin, for any R' < R and

[ D I D / "|m
a <1 belongs to B^^ with K= _ .

Proof. — We can assume that q(x) = H (x - ̂ ), with |^| ^ R for
i = 1, • • • , m. Hence for any i = 1, • • • , m, max \x - ̂ |/ min \x - ̂ | ^

^R' ^Rl

_——_,- and hence m8LX\q(x)\/mm\q(x)\ ^ ( R + R / } ' Since for any
-rt — -n u^i T>^i \r(, — ri /
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a < 1, p(x) e Bj^d/^, we get y = pw e B^,^ with

,.f_R±_R_r
LQ(^-^)J •

By equivalence of the Bernstein classes B1 and B2 we can now find
T)( T i

the parameters of the class B2, to which y = —-— belongs, but a general
q(x)

result in Section 3.3 below gives a sharper bound.

Notice, that the constant in the Bernstein inequality for rational
functions, obtained in Proposition 3.1.1, depends only on the degree m
and on the relative position of the two disks DR' and V^R' in the maximal
disk of regularity PR.

Now let us return to an algebraic function, given by equation (3.1)
and rewrite it as

(3.2) ^ + Rd-i^y^ + • • • + R^x)y + Ro{x) = 0,

where Ri(x) = pi{x)/pd(x} is a rational function of degree m, i =
d — 1, • • • , 0. Assume that the closest to the origin pole of Rz{x) is at the
distance R > 0 from the origin.

PROPOSITION 3.1.2. — Let R' < R and a < 1 be given. If each of
the branches yj(x) of the function y(x} satisfies over T>aRi an inequality
\Vj(x)\ ^ M, j = 1, • • • , d then \yj(x)\ ^ CM over "Dpi, j = 1, • • • , d, with
C depending only on the degrees d and m and on R' and a.

Proof. — By Vieta formula we conclude that Ri{x) are bounded on
T>aR1 in terms of M and d. Applying Proposition 3.1.2 we get a bound on
Ri over PR/ which provides the required bound for the roots yj.

Notice, that in this proposition y may have branching points inside
the disks D^i or 'D^i.

The results of Propositions 3.1.1 and 3.1.2 determine the form of the
inequality we would like to have: (below we call such inequalities "structural
ones").

a) It must concern one branch of an algebraic function, without assum-
ing any information about the behaviour of other branches.

b) It must be valid in a maximal disk of regularity of this branch.
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c) The constant in this inequality must depend only on the degree of
the algebraic function considered, and on the relative position of the couple
of domains inside the disk of regularity.

We prove such an inequality in Section 3.3 below. Let us now give
an example, showing that in the case of one branch the Bernstein constant
can blow up, as we approach a ramification point.

Example 3.1.3. — Consider a family of algebraic functions yx^R^x)^
defined by a quadratic equation

(3.3) 2/2 + 2X(x - R)y - X = 0.

We have yx,p = \(R - x) ± y/A2^ - R)2 + A. Let us fix R > 0 and
consider the branch 2/1 of y\,p, defined by

2/i = \(R - x)(l - ̂ l+l/\(x-R)2),

with the square root taking the value 1 at 1. 2/1 has the following properties:

a) It is regular on PR for A > 0. Indeed the ramification points of y are
given by \2(x-R)2+\ = 0, or x-R = \/-1/A, or x^^ = R±i\^l/~\. Notice
that these ramification points approach the boundary of T>R as A —> oo.

b) For any x inside P^, y\{x) tends to l/2{x—R) as A —^ oo. It follows
from 2/1 == X(R - x){l - 1 - l/2X{x - R)2 + o(l/A)).

In particular, 2/1 remains uniformly bounded by 1/(R — R') on any
disk PR/ with W < R, but for A big enough it can take arbitrarily big
values as x —>• R.

Remark 1. — The second branch 2/2 of y , given by 2/2 = A(J? — x){l +
^/l + l/\(x — -R)2), tends to oo for any x in PR. Otherwise Proposition
3.1.2 would imply a bound on the Bernstein constant on any disk, since
the coefficients of (3.3) have no poles.

Remark 2. — The equation (3.3) could be written in a form ey2 +
2(x — R)y — 1=0 , representing y as a family of second degree algebraic
functions, degenerating into y = l/2(x — R) for e = 0.

Remark 3. — Replacing x-R by (x-R^ in (3.3), we obtain a family,
tending to l/2(.r — 7?)771 and hence the growth of the Bernstein constant on
P^ of order 1/(R - R'^. Compare with Lemma 3.1.1 and Theorem 3.3.1
below.
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3.2. Results of Fefferman-Narasimhan
and Bos-Levenberg-Milman-Taylor.

Recently Bernstein and Markov-type inequalities for algebraic func-
tions have been investigated by C. Fefferman and R. Nara^simhan in [16],
[17], [18], [19], and by L. Bos, N. Levenberg, P. Milman and B.A. Taylor
in [5]. (See also [6], [46], [9] [10].) In this section we state and discuss these
results, and in the next one we prove, in particular, their refined versions.

Let Pi, • • • , P^., 1 < r ^ n - 1, be polynomials on V1 of degree at
most V. We assume that the coefficients of these polynomials have absolute
value at most C.

Let an algebraic variety V C V be defined by Pi = P ^ ' • • = P^ = 0.
We assume that 0 e V and that V is regular at 0 e R71. Moreover, we

assume that del ( —— (0) ) is in absolute value not smaller than
V9^ A^,^r

c> 0.

Let TT : V -^ r1-7' be the projection (^, • . • , Xn) -^ (^r+i, • • • , Xn).
From the assumption it follows that TT has a smooth local inverse TT~1 :
B(0, ̂ ) —^ V, defined on a ball B(0, <^) of a sufficiently small radius ^.

The following result is obtained in [17]:

THEOREM B (see [17], Theorem 2). — Let V, TT, n, c, C, V be as
above. There exist constants <^, C*, depending only on n, c, (7, V, such
that TT has a smooth inverse 7r~1 : B(0,6^) —^ V and such that ifP is a
polynomial of degree ^ V and F = P o 7r-1 on B(0, 6^), then the following
inequality holds: for any 6,0 < 26 < 6^,

(3.4) sup |F| ^ C, sup |F|.
B(0,2<5) B(0,<$)

The important point here is that C^ does not depend on 6 and on a
specific choice of the polynomial P. In applications, which are assumed in
[16], [17] (see [17], an introduction), the constants C and c (clearly, by a
normalization, only a ratio C^/c can be considered) can be assumed to be
known.

However, in applications to the complexity growth in dynamical
systems ([50], [52]) no information on C^/c is available. Fortunately, one
can show that in fact (3.4) is true in a maximal ball B(0,R) of regularity
of P o Tr"1, with C* depending only on n, V and 6 / R .
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Remark 1. — Bernstein inequality for P/V is obtained in [17] as a
consequence of the main extension theorem ([17], Theorem 1), which allows
one to extend P/V in a controllable way to the whole ball (as a rational
function). It seems to be an important question, whether such an extension
can be controlled by the degrees of the involved polynomials only.

Remark 2. — Clearly ^ above gives a lower bound for the radius of
the maximal ball of regularity of P o 7r~1 in terms of the degree and C^/c.
The following example shows that for a given C^ /c the actual radius of the
maximal ball of regularity can be arbitrarily big.

Let V C C2 begivenbyPi(a;,2/) = y2-{-2c(l - x)y + c == 0, P{x,y) =
y. The ramification points of the algebraic function y = —c(l — x) ±
^/^(l-x)2 -c are given by ^(l - x)2 - c = 0 or x = 1 ± ^/T/~c. Thus the
regularity domain of each branch of y grows to infinity as c —>• 0. Notice

or?
that here C = 1 and —1 (0,0) = c. Of course, the reason for c not to

°y
reflect the distance to the nearest critical point is that two branches of y
approach one another as c —> 0.

An accurate representation of the distance to the nearest singularity
for algebraic functions, and, more generally, for solutions of algebraic
differential equations, seems to be very important. Some results in this
direction are given in [8].

Remark 3. — The results of [16] and [17] are stated for a real case.
However, it is mentioned there, that the extension to a complex case can
be easily obtained. Compare also Proposition 2.1.5 above.

Let us turn now to the results of [5]. Let K be a smooth compact
m-dimensional submanifold of R71 without boundary. The following result
is obtained in [5]:

THEOREM C ([5], Main Theorem, parts 2, 3).

1. K is algebraic if and only if it satisfies a local tangential Markov
inequality with exponent one:

(3.5) \^Tp(x)\ ̂  M(deg p / e ) max |p|,
Kr}B{x,e)

for any x € K and all polynomials p. Here VT denotes any tangential
derivative along K and M is a constant, depending only on K.



BERNSTEIN CLASSES 843

2. The same is equivalent to the following global tangential Markov
inequality with exponent one:

(3.6) \^Tp(x)\ ̂  M'(deg p) max |p|,
K

for any polynomial p and any x € K, with M' depending only on K.

The character of dependence of M and M' on K (for K algebraic)
is not specified in the proof of this result. What is important, is the linear
dependence on the degree of p.

In this setting, as one can easily show, M(M') depends not only on the
degree of K but also on its geometry. The following examples demonstrate
this fact:

Example 3.2.1. — K = {x2^-y2 = e2}, p = (l/e)x. Then max \p\ = 1,
K

while the tangential derivative at the points (0, ±e) is 1/e.

Example 3.2.2. — K is the curve y = e3 /{x2 + f2), p = ( l / e )y .
Then max|p| = 1, but the tangential derivative of p on K is at least

- | -^ | = - . 2 £ ^ , and for x = ±e we get l/2e.e dx e (x2 4- e2)2

In the next sections we shall show that in fact K depends only on the
degree and on the "distance to complex singularities", which, in examples
above are at the points ±e and ±ie^ respectively.

In [5] it is shown that a tangential Markov inequality of exponent
1 is implied by the Bernstein inequality, with the constant, depending
exponentially on the degree of p. Accordingly, in Sections 3.3 - 3.4 we
will restrict ourselves to Bernstein inequalities only, but we shall analyze
the dependence of the constant on various parameters involved, including
the degree of p.

3.3. Structural Bernstein inequality for algebraic function.

By a structural Bernstein inequality for a certain class of functions,
defined by algebraic data (algebraic functions, solutions of algebraic differ-
ential equations, etc.) we understand an inequality bounding the Bernstein
constant of the function on a couple of concentric disks in terms of the
degree and the relative position of these concentric disks in the maximal
concentric disk of regularity only.
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As the example of a rational function (Proposition 3.1.1 above) shows,
in a sense, this is the best possible inequality one can expect.

Structural Bernstein inequalities exist only for specific families of
"algebraically defined" analytic functions. For example, the family y\ = e^
of the solutions of an algebraic differential equation

V' =^y

possesses no such an inequality. Indeed, for any R > 0, 1 > a >
0, B^.VaR^p) = e^-^^ depends on A and blows up as A tends
to oo.

On the other hand, the family of the solutions of

y' = \y\
given by y\,yo = .———— gives an example of two-parametric family of1 — 2/oA^
rational functions of degree 1, satisfying a structural Bernstein inequality.

We consider a problem of characterizing algebraic families with a
structural Bernstein inequality as a very important one. In this section
we prove that algebraic functions of a given degree form such a family. In
[8] some results for solutions of algebraic differential equations are given.
However, this problem seems to require a further serious investigation.

Let y(x) be an algebraic function, given by an equation (3.1):

pd^x^ +pd_i(^-1 + • . . -^-pi{x)y + po(x) = 0,

with pj(x) - polynomials in x of degree m. Let y{x} be one of the branches
of y and assume that y is regular over T>^. (We can assume that VR is a
maximal disk of regularity of y , so its boundary contains poles or branching
points of y).

THEOREM 3.3.1. — For any R' < R y e B^ ̂  ^ , with c =
C{m} • WR^t/CntR/R^^^ C{m) = (A/m)27"^ + IVe]277^1.

Proof. — First of all, y is m-valent in VR. Indeed, for any a € C,
the equation y = a is equivalent to pd^o^ + • • • +po(x) = 0, and the last
equation is a polynomial one of degree m.

Now by Corollary 2.3.1, for any R' < R^ the derivative /', and hence
/ itself, belongs to B^ ̂  ^ with

c = (A/m)^ • [(2m + l)/e}2rn^{R|R')rn[\/tn(R|R')}2m^

= C{m) ' (^/^^[l/^.R/.R')]27^1.
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COROLLARY 3.3.2. — For any R" < R, a < 1, y € B^,, ̂  ^
. , ,. 1 /, a(l -a7") c/? \ , /> 2 '̂ ' ' ,

wltA K = ^ (l+ -i-̂ - + d- '̂ WAere^ = ^^ and

9 Tf
c=C(mhTO[l/^7]2m+l, 7= -̂̂ 7.

D I Dff

Proof. — We put R' = ————, apply Theorem 3.3.1 to get
Zi

V e ̂ n R' c aln(1i ̂ en ^P^y Theorem 2.1.3 to get y e I?^// ^ j^.
Now let us fix certain a < 1 and let R" —> R. Writing 7 = 1 + 6,

D _ iDff / D i_ D// \ 2yn+l
with 6 = _——_ we have in 7 ~ 8 and hence c ~ C{m) [ _——__- )

-n 4~ -it \ -it — R )
/3 2R" R+R" 2R"

^T——ft = RTiV • R^IV = fl^^'^0^111

COROLLARY 3.3.3. — For R^ approaching R, y € JE?^// ^ ̂  with
^(m)/^^^2^2

~ a7^ ^P-R^j
Notice that Proposition 3.1.1 and Example 3.1.3 above bound K from

[ D l Dff 1 m

below by —————— . Thus an asymptotic behavior of the bound of
Oi[H — H )J

Corollary 3.3.3 as a —> 0, is a correct one. For a fixed a and R" —^ J?, there
D l 'D l f

is a gap between the powers m and 2m + 1 of _——_^ in the lower and
upper bounds.

As well as the asymptotic behaviour for m —>• oo is concerned, the
above expressions give K ~ C'771, with C depending on R" / R ^ which is a
correct bound, by the example 3.1.3.

3.4. Multidimensional structural Bernstein inequality
for algebraic functions.

Let V C Cn be an algebraic subset. Assume that 0 6 V, and that V
is regular of dimension i near the origin and that the algebraic mapping
TT : (V,0) —^ (C^,0) is given, which is locally invertible. Let us stress that
no specific representation of V as a set of zeroes of certain polynomials is
considered. The same concerns also the mapping TT.

Let 5(0, R) C C^ be the maximal ball of regularity of 7T~1. For each
polynomial P on C71 of degree N^ f = Po7r~1 is a regular algebraic function
onB{0,R).
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THEOREM 3.4.1. — For any R' < R and a < 1,

B(f,R',a)= max |/|/ max |/|
B(0,R') B(0,aR') '

1 ^ , a(l - a"1) , c/3 \ 2R'
^ ^ [l+ ——^- + Y-p) • where ^= R^ '

m = G(deg V, deg 7r) • N , and c is given in Corollary 3.3.2.

Proof. — Let max |/| be attained at a certain point z e B(Q,R').B^o^R')
Let L = [x - z, x e C} be a complex line, passing through the point z and
through the origin. The restriction f{x) = f / L is an algebraic function of
one variable. Instead of explicitly representing / by an equation of the form
(3.1) we notice that by a multidimensional Bezout theorem, the number of
solutions of / = a, for any a e C, does not exceed the degree of an algebraic
mapping P o pr"1, which, in turn has the form (7(deg V, deg 7r) • N, where
the constant C depends only on the degrees of V and TT. Now an application
of Corollary 3.3.2 provides the required bound, since max | f | = max | f|

^ B(0,^) ' " '

by the choice of the line L, and max | f\ ^ max | f|.
B(0,a^) -D^n'

Remark 1. — Clearly one can replace in the statement of Theorem
3.4.1 the maximal ball of regularity of Tr"1, jB(0,J?), by the maximal
symmetric starlike domain of regularity S{0). (This domain intersects each
complex line, passing through the origin in a disk). The balls B(0, R') and
B(Q^aR') are replaced by the corresponding concentric starlike domains.

Remark 2. — The discussion of the sharpness of the constants,
concluding Section 3.3, is applicable also to the inequality in Theorem 3.4.1.
Notice, however, that these constants are given explicitly, which answers,
in particular, a question in [17].

Now we pass on to the real version of the above inequality. Assume the
V, TT, P are now a real algebraic set, a real mapping and a real polynomial
on R , respectively. In fact, we assume that all these objects are given by
polynomials with real coefficients, so, their complexifications are naturally
defined.

Define R > 0 as follows: R is a supremum of all R > 0, such that
7r~1 is regular on a real ball 5^(0,^) and that for any z C B(0,R) the
restriction ̂ /{r^ e C} is regular on the disk {^x, \^f\ < 1}.

Let P be a real polynomial on R^ of degree N and let / = P o 7r~1.
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THEOREM 3.4.2. — For any R' < R, 1 > a > 0,

max |/|/ max |/| ^ K{a,R'/R,m),
BR(Q,R'} " 5^(0,0^) 1 ' v / h

where m = C(deg V, deg 7r) • N , and K is given in Theorem 3.4.1 and
Proposition 2.1.5.

Proof. — Let z G B^(0,J?') be the point, where the max |f | is
5^(0,^)

attained. We restrict / to the complex line L = {72;, 7 G C}. For 7 G R 7^
belongs to R^, and we can use Proposition 2.1.5 instead of Corollary 3.3.2.

Remark 1. — In the same way one can compare the maxima of |/|
on a complex ball 5(0,^) and the real smaller ball B^O.oI?')- The

only problem is that for z ^ Us^ the complex line {az, a € C}, usually
intersects R^ only at zero. However, we can first bound |/| on the real ball
£?^(0, R') and then to use restrictions of / to the complex lines of the form
(Re^+alm ^, a G C). Such lines contain real ones, corresponding to a e R,
and Proposition 2.1.5 can be applied.

Remark 2. — According to the results above, the constant in a global
Markov inequality on a compact algebraic manifold K C R71 of dimension
^, depends on the following geometric invariant of K, which may present
an independent interest:

Consider the coverings Q of K by neighbourhoods Uj together with
the linear projections TTJ : K —^ R^, such that TTJ is regular and invertible
on Uj. For each TTJ define Rj > 0 as in Theorem 3.4.2 above. Finally define
R(P) as min Rj and R(K) as the maximum of J?(f2) over all the coverings
as above. R(K) plays the role of the distance to the nearest singularity. In
Examples 3.2.1 and 3.2.2 above, R(K) == e.

3.5. Some alternative approaches to algebraic functions.

The method, used in Sections 3.3 - 3.4 is very specifically tailored for
algebraic functions. We use Bezout theorem to bound the valency and then
use the classical results relating it to the Bernstein constants.

For wider classes of functions, in particular, those arising in connec-
tion to algebraic differential equations, the number of zeroes is usually the
quantity under the question.

We consider algebraic function as a (relatively) simple model for
the general problems of the above type. Hence it may be important to
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investigate alternative approaches to bounding the Bernstein constant of
algebraic functions, not relying on Bezout bounds.

Several such approaches have been investigated. In this section we
present shortly the main results obtained.

Let us start with the structural Bernstein inequality (i.e. the one with
the constant depending only on the degree and the relative geometry of the
domains in a maximal disk of regularity).

The original proof of the existence of such an inequality for algebraic
functions has been obtained in [45]. The idea of this proof was suggested
to us by M. Gromov and it goes as follows: assuming that the required
bound does not exist, we construct a sequence of algebraic functions of
a given degree, regular on Pi, converging to zero on Pi and with a
growing to infinity Bernstein constant. Using the compactness of the space
of protective algebraic curves of a given degree, we find a subsequence,
converging to a certain projective algebraic curve, which contains {y = 0}
as a component. Now analyzing the geometry of the converging sequence,
we find that it must be uniformly bounded on Pi. (See [45] and [55] for a
detailed proof and some generalizations.)

We hope that this compactness argument can be applied also in other
situations related to algebraic differential equations.

Structural Bernstein inequality for some special classes of algebraic
functions has been obtained in [41], [43], using a certain general inequality
between Wronskians of a system of functions. This inequality allows one
to analyze also some more general classes of functions, in particular,
exponential quasipolynomials (see [43]).

Yet another approach is based on the analysis of the ideals, generated
by the Taylor coefficients of the considered algebraic function (these coeffi-
cients are polynomials in the parameters of the problem). This approach is
developed in [21], [7], [8]. In a somewhat more detailed form it is discussed
in Section 6 below.

Now, if we allow the constant in the Bernstein inequality to depend on
the "size" of the equation (C/c in Theorem B above), algebraic functions
can be considered as a special subclass of either one of the following wide
classes of functions:

1. those, satisfying "Lipschitzian" differential equations (it is known,
that any algebraic function satisfies a linear homogeneous differential
equation with polynomial coefficients. See e.g. [14], [15]).
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2. those, whose Taylor coefficients satisfy "Lipschitzian" recurrency
relations. (See [7]).

These two classes (which contain also solutions of algebraic differential
equations) are considered in Sections 4 and 5 below.

As it was mentioned above, another class of functions, for which
the Bernstein constant can be computed, consists of those, whose Taylor
coefficients are polynomials in the parameters (with certain restrictions on
the growth of the degrees and of the norms). This class is studied in [21], [7]
and [8] and some results are shortly discussed in Section 6 below. All the
functions, arising in connection with the algebraic differential equations,
belong naturally also to this third class.

4. BERNSTEIN CONSTANT FOR SOLUTIONS
OF DIFFERENTIAL EQUATIONS

Consider an r-th order ordinary differential equation

(4.1) ^^F^.^,...,^-1)),

with F an analytic function, defined on a certain domain U of C7'"^1 =
C x C7', containing the origin.

We assume that F(x, 0,0, • • • , 0) = 0 for any x.

Let for some R > 0, p > 0, Vp x B(0,p) C U. Then
for a certain K > 0, for any x € VR and w = (wo, • • • ,Wy._i) G
B(0,p), \F{x,wo,--,Wr-i)\ ^ K\\w\\. The norm || || on C' is defined
as ||w|| = max(|wo|, • • • , |w^_i|).

THEOREM 4.1.—Let p\ = pe"^^. Then for any w = ( w o , - - - ,Wr-i) €
-S(0,pi) C C7', the solution yw(x) of (4.1), satisfying y^\0) = w^, i =
0, • • • , r — 1, exists and is regular for x G VR, and y^ € B^_^ ^ ^ with
c = e^(r - l)![max(l, 1/R)Y-\

Proof. — Transform (4.1) into a first order system

(4.2) Z ' = F { x , Z ) , ZeC^

by substituting ZQ = y , ' • ' , Zr-i = ̂ (r-l). By assumptions (and because of
the choice of the norm) we have

(4.3) \\F^Z)\\^K\\Z\\^
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for x C VR, Z G B(0, p). By the standard differential inequality argument,
any solution Z{x} of (4.2) satisfies

(4.4) 11^(^ )11^^(0)116^1,

until |a;| ^ R and the solution remains in B(0,p). In particular, for
pi = pe'^^, any solution with Z(0) € B(0,/?i) is defined for x C PR,
remains in B(0,p) and satisfies (4.4).

In particular, it follows, that the function y itself, being the first
component of Z, is bounded by H^O)!!^^ for x € VR. By the Cauchy
formula we get for any j ^ r

|a,|^'^ e^||Z(0)|| = e^max(|ao|Jai|, 2!|a2|,. • • , (r - l)!K-i|).

Hence \aAR3 ^ c max \di\R\ with c = e^^r - l)![max(l, l/J?)]7'"1.
%==(),•••,r—1

Remark 1. — The bound, given by Theorem 4.1, is essentially sharp.
As far as the index r— 1 is concerned, the polynomials of degree r—1 satisfy
^(r) = 0, and they belong to 5^_i, but not to B^ for {. < r — 1 . Notice
that for the first order equations their solutions belong to Bj, and indeed,
the corresponding differential inequality bounds the values of |2/(.z')| on T>n
through the value \y(Q}\ only.

Remark 2. — An approach, used in the proof of theorem 4.1 in the
case of a scalar differential equation, does not allow for a straightforward
generalization to systems. Indeed, for a general system Z ' = ^(*r, Z) each
component can be bounded on a bigger disk through the bound on all the
components of Z(0), but not through its own values.

However, the Bernstein constant of each component of the solution of
a system of algebraic differential equations can be effectively bounded by
a different method (see [21], [54], [24]).

In a special case of a linear homogeneous differential equation

(4.5) y^ +pr-i(x)y^-^ + .. • +pi{x)y = 0

with the coefficients, analytic in f^ C C, for any R > 0 with VR C 0 the
right hand side is defined over PR x C7^, and the Lipschitz constant K does
not exceed K(r) = max (hi(^)| + • • • + \pr-\{x)\). We obtain hence the

XCT>R
following corollary:
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COROLLARY 4.2. — Solutions of (4.5) for any R > 0 with PR c ̂  be-
JoI2g•to^_^^,withc=eJ^•max^^(l^l+•••l^-ll).(r-l)![max(l,l/^)]r-l.

This bound can be written in a more precise form for pj - entire func-
tions of the prescribed order of growth. In particular, for pj - polynomials of
degree^m, K(r) = max(|pi|4-- • •+br-i|) < C(r,m} . max IbJ-Jr1,

x^Dfi j==l,-'-,r—l
and we get

COROLLARY 4.3. — If the coefficients of (4.5) are polynomials in x of
degree m, then any solution of (4.5) for any R > 0 belongs to B^_^ ^ ̂ ^,
with C{R) = de02^', with Ci, 62 depending only on r and m.

Via the equivalence of the classes B2 and B1, and bounds on the
number of zeroes of functions in Bernstein classes, given in Section 2, one
can produce bounds on zeroes distribution of solutions of linear equations
(4.5). These types of bounds have been obtained by different methods in
a general theory of distribution of zeroes in analytic differential equations
(see [29], [34]).

Consider now the case of a homogeneous polynomial r-th order
differential equation

(4.6) ^^P^^-^7-1^

with P - a polynomial in x and ( y , y ' , ' ' • ,2/(r-l)) of the degrees m and
d, respectively. (In other words, P(x,w) = ^ p^)^, where a =

0<\a\<^d
m

(ao, • • • , Oy-i) is a multi-index and pa(x) = ̂ aaiX'1. We define the norm

ofPas||P||=EM-)
a,i

Then for x € VR and w € B(0,p) we have \P{x,w)\ ^ ||P||(1 + R)^
(i+py^lHi.

Substituting this value of K into the expression of theorem 4.1 we get
the following result:

COROLLARY 4.4. — Let for a given R > 0 and p > 0, pi = pe"^^,
with K = IIPlKl+J^l+p^-1 . Then for any w = (wo, • • • ,w^-i) C
5(0, pi) C C7', the solution y^(x) of (4.6), satisfying ^(0) = w,, i =
0, • • • , r - 1, exists and is regular for x e Dp, and y^ e B^_^ ^ ̂  with
c = e^(r - l)![max(l, 1/P)]7-1.

Also here one can produce a corresponding bound on the number of
zeroes of y^. Notice also that instead of estimating the Lipschitz constant
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of P(rr,w), one can use in the proof of Theorem 4.1 a sharp differential
inequality

liz'ii^ciipiKiizii+iizr),
and to express the domain of existence and the Bernstein constant in terms
of the solution of the equation y ' = C^y-^-y^. We shall present these results,
as well as the bounds on the number of zeroes, separately.

A specific feature of the above bounds is that the Bernstein class of
the solution of a homogeneous equation is determined by its order and
by the Lipschitz constant of the coefficients. In particular, the Bernstein
classes of these coefficients do not influence at least the direct computations
above. Easy examples show that this is not the case for nonhomogeneous
equations. Indeed, an equation y ' = f(x) prescribes the Bernstein class
B2 of y ' , and hence of y^ to be exactly the same as of /. Thus taking
f(x) = x1^ we get the right hand side bounded by 1 in Pi, while the
solutions y = — ^N+l have there an arbitrarily high Bernstein constant
as N tends to oo.

One can prove a general inequality, determining the Bernstein class of
the solution of a nonhomogeneous equation through the Lipschitz constant
of a homogeneous part and the Bernstein class of the "free term". However
here we just mention the following simple fact:

LEMMA 4.5. — Any solution of a nonhomogeneous polynomial dif-
ferential equation y^ = P(:r,^/, • • • ,^/r-l^) satisfies also a homogeneous
polynomial equation of order at most r + m + 1, where m is the degree in
x of the free term.

Proof. — We differentiate the equation m + 1 times, and notice that
any term, containing y or its derivatives, will contain them also after
differentiation.

Thus the Bernstein class of any solution of a nonhomogeneous poly-
nomial equation can be determined using Lemma 4.5 and Corollary 4.4.

Returning to algebraic functions, let us mention that any algebraic
function satisfies a linear differential equation with rational coefficients (see
for example [14], [15]). However, these coefficients may have poles inside
the domain of regularity of the function. Hence to reproduce the results
of Section 3 some additional considerations are required. As far as the
structural Bernstein inequality is concerned (Section 3.3 above) at present
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we can obtain it by the methods of this section only in some special cases
(see [41], [43]).

A detailed analysis of zeroes distribution of solutions of some special
linear differential equations (in particular, for the Abelian integrals) can be
found in [31], [32], [37]. Some other results, closely related to the results of
this section, can be found in [34], [48], [49].

5. LIPSCHITZIAN RECURRENCY RELATIONS
ON TAYLOR COEFFICIENTS

In this section we discuss an approach, which is, in a sense, dual to
that of Section 4. While in Section 4 a Lipschitzian behaviour of differential
equations has produced a bound for the ratio of the maxima of \y\ on
concentric disks, here we do exactly the same in the "dual" space of the
Taylor coefficients of y .

Assume that a sequence (f) of mappings (pk : C^1 —^ C is given,
k = d-\-1, d+2, • • •. For any w = (wo, • • • , Wd) e C^1 construct a sequence
ak(w) as follows: a,i = Wz, i = 0, • - • , d, and aj = ipj(w) for j > d. We also

00

consider a (formal) power series fw{x) == ^ak{w)xk.
k=o

Assume also that each ipk ls a Lipschitzian mapping, satisfying

(5.1) ^(^I^HI

for any k ^ d + 1 and any w € -0(0, ^), with some given 6 > 0 and C > 0.

Usually recurrency relations are written in a slightly different form:
dk is expressed as the function of a^-i, 0^-2 etc. However iterating these
expressions one can always express a^ as the function of the first d terms
(starting from which the recurrency is valid). Main examples are once more
provided by solutions of algebraic differential equations. In [7] it is shown,
that the recurrency relations, which arise there, satisfy the assumptions
above.

THEOREM 4.1. — For C and 6 as above and for any w G 5(0, 6), the
series fw(x) = ^^(w)^ converges on T>p, R = 1/C and belongs to

^R^ witha=[max(^C)}d.
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Proof. — By (5.1) we have for any j > d

\aj(w)\R3 ^ max(|ao|, • • • , \ad\) ^ a max (\ai\R1)^ with1=0, •••,d

a == [max^.C)]^

Theorem 4.1 reduces the problem of determining the Bernstein class
of fw to a study of the recurrency relation, producing its coefficients. We
refer to [7] where a detailed study of this question for algebraic functions
and for the first order differential equations can be found. Notice, that the
recurrency relations of the above type have been studied in Transcendental
Number Theory (see [35], [47]).

6. Ao-SERIES

In this section we shortly discuss, following [7] and [21] another wide
class of functions, whose Bernstein constant can be explicitly estimated.
It consists of power series, whose coefficients are polynomials in a finite
number of parameters (with certain restrictions on the growth rate of the
degree and of the norm). As it will be clear from the results below, this
class suits well for producing Bernstein inequalities, depending on the size
of the parameters (as the two classes, considered in Sections 4 and 5 do).
However, also here determining subclasses, which allow structural Bernstein
inequalities, is not easy. Some results in this direction are given in [8].

00

Let for A € C^, f\{x) = z-^ (^(A)^, with Ofc(A) - polynomials in A
for any k = 0,1, • • •. As above, we use the norm of polynomials, equal to
the sum of the absolute values of their coefficients.

DEFINITION 6.1 (See [7]). — fx(x) is called an AQ -series, if the
following two conditions are satisfied:

1. deg aj(\) ^ ̂ i • j + K^ j = 0,1, • • • .

2. \\dj{X)\\ ^ K ^ ' K ^ j = 0,1, • • • , for some positive K^, K^^ ^3, K^.

Below we denote by Cz constants, depending only on K\ to K^.

Ao-series form a subring of the ring of formal power series in x
with coefficients - polynomials in A. All the basic analytic operations, like
substitution to a given analytic function, inversion, etc., transform Ao-series
into themselves.
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An Ao-series f\(x) converges for any A € C^ in a disk PR with
R = ( ^ / ( I + I I A I ) 6 2 . One can show that if a series with polynomial
coefficients (of linearly growing degrees) converges uniformly for A in a
certain ball in C^, it is an Ao-series.

Analytic families, similar to Ao-series, were considered in [26], [30].

Consider in the ring C[A] of all polynomials in A = (Ai, • • • , Ap) the
ideal I == {ao(A),ai(A), • • •}, generated by all the coefficients a^(A) of f\^
and let Y = Y(I) be the set of zeroes of this ideal. We call I the Bautin
ideal of f\ (following [39], [40]). In his pioneering work [2], Bautin used this
ideal to bound (by 3) the number of limit cycles, which can bifurcate from
the center in quadratic families of plane vector fields.

By Hilbert's finiteness theorem, I is in fact generated by a finite num-
ber ofafc(A). Let d be the minimal number such that I = {ai(A), • • • , a d ( A ) } .
We call d the Bautin index of f\.

The following theorem (which is implied by one of the main results of
[21]) shows that the Bautin index plays a role of the "degree" of a family
A:

THEOREM D (See [21], Theorem 2.3.7). — Let f\(x) be an Ao-series
and let d be its Bautin index. Then for any A e C^, f\ 6 B^ ̂  ^, with
R = C3/(l + I IAH) 0 4 , (where a, €3 and £4 do not depend on X).

In particular, for R\ = R/<23dmQx(a,<2), the number of zeroes of f\
in PR does not exceed d.

Remark. — In fact, the constants, a, 63 and C^ depend, in addition to
d and K\ —K^ on the Grobner basis of the ideal I and on the transformation
matrix from the generators (2o(A), • • • , Od(A) to this Grobner basis.

Theorem D produces an effective bound on the Bernstein class and
the number of zeroes of f\ in any case, where the Bautin ideal and its
generators can be computed explicitly. It is shown in [7] that this is the
case for algebraic functions and solutions of algebraic differential equations.
(Recurrency relations on the Taylor coefficients are used in [7] to produce
the generators of the Bautin ideal). Another case, where these computations
can be done effectively concerns restrictions of polynomials to solutions
of systems of polynomial differential equations. This is done in [54] by
combining some recent results of Gabrielov [24] with simple computations
of ideals of linear polynomials. In [53] some results for iterations of a fixed
Ao-series are given. In the original Bautin's setting (i.e., for the Poincare
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mapping of algebraic differential equations) an effective computation of the
generators of the Bautin ideal is in general an open problem. (See [11]-[13],
[20], [27], [28], [40], [56]).

In conclusion, let us mention that the class of Ao-series is certainly too
large to possess much stronger "finiteness" properties than the one, given

oo^ \k
by Theorem D. In particular, an example of an Ao-series e^ = S — x^

k=0 K\
shows, that in general Ao-series do not allow the structural Bernstein
inequality.

The solutions of algebraic differential equations form a small subclass
of Ao-series. Indeed, their coefficients a/c(A) are completely determined by
several initial ones, while the coefficients OA;(A) of a general Ao-series can be
picked, essentially, at random (with mild restrictions on the degree and the
norm). Thus to have stronger finiteness properties and, in particular, the
structural Bernstein inequality, one has to restrict significantly the class of
Ao-series, considered. Some steps in this direction are taken in [8].
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