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MATRIX TRIANGULATION
OF HYPOELLIPTIC BOUNDARY

VALUE PROBLEMS

by R.A. ARTINO and J. BARROS-NETO

1. Introduction.

Let uj be a domain in R71 and T a positive real number. On uj x [0, T)
we consider

m

(1.1) P(x,^D^Dt)=D^+^P,(x^^D^Dm-^
j=i

where, for each j = 1,... ,m, Pj(x^t^D^)^ is a general pseudodifferential
operator depending smoothly on 0 < t < T, and whose symbols are in
S^^x[^T)).

For 1 < j < v, let
d,

Bj{x, D^ Dt) = ̂  Bjk(x, D^)D^
k=0

where Bjk{x, Dx) are pseudodifferential operators whose symbols Bjk{x, ̂ )
belong to S^^).

We want to consider boundary value problems of the type

(1.2) P(x, t, D^ Dt)u{x, t) = f{x, t)
(1.3) Bj(x,D^Dt)u(x,0)=hj{x), j = l , . . . , ^

Key words : Hypoelliptic boundary value problems - Parametrix - Regularity up to the
boundary.
A.M.S. Classification : 35S15.
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with u,f G (^([O.r);?^)), hj e 2Y(^), . 7 = 1 , . . . , ^ , where P(x,t,D^,
Df), of the form (1.1) and is hypoelliptic and its inverse lies in some
Hormander class S^ g with p > 6.

Boundary value problems of this type for elliptic operators were
studied in Treves [19] using the classical theory of pseudodifferential
operators. There it is shown that the ellipticity condition implies that the
principal symbol Pyn(^ ̂  <^ T~) of P as a polynomial in r can be factorized.
This factorization leads to a factorization of the operator P ( x ^ t ^ D ^ ^ D t )
itself, modulo a regularizing operator, i.e., P = P~ P^~ + R. The properties
of the operators P± allow one to reduce (1.2) to two systems of first
order equations. The boundary conditions (1.3) can then be adjoined by
constructing a matrix valued pseudodifferential operator B defined on the
boundary GJ, called the Calderon operator. This type of operator was first
introduced by Calderon in [8]. Although the resulting system is not quite
uncoupled it is, however, simple enough to show that the regularity up
to the boundary of the solutions of (1.2) - (1.3) is equivalent to the
hypoellipticiy of B in uj.

In our paper [3] we showed that if P{x, t, D^, Df) is formally hypoel-
liptic then the total symbol of P, considered as a polynomial in r can be
factorized in the form

P(rr,^^T)=P-(a;,^,^,T)P+(.r,^^T),

where P± are polynomials in r all of whose roots lie in the the half-plane
C± when (x,t) belong to a compact subset ofcj x [0,r) and |^| large. This
factorization implies that the operator P(x^ t^ D^, Dt) can be written in the
form

P=LP-P++P,

where P±(x^ ^ D^, D^) are pseudodifferential operators whose symbols are
given by P^.T^^r), L is a hypoelliptic pseudodifferential operator, and
R is regularizing.

In Section 2 of this paper we show that such a factorization holds
for tlie more general class of hypoelliptic operators whose symbols belong
to S7^ as introduced by Hormander in [13] (see conditions (HI) and (H2)
below). We also show, by matrix triangulation, how to reduce the boundary
value problem (1.2) - (1.3) to two uncoupled first order systems. In Section
3 we estimate the eigenvalues of the corresponding matrices. In Section
4 we construct a parametrix for first order systems for operators of the
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type Df - A(t) with the symbol of A{t) satisfying certain hypoellipticity
conditions derived from (HI) and (H2). In Section 5 we construct the
Calderon operator, B(x), on the boundary of our domain and show that
the boundary value problem (1.2) - (1.3) is hypoelliptic if and only if B{x)
is hypoelliptic in uj. In Section 6 we go back to the constant coefficient case
and compare our results with the classical Hormander's results [10] about
hypoellipticity up to the boundary.

The theory of elliptic boundary value problems has a long history.
The papers of Agmon-Douglis-Nirenberg [1] are classic and based on the
work of Lopatinski [15]. The reduction to pseudodifferential systems on
the boundary is due partly to Calderon [8], Agranovich [2]. More extensive
work was carried on by Visik-Eskin [20], and Boutet de Monvel [7]. In fact,
the pseudodifferential operators that we consider in this paper are clearly
related to the ones satisfying the transmission property studied by Boutet
de Monvel [7]. It seems likely that some of our results can be extended to
situations analogous to those considered by Boutet de Monvel, and these
are questions that we are now investigating.

2. Factorization of P{x,t,D^,Dt).

We assume the following hypoellipticity conditions on P(rr, t, ̂ , r) the
total symbol of P :

(HI) For each compact subset K C ^ x [0,T) and for all a,{3 e ^+1,
there exist constants C{K,a,f3) > 0 and M(K) > 0 such that

I^D^r)^^^^)! ̂  ^(1 + |(^T)|)-^1+^1|P(^,^$,T)[

f o r a n | ( ^ , T ) | ^ M .

(H2) There exists a real number JJL such that for each compact set
K C uj x [0,T), there exist positive constants C = C(K), M = M(K),
such that

|P(rc,^,T) |^C7(l+|(^T) | )^

for all |(^,r)| > M and all (x,t) C K.

It is shown in [13], [19] that with 6 < p the above conditions imply
that P(x,t,Dt,Dx) is invertible modulo regularizing operators, and is
hypoelliptic, i.e., for each u(x,t) in ^([O.r);?^)),

sing suppPu = sing suppn.
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Condition (H2) above implies that for each compact set K C uj x [0, T)
the total symbol P(x, t, ̂ , r), as a polynomial of degree m in r, has no real
zeros for |^| large. Therefore, when n > 1 (what we will always assume),
the number of roots, ^(^i~) of P(a;,^,$,r), as a polynomial in T, with
positive (negative) imaginary parts is constant when |^| > M. A simple
connectivity argument shows /^(y^") is the same for each K. We label
these roots r^x, t, ̂ ), j = 1 , . . . , ̂ ±. Consequently,

P(^^,T)=P-(^U,T)P+(.r,^,r),

where

^ ^
P^.^.T) = n(T-T^,0) =T^ +^^(^^OT^-^,

J=l J=l

for (a;,^) e^, |$| >M.

We have shown in our paper [3] that P±(x,t^^T) satisfies (HI)
and (H2) with 6 replaced by 6 + e, where e > 0 is arbitrary and
C = C(e,a^,K). It follows that P±(x,t,^r) belongs to S^^ for
suitable m. In that paper, we were unable to prove (perhaps for tech-
nical reasons) our result for e = 0, as in the case of elliptic opera-
tors. However, since e is arbitrary, we can choose it so that 6 + e < p.
By doing so the symbols P±{x,t^,T) define pseudodifferential opera-
tors which are invertible modulo regularizing operators. If we denote by
K(x, t, Dx, Dt), K±(x, t, D^, Df), the parametrices of P, P^ respectively,
we have

P ( x , t , D ^ , D t ) K ( x , t , D ^ ) ^ I 8,ndP±(x,t,D^,Dt)K±(x,t,D^^I.

Now write Pu = f m the following way :

P+P-u= f-Ru,

where / = ( P K ^ K - ) - 1 / , with (P^+^-)-1 the parametrix of PK^K-
and R regularizing. In fact, it is easily seen that

P=LP~P•{• +R,

where L = PK~^K~, and R is regularizing. It is clear that L is pseudodif-
ferential operator of order 0, and has a parametrix.



MATRIX TRIANGULATION OF HYPOELLIPTIC BOUNDARY 809

We can replace the equation P~P^~u = f — Ru with the system of
equations

(2.1) P~^u=v
(2.2) P~v=f-Ru.

We in turn reduce each of these equations to a first order system.

Both of these equations are of the type
^

(2.3) Q(x^D^Dt}w=D^w^^q^x^D^D^~jw=g,
j=i

with fi = ̂ ± , QJ = p^, and g = v or f —Ru. Letting w\ = w, Wj = DfWj-\
we can write (2.3) as

(2.4) DtW - A(t)w = g

where w = ( w i , . . . , w^)^ g == (0 , . . . , 0, g^ and A(t) is the matrix :

(2.5)

/

\ -

0
0

0
-^

1
0

0
-<3^-i

0
1

0
-^-2

... o

... o

1
... -^

\

7
A is a matrix valued pseudodifferential operator whose symbol

a{A) = a(x,t,^) belongs to 5^_^(a; x [0,T)) , with m = max (order qj).
We also note that since

(2.6) det(TJ-a(A))=Q(^^T),

the eigenvalues of o'(A) are the roots of Q(x^ t^ ̂  r).

3. Estimates of the eigenvalues ofa(*A).

Theorem 3.1 below locates the eigenvalues of A in the complex plane.
First we need the following lemma.

Let K be a compact subset of uj x [0, T) and

N(K) = {(C, T) C C^1 : Q(x^ ^ C, r) = 0},



810 R.A. ARTINO & J. BARROS-NETO

for (x,t) e 7^. For ($,r) e R^, let d((^T),N(K)) be the distance from
( ^ r ) t o N { K ) .

LEMMA 3.1. — Suppose Q(x, t, D^, Dt) is a pseudodifferential opera-
tor of the type (2.3) whose symbol satisfies ( H I ) and (H2). For each compact
set K C uj x [0, T), there exists a constant C = C(K) > 0 such that

(a.,) ^^((M.^Ef^^r^.2^ |0(;r,u,T)j=i
for(^r) eH^^x.t) eJCandO(a;,^,r)^0.

Proof. — The proof in the case of variable coefficients is similar to
that of Lemma 3.1 in [3] by arguing in a neigborhood of a point {x, t) in uj
and then using a simple compactness argument for a general K.

We, therefore, assume

O(^T)=T^+^(OT^,
j==i

with <^($) in some symbol class S^3. Let A^ = {r G C : Q(^, r) = 0}, and
d(^,r) be the distance from r to A^. We prove that if Q(^r) ^ 0, then
there exists a constant C > 0 such that

\D{Q^r}^/3
(3.2) C-i „((,,) E|-^f'" ^C.

Set

^^,)^^^^)^
v / ^ 0^,T)

Then |^Q(^,r)| ^ A-'|(3($,r)|. By Taylor's formula,

Q^ r + 6) - Q^, r) = ̂  1^Q($, r)0^'.
j=i •7'

Therefore,

^ 1
10($,T+0)-Q(^T)|^^-^(A^|(3(^,T)|.

J=l -7'
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Let c > 0 be such that e° - 1 < 1 . Choose 0 so that A\0\ < c. Thus,
^ 1

J^-^ ^ ec - 1 < 1. So, |Q(e,T + 0) - Q(e,r)| < \Q(^r)\. Hence,
;—1 J '

Q(^r + (9) ^ 0 whenever \0\ < c/A. This implies that d(^r) ^ c/A,
and therefore, the left side of (3.2).

Take < <E C such that |C| ^ d(<^,r)/2. Consider the polynomial in t,
Q(^ ^ + ^0- We are assuming that Q(^ r) ̂  0. If ^ is a root then

I^CI-IT-^+^OI^^T^ICI
P-

implies that |^| > 2. If we set ̂ ) = JJ(^ - ̂ ), we obtain

O(^T+C) gW < (3/2)^.
I 0(^T) gW i=i

By Cauchy's formula

^-U^^
where 7 = {< : |(^| == d(^r)/2}. The above estimates imply

^"^drî i
/ 3 \ ^ / 2 \J

$ (2) ̂ (.î ) l^^l-
This implies the right hand side of (3.2) and proves the lemma. D

THEOREM 3.1. — For each compact set K C ^ x [0,T), there exist
positive constants M(K), C\, C^ such that whenever |^| > M, the set of
zeros, r(x,t^), ofQ(x,t,^r) for (x,t) € K is contained in the subset of
the complex plane defined by :

(3.3) Tl^GiO+l^l)771, lImTl^CW.

Proof. — Using a well known estimate for the zeros of a polynomial
of one variable, we have :

(3.4) M :$l+^max \qj(x,t,^)\.
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Since qj{x,t,^) belongs to S^^uj x [0,r)) ,we obtain the first inequality
in (3.3).

It follows from (HI) and (3.1) that for each compact set K there is a
constant C(K) > 0 such that for |$| > M(K),

(3.5) d((^r)^(K))>C(l+|^.

If (C, T) € N(K)^ then d(Re «, r), N{K)) < |Im (C, r)|.

It follows from (3.5) that

|Re(Cr<C1Im(C,r)|.

Hence, for ^ real, |^| > M(K), and (^r) € A^),

(3.6) I ^ I ^ ^ G l I m T l .

This completes the proof of the theorem. D

4. Evolution operators and their associated parametrices.

Equations (2.1) and (2.2) can be replaced by the first order systems

(4.1) Dt\i-A^(t)u=Jv

(4.2) DtV-A~(t)v=g-nu^

where, u = (u\,... ,^^+)T with HI = n, uj = DtUj-\, j == 2 , . . . .y^, JV
is a /^+- vector with components all zero except the last one equal to v^
v = (1:1,... .t^-)^ with fi = v, Vj = DtVj-\, j = 2 , . . . ̂ -, g (resp. TZu)
a ^~- vector with components all zero except the last one equal to / (resp.
Ru).

DEFINITION 4.1. — For fixed t ' such that 0 < t ' < T a pseudodiffer-
ential operator

U(t,t') :£ /(a;;C^)->P /(ct;;C^)

depending smoothly on t € [t1 ,T) is called a parametrix for the operator
Dt-A(t),if

(4.3) dU(t,t) _ ̂  ^ ̂ ^ t') ^ 0 in a; x [t', T)
dt

(4.4) U ^ i ^ t ' - I ^ ^ '
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We note that U^t.t') is defined modulo regularizing operators on uj.

If A(t) = A^~(t) then we can prove existence of the parametrix as
follows. The operator U(t^ t1) is defined by

U^tf)u=(27^)-n ( e^U^t'^^d^

for all u C C^(uj), where U{x,t,t'^) is the symbol of U(t,t'). We actually
construct a formal symbol

00

^^o=]^-(^^o
j=0

from which a true symbol can later be constructed by use of cut-off
functions in the standard way. Proceeding formally, we write

(A - A(t))U(t, t')u = (2^)-^ ( e^^Dt - a{x, t, D^ + ^))U(x, t, On(Q d^

and we require for each 0 ^ t < T that,

(Dt - a(x, t, D^ + ̂ ))U{x^t', 0

(4.5) =(Dt-'E l-^a^ ̂  W)^ ̂  t\ 0 = 0,
aez71 a'

and U(x^t^t1\^) = I (identity matrix). The term involving the summation
symbol is denoted by a(x, t, ̂ ) 0 U{x, t, i ' , ̂ ).

Let A(^) = (1 + l^l )^ , and consider the expression

zl - A-^, t, 0 = A-1 (zXI - a(x, t, 0).

It follows from Theorem 3.1 that for each compact set K C uj x [0, T) there
exist positive constants M, C\, C^ such that if (x, t) G K and |^| > M, the
eigenvalues of the matrix \~la(x,t^) lie in C^ inside the circle

M^iO+l^l)7^
and in the half-plane Imz > C^. For any R>_ M and R < \^\ < R + 1 , let
FR be a contour in the upper half-plane that encircles the eigenvalues of
the matrix \~la(x,t^) for {x,t) C K. In view of the previous remarks we
could take the length of Tp to be less than 2^{R + 2)m-p.

We are going to represent U as

U(x, i, ̂  0 = (2m)-1 (f e^-^kix^ t, ̂  z) dz,
JFp
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oo

where A: is a suitable formal symbol ^^ kj.
j'-i

Since k ( x ^ t ^ ^ z ) is going to be a holomorphic function of z^ it follows
that Li remains the same if the contour FR is changed but still encircles the
eigenvalues.

We can take for our compact set K the closure of 0 = D x [O.To),
with To < T and D a bounded open set in uj. We can write equation (4.5)
as

(4.6) f) e^x{t-t'}z{Dtk+Xzk-a{x,t^)Qk)dz=0.
Jrn

We want to solve, in the sense of formal symbols, the equation

(4.7) Dtk+Xzk-a(x,t^) Qk == XI,

which automatically implies (4.6). Also from the results below it will follow
that this k will also satisfy

(4.8) (27^^)-l ^ k(x,t, ̂  z) dz = I ,
Jrn

for all (x,t) G 0, |$| > M. First rewite (4.7) as

(4.9) k = E[I - \~\Dtk - a Q k + ak)],

with

E^^I-X^a^t^))-^

and

A-^a © k) - ak)) = V ^-X^QPaD^k.
—J o"

Q^O a'

We define k by successive approximations as follows :

CO

(4.10) k=Y^k,
3=0

with

(4.11) ko=E=(^I-\-la(x,t,^)-l
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and

(4.12) k,=-E\-1 A^-i- ^ ^D^k^ .
1<H<J a'

If we set M = m — p, then it is clear that A:o == E e 5'" .̂ Next, one can
show by induction that kj e S^, where rrij = -M -j(mf{p, m}-6). This
follows easily if one notes that if j > 1, each kj is a finite sum of terms of
the form

E(b,E)(b^EV"(brE)^

with r varying from term to term but always > 2, and each bi is a bounded
linear operator on C^, independent of z, depending smoothly on t G [0, T).
Moreover, for |$| > M, kj{x, t, ̂  z) is a C°° function of (t, z) for 0 < t < To
holomorphic for all z e C+ such that Imz > 62, \z\ <, C7i(l + ^\)rrl~p.

Since for fixed, but arbitrary, (x,t) e 0 and |^| > M, \~la(x,t^)
and bi are bounded linear operators on C^, we obtain :

(27TZ)-1 ^ E(^)^ ==J^FH
(f) E { z ) b ^ E ( z ) " - b r E ( z ) d z = 0 ,
J r nfr^

with E(z) == (^J - A'^^.t,^))-1. These imply (4.8).

We now want to estimate the symbols

(4.13) ^(^^0 = 1 i e^^t-t^zk,(x^^z)dz.
zm J^R

For z C TR, we have

(4.14) |D|^(e^-^)|'< C(t - t ' ) - N { l + I^D-I'IA^-^,

for arbitrary r, A7' in Z+ and a C Z^. Since kj C -S'771!, we have

(4.15) {D^D^D^k^x.t.^z^ ^ C(l + |^|)^-pH+(l/51+^

Using Leibniz's formula we can write D^D^D^e^^'^k^x^t^^ z)) as a
linear combination of products of the type D^ D?' D^k^D^ D^" (e2^-^)2)
each of which can be estimated by

(4.16) C(t - ̂ "^(l + |^|)^•-^la/l-la/ /l+(l^l+ r /)^ r• / /- ;v,
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by virtue of the estimates (4.14) and (4.15). Since 0 < 6 < p < 1, and
A == (1 + 1^1)^ it follows that

(4.17) (1 + ̂ \)rf6\r/f-N ^ (l + |^)^+/^-A^

By combining (4.16) and (4.17) we get

D^D^D^e^-^^kj)} < C(t - ̂ -^(l + ̂ ^-P^W^s^r-N)?

and hence the following estimate for the symbol (4.13)

|^?%(^^01

^ c(t - ̂ -^(i + i^^-pH+a^i+^+^-AOp i [^
JYR

Since §^^ < CR^-P and |^| ~ R, we finally obtain

(4.18) \D^DWx^t'^)\

^ C(t - t')~N(l + l^l^-HP+a^l+^+Cr-AOp^m-p

^ C(t - tf)~N(l + l^^+^-HP+a^l+^^Kr-N-l)^

The lemma that follows summarizes our results.

LEMMA 4.1. — To every K e ^, there is a constant c > 0 such that
to every pair of n-tuples a, f3 e Z71 and to every pair of integers r and N,
there exists a constant C = C{a, (3, r, K) such that

(4.19) \D^DWx^t'^)\

< c(t - t ' ) ~ N ( \ + i^D^+^-i^ip+d^i+^^+^-A^)?
for all (x,t) eK and |^| > c.

It follows from this lemma that using a standard proceedure (see [19])
one can construct a true symbol U ~ Y,Vij, for U(t,t'}.

Remark 1. — Since the eigenvalues of A^a"^,^), where
a~(x,t^) = a(A~), lie in the negative half-plane C~ we could solve the
backward Cauchy problem

(4.20) DfU~ - A~(t)U~ - 0, in u x (O^],

(4•21) U-(t^=t'-I^ in^
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where

(4.22) U-^t/)u=(27^)-n ( e^U-{x^f ̂ }u{^d^

(4.23) U-{x^t'^) = (2^)-1 (f e^^xzk-(x^^z)dz.
^FR

Remark 2. — Going back to our operator (1.1) let us assume that
the coefficients are defined on uj x (—T,T), and conditions (HI) and (H2)
are satisfied. Let V ^ ( t , t ' ' ) (resp. V~{t,t'}) be a parametrix, defined on
uj x [t\T) (resp. uj x (—T,^]), of the forward (resp. backward) Cauchy
problem for Dt - A+(t) (resp. Dt - A-(t)). Set V+M) = V+(t) and
y-(^O) = V-(t). By Lemma 4.1 V+(t) (resp. V-(t)) is a regularizing
operator whenever t -^ 0. As t —^ 0=L the symbols of V^(t) and V~(t)
converge in S^^3^). Furthermore, V^^) C V~(0) = I .

It follows that we can solve modulo regularizing operators the inho-
mogeneous equations :

(4.24) DtU - A^(t)u = f in ^ x [0, T)
(4.25) \i\t=o = g in uj,

using

rt̂
\

/o

Likewise, for To < T, we can solve

(4.26) u~[/+(^o)g+ / u^a^a^dt'.
Jo

(4.27) Dt\i - A~ (t)u = f incc; x [O.To),

(4.28) U|^ro = g € ̂

using

(4.29) u ~ U- {t, To)g - / ° U- (t, tW) dt'
J t

5. The Calderon operator.

We now adjoin the boundary conditions (1.3) to (4.1) and (4.2). This
is done in the following standard way. Since P is a monic polynomial in
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Df, we can divide

R.A. ARTINO & J. BARROS-NETO

d,
B3=Y,Bjk(x^D^Dk^ Kj<^

k=0

by P and obtain

B,=Q^P+B^ deg^<m-l .

Thus (1.3) can be replaced by

(5J) B^=^-Qf,f^l<j<l..

Now divide each B'^ by P+ and obtain

B^Q,P++B^ deg£f<^-l .

Since P"^ = v we can replace (5.1) by

(5-2) Bt^=^-Qf,f\t^-Q^\t^
and note that the degree of Qj < (fi~ - 1). With

(5-3) Btu = E1^^^.)^ -E^-^D^
k=0 fc=i

we can write (5.2) as

(5-4) ^u(0)=h-Qv(0) ,

where, B is a z. x /,+ matrix with entries Bf^(x, 0, ̂ ), h is the ^~
vector whose components are hj - Q^f^Q, and Qv is a ^-vector whose
components are QjV\t=o'

DEFINITION 5.1. — The matrix valued pseudodifferential operator B
defined on the boundary uj is called the Calderon operator of the boundary
value problem (1.2) - (1.3).

We have thus transformed the boundary value problem (1.2) - (1.3)
into the equivalent system :

(5.5) DfV - A~ (t)v = g - TZu,
(5^) DtU-A+(t)u=J^

(5-7) ^u(0)=h-Qv(0).
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DEFINITION. 5.2. — The boundary value problem denned by (5.5) -
(5.7) is said to be hypoelliptic if given any open set 0 C uj and data

geC^ao.r];?^,^)), heP^.C^)

whose restriction to 0 are smooth, then every solution (u, v) of (5.5)-(5.7)
with

(5.8) ueC^QO.r];?^;^))
(5.9) vec^o.r];?^;^"))

is indeed smooth in 0 for t < T, i.e.,

^+>-'•> -L ^ 'u >(5.10) ueC°°((9 x [0,r);C^
(5.11) veC°°(Ox [0,r);C^~).

Although the system (5.5) - (5.7) is not quite uncoupled due to the
occurrence of u on the right side of (5.5), much can be said about the
solutions of this system and equivalent ly about the original system (1.2) -
(1.3). In particular, one can study regularity.

If one neglects the T^u term in (5.5), we can apply the results of the
previous section to solutions (u^,v^) of the system :

(5.12) Av-A-(^)v=g,
(5.13) DtU-A+(t)u=j7v
(5.14) 23u(0) =h- Qv(0)

on uj x [0, r). We first assume that A(t) and /(^, t) are smooth with respect
to t on the closed interval [0,T]. This is no great restriction since for most
applications this amounts to taking T to be slightly smaller. Using (4.27)
we can solve the backward Cauchy problem starting at t = T of (5.12) and
obtain :

(5.15) v^)-[/-(^,T)v^(T)- / U-(t,tW)dt^
J t

where U ~ ( t , t / ) is the relevant parametrix and v^(T) is arbitrary. We then
put (5.15) into (5.13), and using (4.24) represent the solution of the forward
Cauchy problem starting at t = 0, with initial data u^(0), for u.
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One obtains similar to (5.15)

(5.16) u )̂ ~ ̂ (^u^O) + / ^{t^Jv^a^dt'.
Jo

We can then show that if (u,v) are solutions of (5.5) - (5.7), with

gec^ao.r);?^;^)),
and if (u^v^) are solutions of (5.12)- (5.14) defined by (5.15) and (5.16),
then

(5.17) v -v^ eC00^ x [0,r);C^~).

Moreover, if

(5.18) u(0)-u^(0) eC°°(Lux [O.T);^),

then

(5.19) u -u^ eC°°(^x [O.r);^).

Using these facts we can proceed as in Treves [19] and show the
following result.

THEOREM 5.1. — The system (5.5) - (5.7) (or equivalency the system
(1.2) - (1.3)) is hypoelliptic if and only if the Calderon operator B defined
on the boundary uj is hypoelliptic.

Proof. — Suppose B is hypoelliptic. Since U~{t,t'), is pseudolocal we
derive from (5.15) that v^ is smooth in 0 x [0, T) . By (5.17) we have that
v is also smooth in 0 x [0, T). In particular, v(0) e C°°(0; C^~). Since B is
hypoelliptic the relation ^u(O) = h - Qv(0), implies u(0) <E ^(O.C^).
Similarly, u^(0) G C°°(0,C^). It follows from (5.19) that u is smooth.

Now suppose that B is not hypoelliptic. Then there exists a distribu-
tion UQ in uj valued in C^ whose restriction to 0 is not smooth but B\IQ is
C°°. We construct u, v, g, h which satisfy (5.5) - (5.7) for which g(x, 0) and
h(x) are smooth in 0 but u(0) is not smooth in 0. Let w(t) = £/+(^ 0)uo.
Then w(t) is C°° for t > 0 since ^7+(^0) is regularizing for t > 0. Since

(A - A^WW - A-^(t)U^^ 0)uo - A+(t)U^^ 0)uo = 0,

and [7+(0,0) = I, we have that

v^ = (Dt - A^w e C00^ x [0,T]; C^).
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Note that ̂  = DtW3 - w3^ for j < /A+. Let

(5.20) u^ = w^

(5.21) u3 = w3 + f [(^'+1 - w^1)^) - ̂ (^)] ̂ /

" o

for j < /^+. By (descending) induction we can show that u — w belongs to
C°°{uj x [0,r];C^), and DfU3 = u^\ for j < ̂ +. Now let ^ be the last
(i.e. the ^+ one) component of Z^u — A^~(t)\i, and define

v = (^^2,...,^-)

with v3 = DtV3-^. Then

DtVL-A^(t)u=Jv

is automatically satisfied. Since u == w + (u — w)

DtU - A+(^)u - v^ + (Df - A+(t))(u - w),

therefore, AU - ̂ (^u e C°°(a; x [0,^];C^+), which by definition of v
implies that v C C°°(uj x [0,r];C^~). Finally, letting

g=(A-A-(^))v+7Zu,

we have that both g and h = B\IQ + Qv(0) are C°° e 0. However,
u(0) = w(0) = UQ is not in C°°. Thus (5.5) - (5.7) is not hypoelliptic.

D

6. An example.

Let

P = P(D^Di) = DF + Y^P^W
j=i

m—j
x^t) — ^t -r 7 ^ 3\^x]^t

be a hypoelliptic partial differential operator in H^1 (n > 1) with constant
coefficients and let

771

P^r)=rrn^P^}rm-3

j-i

be the total symbol of P.
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If P is hypoelliptic, then it is well known that there is a constant
M > 0 such that the number of r zeros with positive imaginary part of
P(^r) remains constant for all |^[ > M. As before, denote by /^+ the
number of such zeros and by 7-^(0, 1 <, j < ^+, the zeros (counting
multiplicites) with positive imaginary part.

Let fl = -u; x [0,r), with uj an open subset in R71 and T > 0, and
consider the boundary value problem

(6.1) P(D^ Dt)u(x, t) = f(x, ̂  in ̂
(6.2) B,(D^Dt)u{x^)=h,(x)^ j = l , . . . ^+ , in ^

where for simplicity we assume that degBj < m - 1, for all j = 1,... ,/^+.

The boundary value problem (6.1) - (6.2) is said to be hypoelliptic
in ^ if every solution u(x,t) belongs to C°°(^), whenever / e C°°^) and
/^•eC00^), l ^ j ^ ^ .

Hypoelliptic boundary value problems were completely characterized
by Hormander in [10] (see also [4]) in the following way. The function

(6.3) C(Q = det(5,(^(0))/ 17(^(0 - ̂ (0),
j<k

called the characteristic function of the problem (6.1) - (6.2), is well denned
for |^[ > M, and extends analytically to a suitable open set A in C71 that
contains the set {$ € ̂  : |^| > M}. Problem (6.1) - (6.2) is hypoelliptic if
and only if the following algebraic condition, called Hormander's condition,
holds :

(6.4) C e C", C(C) = 0, |C| -^ +00 imply |ImC| ̂  +00.

On the other hand, according to Theorem 5.1, problem (6.1) - (6.2)
is hypoelliptic if and only if the Calderon operator B associated with it is
hypoelliptic. Since we are in the constant coefficient case, the hypoellipticity
of the operator B can be expressed by an algebraic condition which we are
going to determine. Following the notations of Section 5, we first divide
each^($,T)byP+(^T)

(6.5) B,=Q,P++B#,

where degBf ^ /^+ - 1, and then replace the boundary, conditions (6.2)
by

(6-6) ^Vo= ̂  - (Q^)it=o, i < j < /.+,
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where v = P^u. Next we can write

B#U=Y.B*^W3,1
fc==l

^,

so that the Calderon operator (5.4) is given by the square matrix

^ = {^j,k-l)^<3<^ '
Kk<^+

Now going back to the characteristic function C(^) and taking into account
(6.5), we rewrite (6.3) as

C(Q = detGB^r^)))/ n^) - T^))-
j<k

But the matrix

CEf(^($)))^,^
I<I</LI+

is clearly the product of the matrix (-0^-i(0) i^j^+ ana tne Vander-
Kfc<^+

monde determinant ^(r^^), • • • ,r\(^)) in the roots ^(O, 1 ̂  J ^ ^+-
Therefore,

C(0=det^(0.

As a consequence we conclude that a necessary and sufficient condi-
tion for the Calderon operator B to be hypoelliptic is that its determinant
satisfies Hormander's algebraic condition (6.4). Of course, this result could
have been obtained by direct methods without having to rely on the char-
acteristic function of the boundary value problem.
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