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PERIODS AND ENTROPY
FOR LORENZ-LIKE MAPS

by LI. ALSEDA, J. LLIBRE, M. MISIUREWICZ and C. TRESSER

1. Notation, definitions and statement of results.

In the paper we shall use the following notations. When we write
p / q we mean that p, q e Z and q > 0. If we write k > 0 or k ^ 0,
we mean that additionally k e Z. The greatest common divisor of p
and q will be denoted by (p,q). If A is a subset of N = {1 ,2 ,3 , . . . }
then kA will denote the set {ka : a e A}. We shall denote by E(.) the
integer part function.

We denote by e: R-> S1 = [zeC : z |=l} the natural projection
e(x) = exp (Inix) (here f = ^ / — l ) . A map F : R -> R is called a lifting
of a map / : S1 -> S1 if e o F = f o e and there is k e Z such that
F(x+l) = F(x) + k for all x e R . This k is called the degree of F.
Note that since we do not say anything about continuity here, every /
has liftings of all degrees.

A map F : R -> R will be called old if F(x+ 1) = F(x) + 1 for all
x e R (here we follow the terminology of [M3]; old stands for « degree
one lifting » with the order of letters changed for mnemonic reasons).
It it easy to see that if F is an old map then F(x + k) = F(x) + k for
all x e R and k e Z, and that the iterates of an old map are old maps.
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We shall say that a point x e R is periodic (mod. 1) of period q with
rotation number p / q for an old map Fif Fq(x) — x = p and Fi(x) — x ^ Z
for i = 1, 2, . . . , q — 1. Clearly, if F is a lifting of / then x is periodic
(mod. 1) for F if and only if e(x) is periodic for / and their periods
are equal, see [M3]. The set of periods of periodic (mod. 1) points of
F will be denoted by Per(F), and the set of periods of periodic
(mod. 1) points with rotation number p / q by Per?/g(F). Also, if a ^ Q
we define Pera(F) == 0.

Let F be an old map such that F is non-decreasing and continuous
on the interval (0,1). For x e R we define its rotation number as
lim sup (F"(x)—x)/n and we denote it by p(x) or pp(x). Note that if

n-»x

x is a periodic (mod. 1) point of F with rotation number p / q then
p(x) = p / q . We denote by L(F) the set of all rotation numbers
of F. From [M3] and [RT] it follows that L(F) = [a(F),b(F)] with
a(F) = inf lim inf (F"(x) - x ) / n and b(F) = sup lim sup (F^x) - x ) / n .

x e R n-*oo x e R n-»oo

The interval [a(F),&(F)] will be called the rotation interval of F.
We shall denote by F(x+) the limF(y), and by F(x-) the

ylxlimF(y), if they exist.
yfx

In this paper we shall study the class of old maps F : R -> R such
that F is non-decreasing and continuous on the interval (0,1),
0 ^ F(0+) < 1 and F(l-) < 2. This class will be called the class of
Lorenz-like maps and it will be denoted by ^ . We remark that if
FeJ^f then its rotation interval is contained in [0,1].

Let F be an old map such that F is non-decreasing and continuous
on the interval (0,1), 0 ^ F(0+) < 1 and F(l-) > 2. Clearly there
exists xe(0,l) such that F(x) = x + 1. If F([x,x+l]) c= [x+l ,x+2]
then the study of the dynamics of this map can be reduced to study
a map of the class ^f. Otherwise, it is not difficult to prove that
Per(F) is either {1} or { l , / c , f e + l , f e + 2 , . . . } for some integer k ^ 2.
All this can be done by using the methods of the proof of Proposition 3.

Let S be the class of maps F : [0,1] -^[0,1] such that
F(x) = F(x) - F(F(x)) for x € (0, 1) , F(0) = F(0+) and
F(l) = F(l-) - £'(F(1-)) for some FeJSf. Note that such a map F
has at most one discontinuity point c such that F(c—) = 1 and
F(c+) = 0. A point xe[0,l] is periodic of period q for F if F^x) = x
and F^x) 7^ x for f = 1, 2, . . . , q — 1. The set of periods of periodic
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points of F will be denoted by Per (f). We remark that the study of
the class ^ is equivalent to study the class S. In fact, if x e [0,1] is
such that F"(x)^Z for n ^ 0, then x is a periodic (mod. 1) point of
period q with rotation number p / q for F e ^ if and only if x is a
periodic point of period q for Fe S and p is either zero if F is
continuous, or Card {n : l^n^q and F"(x)^c}.

To study the class J^f we mainly use the techniques of circle maps
of degree one, see for instance [M3] and [GT] (*). However, in some
of the proofs we use simultaneously maps of ^ and S.

Old maps occur in many branches of dynamics. The simplest ones,
x -> PX + a, furnish an interesting two-parameter family which has
been the object of numerous studies in ergodic theory (for a recent
contribution, see e.g. [HI]). Notice that the case a = 0 gives the famous
P-transformations for which an early reference is [R].

In [P], Parry noticed the relation between these classical results and
a more recent occurence of old maps in dynamics, namely as reduced
Poincare maps for some flows in R 3 . This ocurrence of old maps was
first noticed by Lorenz in his seminal paper [L] (in fact Lorenz obtained
equivalent unimodal maps). This was formalized by Guckenheimer [Gl]
when he introduced the geometric Lorenz flows. The most studied
Lorenz maps are old maps with slope greather than one. In the study
of other flows, the Guckenheimer technique of projecting a Poincare
map along a strong stable invariant foliation yields old maps with one
critical point, see [GPTT] and references therein. Obviously, all these
maps belong to the class considered in the present paper.

Unfortunately we cannot specify the exact value of F(0). In what
follows we consider that F(0) is either F(0+) or F(O-), or both, as
necessary. Notice that in the study of periodic (mod. 1) orbits of a
map F e J^f, because of this ambiguity we shall not be able to control
if the zero is a periodic (mod. 1) point and, in this case, its period and
rotation number.

Our first result will characterize the set of periods of / G X . To
state it we shall introduce some notation. Let a, b e R with a < b.
Then M(a,b) will denote the set {q: there exist p such that a<p/q<b}.
F o r f e e N . f e > 1 we define K(k) = { < f e N \^k} u {1} and A:(oo) = { 1 } .

(*) In [GT] the renormalization scheme does not apply to the general case.
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We set N* = (N\{1}) u {oo}. Let aeR and feeN* we define the set

S(ak\=[0 if ^Q?
^a9K) \qK(k) if a = p / q with (p,q) = 1.

Assume that a, b e R with a < b and that n, w e N* . In what
follows S(a,n) u M(a,b) u S(b,m) will be denoted by B(a,b,n,m).

THEOREM A. - (a) Let F e ^ . Then Per (F) is of one of the following
forms :

either B (where B is either the empty set or a set of the form
B(a,b,n,m));

o r W ;
or {q^q^, ...,q,} u q^B where r ^ l , q^ ^ 2, q, < ^+1 and q,

divides f^+i for i = 1 , 2 , . . . , r — 1;
or [q^q-i.q^ . . . } where q^ ^ 2, ^ < ^+1 and q, divides ^+1 for

i = 1 , 2 , . . . .
(b) Let A be one of the sets given in statement (a). Then there exists

a map F e ^ such that Per (F) == A.
Hofbauer in [H2], by using an oriented graph with infinitely many

vertices whose closed paths represent the periodic orbits of the map,
obtained a result similar to Theorem A except that he did not characterize
completely the set q^B. Note that Theorem A gives the full characterization
of the set of periods of the maps F e ̂ f. Moreover, our proof of
Theorem A is more geometric. It is based on the use of the rotation
interval (for more details see Theorem 4, Proposition 5, Remark 2 and
Lemmas 6, 8 and 9), which seems to be simpler than the Hofbauer
techniques.

For an old non-decreasing map F, Rhodes and Thompson [RT]
showed that a(F) = b(F) and the existence of periodic points with
rotation number a(F) when a(F) e Q (at this moment we assume that
at points of discontinuity / attains both one-sided limits). One can
notice that such maps can be suspended to get flows on holed 2-tori
and thus are essentially cherry maps (i.e. first return maps on cherry
flows). Other maps in ^ can be suspended to get semiflows on branched
2-manifolds.

Next we characterize the structure of the set B(a,b,n,m).

We need some definitions. Let p / q be such that (p,q) = 1 with
q > 1. For each n e Z there is a unique a(n) e{ l , 2 , . . .,q} such that
a(n) = — np (mod.q). Then we set t(n) = [a(n)+np]/^.
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We define the right-hand ordering <r associated to p / q with (p,q) = 1
and q > 1 as follows. For every m, n e N with m ^ n we say m < ̂ n
if
either m/a(m) < n/a(n), (< r. 1)
or m/a(m) = n/a(n), (^(n),n) ^ 1 , (^(m),m) ^ 1 and m < n, (<,.2)
or m/a(m) = n/a(n) and (/(n),n) = 1 . (<r.3)

This ordering is well defined because the equalities (/(n),n) = 1 and
Of(m),w) = 1 do not hold simultaneously when m/a(m) = n/a(n).

We define the left-hand ordering <^ associated to p / q with (p,^) = 1
and q > 1 as the right-hand one with a(-fe) and [pfe- oc(-fe)]/^ instead
of a(7c) and <f(fe), respectively.

In section 4 we give some results which allow to construct easily
the <r and <^ orderings (see Lemma 13. a and Proposition 11).

Let p / q be such that q = 1. Then we define the right-hand and
left-hand orderings associated to p / q as the usual ordering of the
natural numbers.

If <r and <{ are the right-hand and left-hand orderings associated
to p / q , we denote by R(n) the set { f e e N :n<,k}u{n} and by L(n)
•the set { f c e N : n<^k} u {n}.

THEOREM B. - Let a, b e R with a < b and n, m e N* and let p / q
be such that a ^ p / q ^ b with (p,q) = 1. We denote by <, and </
the right-hand and left-hand orderings associated to p / q , respectively. If
p / q < b (resp. a < p / q ) then we set p = mmM(p/q,b) u S(b,m)

<r
(resp. 'k = min S(a,n) u M(a,p/q). Then the following hold.

<f
(a) If a < p / q < b then B(a,b,n,m) = R(p) u L(k) u {q,2q,3q,...}.
(b) If a = p / q then B(a,b,n,m) = R(p) u S(a,n).
(c) If b == p / q then B(a,b,n,m) = L(k) u S(b,m).
For a given two-parameter family g^ of maps of ^ one can ask

for the regions of the parameter space (n,i)) where the set of periods
contains a given element. This study can be done easily by using
Theorems A and B, their proofs and Theorem B of [M3]. This kind of
study has been done in [GPTT] for the family g^ : [-1,1] -> [-1,1]
defined by

^. f ^ - x 2 if x ^ O ,
§^W ^_ ^^2 ^ ^ > Q
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They approach the problem by making direct computation for low
periods.

Remark 1. - Let p / q be such that a < p / q < b with (p,q) = 1
and q > l . Since {q,2q,3q, . . . } < = B(a,b,n,m) for all n , m e N * , we
have that it is enough to define the <r and <( orderings in
^\{q,2q,3q, . . . } to get statement (a) of Theorem B. Hence, it is
sufficient to construct the sets R(n) and L(n) as subsets of N\{<?, 2q, 3q,...}.

Now, we consider the class ^ of old maps F : R -> R such that F
is non-decreasing and continuous on the interval (0,1), and
F(l—) > F(0+) + 1. The maps from class ^ will be called heavy (see
[M3]; following the graph of a heavy map one can fall down but
cannot jump up).

Following the ideas of Misiurewicz and Szlenk and also of Milnor
and Thurston for continuous maps (see [MS] and [MT]) we define the
growth number of a map of ^.

Let F be an old map. We say that F is piecemse-increasing if there
exist Co = 0 < Ci < • • • < C{ = 1 such that the restriction of F to each
interval (c,,c,-n) is non-decreasing and continuous. These intervals will
be called laps of F if, in addition, EoF\^,c^^) is constant and <f is
the smallest integer satisfying the above conditions. The number <f(F) = ^
will be called the lap number of F .

If Fe^ then there exists the limit of ^(F71)1^ as n -> oo . This limit
s(F) will be called the growth number of F.

By analogy with the continuous maps of the interval we define the
topological entropy h(F) of Fe^ as the logarithm of its growth number.

Let a < b. The equation ^ s"9 = 1 has a unique root P^.A
a<plq<b

larger than 1 (see Section 5). From this equality it follows easily that
^a,b has the following properties:

( 1 ) I f c < a < b ^ d o r c ^ a < b < d then ft^ > Pa ,z>.
(2) lim P,,,== P,,,.

a[c,b]d

(3) P.^ is continuous at c if and only if c is irrational.
(4) Pc,. is continuous at d if and only if d is irrational.
(5) P.,. is continuous at (c,d) if and only if c and d are irrational.
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From Lemma 14 and Proposition A of [ALMM] it follows that for
a < b, Po^ is the unique root (larger than 1) of

z + 1 + (z-1)-1 - T,-^)(Z) - Ti-^^(z) = 0,
oo

where T,(z) = ^ z-^0) if c > 0 and z > 1, and To(z) = 0.
n=0

The last equality allows us to compute ^a,b easier than the previous
one.

The next result gives the best lower bound of the topological entropy
of a map Fe^ depending on its rotation interval.

THEOREM C. - (a) For F e ^ mth a(F) < b(F) \ve have
h(F) ^ lOgPa(F).W).

(b) Let a, beVL such that a < b. Then there exists Fe^ such that
a(F) = a, b(F) = b and h(F) = log (3^.

Note that X 4: ^.

COROLLARY D. — Theorem C holds mth ^ instead of ^ and mth
a ^ 0, b ^ 1 .

2. The possible sets of periods (proof of Theorem A. (a)).

We recall that the maps from class ^ are called heavy. An old map
F : R -> R such that F is non-decreasing and continuous on the interval
(0,1), and F(l-) ^ F(0+) + 1 will be called light. Note that with this
definition a continuous map Fe^f is light (i.e. for technical reasons
we do not follow the convention in [M3] making it heavy). Also we
note that in general an iterate of a heavy map need not be heavy but
this problem does not occur in J^f.

For a heavy map F we define maps F^ and Fr by

F,(x) = inf {FQO: y ^ x},
F,(x) = sup{F(}0: y ^ x ] ,

see [M3], [ALMS] and [CGT].

Let F be an old map, and let x e R. Then, the set {y e R : y=Fn(x)
(mod. 1) for n= 1,2,. . .} will be called the {mod. 1) orbit of x by F . If
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x is a periodic (mod. 1) point of F of period q with rotation number
p / q , then its (mod. 1) orbit is called a periodic (mod. 1) orbit of F of
period q with rotation number p / q .

Let P be a (mod. 1) orbit of an old map F . We say that P is a
twist orbit if F restricted to P is increasing. If a periodic (mod. 1) orbit
is twist then we say that P is a twist periodic orbit (from now on
TPO). Assume that P = { . . . , x - 2 , x - i , X o , X i , X 2 , . . . } is a TPO and
that (x,,x,+i) n P = 0 for all f e Z . The fact that F(x,) = x^p for all
i e Z, gives a geometrical interpretation of a TPO (for more details
see Lemma 1 of [ALMS], see also [CGT] and [M2]).

LEMMA 1. — Assume that FeJSf is heavy. Then the following hold.
(a) Fr is an old continuous non-decreasing map.
(b) If p / q with (p,q) = 1 is the right endpoint of the rotation interval

of F , then all periodic (mod. 1) orbits of Fr have period q, rotation
number p / q and are TPO.

(c) Under the assumptions of (b) at least one of the TPO of Fr of
period q and rotation number p / q is a TPO of F with the same period
and rotation number.

Proof. — Statement (a) follows from Lemmas 2.2 and 4.1 of [M3].

Now we prove (b) and (c). By Lemma 3.2 and Corollary 5.2 of
[M3] we obtain that p / q is the unique rotation number of Fr. The
continuous map F^ — p is non-decreasing and therefore all its periodic
points are fixed points. Consequently they have period q for F r . Since
Fr is non-decreasing all periodic (mod. 1) orbits of Fr are TPO. Hence,
(b) is proved.

From the proof of Theorem 2 of [CGT] (or Lemma 3.4 of [M3],
Proposition 2.1 and Lemma 2.2 of [M2]), it follows that at least one of
the TPO of Fr of period q with rotation number p / q does not belong
to the open intervals where Fr is locally constant. Therefore, this
periodic (mod. 1) orbit is also a TPO of F with the same period and
rotation number. This proves (c). D

LEMMA 2. — Assume that Fe^f 15 heavy and that F(0+) = 0.
Then Per (F) = K(k) for some k e N* .

Proof. - For each f e Z , x ^ i implies F(x) ^ i and F|[,,,+I) is
non-decreasing. Therefore all periodic points with rotation number equal
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to zero are fixed points. Consequently, if F has a periodic (mod. 1)
orbit of period ;' > 1 then its rotation interval has the form [0,d] where
d > 0 and l//e[0,ri]. Hence I / m e [0,d] for all m > j. Therefore, by
Theorem A of [M3] the lemma follows. D

PROPOSITIONS. - Assume that F e ^ is heavy, the rotation interval
of F is [a,b], and p / q e {a,b} mth (p,q) == 1. Then the following hold.

(a) There exists a map G e ^ such that Per^(F) = {q} u q Per(G').
(b) If a < b then Per^(F) = qK(k) for some k e N*.

Proof. - We may assume that b = p / q . If a = p / q the proof is
similar.

From Lemma 1. (c) it follows that F has a TPO P of period q and
rotation number p / q which is also an orbit (mod. 1) of Fr. Let
P = {^i}iez, ^i < Xi+i and x-i < 0 ^ XQ. We have F(x,) = x^ and
•^i+g = x, + 1. Since F ^ Fr and F,. is a continuous non-decreasing
map (see Lemma 1. (a)), we have that x ^ x, implies F(x) ^ F(x,) = Xi+p.

Set / = [x-i,Xo] and define H : I -> I by

^) = fF^x) - P it F^(x) - p G 7,
[x-i otherwise.

Notice that H(x,,) = x-i and H(x^ = Xo .

Let ^o be a periodic (mod. 1) point of F of period m and rotation
number p / q . Set y , = ^(3:0) for f = 1, 2, . . . , m. Note that y , + y^ + j
for i = 1, 2, . . . , m - 1 and jeZ and that }̂  = ^o + ^ for
some fc e Z. Then m = sq and k == sp for some integer 5 > 0. Let 7
be such that ^o£(^-i,^]. We claim that we have
Yi e (x7+p-l» ;c7+p]» • • • ? ^m e (Xj+mp-i,Xj+mp]' Now we prove the claim.
We have y, ̂  x, and therefore y, ^ x ^ p , . . . , y^ ^ x,^p. If
Yi ^ ^j+ip-i for some i ^ m then also y^ ^ x^^-i, which is impossible
since y^ = y^ + sp > x,-i + sp = x,-i+^ = x^-i+^. This completes
the proof of our claim.

Among the intervals (x,-i,x,], . . . , (x^-^_i, x^^-^] there are
exactly 5 which are of the form (x_i,Xo] + i for some i e Z . Therefore
to the orbit yo for F there corresponds a periodic orbit of H of period
s = m / q . On the other hand, by similar arguments, if z is a periodic
point of H of period s then the F-orbit (mod. 1) of z has period sq
and rotation number p / q . Consequently, Per^(F) = g Per (Tif).
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Again by similar arguments we see that if H(x) + x-i then
F'(x) e (Xip-i,Xip] for i = 0 ,1, . . . , q. Since F is continuous and non-
decreasing at each (x^_i,xj for i == 1, 2, . . . , q - 1, the only
discontinuity of H can occur at 0, 77(0+) ^ 77(0-) and 77 is non-
decreasing on [x-i,0] and [0,Xo].

If XQ = 0 then H is continuous and non-decreasing, and thus
Per (77) = {1}. Then (a) holds with G equal to the identity function
and (b) holds with k = oo .

Assume for the rest of the proof that Oe(x- i ,Xo) .

If 77(0+) ^ 0 or 77(0-) ^ 0 then clearly Per (AT) = {1} . In this
case (a) and (b) follow as above.

Assume now that 77(0+) < 0 < 77(0-). Denote 77(0+) = v ,
77(0-) = w and J = [u,w]. Define Gi: J -> J as follows :

77(x) if 77(x)e./,
G,(x) = v if 77(x) < i;,

w if 77(x) > w.

We claim that Per (7:0 = {1} u Per(G'i). If G'(w) = w then x > w
implies 77(x) ^ w. If G'(w) < w then x < w implies 7^(x) ^ w. In
both cases there are no periodic orbits of H having points in both
sides of w. Since H is non-decreasing in [w,Xo], there are no periodic
orbits of H , except of period 1, staying to the right of w. Therefore,
all periodic orbits of H with period larger than 1 have to be contained
in [x_i,w]. Analogously, these orbits have to be contained in [u,Xo].
Therefore, Per (H) c= {1} u Per (G,).

Clearly, {1} c Per(^). Let Q be a periodic orbit of Gi of period
larger than 1. Since all the points x of J for which G'i(x) ^ H(x) are
mapped to a fixed point of Gi, we have G^(y) = H(y) for all y e Q.
Hence Per(G'i) <= Per(H). This completes the proof of the claim.

Now we renormalize G^. We define G^ : [0,1] -^ [0,1] by L~1 o G^ o L
where L is the affine transformation L(x) = (w-v)x-^-v. Notice that if
Gl=(FQ-p)\J then this reduces to the usual renormalization:
Gg = L~1 o CF^-p) o L. We get G from G^ in the usual way :

.̂  ^ \G^x) if O ^ x ^ L - ^ O ) ,
w \G,(x) + 1 if L-^O) ^ x ^ 1,
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and G(x) = G'(x-Y) + ^ if xe|/,^+l] with < f e Z . By the construction
and in view of the properties of H , G e £ ^ . Clearly Per(6'i) = Per(G').
This completes the proof of (a).

Assume that a < b. Since there are points with rotation numbers
smaller than p / q , ^(0+) - p < x-i. Therefore ^(0+) = x_ i and
hence v = x-i. Since H(x-^) = x-i, we have G^(v) = i; and thus
G^O^-) == 0. Now (b) follows from (a) and Lemma 2. D

Note that if in Proposition 3 we assume that a = b then G can be
thought of as a renormalized map F ' . However, the reader should be
aware that if G'i 7^ (^—p)|j (this can happen easily) then, strictly
speaking, this is not a renormalization. One may wish to compare this
situation with the case of a unimodal map of an interval. There it
happens that there is an interval J with /^(J) <= J and one can reduce
the study of / to study the unimodal map /91 j and a relatively simple

q-l

behaviour of / outside (J ^(J). Here we reduce the study of F to the
t=0

9-1
study of GeJ^f and a very simple behaviour of F outside (J f\J) +

1=0

Z. However, the connection between G and F is not so close.

For a heavy map F e ^ such that a(F) < b(F) we take n^N*
arbitrarily if a ̂  Q; otherwise ria is defined in such a way that
Peipig(F) = qK(na) if a = p/^ with (p,q) = 1. When a is rational, by
Proposition 3. (b), n^ is well defined. Similarly we define n^ by putting
b instead of a.

Statement (a) of Theorem A follows from the next theorem.

THEOREM 4. — Let F e ^ mth rotation interval [a,b]. If F is light
then a == b and Per(F) is either empty if a ^ Q, or {q} if a = p / q mth
CM) = 1 • ff F ls heavy then the following hold.

(a) If a < b then Per(F) = B(a,b,na,n^.
(b) If a = b i Q then Per (F) = 0.
(c) If a = beZ then Per(F) = {1} .
(d) 7/' a = b = ^/g ^ Z where (p,q) = 1, then q ^ 2 and Per(F) 15

6?f^6?r {^1,^2 . . . ,^r} u ̂  w/^r6? r ^ 1, ^ = q^, q,< q^-, and q, divides
qi+ifor i = 1, 2 , . . . , r - 1 ; or {q^q^q^ . . . } mth q = q^ q, < q,+^
and qi divides ^+1 for i = 1, 2, 3, . . . ; B is the empty set or a set of
the form B(c,d,m,n); c, d e R mth c < d and n, m e N*.
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Proof. - Let x, y <= R with x < 3; < x + 1. If F is light, it is
non-decreasing on R and F"(x) ^ Fn(y) ^ F"(x) + 1 for all n ^ 1.
Therefore, p(x) ^ p(^) ^ p(x+l) = p(x). Hence a = b = p(x) for all
x e R (see [M3] and [RT]). Clearly, Per (F) = 0 if a t Q. By Theorem 2
of [RT], if a = p/^f with (p,<?) = 1 then there exists x e R such that
F^x) = x + p (recall that we use one-sided limits, if necessary). Hence
{^}c:Per(F).

All periodic (mod. 1) points of F have rotation number p / q and
therefore they are periodic points of F9 - p . Since F9 - p is non-
decreasing, it has no periodic points of period different than 1. Hence
Per(F) = {q}.

Assume now that F is heavy. From Proposition 3. (b) and Theorem A
of [M3] it follows (a). Statement (b) is obvious. Now we assume that
a = = b . l f a = b e Z , since [a,b] c: [0,1] we have either a = 0 or a = 1.
Hence, all periodic (mod. 1) points of F have rotation number p e {0,1}.
We define the map G e ^ as follows. If x e [0,1] then

G(x)=
F(x) - p if F(x) - pe[0,l],
1 if F(x) - p > 1,
0 if F(x) - p < 0 ;

and G(x) = G(x-0 + <f if xe[^+l] with ^ e Z . Note that G is
light, a(G) = b(G) = 0 and G(y) = y for the points ^ such that
^00 = 3^ + P (note that there exists at least one of these points). From
the part already proved it follows that Per(G') = {1}. Since
a(F) = b(F) = p, there are no periodic (mod. 1) points x of F
such that G(x) + F(x) - p . Hence, Per(F) = Per(G). Therefore,
Per(F) = {1}. Hence, statement (c) follows.

At last we assume that a = b = p / q ^ Z. Then clearly q ^ 2. We
set Pi = F. From Proposition 3. (a) there exists Fge^f such that
Per(Fi) = {q} u <?Per(F2). We consider five cases.

Case 1. Fg is light. Then, as we already know, Per(F2) is either
empty or {m} for some m e N . So Per(Fi) is either {q^} or {q^q^}
with ^i = q and q^ = qm (if m = 1 then Per(Fi) = {^i}).

Case 2. Fz is heavy and a(F2) < b(F^. Then, from (a) it follows
that Per(FO = {q} u qB(a(F,),b{F,),n^n^.

Case 3. Fa is heavy and a(F^) = b(F^ t Q. Then, from (b) it follows
that Per(Fi) = {q}.
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Case 4. F^ is heavy and a(F^ = b(F^)eZ. Then from (c) we have
that Per(F,) = {q}.

Case 5. Fg is heavy and a(F^ = b(F^ = k / m ^ Z with (fe,m) = 1.
By Proposition 3. (a) there exists F^e^ such that

Per (Fi) = {q,qm} u ^m Per (^3).

By iterating this process statement (d) follows. D

3. The effective set of periods (proof of Theorem A. (b)).

PROPOSITION 5. - Let a, b e [0,1] mth a < b and n, m e N*. Then
there exists a heavy mapped such that a(F) = a, b(F) = b and
Per(F) = £(a,b,n,m).

Proof. - We define a heavy map G e S by G(x) = 2x - ^ if
xe^^+l ] with < f e Z . Note that a(G) = 0 and b(G) = 1.

Now we make a construction similar to the one described by
Guckenheimer for maps of an inverval in [G2].

For p. e [0,1] we define

w =
H + ^ if xe[^+H/2],
G(x) if xe[^/2^+ai+l)/2],
^ + < f + l if xe [^+(n+l ) /2 ,^+l ] ,

with ^ e Z. Note that G^e ̂  and it is continuous.

From the proof of Theorem 1 and 2 of [CGT] (see also Lemma 3.4
of [M3]), there exists ^ and ^ such that p.o < ^, ^(G^) = b(G^ = a,
fl(G'H^) = fc(G'n^) = fc , and if a (resp. fc) is rational then G^ (resp. 6y
has a twist orbit Ta (resp. T ,̂) with rotation number a (resp. b)
which is not contained in the open intervals where G^ (resp. G^ ) is
locally constant. We note that Ta n [/, ̂  +1] is contained in
[^+Ha/2,^+(Ha+l)/2] for all ^ eZ , and that 6^1^=G ' [^ and
analogously for fc instead of a.

Suppose that b is rational. Since G^(^/2) = G^((^+1)/2) - 1, it
cannot happen that both ^/2 and (^+1)/2 belong to T^,. Hence if
^ = min (T&n[0,l]) and w& = max (T^,n[0,l]) then w& - ^ < 1/2. From
this it follows that if H e / & where 1^ = [2w^,—l,2i;J, then T^, is also a
TPO of G^ and consequently, p(G'n) = b. Notice, that 2v^ > 2w^, - 1.
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Analogously if a is rational we obtain an interval la = [2wa-l,2uJ
such that for each ^ from it Ta is a TPO of G^ and p(GQ = a. If a
(resp. ft) is irrational, we set la = {[ia} (rcsp. /& = {^}).

For 0 ^ ^ < H ^ 1 we define a heavy map F^ e ^ :

? i + < f if xe[<f ,<f+V2],
F,,,(x)= G(x) if x6[<f+V2^+(^+l)/2],

^ i + ^ + l if xe[<f+4i+l) /2 ,^+l] ,

with ^ e Z . Notice that (F^ = G^, (F^), = G^.

From Corollary 5.2 of [M3] we have that if ^e/a and ^e /& then
a(F^ = a and fc(F?,,^) = b. Then from Theorem A of [M3] it follows
that PerCF^) = M(a,fc) u Per^^^) u Per^(F^^). To end the proof we
have to find ?L, [i such that Pera(^,n) = S(a,n) and Per^Fx.n) = S(b,m).
We shall see that Per^(F^) depends only on the choice of [ieli, and
analogously. Pern (F^) depends only on the choice of ^ e la.

We shall try to find a suitable ^; the proof for ^ is analogous. If
b^Q then there is nothing to prove. Assume that b = p / q , (p,q) = 1.
We take H and I = [x-i,Xo] from the proof of Propositions where
P = T^ and F = F^. Since a < b, we have, as at the end of the
proof of Propositions, /f(0+) = x-i. Notice that x-i = w^ — 1 and
XQ = Vi,. Outside the intervals of the form I + f, ^ e Z, the map F^



PERIODS AND ENTROPY FOR LORENZ-LIKE MAPS 943

has a constant slope 2. Therefore the map H has the following form
(see Figure 1):

2(^(x-x.-l) + x-i if x-i^^x-x-i) ^ i)(n),
^ i)0i) if 2^(x-x-0 ^ u(n), x < 0,

"w x-i if 0 < x ^ X o - 2 ^ ( x o - x - 0 ,
Xo - 2(^(xo-x) if x ^ Xo - 2^(xo-x_i),

where x-i ^ I)(|LI) ^ XQ and i)(n) depends linearily on p,; when p, varies
from 2w& - 1 to 2i^ then u(n) varies from x-i to Xo.

Clearly H depends only on |i. If D^i) < 0 then we have Per(7T) = {1}
and consequently Per^(F^) = { < ? } . When we go on with the construction
from the proof of Propositions for i)(^i) ^ 0, we obtain a map G,
which depends on ^ in a continuous way. By Propositions, we have
Per^CF^) = ^Per(G') u{q}. By [M3], the rotation interval of G varies
continuously with [i. It is of the form [0,d], and if D(^i) = 0 then
d = 0; if i)(^i) = Xo then d = 1. As in the proof of Lemma 2, we
obtain Per&CF^) = ^(m) for some ^le/z, (when r fe [1/m, l/(m-l))).

D

Remark 2. - If a e (0,1)\Q then the map F(x) == x + a belongs to
J^f and PerCF) = 0.

LEMMA 6. - Z^r a = f e e {0,1}. Then there exists a heavy map
F e ^ such that a(F) = b(F) == a and Per(F) = {1} .

Proof. - We define F as follows

F(x) (x-^/2 + f + 1/8 if xe [< f ,< f+ l /2 ] ,
7(x-^)/4^ - 1/2 if xe^+1/2,^+1),

for all f e Z. Since
F^+l/4) = ^ + 1/4, FQf+2/3) = ^ 4- 2/3,

F([^+1/4,^+2/3]) = [^+l/4,<f+2/3]
and

F([^+2/3,^+5/4]) c= [^+2/3,<f+5/4],

we have that Per(F)=={l} and L(F)={0}. The map G(x)=2-F(l-x)
for all x e R satisfies Per(G) = {1} and L(G} = {1}. D

LEMMA 7. - Let GE^ and. p / q f Z mth (p,q) = 1. T^n r^^
exists a heavy map FeJ^f such that a(F) = fc(F) = p / q and
Per (F) = {q}uq Per (G).
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Proof. - Set f l = i n f { x e [ 0 , l ] : G'(x)=l}. Since Ge^f , we have
0 < a ^ 1. If a < 1 then set a = a. If a = 1 then choose ^(=(0,1)
arbitrarily. We define an old map G: R -> R as follows :

rrv^JW if ^t^^Law [G(x)-l if xe^+a^+1),

for all ^ f e Z . Note that Per(G) = Per(G).
We shall use the homeomorphism T : R -> R defined by r(x) = 2^x + a

for all x e R . Note that T([^-a/(2^V+(l-a)/(2^)]) = [2^,2^+1].
We define the map F as follows :

^ = ^ + P / q if x e [^f+ 1/(2<?V+ 1 - 1/(2^)],
^ / ^(T- lo(?oT)(x)+p^ if xe^-^/(2^)^+(l-a)/(2^)],

for all ^ e Z. Furthermore, we define F to be affine on the intervals
[^-l/(2^V-a/(2^,] and [^+(l-a)/(2<?V+l/(2g)] for all ^ e Z (F
has been already defined at their endpoints; it is continuous at them).
We remark that Fe^f and it is heavy.

Since

F(\L - ai, + L^T) ̂ \i^J>,a[±^+ l̂ t
\\_q 2q q 2q ]J \_ q 2q q 2q ]

for all i e Z, we have that
, (Vi a i + 1 a~\\ [~i a i + 1 1 - a]<F•-'') [[, - 2,- -r - 2,J)c L, - w -r+ -i,r\

for all i e Z. Therefore,

/R a f + 1 1 - a1\ r1 a l + 1 1-^1^-'>(L, - ̂ -r+ ̂ J) - b- 2,-^+ -̂ -J
for all i e Z. Hence, since Fis old it follows that a(F^-p) = &(F9-?) = 0,
and consequently a(F) = b(F) = p/^.

We note that for all i e Z there is a subinterval A^ of
[i/q-}-(l-d)/(2q),(i-^-l)/q-a/(2q)] such that F9!^ is linear and increasing
and (F9-?)^) = [f/^+(l-a)/(2^),(f+l)/^-a/(2^)]. Hence, there is a
periodic (mod. 1) orbit of F of period ^ with rotation number p / q
contained in (J Ki. Furthermore it is easy to see that every periodic

i eZ

(mod. 1) orbit of F contained in |j [i/q-}-(l-d)/(2q),(i-^-l)/q-a/(2q)]
has period q. l e z
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Since G is old we have F^x) = (T~1 o Go r)(x) + p for all
x e [i/q—a/(2q),i/q-^-(l—d)/(2q)] and f e Z . Therefore, for such an x we
have F^(x) = ( r~ 1 o G^ o r)(x) + fcp for all k ^ 0. Hence,
x6 U [l/^—a/(^)'l^+(l~a)/(^)] ls a periodic (mod. 1) point of F

iGZ

of period feg if and only if r(x) is a periodic point of G of period fe .
This completes the proof. D

LEMMA 8. - Let A = [q^qz,,... ,<^} u <^j8 where r ^ 1, q = qz,
qi < ^(+1 anrf ^i divides ^1+1 /or i = l , 2 , . . . , r — 1 ; ^ ^ 2 and 2? fs
r^ ^mpr^ set or a set of the form B(c,d,m,n) where c, d e R with c < d
and n, m e N * . Then, for every k such that (k,q) = 1 there exists a
heavy map F e S such that a(F) = b(F) = k / q and Per(F) = A.

Proof. - By Proposition 5 and Remark 2 there exists G e JSf such
that Per (G) = B. We get the required F by using Lemma 7 r times
with qr/qr-i, qr-i/qr-2^ ' ' . ,^2/^1, ^i as (? and 1,1, . . . , 1, fe as p
respectively. D

LEMMA 9. - Z^t A = {^1,^2? • • •} wher^ q^ ^ 2, ^, < <^+i and q,
divides ^1+1 /or f = 1,2, . . . . TTien, /or ^u^r^ fe such that (k^) = 1
there exists a heavy map FG^ such that a(F) = b(F) = k / q ^ and
Per(F) = ^.

Proof. — We set ^i = ^i and ^, = qi/qi-i for i = 2, 3, . . . . For a
given r ^ 2 we start with Gr,r given by Gr,r(^) = x + l/q^ and then
use the construction described in the proof of Lemma 7 r — 1 times
with qr-i, . . . , <?2» <?i ^s ^ and 1, . . . , 1, k as p . In such a way we
get successively heavy maps Gr,r-i, . . . , Gr,2, Gr,i e ^ . We have
Per (G, , i ) = { ^ i , ̂ 2 ,. . . ^ i ^2 . • • ^ r } = { < ? i , ^ 2 , . . . ,qr} , and
a(G, ,0=b(G^)=k/^ .

Let us compare Gr,i with G'r+w.i for m ̂  1. For f = r they differ
only on the intervals [7-1/2^, ̂ +1/2^], < f e Z . For both of them
a = (qi— l)/qi. Therefore for i = r — 1 the same is true and additionally
(5^+) = C^^+) and G,,^-) = G,^,,^-) for < f e Z . Conse-
quently, for smaller i we get again the same properties, but the set
where Gr,i differs from Gr+m,i ls reduced to two intervals in each
[/,/+1], ^ e Z ; each of them of length at most
(1/2 .̂-1) (1/2^,- 2) . . . (1/2^) (the first factor is the length of the interval
[^+l/2^-i] or |/+1-l/2^.-i,^+1]; the next ones come from
successive applications of T during the construction). Moreover, these
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intervals do not depend on m, and if we let r increase, the corresponding
intervals will form descending sequences. Therefore the maps Gr,i
converge as r -> oo to some map F . Clearly, F is heavy, F e ^ ,
Per(F) = A and a{F) = b(F) = k/q,. D

The statement (b) of Theorem A follows from Proposition 5,
Remark 2, and Lemmas 6, 8 and 9.

4. Structure of the set B(a,b,n,m) (proof of Theorem B).

In this section we use the definitions of a(n), ^(n), <r and <^
given in the introduction. The following result follows immediately from
the definitions.

LEMMA 10. - Let p / q such that (p,q) = 1 with q > 1 and let n > 0.
Then ^(n) is the smallest positive integer £ such that ^ / n > p / q .

PROPOSITION 11. - Let p / q be such that (p,q) = 1 with q > 1 and
p / q > 0, and let < r and < ̂  be the right-hand and left-hand orderings
associated to p / q , respectively. Then the following hold.

(a) Let b e R be such that p / q < b and let k e N * . If
meM(p/q,b)u S(b,k) then n e M(p/q,b) u S(b,k) for all n such that
m <rU.

(b) Let a e R be such that a < p / q and let k e TV*. If
meM(a,p/q) u S(a,k) then ne M(a,p/q) u S(a,k) for all n such that
m < { n.

Proof. - We prove (a); (b) follows in a similar way. We consider
two cases.

Case 1 : Assume that meM(p/q,b). By Lemma 10, we have
p / q < ^(m)lm < b. Since m < ,n , if (< r. l) holds then by the definition
of < f ( . ) , p / q < ^(n)/n < ^(m)/n. Hence, neM(p/q,b). If (<,.!) does
not hold then ^(n)/n == ^(m)/m e(p/q,b) and hence neM(p/q,b).

Case 2 : Assume that m^M(p/q,b). By Lemma 10, ^(m)/m = b. If
(<,..!) holds, (a) follows as in Case 1. Suppose (<r . l ) does not hold.
Then ^(m)/m = ^(n)/n = t / s with (t,s) = 1 and s divides m and n. If
(<r.2) holds, then 5 + m and 5 + n. Since m€S(b,k) and m + s, we
have that m = (fe+Qs with f ^ O . Since m < n and s divides n, if follows
that n = (k-^j)s with; > i. So, neS(b,k). If (< ,.3) holds then n = s .
Hence, m e S(b,k). D
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Proof of Theorem B. - If q > 1 then it follows from Proposition 11.
If q = l and fee [p+l/fe,p+l/(fe-l)) (resp. a e (p- l / ( k - l),p- 1/fe]),
thenM(p,fc)uS(fc,m) = { f e , f e + U + 2 , . . . }= R(p)(!esp.M(a,p)u S(a,n) =
{U+U+2, . . . } = L(k)). This completes the proof. Q

Let p / q be such that (p,^) = 1 with q > 1. Let n, <, ̂  < r "3, • . .
be the set of all natural numbers ordered by < ,, where < , is the
right-hand ordering associated with p / q . The next result allows to
construct the whole sequence n,, n,, . . . starting from the first
q(q+l)/2 terms.

PROPOSITION 12. - n^^(^i)i2 = Hi + kq^n,) for k == 0, 1, 2, . .. .

The same proposition holds with < ^ instead of <, and a(-n,)
instead of oc(n,).

To prove Proposition 12 we shall need two lemmas.
For k ^ 0 we define B^ = {n e N : fe^ < n/a(n) < (fe + l)q} and

P(n) = n - kq^(n) where fe is such that n e B ^ .

LEMMA 13. - (a) Card^, = q(q+l)/2,for all k .
(b) ^s5um^ that ne B^ and me Bj. If k < j then n <, m.
(c) PQi) e^o fln^ a(n) = a(P(n))/or a// n.
(d) Let n,meBk. Then, n/a(n) < m/a(m) i/ anrf o^y y

P(n)/a(P(n)) < p(m)/a(P(m)).

Proo/. - Set ^= { n e ^ :a(M)=f} for f = l , 2 , . . . , ^ . Since
{a(Q : f=^+ l , ^+2 , . . . , ^+^} = { 1 , 2 , . . . , ^ } for all r ^ 0, and
^ = { ^ e N :k(i(n)q<n^kai(n)q-^-^(n)q}, we have that C a r d ^ = f .

9

Then Card^, = ^ Card 5, = ^(^+1)/2, and (a) follows.
t = i

(b) follows from the definition of < ^ .
The equality a(n) = a(P(n)) follows from the definitions of a and

P. Then we get P(n)/a(P(n)) = (n-kqa(n))/^n) = n/^(n)-kq e (0^],
and (c) follows.

(d) follows immediately from the definition of p. D
For each n e N we set Mn = {k e N : fe/a(fc) = n/cx(n)}. By the definition

of < f ( . ) , M, = { f e e N :^k)/k=/(n)/n}.

LEMMA 14. - (a) m e M^ is the smallest element of M^ if and only
if (^(m),m) = 1.

(b) ^(n\n) = 1 if and only if(^(^(n)), p(n)) = 1.
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Proof. - Let m e Mn. If (7(m),m) = 1 then for every keM^ we
have ^(k)/k = ^(m)/m. So m divides k and consequently m ^ k . Assume
now that (^(m),m) ^ 1. Then ^(m)/m = ^/fe for some ^ and k , with
(/,fe) = 1 and k dividing m. From Lemma 10 applied to m and to k
it follows that ^(k) = < f , and consequently k is the smallest element of
Mn. Since m > k, this completes the proof of (a).

We have M^ <= ̂  for some k. Therefore P(MJ c= M(^). Let 5 be
the smallest element of M^)' Then by Lemma 13. (c),
0 < s/a(s) = P(n)/a(P(n)) = (n-k^a(n))/a(n) = n/a(n) - k q < ^ q . Set
m = 5 + fc^a(s). Then a(m) = a(s) and m/a(m) = s/a(5) + k^f . Thus
me Bk. Therefore s = P(m) and by Lemma 13. (d) we get that m is the
smallest element of Mn. Now(b) follows from (a). D

Proof of Proposition 12. — It follows from Lemma 13 and Lemma
14 (b). D

Now we shall give some examples of the right-hand and left-hand
orderings associated with various p / q .

Example 1. - p / q = 1/2. From the definition of < ^ and Lemma
14. (a), we have that Mi = 2, Ug = 1, Us = 4 and <?a(ni) = 4, q^(n^) = 2,
^a(ns) = 4. Therefore, by Proposition 12, we get

2 < , 1 < ,4 <, 2 + 4 . 1 <,1 + 2 . 1 < , 4 + 4 . 1 < , 2 + 4 . 2 < , 1
+ 2.2 <,4 + 4.2 < , . . . .

Since in this case a(-n) = a(n), for <{ we obtain again < r .

Note that if we omit the even numbers and 1 in the previous < r
and <( orderings (see the remark of the introduction), we obtain the
following ordering

3 < ,5 <,7 < ,9 < ^ . . .

i.e. the beginning of the Sarkovskii ordering.

Example 2. — p / q = 1/3. For <r we have Hi = 1, Ug = 3? ^3 = 4,
^ 4 = 6 , n s = 2 , He = 9 and ^a(ni) = 6, qai(n^ = 9, q^(n^ = 6,
ga(n4) = 9, <?a(ns) = 3, <?a(ng) = 9. Hence

1 < , 3 < , 4 < , . 6 < , 2 < ^ 9 < , 1 + 6 . 1 < , 3 + 9 . 1 < , 4 + 6 . 1
< , 6 + 9 . 1 < , 2 + 3 . 1 < , 9 + 9 . 1 < , 1 + 6 . 2 < , 3 + 9 . 2 < , 4
+ 6 . 2 <, 6 + 9 . 2 <, 2 + 3 . 2 <, 9 + 9 . 2 < , . . . .
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For <{ we have n^ = 2, Mg = 3, n^ == 1, ^4 = 6, Us = 5, Me = 9
and ^a(-n0 = 6, q^-n^) = 9, q^(-n^) = 3, qa(-n^) = 9,
^a(-ns) = 6, ^a(-ng) = 9. Hence,

2 < ^ 3 < ^ 1 < ^ 6 < ^ 5 < ^ 9 < ^ 2 + 6 . 1 < ^ 3 + 9.1 < ^ 1 4 -3 .1 < ^ 6
+ 9 . 1 <^ 5 4- 6.1 < ^ 9 + 9.1 < ^ 2 4- 6.2 < ^ 3 + 9.2 < ^ 1 + 3.2 <v 6
4- 9.2 <,5 4- 6.2 <,9 + 9.2 < , . . . .

Note that if we omit the numbers divisible by 3 and several first
numbers in these orderings, we obtain

7 <,10 <,5 <,13 <,16 <,8 < , . . .
and

5 < ^ 8 < ^ 4 <f 11 <^14 < ^ 7 <^17 < ^ . . . ,

i.e. the beginnings of the red and green orderings of [ALM] respectively.

Example 3. — p / q = 2/5. We obtain

1 < , 3 < , 5 < , 4 < , 6 < , 8 < , 1 0 < , 2 < , 1 5 < , - 1 3 < , 1 1 < ,20< ,18
<,9 <,25 <,1 + 15.1 <,3 4- 20.1 <,5 + 25.1 <,4 4- 10.1
< ,6+ 15.1 < ,8+20 .1 <, 10 4-25.1 < ,24-5 .1 <, 15+25.1 <,13
+ 20.1 <,!! 4- 15.1 <,20 + 25.1 <,18 4- 20.1 <,9 4- 10.1 <,
25 4- 25.1 < . . . . .

5. Lower bounds of the topological entropy
(proofs of Theorem C and Corollary D).

In this section we shall refer to some results from [ALMM]. However
we use their proofs rather than the statements of these results. Thus
we shall assume that they are known for the reader and we shall use
them freely.

Fix y, 5 e R with y > 1. Consider the map -Fy,§(x) = yx 4- 8 if
xe(0,l), and F^(x) = F^^x-k) 4- k if x e ( f e , f e + l ) for all keZ (if
x e Z , we have two one-sided limits).

Clearly Fy^e^. From [MS] we obtain h(Fy^) = logy.

In the same way as Theorem 3.1 of [ALMM], we obtain
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PROPOSITION 15. - Assume that a, beR, a < b and

Y = Pa.&,

S^Y-l)2!; ^(na)y-71-1.
n=l

Then the map F^§ has topological entropy log Pa & , a(F^§) = a and
b(F^)=b.

In the proof, apart of the obvious change of notations, we have to
substitute 1 for U and (y-l)/y for (a-l)/2a.

Now Theorem C.(b) follows from Proposition 15.

The proof of Theorem C. (a) is here much simpler than that of the
analogous result in [ALMM]. Assume that a(F) ^ a and b(F) ^ b
where a, beQ and a < b. Then F has TPO's with rotation numbers
a and b respectively. Unlike in the situation from [ALMM], their
relative position is determined uniquely by the assumption that F|[O,I]
is non-decreasing:

LEMMA 16. - Let F e ^ , p / q + t / s , (p,q) = (r,s) = 1 . Let
P = {xk}kez an(^ T = {yk}kez be TPO's with rotation numbers p / q and
t / s respectively, such that Xk < x^+i and y^ < Yk+i for ^l f e e Z ;
x-i < 0 < XQ and y-^ < 0 < yo (we can allow also non-sharp inequalities ;
then we take one-sided limits). Then to determine whether Xi < yj or
Xi > YJ it is enough to know 1 , 7 , p, q, t , s .

Proof. - We have F(x^ = x ^ p , F(yk) = Y k + t , ^k+g = ̂  + 1,
Yk+s = Yk + 1- Since p / q + t / s , there exists m ^ 0 such that
E(Xi+mp) ¥• E^Yj+^t) (here if we take one-sided limits, we define
£'(/—) = < f — l ) . Take such smallest m. Since F is increasing on each
[^+1] n(PuT), ^ e Z , we have x, < ̂  if E{x^^p) < E(y^^ and
x, > y, if E(x^n,p) > E(y^^. However, E(Xk) == E(k/q) and
E(yk) = E ( k / s ) , so the above criterion involves only 1 , 7 , p , q, t , s .

D

Analogously to Lemma 4.5 and Remark 4.6 of [ALMM] we know
that the orbits of 0 + and 1 — for F^g (where y and 5 are from
Proposition 15) are TPO's with rotation numbers a and b respectively.
Then in view of Lemma 16, we get immediately by the usual consideration
of Markov graphs that h(F) ^ P^§, and by the properties of ?• , • we
get h(F) ^ Pa(F),&(p). This completes the proof of Theorem C.
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Proof of Corollary D. - Let F e S with a(F) < b(F). From
Theorem 4 we have that F is heavy (that is Fe^). By Theorem C. (a),
h(F) ^ 10gPa(F).&(F).

Now, assume that 0 ^ a < b ^ 1. By Theorem C. (b), there exists
F e ̂  such that a(F) == a, fc(F) = b and ^i(F) = log P^.

To prove that FeJ^f, it is enough to show that ^(0+) ^ 0 and
F(l-) ^ 2. We shall prove F(l-) ^ 2; the other inequality follows
in the similar way.

If b = 1 then we know from the construction (see Lemma 4.5 of
[ALMM]) that the orbit of 1- is a TPO with rotation number 1.
But this means that F(l-) = 2. If b < 1 then for all x e R we
have Fr(x) < x + 1 (see Lemma 3.3 of [M3]). In particular,
F(l-) ^ F,(l) < 2. D
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