
ANNALES DE L’INSTITUT FOURIER

GILLES GODEFROY

D. LI
Banach spaces which are M-ideals in their
bidual have property (u)
Annales de l’institut Fourier, tome 39, no 2 (1989), p. 361-371
<http://www.numdam.org/item?id=AIF_1989__39_2_361_0>

© Annales de l’institut Fourier, 1989, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1989__39_2_361_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
39, 2 (1989), 361-371.

BANACH SPACES WHICH ARE M-IDEALS
IN THEIR BIDUAL HAVE PROPERTY (u)

by G. GODEFROY and D. LI

1. Introduction.

A Banach X is an M-ideal in its bidual if the relation

\\y^t\\ = \\y\\ + 1 1 ^ 1 1
holds for every y € X* and every t e X1 £ j^***. The spaces Co(J) — /
any set-equipped with their canonical norm belong to this class, which
also contains e.g. certain spaces K(E,F) of compact operators between
reflexive spaces (see [11]) and certain spaces of the form C(G)/CA (G)
where G is an abelian compact group and A is a subset of the discrete
dual group (see [5]). This class has been carefully investigated, in
particular by A. Lima and by the «West-Berlin school», since the
notion of Af-ideal was introduced by Alfsen and Effros in 1972 [1].

We will show in this paper that these spaces somehow «look like »
Co; more precisely, that they share the property (u) with this latter
space. This solves affirmatively a question that was pending for several
years, and provides improvements of some results of [6] and [10].

Our proof uses non-linear arguments. The key lemma is actually a
special case of a fundamental lemma ([I], lemma 1.4.) of the original
article of Alfsen and Effros.

Notation. — The closed unit ball of a Banach space Z is denoted
by Zi, and its dual by Z*. The topology defined on Z* by the
pointwise convergence on Z is denoted by co*. The canonical injection
from a Banach space X into its bidual X** is denoted by i. A sequence
(Xm) in X is said to be a weakly unconditionally convergent series —
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in short, w.u.c. series — if for every y e X*,
00

Z \y(x^)\ < oo.
m=0

If (Xm) is a w.u.c. series, then clearly the sequence
k

s*= S ̂  (fe^l)
m=0

is weakly Cauchy and thus it converges in (A'**,^*); we note
£*x^ = lim (s^ in (X* *,©*). A Banach space JT has the property (u)

A-»oo

([14]; see [12], p. 32) if every z e X** which is in the sequential closure
of X in (Z**,®*) may be written

^ = S*x,

for some w.u.c. series (x^) in X.

If T : Z* -^ R is a real-valued function defined on a dual unit ball
Z*, we denote by T the smallest concave co*-u.s.c. function which is
greater than T on Z*. The function T is the infimum of the affine
continuous functions on (Z*,CD*) which maximize T on Z*. The reader
should consult [2] for a presentation of the basic facts about M-ideals.
Similar ideas to those we use in this work are to be found e.g. in [15].
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during the Academic Year 1987/1988. It is his pleasure to thank the
Department of Mathematics of U.M.C. for its hospitality and support,
and for the stimulating atmosphere of this visit. The authors are also
thankful to J. Saint-Raymond for useful conversations.

2. The main result.

We will now prove :

THEOREM 1. - Let X be a Banach space which is an M-ideal in its
bidual. Then X has the property (u).

Proof. - If i denotes the canonical injection from X into X**, f**
is an isometric injection from X** into X * * * * which is distinct from
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the canonical injection if X is not reflexive. We will use a simplified
notation that we now define: i* denotes the canonical projection from
X*** onto X* of kernel i(X)1 = X1, and then of course f**(z) = z o f*.

From now on, we assume that A" is a real Banach space. By ([2],
p. 22), we can do so without loss of generality. The notation l^1

denotes the characteristic function of the subset X{ of the unit ball
X*** of X * * * . Thus for any z e X**, (l^.zVO) denotes the supremum
of 0 and of the pointwise product of z and ly\.

With this notation, we have the following crucial lemma.

LEMMA 2. — If X is an M-ideal in its bidual X**, then for every
z e X** and every t e X*** one has

<z-i**(z),0 = [I^VOKO - [i^?vo](-o.
This lemma is actually a special case of ([I], lemma 1.4). For sake

of completeness, we give a simplified proof of this special case.

Proof. - If ^ is a function from X*** to ^+ , we define

(S-CF) = {(^eJT*** x R^O < ̂  ^(0}

we let T == (1^-zVO), and

B = {(t,z(t))eXixR+\2(t)^0}.
We clearly have

(1) ®-(T) = conv (®-(T)).

On the other hand,

(2) X*** = conv(X*uXi) since X is an M-ideal in X**

(3) if 0 ^ )i ^ z(Q, (0) e conv {(r,0); (r,z(0)}.

From (1), (2) and (3) follows

®-(r) = conv (©-(r))
= conv {W** x {0})u^}
= conv {(X* x {0})u(A^ x {0})uj8}

since by w*-compactness we don't need to take w*-closures.
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Jor every t e JT?**, (r,T(r))e ©-(r), hence we may write
(r,T(Q) = ai(ri,0) + 0 ,̂0) + o^.z^)) with:

^1 6 A'*
^2 e X^
t, E X t ; 2(^3) ^ 0
a l9 ^2» ^3 ^ 0, ai + az + a3 = 1.

Since t = ai(i + (0^2+013^3) is the unique decomposition of ( on the
direct sum X* © X1 one has

t - f*(Q = 0^2 + 0^.

Since z ( Q ^ O , one has 1(^3) = z ((3) and rC-^) = 0. Since T is
concave, one has

T(Q = 0^3)

3

^ Z a^(^,)
1=1

3

^ E OC,T(^,)
f = l

= 0^2) + a3T(^)
= a2T(^) + 0^3)

hence a2T(r2) < 0; if 02 = 0 we may take ^ = 0 as well; if 02 > 0 this
implies T(^) < 0, hence z(^) < 0. In both cases, we have z(-Q ^ 0
and thus z(-t^) = i:(-Q.

Again by concavity of T, one has

3

T(-Q ^ ^ a,.T(-t,)
1=1

3

^ £ a^(-^)
1=1

= a2T(-^) + o^-^)
=^z(-t,)

hence

and therefore
- T(-O ^ a2z(r2)

T(t) - T(-O ^ a3z(^) + 0^2)
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and
032(^3) + ̂ z(t^ = <z,a2^+a3r3>

= <z,f-f*(0>
=<z-f**(z),r>.

Now the functions 0)(r) = T(Q - T(-Q and (z-f**(z)) are both
odd functions on A"*** and they satisfy 0 ^ z - i**(z); hence necessarily
0 = z - f**(z) on A'***. D

We now come back to the proof of theorem 1. By lemma 2, for
every z e X * * , we can write

VreAT"*, <f**(z),0 = (z(0-T(Q) + T(-O

hence if we let
h,(t) = z(t) - T(r)
^(f) = - T(-Q

we have ^(z) = h^ - h^ and ^i, ^2 are both l.s.c. on (Jr***,w*).

We need now a topological argument for going down to (A'*,^*).

LEMMA 3 (Saint-Raymond). - Let K be a compact topological space
and S : K -> K ' be a continuous surjection. Let f be a function from K1

to R which is such that (/ o S) is the difference of two l.s.c. functions
on K. Then f is the difference of two l.s.c. functions on K ' .

Proof. - Write / oS = g, - g^ where g^ g^ are l.s.c. on A:; we
define for y e K'

g^y) = mf{g,(t)\S(t)=y}
g,(y) = m{{g,(t)\S(t)=y}

the functions ^O'=l,2) are l.s.c. on K ' . Indeed, pick a < g,(y); this
means

(1) We^OO, ^ (0>oc .

Since ^ is l.s.c. and S~\y) is compact, (1) implies that there exists
e > 0 and an open neighbourhood V of S~\y) such that

(2) V reF , ^ . (0>a+£ .

Again by compactness, there exists a neighbourhood W of y such
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that S~\W) c y\ by (2) and the definition of g,, this implies

V/c W, g,(/) ^ a + e > a

and thus gi is l.s.c.

We show now that f = gi - g 2 , for every y e K' and te S~\y),
one has

î(30 ^ 8i(t) = / o 5(t) + ^(0

= /GO + ^2(0
hence by definition of gz

gi(y) ^/OO +^(^.
On the other hand,

f(y) + ^2(^) ^ f(y) + ^2(0
= / o 5(r) + g,(t)
= gi(t)

and thus by definition of g\,

f(y) + ^2(^) ^ î(^)

and this concludes the proof of lemma 3. D

Let us now conclude the proof of the theorem. Since

f**(z) = z o i * = h, - h^

with ^i and h^ l.s.c. on (A'***,w*), we may apply lemma 3 with/ = z ,
S = f* and A^ = (JS^w*); this lemma provides us with the l.s.c.
functions K^ and /Tg on (X*,\v*) such that z = K^ - K^.

If now z = lim x^ in (A'**,w*), where (x^) is a sequence in JT, we
n-»oo

let
Y --= span{x^ n^l}

and we call Q the canonical quotient map from X* onto F* ; since
z e V11 = 6*(y**), there is z' e F** such that z = z' o Q; again by
lemma 3, there exist two l.s.c. functions Ki and ^2 on (V*,w*) such
that

z ' = K,- ^,.
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But since Y is separable, the w*-topology on Y* is defined by a
metric d , and then classically the sequences /^(i'=l,2) defined for
y e V* and n ^ 1 by

/;,(y) == inf{^(/)+n^,/)|/ e V?}

are increasing sequences of continuous functions on (F*,w*) which
converge pointwise to ^. Now the sequence t^(n^O) of continuous
functions on (V*,w*) defined by

u, = f\- f\

satisfies

and

Un - n.^ fl-H- fn.Z (^1)

oo

Z IM Î < oo, V^e y?
n=0

oo

S«^) = z'(y), Vyer * .
n=0

But we still have
z\y)= limx^y), ^y e V?

W—»00

in this situation, a classical lemma of Pelczynski [14] (see [12], p. 32),
which relies on a convex combination argument, shows that there is a
sequence (Cn)n^o in Y with

Z \Cn(y)\ < oo, V^eF?

and

Sc,00=z-00, V^eF?

and since z = Q * ( z ' ) and c» = 6ilt(c^), this shows that

Z = £*€„

and (Cn) is a w.u.c. series in X. D

Before mentioning a few applications of our result, we would like
to mention that the proof provides an explicit expression of z e X**
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as a difference of two l.s.c. functions on (A^*,w*); indeed, if we define
for y e X*

v(y) = inf{z(0-[l^VO](0|^6X**^f*(0=^}

then the functions v and (v—z) are both l.s.c. on (X*,w*).

3. Applications.

We gather in this section a few consequences of our result.

3.1. P. Saab and the first-named author showed in ([6], Theorem 1)
that if X is an M-ideal in its bidual then X has the property (V) of
Pelczynski; the proof uses « pseudo-balls » ([3]) and the local reflexivity
principle. Since such an X does not contain ^(W), our result is an
improvement of ([6], Theorem 1), and of course also of the fact ([10])
that non-reflexive M-ideals in their bidual contain Co(N).

Another result of [6] is a structural result (Corollary 6) for certain
spaces E such that K(E) is an M-ideal in L(E). The proof uses Banach
algebras techniques that require to work with complex Banach spaces.
This is not needed any more, and our result together with the proofs
of ([6], Theorem 4 and Corollary 6) implies for instance the

PROPOSITION 4. — Let E be a separable reflexive space with A.P.
such that K(E) is an M-ideal in L(E). Then E is complemented in a
reflexive space with an unconditional finite dimensional decomposition.

There are some similarities between the techniques of [6] and of the
present work; the main difference is that instead of using l.s.c. affine
functions on a non-symmetric convex set — namely, the state space of
a Banach algebra — we employ l.s.c. convex functions on a symmetric
convex set — namely, a dual unit ball.

3.2. A Banach space Y is said to have to property (X) [7] if the
following holds : z e V** belongs to Y if and only if for every w.u.c.
series (^) in V*,

z(S^) = £z(}^)

f k }where (S^) denotes the limit of the sequence ^ = ^ yn\k^\\ in
I 71=1 J

(Y*,w*). This condition roughly means that an abstract Radon-
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Nikodym theorem is available for deciding which elements of V**
belong to Y. Property (X) is equivalent to saying that Y < ̂ 1(N) for
Edgar's ordering of Banach spaces [4]. For more details about this
property, the reader may consult the recent survey [8].

Let us recall now the following easy

Claim. — If A" is separable, does not contain ^^(N) and has the
property (u), then X* has the property (X).

Proof of the claim. - We must show that every t e X*** such that
t(L^Zn) = ^t(Zn) for every w.u.c. series in X** belongs to X * . We can
write t = y -+- t1 with y e X* and t ' - E X1; since y(L^Zn) = ^y(Zn) by
^-continuity of y , we also have t'^Zn) = Sr'(z^).

Since X is separable, does not contain ^1(N) and has (u), every
z e X** can be written z = £*x^ == £*i(x^) for some w.u.c. series in
X\ but since t\Xn) = 0 for every n, this implies t ' ( z } = 0, hence t ' = 0
and t = y € X*.

Now this claim, together with theorem 1, shows :

PROPOSITION 5. — If a separable Banach space X is an M-ideal in
its bidual, then X* has the property (X).

By ([8], Theorem VII.8) this implies the following

COROLLARY 6. — Let X be a separable Banach space X "which is an
M-ideal in its bidual, and let Y be an arbitrary Banach space. Let T :
X** -> r* be a bounded linear operator. The following are equivalent :

(1) there is an operator To = Y -> X* such that T? = T,
(2) ker (T) and TW*) are ^-closed,
(3) T is (\v*-\v*)-Borel,
(4) T is (w* — \v*)-strongly Baire measurable.

Let us conclude this work with a few natural questions.

Question 3.4. - Does there exist a separable Asplund space with
property (u) which is not isomorphic to an M-ideal in its bidual ? It
looks reasonable to believe that this question has a positive answer; a
candidate example is the space K(LP)(l<p<co, p^2) which has (u)
([12], Th. 3) but is not M-ideal of its bidual for its canonical norm [11].
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Let us also mention that a separable o^-space which is isomorphic
to an M-ideal in its bidual is in fact isomorphic to C()(AQ [9]. We do
not know whether any isomorphic predual of (^(AQ which has property
(u) is isomorphic to Co(N).

Question 3.5. — A reformulation of Proposition 5 is that if Y is a
separable space such that there exists a projection n: V** -> Y with:

(a) ||z||= ||7i(z)|| + ||Z-TC(Z)||, Vze Y^
(b) (ker n) w*-closed,

then Y has the property (X). It is not known whether the assumption
(b) can be removed, or whether (a) alone implies the weaker property
(V*) (see [14]), or at least that Y contains a complemented copy of
^1(N) if it is not reflexive.
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