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ON FUNCTIONS WITH BOUNDED REMAINDER

by P. HELLEKALEK & G. LARCHER

0. Introduction.

Let A denote normalized Haar measure on the one-dimensional torus
R/Z . The following two classes of A-preserving measurable transformations
on R/Z are important in ergodic theory as well as in the theory of uniform
distribution modulo one.

Let a be an irrational number and T : R/Z - R/Z , Tz := {z +a},
{-} the fractional part. T is called an “irrational rotation” on R/Z .

Let ¢ > 2 be an integer and T:R/Z - R/Z ,Tz:=z— (1 —q¢~ %) +
g~ *+1) | whenever z € [1 —¢~*,1 — ¢~ +)[ k= 0,1,... . T is called a
“g-adic von Neumann-Kakutani adding machine transformation” on R/Z .
In the following, T' will be called a “g-adic transformation ”.

Let ¢ : [0,1] — R be a Riemann-integrable function with fol o(t) dt =
0 and let T be either an irrational rotation or a g-adic transformation on
R/Z . Define

n—1
on(z) =Y @(T*z),

k=0
where z € R/Z and n € N (we shall always identify R/Z with [0, 1]).

Key-words : Skew products — Adding machine transformation — Ergodicity.
A.M.S. Classification : 28D05, 11K38.
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The following two questions are of importance in ergodic theory — for
the study of skew products — as well as for the study of irregularities in the
distribution of sequences in R/Z :

1. Under which conditions (on ¢ and z) one has sup |p,(z)| < +00?
n
2. What can be said about limit points of (¢n(Z))n>17

The classical example. — Let p(z) = 1pg(z) -8 ,0< B < 1.
In this now “classical” example, the first question leads to the study of
irregularities in the distribution of the sequence (T*z)x>0 , ¢n(z) being the
so-called discrepancy function. For z = 0 one gets well-known sequences : in
the first case ({ka})r>o , in the second case the Van-der-Corput-sequence
to the base ¢ .

For this example, the first question has been solved completely by
elementary and by ergodic methods (for the first type of T' see Kesten [§]
and Petersen [11], for the second type Faure [2] and Hellekalek [4]). The
numbers B with sup |¢,(0)] < +0o , respectively sup |pn(z)| < +00 , are

n n

all known.

The second question is closely related to ergodicity of the skew
product (cylinder flow) T, : Ty(z,y) = (Tz,y + ¢(z)) on the cylinder
R/Z x R (see Oren [10] and Hellekalek [5]). In exactly this context Oren
has solved the problem.

In this paper we shall be interested in question 1,2 and ergodicity of
the cylinder flow T, on R/Z x R in the case of a ¢-adic transformation T’
and ¢ € C*([0,1]) .

1. Results.

Throughout this paper we shall assume g > 2 to be an integer and T
to be a g-adic transformation on R/Z .

THEOREM 1. — Let ¢ € C*([0,1]) , let fol o(t) dt = 0 and (1) #
¢(0) . Then every number c such that |c| < |p(1) — ¢(0)|/2 is a limit point
of the sequence (pgx (z))x>0 for almost all z € R/Z , in particular for any
z normal to base q .

THEOREM 2. — Let ¢ € C([0,1]), let fol o(t) dt =0 and let ¢' be
Lipschitz continuous on [0,1] . Then



FUNCTIONS WITH BOUNDED REMAINDER 19

(1) ¢(0)=¢(1)= sup len ()| < oo for all z € R/Z;

(2) Sl;p |on(z)| < oo for some z € R/Z = p(0) = ¢(1);

(3) ¢(1) <¢(0) = —oo < liminf¢,(0) and ligsip ¢n(0) = +oo0;
(4) #(1) > ¢(0) = —oo = liminf ¢,(0) and lim sup ¢r,(0) < +o0;

(ifw(8) := sup{l¢'(z)—¢'(y)| : £ —y| <6, 0< z, y <1}, § > 0, denotes
the modulus of continuity of ¢' , then ¢' called Lipschitz-continuous if
w(6)<L-6§,¥6 >0, L a positive constant).

The reader might want to compare theorem 2 (1) with theorem 7.8 in
[7], and theorem 2 (3) and (4) with results on the one-sided boundedness
of the discrepancy function (see [1]).

THEOREM 3. — Let ¢ € C'([0,1]) and let [, ¢(t) dt = O . Then
¢(1) # ¢(0) = Vz € R/Z normal to base q : (¢n(z))n>1 is dense in R .

In particular, if ¢(1) # (0) and if = is normal to base q , then

liminf p,(z) = —00 and lim sup p,(z) = +00 .
n—00 n—00

The reader might want to compare theorem 3 with corollary C in [10].

THEOREM 4. — Let ¢ be as in theorem 3 and let T, :R/Z xR —
R/Z xR, Ty(z,y) = (Tz,y + ¢(x)) . Then

(1) (1) # ¢(0) = T, ergodic;

(2) let ' be Lipschitz-continuous on [0,1] . Then T, is ergodic if
and only if p(1) # ¢(0) .

2. The proofs.

o0
Let A(q) = {Zz,-q‘ : z; € {0,1,...,9 — 1}} denote the compact
=
Abelian group of q-atdic integers with the metric

oz, z/) =g min{i:z; #2}}

o] o0
for z = zziqi #2' = Zzgqi and p(z,2):=0.

=0 =0
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The homeomorphism S : A(g) — A(g) , Sz =2+1 (z € A(g) ,
1:=1-¢°+0-¢' +0-¢%+---) has a unique invariant Borel probability
measure on A(g) : the normalized Haar measure. The dynamical system
(A(g), S) is minimal (see [4]).

[0 o] 00
The map ® : A(g) —» R/Z , Q(Zziqi) = Zziq‘(”'l) modl, is
1=0 =0
measure preserving, continuous and surjective.

oo
" The g-adic representation of an element z of R/Z , z = Z m;q““‘*n

with digits z; € {0,1,...,g—1}, is unique under the condition ;c—ioaé q—1for
infinitely many 4 . From now on we shall assume this uniqueness condition
to hold for all z . Numbers z with z; # 0 for infinitely many ¢ will be called
non-g-adic. In the following z = z(x) will denote the element

o .
2= 2(z) =Y zid’
1=0
of A(g) associated with = . One has
Tz =&(z +1)
and it is elementary to see :
eTod(2)=2c5(z), Vz€A(g)
ez € [ag™® , (a+1)g7 [, 9 <a<¢,k=12..=> Tz €
[ag™*, (a + 1)g~*[ and therefore |T? z — z| < ¢~ .

o T permutes the open elementary g-adic intervals Jag™*, (a+1)g*[,
0<a<dq*,oflengthg* ,k=1,2,....

PROPOSITION 1. — Let ¢ be continuously differentiable on the
closed interval [0,1] and let fol ¢(t) dt = 0 . If w denotes the modulus
of continuity of ¢' , then for all k € N and for all z € R/Z

e (2) = (p(1) — 9(0))(px + ok — 1/2) + O(w(@™))
(1) + O(pr, - w(c(a) - (¢ — 2(k)) ™ log(¢* — 2(k))))
+ O(ok - w(c(g) - 2(k) ™ log 2(k))) ,
where o
z= wig )

=0

z=2(z) = iz;qi

=0
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k-1
z(k) := Zziqi k=1,2,...

=0
pi = (¢* — 2(k)) - @(z — 2(k))
ox.:= 2(k) - ®(z — z(k) + ¢%)

and ¢(q) is a constant that depends only on q . The O—constants that appear

in identity (1) are all bounded from above by a constant that depends only
ongandyp.

Proof. — 1t is easy to prove

¢*-1 -1
o)=Y plaig ™)+ Y ¢'(aig™*) Tz — aig™) + O(w(g ™)),
1=0 1=0

where a; is the uniquely determined integer with 0 < a; < ¢* and
Tz € [a;g~*, (a; + 1)g~*[ . From proposition 1 in [6] it follows that

¢"-1
Z plaig™*) = —(p(1) — 9(0))/2 + O(w(g™*)) .
=0
Further
e [ 8(z— (k) 0<i<qt—2(k)
s = {<I><z—z(k)+qk) ¢~ a(k) <i<d.
By theorem 5.4, chapter 2 of [9] '
¥ —z(k)-1
(6" — 2(k)7! Z ¢'(aig™*) = (1) — 9(0) + OW(Dgr_5(x))) »
=0

where Dgx_,() denotes the discrepancy of (aiq"k)g_:o"z (B)-1 A a7k =

®(z(k) + 1) , this is a string in the Van-der-Corput-sequence to base ¢ ,
and therefore the following discrepancy estimate holds (see [9] chapter 2,
theorem 3.5 for the idea of the proof) :

Dy k) < c(g)(g® — 2(k)) ' log(¢® — 2(k)) , k=1,2,...,
¢(q) a constant that depends only on ¢ .

With the same arguments one proves
g~1

2k)70 Y ¢aig™F) = p(1) — 9(0) + O(w(c(q)2(k)~ log 2())) -
i=q*—z(k)

]
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S
COROLLARY 1. — Letn € N, n =Y nig', with n; € {0,1,...,
1=0
k-1

g—1},0<i<s,ns; #0, and let n(k) :=Zniqi ifk=1,...,s+1,
rd
n(0):=0. '

8 S
If Z " denotes E then
k=0

;=0
kinj #0

s np—-1g¢ k1

@) =3 " D D e )

k=0 £=0 j=0
Let

Tn(k)+lq T = Z Zxk tq-—(z+l)
=0

Z#4(m) = Zz“ i (m=1,2..)

=0
pr.e = (¢ = 254(K)) - @(2H¢ — 2M(K))
Ok = z'“"(k) . Q(zk" - z""(k) +q%).
Then proposition 1 implies :

s ngp—1

on(z) = (2(1) = 0(0) D" Y (pre+0ke—1/2)

k=0 (£=0
(2) +0( 3 'm wla™))
k=0

s mnp—1

+0(3 Y (ore wlel)(@ — 244(k) " og(g* — 244()))

k=0 (=0
+ k¢ w(c(g)2™* (k) 1og 2 (k))) ) -
The O-constants in identity (2) are bounded from above by a constant

that depends only on g and ¢ .

Proof of theorem 1. — Let x be normal to base ¢ and let d =
0,dod;ds - - - be an arbitrary number in [0,1[ . For any index k such that
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Zr < ¢ — 1 we have

pr+ k= (" = 2(0) Y miq 7 + 2(k) (D mig ™ + g7

i>k i>k

- inq—li—kl-l .

i>0

Let € > 0 be arbitrary. Choose m such that g™ < ¢ . As z is normal there
are infinitely many k such that z; < g —1

|pk + ok —d| = |0, ZkZTp+1T42 - - + 0,025 1Zf—2---To —d| < g™
(this imposes a condition on the digits Zr, ZT+1,-- - Thtm—1)
Th-m =q—1 , ZTp-m-1=0.
Then
2k) 2 g™, ¢ —2(k) 2 ¢F

and, if we choose k sufficiently large,

wig™®) <e and w(c(q)g ™t logg*) <€ .
If we put ¢ := (p(1) — ¢(0))(d — 1/2) , then it follows directly that
[pa(2) — o] = Oe) . 0

Proof of theorem 2. — (1) : Let p(1) = (0) . It is ®(z—2(k)) < g~ *
and ®(z — z(k) + ¢*) < ¢~* , k = 1,2,... . Hence for the third term in
identity (2) we get the estimate

s np-—1 ' 0
(3) D' D (b +---logz" (k) < 2qLe(q) Y g *logg* < +o0 .
k=0 ¢=0 k=0

Thus the first part of the theorem is proved.

(2) : Let sup |pn(z)| < 400 for some z € R/Z and let z := z(z) . The
map po® : A(q)n—a R is continuous and (A(g), S) is a minimal (topological)
dynamical system. We have

n—1
sup |on(z)] = sup| Y ¢ 0 &(S*z)| < +00 .
By theorem 14.11 of [3] there is a continuous function g : A(g) — R such
that @ o ®(2) = g(z) — 9(Sz) , Vz € A(q) . Hence

. -1
~(o@) — p0)/2 = lim pyx(0) = Jim ) @0 2(S°0)

= lim (9(0) - 9(¢%)) = 0;
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(here we use proposition 1 in [6] to prove the first equality).

(3) : We shall prove —oo < linm io%f ©n(0) , then part (2) will imply
the remaining statement. Because of identity (2) and inequality (3) it is
enough to show, for z =0,

s nr-—1

En :=Z’ Z (pk,l+ak’t_1/2) SK ’ VnEN
k=0 £=0

with some constant K . If z = 0 then 2% = n(k) +£¢* and zF¢(k) = n(k) .
Hence pi¢ = (¢* — n(k))€g~*+1) and oy ¢ = n(k)(£ + 1)g~*+1) . Thus

s

n =Y m((ni — 1)/(29) +n(k)g=*+V ~1/2) .
k=0

The statement then follows because (ny —1)/(2q) +n(k)g~*+1) -1/2 < 0.
(4) : The idea of the proof is the same as in (3). u}
Remark. — In theorem 2 (1), (3) and (4) one can weaken the

condition on the modulus of continuity of ¢’ to w(§) = O(|logs|~17¢)
with some e > 0 .

Proof of theorem 3. — The idea of the proof is as follows. Let
(km)m>1 be a strictly increasing sequence of positive integers. If n =
g* +--- + gk then

on(2) = (©(1) = 9(0)) 3 (Ph + 0k —1/2) +0( 3 wla™™))

m=1 m=1

+O( 2 prnlel@)(@ = 2 (k) log(g*™ — 27 (kn))
m=1
o+ Ok, (@) (25 (ki) ™" log 2 (kim)

o0
with £ = 0,zoz122 -+ , 2 = 2(z) = zxiqi ,2km =24 gF .. 4 gFmr

=0
and, ifzp, <g¢-2,

Pkm + 0k =0, Tp,Zhpt1--+0, 0Tk, —1%Tk,—2°"To -

Now, let d € R, e > 0 and = € [0,1] normal to base g be given.
We shall prove that there is a positive integer mo and a strictly increasing
sequence (Km)m>m, such that

|n(z) —d] <€ forall n=g*mo +-..+ gk sufficiently large.
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Let mg be such that E ¢~ ™ < € .Let (@m)m>m, be a sequence in [0, 1]
mzmo

such that

d=(p(1) - (0)) Y (am —1/2).

m2>mo

The number z is normal to base ¢ . Hence there are infinitely many
k = k(m) such that

1. 2, <q-2
2. Tr—2m = 1
ZTkp—2m—1 = Tkt2m = Tkt2m+1 =0
3. ok + 0k —am| < g ™(p(1) — (0))"", Vm > mo ;

(this condition defines a string of digits Tx—2m+1,-- -, Tk+2m—1)- Hence we

may choose a strictly increasing sequence (km)m>m, such that these three
conditions hold for every k,, and such that

4 km+2m+1< kmp

5. Z w(gF) <e
m2>mg

6. Z w(c(g)g~km+2m+llogghm) < ¢ .
m2>mo

Then if n = ¢¥mo +--- + ¢ (s > my) ,
ISOn(l') - dl = 0(5) )

and therefore the sequence (¢n(z))n>1 is dense in R . |
Remark. — Theorem 3 gives an alternative to the proof of theorem
2 (2), this time without a condition on the modulus of continuity of ¢’ :

If sup |pn(z)| < oo for some z € [0,1[, then this holds for all z by
n
the theorem of Gottschalk and Hedlund. Hence ¢(1) = ¢(0), otherwise a
contradiction to theorem 3 would arise for any z normal to base q .

Proof of theorem 4.

(1) is proved in the very same way as the theorem of [6].

(2) : Let L, stand for Ly(R/Z,\) . Then (1) = ¢(0) implies
sup |l¢gnllL, < +oo . By Lemma 2.2 in [4] there exists an element g
of Ly such that ¢ = g — go T (mod}) . This implies that (z,y) —
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(Tz,y+ ¢(x) mod1) is not ergodic on R/Z x R/Z and therefore T, cannot
be ergodic on R/Z x R (see [5], part. I : remarks). o
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