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UNIVERSAL TRANSITIVITY OF SIMPLE
AND 2-SIMPLE
PREHOMOGENEOUS VECTOR SPACES

by T. KIMURA, S. KASAI and H. HOSOKAWA

Introduction.

"We denote by k a field of characteristic zero. Let G be a connected
k-split linear algebraic group acting on X = Aff* rationally by p which
is defined over k. If there exists a Zariski-dense G-orbit Y, we say
that (G,p, X) is a prehomogeneous vector space (abbrev. P.V.). When
p is irreducible or [G,G] is a simple algebraic group, or a product of
two simple algebraic groups, they are completely classified over C (see
[3] ~ [6]). Put G = p(G). Let ¢ be the number of G(k)-orbits in Y(k),
ie., £ =¢,(G,X) = |G(k)\Y(k)|. In this paper, we shall assume that
there exists a nonsplit quaternion k-algebra. In other words,
H'(k,Aut(SL,)) # 0. This condition is satisfied by every local field k
other than C. We say that Y is a universally transitive open orbit if
¢ = (,(G,X) =1 for all such fields k, ie., Y(k) is a G(k)-orbit. Note
that G(k) # p(G(k)) in general. Professor J.-I.Igusa classified all
irreducible regular P.V.’s with universally transitive open orbits ([1], [2]).
He also proved in [2] that ¢ is invariant under castling transformations.

In this paper, we shall classify simple or 2-simple P.V.’s with
universally transitive open orbits. We shall also prove that ¢ is inva-
riant under some P.V.-equivalences such as (1) (Sp,xG,A;®p)
(deg p<2n) <> (G,A%(p)) (see Proposition3.7) (2) (GxXGL,,p;®A, +
P, ®AY) (n=>deg p,=deg p,) « (G,p;®p,) (see Proposition4.1), and

Key-words : Galois cohomology. — Universal transitivity prehomogeneous vector
spaces.
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others (cf. Lemma 4.3-Proposition 4.7). This paper consists of the following
four sections :

1. Preliminaries.
2. Simple P.V.’s with Universally Transitive Open Orbits.
3. 2-Simple P.V.’s of Type I with Universally Transitive Open Orbits.

4. 2-Simple P.V.s of Type II with Universally Transitive Open
Orbits.

The results are given in Theorems 2.19; 3.20; 4.2; 4.18; 4.25;
4.26 ; and Corollaries 2.20 ; 3.21. Also we shall check universal transitivity
for non-regular irreducible P.V.’s (see Corollary 3.22). The first author
would like to express his hearty thanks to Professor J.-I. Igusa and
other members at The Johns Hopkins University in U.S.A. for their
mathematical stimulation and hospitality while he stayed there in 1986.
The idea for this work was first obtained that time.

1. Preliminaries.

We shall use the same notations as in [2]. For & € Y(k), put G~§ =
{ge G;p(g)t=E} and G; = p(Gy). Let ¢ be a number of G(k)-orbits in
Y(), ie., £ = |G(k)\Y(k)|.

ProrosITION 1.1. — We have Gk)\Y(k) = a"1(1), where
o: H(k,G) - H'(k,G).

COROLLARY 1.2. — Assume that (1) H'(k,G) = {1}, (2) H'(k,G,) —
H'(k,Gy) is surjective. Then we have G(k)\Y(k) = H 1(k,Gy).

Proof. — See [2].

COROLLARY 1.3. — Assume that (1) H'(k,G) = {1}, (2)Kerp = {1}.
Then we have G(k)\Y(k) = H'(k,G).

Proof. — If Ker p = {1}, then we have G}z G: and hence
H'(k,G) > H'(k,G,) is bijective. Q.E.D.

CoroLLARY 1.4. — If G, = {1}, then we have ¢ = 1, ie., Y(k) is a
G (k)-orbit.
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Proof. - We have G = p((Z) = {1} and hence
Gk\Y (k) = o™ *(1) = {1} for a: H'(k,Gy) = {1} »> H'(k,G). Q.E.D.

PrOPOSITION 1.5. — We have ¢ = 1 for (G,p,®p,, X,®X,) if and
only if(1) ¢ = 1 for (G,p,,X,) and (2) ¢ =1 for (H,p,|H,X,) where H
is a generic isotropy subgroup of (G,p;,X,).

Proof. — Let Y (resp. Y;,Y;) be the open orbit of
(G, p1®p2, X,@X,) (tesp.(G,py, X)), (H,p;|H,Xy). (=) For any
E1€ Y (k) and H = G, , take §; € Y, (k). Then we have (§;,&,) € Y(k)
and hence the projection Y(k) —» Y,(k) is a G-equivariant surjective
map. Since Y(k) is a G(k)-orbit, Y, (k) must be a G(k)-orbit, i.e., £ = 1
for (G, p,,X,). Now take any two points &,,£, € Y3 (k) for H = (Zl.
Since (§,,&,) and (§,.£,) are elements of Y(k), there exists ge G(k)
satisfying (g§1,8%2) = (§1,83). This implies that ge Gy (k) = H(k)
satisfying g&, = &5, i.e.,/ = 1for (H,p,|H,X,). (<) Take any two points
&.,€,) and (§7,&;) of Y(k). Then there exists ge G(k) such that
g8y = &;,. We have g(8;,8;) = (§,,£82), and two points &, and g&;
belong to Y5(k) for H = G . Hence there exists he H(k) satisfying

hgly = &, ie., hg(&1,83) = (§1,8,), with hge G(k) QE.D.

COROLLARY 1.6. — Assume that £ = 1 for (G, p,, X,) and(H', p,|H",X,)
where H° is the connected component of a generic isotropy subgroup H
of (G,py,X,). Then we have £ = 1 for (G,p,@®p,, X:®X,).

Remark 1.7. — Assume that /£ =1 for (G,p,X). Then ¢ =1 for
(G, p, X) with p(G) = p(G).

TueoreM 1.8 (J.-1. Igusa (1], [2]). — A regular irreducible P.V. has
a universally transitive open orbit (i.e., £ = 1) if and only if it is castling-
equivalent to one of the following P.V.’s :

(1) (GXGL,,,p®A,) where p is an m-dimensional irreducible repre-
sentation of G.

(2) (GLypm, A2).

(3) (Sp, X GL;p, AL ®A,).

(4) (GL, X SO,,A,®A,) where n is even, and n = 4.
(5) (GL, % Spin,,A;® the spin rep.).

(6) (GL, X Sping, A;® the spin rep.).

(7) (Spinyo % GL,, a half-spin rep.@A,).

8) (GL, x Eg,A,®A,) with deg(A,) = 27 for E;.
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2. Simple P.V.’s with Universally Transitive Open Orbits.

THEOREM 2.1 ([4] with a correction [5]). — All non-irreductible simple
P.V.’s with scalar multiplications are given as follows :

(GLx SL,, A,®A, ®A,®A}) with n = odd.
(3) (GL*%X SL,,+ 1, A;®A,) for m > 2.

(4) (GL3x SL,,2A,®AY).

(5) (GL} X SLs, A,®A,DAY).

(6) (GL?x SL,,A;@AY). (n=6,7)

(7) (GL} X SLg, As@A,®Ay).

k
(8) (GL X Sp,, A; @ "~ ®A,) (k=2,3).

9 (GLx Sp,, A,®A,).
(10) (GL} % Sps3, A;@Ay).

(11) (GL? x Spin,, (half-)spin rep.@the vector rep.), with n =1,
8, 10, 12.

(12) (GL?* x Spin,,, A®A) where A=the even half-spin representation.

Here A™ stands for A or its dual A*. Note that (G,p,X) ~ (G,p*,X*)
as triplets if G is reductive.

n
LemMMA 2.2. — We have £ = 1 for (GL,,A;®~"@®A,,M(n)).

Proof. — Clearly the isotropy subgroup at I, M(n) is {I,}, and hence
¢ = 1 by Corollary 1.4. Q.ED.

LemMMA 2.3. — We have ¢ = 1 for
n
(GL} X GL,,(A©@T @A) ©AY)

where GL' acts independently on each irreducible component of
A®---®A)) and it acts on AP trivially.
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Proof. — By Remark 1.7 and Lemma 2.2, we have Z = 1 for

n
(GL} X GL,,A\®@""®A,).

Its isotropy subgroup at I, is

ot
H={(011,---,<x,,, .', );al,"',dnEGLl}.
o,

By Proposition 1.5 and Lemma 2.2 for n=1, we have ¢/ =1 for
(H,A™). Again by Proposition 1.5, we have # = 1 for our P.V.

Q.ED.
ProPoOSITION 2.4. — We have ¢ = 1 for

Proof. — By Proposition 1.5, Lemma 2.2 and Lemma 2.3, we have
our result. Q.E.D.

ProrosiTION 2.5. — We have ¢ = 2 for following PV.s:
(1) (GL}x SL,,2A;®A¥).

() (GL2 x SL,, A;®A®). (n=6,7).
(3) (GL} x SLg, A;®A,®A,).

(4) (GL? % Sp,, A,®A,).

(5) (GL? % Spy,A;®A,).

(6) (GL? x Spin,, (half-)spin rep. @ the vector rep.), with n =7
and 12.

Proof. — By Theorem 1.8, we have ¢ > 2 for (GL,xSL,,2A,),
(GL,,A3), (n=6,7) (GL, X Sp;,A;) = (GL; X S0s,A,), (GLy %X Sp3,A3),
(GL, x Spin,, the vector rep.) ~ (GL, X SO,,A,), and (GL, X Spin,,, a
half-spin rep.). By proposition 1.5, we have our result. Q.E.D.

Remarks 2.6. — In [2], it is proved that, for (GL,;,A;), Y(k) is
G(k)-transitive for any local field k other than R. However, for
(GL?x SL,,A;®A¥), Y(k) is not G(k)-transitive even when k is a
p-adic field. Because its generic isotropy subgroup H is (G,) X {cI,;c3=1}
(see, p. 86 in [3]) and (GL, X (G,),,A;) = (GL, X SO,,A;), we have our
result by Proposition 1.5 and [2].
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Lemma 2.7. — We have £ = 1 for (GL, X Sp,, LQA;+A,;®A)).

Proof. — We have X = M(2n,2) and p(g)x = Ax [(1) 2] for
g=(2,A)eGL, x Sp,,xeX,p=1® A, + A, ® A,. For

- lA.Bi
A= e GL,,
ClID

with 4, B, C De M,, we have A Sp, if and only if (1) 4 ‘B and
C'D are symmetric matrices, (2) 4'D — B'C = I,. We shall calculate
the isotropy subgroup G; at

1
o
0
€= 1 (=(e1,4+1)-
ol
L o
Put
a,|a d,|d
A= 3 ,...,D= =
az 1A, d3 D,
Then
a, | ba
= |1 0| _ | as|bsx | _
Ag[o cx:l ¢ | dya &
¢y | dya

implies that a,=1, d;=a"!, b;=c;=0, and a;=by=c3=d;=0.
By the condition 4 € Sp,, we get

(1) C4 D4 € Spn—l
(2) C4 D4 - ta2 0 ’
(3) C4 D4 — tc2 0 s

(4) Cl_l + aztdz - b2’C2 = 1.
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Thus we have

G: = {(,A)eGL, x SP,,a=1,4 =

On the other hand, Kerp = {1] and H'(k,GL, x Sp,) = {1}, we have
G(k\Y (k) = Hl(k,ég = H'(k,Sp,_,) = {1} by Corollary 1.3.  Q.E.D.

PrOPOSITION 2.8. — We have ¢ = 1 for (GL? % Sp,,A;®A,).

Proof. — By Remark 1.7 and Lemma 2.7, we have our result.
Q.E.D.

PROPOSITION 2.9. — We have £ = 1 for (GL3 X Sp,, A;®A,®A,).

Proof. — Similar calculation as Lemma 2.7 shows that a generic
isotropy subgroup H of (GL? x Sp,, A;®A,) is isomorphic to

), A€ Sp,—1,0€ GL,}.

By Propositions 1.5 and 2.8, it is enough to show ¢ = 1 for (GL,
H,A) ~ (GL,XGL, X Sp,,(A; @A +A,®A)®1+A;®1®A,). Since
£ =1 for (Sp,,A;) by Lemma?2.7, it is enough to show ¢/ =1 for
(GL, xGL{,A;\®AT+A,®A,). Put

G = GL, x GL,,p = A,@A* + A,®A,,

ie, p(,B) = (@p ',ap) and G = p(G). Since G = GL, x GL,, we
have G(k) = GL,(k) x GL,(k)(= p(G(k)) and

Y(K) = {(o,B) € k%ap#0} = G(k).(1,1), ie, /=1. Q.ED.

ProrosiTION 2.10. — We have ¢ = 1 for

k
(GLX ' x SL,,, A, ®AD® ~T@AY) (1<k<3,m>2).

Proof. — By Proposition 1.5, it is enough to show ¢/ =1 when
k=3, ie, (GL}XGLyp, A;®APOAMDAY) where GL3 acts on
APDAPDAY as independent scalar multiplications. Since the isotropy
subgroup of (GL,,, A,) is Sp,, we have result by Proposition 2.9.

Q.ED.
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LemMMA 2.11. — We have ¢ = 1 for (GL,,+1,A;@A,).
Proof. — The isotropy subgroup

H={A€eGL,,,;(AJ"A,Ae,) = (J',e,)}

at
00 1
E=W' =|0|J |, e = (:))whereJ=
0
is given by

H {H—-‘l 0 A eSp) ~S
= 5 € ms = m .
ol 2 P p

Since Kerp={1} and H'(k,GL,,.,) ={1}, we have

G(k)\Y(k) = H'(k,Sp,) = {1} by Corollary 1.3 Q.E.D.
ProrosiTioN 2.12. — We have ¢ =1 for (GL} X SLypsy,
4,04,0(4;®4,)¥).

Proof. — 1t is enough to show £ = 1 when

G =GL, X GL, X GL, x GLyp, 1,

=(1®1®1)®A2+A1®1®1®A1
+ (IQA,®1+1Q1RA,) ® A¥.

A generic isotropy subgroup of (IQI®I) XA, + A, ®1®1I®A, is

(@B H—‘“_IO)GAS}
oA, P,Ys €lG; A€Op,
YOA D

(cf. Lemma 2.11). Hence, by Proposition 1.5 and Lemma 2.11, it is
enough to show ¢=1 for G = GL, X GL, x GL, X Sp,,, p =
AP R AR+1R0A)® 1+ 1® (A;®1+1®A,). One can prove that
¢ =1 for (GL, X Sp, A;®(A;+A,)) similarly as Lemma 2.7. Note that
Ga ~ Sp,_, X Ker p in this case. Then our assertion is clear.

Q.ED.

ProrosiTiION 2.13. — We have =1 for (GL}{ X SLyps1,.
A,@ATOATDOAY).
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Proof. — 1t is enough to show / = 1 when
G =GL, x GL; X GL; X GLyp.,

p=(1RI®)® A, + A;R1IR®1+1QA;®1+1R1®A,) ® A¥. The
isotropy subgroup of (1®1®1) ® A, at

7 H—‘O O {'—E—P—{ GL AeSp)
= is = €GL,,.,; A€ Sp,}.
ol 44 2m1 i

By Proposition 1.5 and Lemma 2.11, it is enough_to show # = 1 for
a P.V. given by

B o 0 I (™ 'x,, 07 x,,07'x;) + BZ ]

0Oyo = /B
003 Az Y
8

for X = LZZ’%:IEM(2m+1,3), A € Sp,,. Now by Proposition 2.9,
any point X = [Lzz’xsjl of Y(k) is G(k)-equivalent to
| 21,22,23
xo- 222

where t

10...0 0...0

Z, = 0 10...0 |(=(es,ep+1,e1Ftestensy),
110...0 10...0

cf. p. 81 in [4]) and (z,,z,,z3)€k®. Put B = (by,...,b,,) with
by=—z,,b,=2z;, + 2z, — 23, byy; = —z,, b;=0for all j #1, 2,

m + 1. Then we have
1 BXI— 0
loilz,, 2zl

This implies that G(k) acts on Y(k) transitively. Q.E.D.

PropPOSITION 2.14. — We have ¢ =1 for (GL3} X SLyps1,
A, ®AY®AY) and (GL X SLyyi 1, Ay®AY).

Proof. — By Propositions 1.5 and 2.12, we have our result.
Q.E.D.
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ProposITION 2.15. — We have ¢ = 1 for (GL} X SLyp+1,A2®A,).

Proof. — A direct calculation shows that the isotropy subgroup G:
of (SLyp+1,A,@A,) at

o ||z, I
£=( 0]0 —1,%)
.1 lol Tolzl o
is given by
| Im+1 l 0
ay a m+1 ~ 2m
Ge=1 a, a3 - i, I b=Ga"
Ay  Au+r *° Gom

Since H!(k,SL,,.+;) = {1}, Ker p = {1}, and H'(k,G?™) = {1}, we have
£ =1 for (SLyp+1,A,@A;) by Corollary 1.3. Hence we obtain our

result. Q.E.D.
PropPosITION 2.16. — We have /=1 for (GL? x SLs,
A @A, BAY).

Proof. — Let H be the generic isotropy subgroup of
(GL? x SLs, A,®A,) at & = (e;Aes+e; Ae,, e;Nes+e,Nes). Clearly
H contains {(g,,¢,,diag(e; ‘52,7265, 8,€,,€3,82)) € GL? x SLs} and

I A
(., %H);F Dz 3? zj,(yl V2 73 7a) €G3
3

By Corollary 1.6 and Proposition 2.15, it is enough to show that /7 = 1
for (GL, x H,A;®A¥). An element x = '(x;,X,,X3,X4,Xs) € Aff° is a
generic point of (GL,x H,A;®A¥) if and only if x,x, # 0 (cf.
Proposition 1.1 in [5]). Assume that x is in Y(k), then by the action
of g, = (g,diag(e;'e;%,...,e2)eH(k) with &= x,/x3, g =1,
€, = X,/x,, we may assume that x, = x, = 1. Now it is transformed
to xo = ‘(1,1,0,0,0) by the action of

g = (1, 0 Iz)e (k)
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0, X3,
transitively. Q.E.D.

with 4 = [x3’ Xa" X35 f} Thus GL,(k) x H(k) acts on Y(k)
5

PropoSITION 2.17. — We have / = 1 for (GL? X Spin,, a half-spin
rep. @ the vector rep.) with n = 8 and 10.

Proof. — Let n be 8 or 10. Then by Theorem 1.8, we have [ = 1
for (GL, x Spin,, the vector rep.) and (GL, X Spin,_,, the spin rep.).
Since the restriction of a half-spin representation of Spin, to a generic
isotropy subgroup of (GL, x Spin,, the vector rep.) gives (GL, X Spin,_,,
the spin rep.), we have our result by Corollary 1.6. Q.E.D.

PRrOPOSITION 2.18. — We have / = 1 for (GL? x Spin,,, A@A) where
A = the even half-spin representation.

Proof. — Prof. J.-I. Igusa proved that /7= 1 for (GL, X Spin,,,
A®DA®A)) (See p.14 in [1]) and our assertion is obvious by
Remark 1.7. Q.E.D.

THEOREM 2.19. — All non-irreducible simple P.V.’s with universally
transitive open orbits are given as follows :

except (GL}x SL,,A, ® A, ® A; ® A¥) with n = odd.
(3) (GL}X SLypy 1, Ay ®A,) for m = 2.
4) (GL} xSLs, A, ® A, ®AYD).
(5) (GL % Spyu Ay ® = D AY) (k=2,3).
(6) (GL? x Spin,,, a half-spin rep. @ the vector rep.) with n = 8, 10.

(7) (GL? x Spin,q, A®A) where A = the even half-spin representation.

Proof. — By Proposition 2.4, 2.5, 2.8-2.10; 2.12-2.18, we have our
result. Q.E.D.
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CoroLLARY 2.20. — All non-irreducible regular simple P.V.’s with
universally transitive open orbits are given as follows :

(1) (GLYx SL,,A;®AY).

@) (GLY X SL,, A, @ == @ A,).

3) (GLI* X SL,, Ay ® @ A, ® AP).

(4) (GLY X SLyp, A, ® A @ AP).

(5) (GLEX SLyms1, Ay @ Ay).

(6) (GL}X SLyps 1, A, A, (A, ®DA)™).

(7) (GL} % Sp,, A, ® Ay).

(8) (GL? x Spin,,, a half-spin rep. @ the vector rep.) with n = 8, 10.
(9) (GL? x Spin o, A@A) where A = the even half-spin representation.

3. 2-Simple P.V.’s of Type I with Universally Transitive Open Orbits.

TueoreM 3.1. ([S]). — All  non-irreducible  2-simple P.V.’s
(GLEXG(=G, %Gy, p(=p, @ ... ® py) of Type I, which do not contain
a regular irreducible P.V.’s with £ > 2, are castling-equivalent to the
following P.V.’s :

@

an

(I11)

(1) G=SLyps1XSLy, p=A, @A+ 1QA,(+T) with
T=1®A,(+1®A,).

(2) G=Spin,, xSL,, p = a half-spin rep. @A, + 1A,
(+7) with T=1Q@ A (+1®A,).

(3) G=8SO0,xSL,_;, p=A, QA + 1 R®A¥ (n=cven).
(4 G=SL, x SLs, p=A,®A, + A, ®1+1QAY}.
(5) G=Spin, x SL,, p = the spin rep. @ A; + 1 ® A¥.

(6) G=Sping x SL,, p = the vector rep. ® A, +a half spin
rep. ® 1 +1® Af.

(7) G=Sp,xSL,, p=A®A +T, with T=1Q®
k
(A® + >+ AP) (1<k<3) except 1 ® (A, +A+AY) with

k
m=odd A, ®1+1Q®A¥ +7+A¥)(0<k<2) except
AA®RL+1® (A, + AY) with m = odd, 1® Ay(m = odd),
1® A, +AH)(m=5).
(8) G=8p, X SLym+1s P= A QA T (AT AYB L.
9) G=Sp,xSL,, p=A, ®2A, + 1®A,.
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AV)  (10) G=SLyxSL,, p=A,®A;+A, @1(+1®A;+
A*®1).
(11) G=SLsx SL,, p=A, ® A, + A*@ 1(+1® A (+1®A,)).
(12) G=SLsxSL,, p= A, QA + (A*+AH® 1.
(13) G=SLyxSLg, p= A, ® A, + 1@ A*.
(14) G=SLsxSLy, p= A, @A, + QA (+AP ® 1).
(15) G = SL, x SL,, p=A, @A, + A, ®1, A,®A, +
A*®@1(+1®A,).
(16) G=SLyxSL,, p=A, ®A, + A*® 1.
(17) G=Spin,ox SL,, (n=14,15), p=a half-spin rep.
QA +1® A*X.

ProrosiTiON 3.2. — We have £ = 1 for P.V’s in (I), i.e., (1) and (2)
in Theorem 3.1.

Proof. — For (1), it is enough to show /=1 when
p=A,®A, +1®(A;+A;+A;). Since we have /=1 for
(GLYX SLy,A;+A;+Ay) and (SLypiy X{L}, Ay ® Ay) = (SLyps s,
A, ® A,), we have our result by Corollary 1.6 and the proof of
Proposition 2.15. For (2), one can prove similary as above by the proof
of Proposition 2.18. , Q.E.D,

ProposITION 3.3. — We have £ = 2 for P.V’s in (Il), i.e., (3)-(6) in
Theorem 3.1.

Proof. — For (3), the GL,_,-part of a generic isotropy subgroup H
of (§0,XxGL,_;,A;®A;) is O,-,) (cf. p. 109 in [3]). Since # > 2 for
(GL,x0,-,,A;®A,) (n—1=0dd), we have our result by Proposition 1.5.
For remaining P.V.’s, since (Spin,, the spin rep.) = (SOg,A ) ~ (Sping,
the vector rep.) and (SL,,A,) ~ (SO4,A,), we have our result.

Q.E.D.

SuBLEMMA 3.4. — Let V = K** with {(v,v') = "vJv' where J =

[_OI g'] Assume that {v,,...,v,} and {uy,...,u,} are linearly

independent subsets of V satisfying (v;,v;> = {u,,u;) fori,j=1,...,r
with r < 2n. Then there exist v,., and u,., such that (1) {vy,...,0,4,}
and {uy, ...,u,.,} are linearly independent, (2) {v;,v;> = {u;,u;) for all
i,j=1,...,r + 1.
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Proof. — (I) The case when <v,, ...,0,>" & <v,,...,v,). Take u,.
such that u,,; ¢ <u;,...,u,). Since {v,,...,v,} is linearly independen’
the linear equation ‘(vy,...,v,) Jv = '(uy,...,u)Ju.., (i€
(v;,v> = {u;,u,4,> for i = 1,...,r) has a solution v,, and the set c
solution is given by v, + <v{,...,0,0* (& <v;,...,0,)). Hence ther
exists v,., ¢<vy,...,0,» such that <v;,v,+,)> = <u;,u,.,y fo
i=1,...,r.

(I) The case when <(vy,...,0,0" < (vy,...,v,». Tak
Vpr1 & U1y .50, ). Assume that any solution u o
Yy, . ..u)Ju = '(vy,...,0,)Jv,., belongs to <{uy,...,u,>. Le
u=ayu + --- + au, be a solution. Since ‘u;Ju; = ‘v;Jv; fo
Lj=1...,r, we have 'y, ...,v,) (@, + -+ + av,) =
ey ... 0,)J0, 41, ie., Vppp — Q107 — +++ — @0, € (Ug,...,0,)
< {vy,...,v,y and hence v,,,€ {(vy,...,v,» a contradiction. Henc
there exists u,, eV satisfying U1 & Ugy oo Uy anc
Yy, o)ty =g, ..., 0,)J0,4 1. QE.D

Lemma 3.5. — Let{v,,...,v,}and {u,, ...,u,} are linearly independen
subsets of V = K*" satisfying {v;,v;> = {u,u;» fori,j =1, ..., r. Ther
there exists an element g of the symplectic group Sp,(K) such tha
guy,=u fori=1 ...,r.

Proof. — By Sublemma 3.4, there exist basis {v;,...,0,,...,05,
and {uy, ..., uU,,...,u,y,} satisfying <v;,v;> = <u;,u;). Define an elemen
g of GL,, by (vy,...,03,)g = (Ug,...,uy,). Then it is clear tha
g € Sp,(K). Q.ED

LemMma 3.6. — Let Q be the universal domain and K a subfield

For 2n>m, put W={veM,,,Q); rankv=m} anc
W' = {we Alt,(Q) ; rank w is maximal}. Define a map y : W - Alt,,(Q
by Y¥() = ((v;,v;>) for v = (vy,...,0,,) € W. Then (W) = W’ and
Y(W((K) = W'(K).

Proof. — Note that W (resp. W') is the Zariski dense orbit of
Sp,xGL,,,A{®A;, M,, Q) (esp. (GL,,A,,Al,(Q))). Since
Y (A4v'B) = BYy(v)'B for any (4,B)e Sp, X GL,, V(W) is an orbit
of (GL,,A,;). Let X, be the generic point of (Sp,xGL,, A;®A,)
given in p.101 in [3]. Then we have VY(X,) = J(m=even) or
vy = [0 g. (m=o0dd), i, W(X,) is a generic point of (GL,,A,).

Hence Yy(W) = W'. Since V is defined over the prime field, we have
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Y(W(K)) « W'(K). Since =1 for (GL,,A;), W'(K) is a single
A,(GL,)(K)-orbit. Since Y(W(K)) is A,(GL,)(K)-admissible, we have
V(W(K)) = W'(K). Q.E.D.

ProrosiTioN 3.7. — We have /=1 for (Sp,xG,A,®p)
(m=deg p<2n) if and only if Z# =1 for (G,A%*(p)).

Proof. — Let Y(cWcM,, .(Q) and Y'(cW’'cAlt,(Q) be the
Zariski-dense orbits of (Sp,x G,A,®p) and (G, A%(p)) respectively. Then
the map y: W - W’ in Lemma 3.6 gives the surjective Sp, X G-
equivariant map y: Y —» Y’. Clearly we have y(Y(K)) =« Y'(K). Take
any element x of Y'(K). Since y(W(K)) = W'(K)> Y'(K), there exists
v=(vq,...,0,) € W(K) such that y(v) = x. On the other hand, we
have Y(Y) = Y o Y'(K) there exists u = (uy,...,u,) € Y such that
Y(u) = x. By Lemma 3.5, there exists g € Sp, satisfying v = gue Y,
ie, ve Y n W(K) = Y(K) Hence {y: Y(K) - Y’ (K) is surjective. By
Lemma 3.5, each fibre is Sp,(K)-homogeneous. Thus the orbits in Y(X)
and Y'(K) correspond bijectively. Q.E.D.

CoroLLARY 3.8. — (1) We have /=1 for (Sp,xG,A;®p+1®0)
(deg p<2n) if and only if £ =1 for (G,A*(p)+0).

(2) We have =1 for (Sp,XGXGL{,A;@pR1+A;RIQA,+
1®c®1) (degp<2n—1) if and only if =1 for
(GXGL;,A*(p)®1+p®A, +co®1).

(3) We have /=1 for (GL?xSp,XGL,yp+1, 1Q1QA;®A,+
ARl + 1QA))RA,®RN(2m + 3 < 2n) if and only if /=1 for
(GLy X GLyp+ 1, 1@A;+ (AL +AT) ®A)).

Proof. — (1) is obvious. Since A?(pR1+1®A,) =A’(P)®1+
p®A,;, we have (2). Since A2(1Q1RA;+A;®I®1+1QA,®1) for
GL? X GLypsy, is GL2XGLyps, 1®1®A,+(A,®1+1QA,)® A, +
A;®A;®1), we have (3) by Proposition 1.5. Q.E.D.

ProposiTION3.9. — For P.V’s in (III) in Theorem 3.1, we have £ = 1
for (7), (8) and 7 = 2 for (9).

Proof. — By Theorem 2.19 and Corollary 3.8, we have # = 1 for
(7). By Lemma 2.7, the proof of Proposition2.12, and (3) of Corollary 3.8,
we have Z = 1 for (8). Since (SL;,A%(A,) = (SL;,A,) = (SL;,A¥), we
have (S0;,A*(A,)) = (S05,A,). Hence we have 7> 2 for
(Sp,xGL,,A;®2A,) = (Sp, X GO5,A,®A,). Thus 7 = 2 for (9).

Q.E.D.
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Lemma 3.10. — We have /> 2 for (GLyp+yXGLy, A®A;+
A ®1)(m=2,3).

Proof. — Assume that # = 1. Then, by Proposition 1.5, we have
=1 for (HXGL,,A,®A,) where

H ={Hi{ cde GLZ,,,}.
0l 4

Ll Lo lu] Lilo] o]
[OTAI l—'y|X| lar L eal = e laxeal”

¢ = lfor (GL,,,*xGL,,A,®A,), which is a contradiction by Theorem 1.8.

this implies

ProrosiTioNn 3.11. — We have ¢ <2 for any P.V. in (10) in
Theorem 3.1.

Proof. — By Proposition 1.5 and Lemma 3.10, we have our
result. Q.ED.

ProrosiTioN 3.12. — We have £ =1 for any P.V. in (11) in
Theorem 3.1.

Proof. — It is enough to show /=1 for (GL}*xSLsxSL,,
A, QA +A¥R1+1®(A;+A,)). Since Z = 1 for (GL?xSL,,A,+A,),
it is enough to show Z = 1 for

a O

(GL} x SLsx I:O a- !

], A,®@A; +A¥®1) ~ (GL} X SLs, A,QA,RAY).
Thus we have our result by Theorem 2.19. Q.E.D.

ProposiTION 3.13. — We have £ = 1 for a P.V. (12) in Theorem 3.1.

Proof. — We shall prove that a generic isotropy subgroup of
(GL, X GLs X GL,,1Q A, ®A, +1@A*®1+4,@4%®1) is {1}. Then we
have # = 1 by Corollary 1.4. The representation space V is given by
V={XY),2;X,Ye Ms,') X = — X,'Y=-Y,Ze Ms,}. Then the
action is given by p(g)x = {(4X'4,AY'A)'B,'A"'Z(*a)} for
g=(,4,B)eGL, x GL; x GL, and x = {(X,Y),Z}e V. Put
xo = {(Xo, Yo), Zo} with Xo = (—e4, —e€5,0,e,tes,e,—¢y),
Yo = (0,e4,e5, —e;tes, —e3—ey), Zy = (e4,€s) where e =

1
'O ... klj ...0eQ°. We shall calculate the isotropy subgroup
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H = {ge GL; XGLsxGL,; p(g)xo=xo}. One can easily check that
‘A7'Zy(*a) = Z, if and only if 4 is of the form

Al[ A, ‘
01 (o)

We shall determine (4, B) satisfying (4X,'4,4Y,'4)'B = (X,, Y,) where
A is of the above form. By comparing the components of (1,4), (1,5),
2,4), 2,5, (34, (3.5, (4,5, we obtain b;, = a"!—b,,,
byt = 07! = by, @13 =C— @y, Q3 =4ay; —C, G4 =C — ay,,
ays = abyc — ay4, Az = € — a3, az3 = ca” ' — ay,,
aya = Gy3 — byye, ays = ay; — abyyc, az; = azz — ca -,
as;, = co” ! — a33, Q34 = byic — az3, azs = ca”l — as3, Wwhere
c(by; + by, —a”)=1, 4 = (a;) and B = (b;). Then, by compa-
ring the (1,2), (1,3), 2,3) components, we obtain
a4y, = Ay, = a33 = by; = by, = ¢ =a =1 Thus we have H = {1}.

Q.E.D.

PROPOSITION 3.14. — We have ¢ = 2 for a P.V. (13) in Theorem 3.1.

Proof. — Let $ be the slg-part of the generic isotropy subalgebra
of (GL,; X SLsx SLg,A;®A,®A,) at Xo = (®1,203,20,,®;9,
05— Mg, O, — Oy, Vg, ;) (see P.95 in [3]). Then its image by A¥ is given

by
_[4 B 0 ~2d,, 4d,, -2d,, 0
Ar(5={A= 0 A’ B’ EMB ,' B= _d4, ds, dz, _d1 ’
0 0 a 0, —d,, 2, —d,
B = 2(d,,dy,ds,d,), a = — 25t, A = 15tI; + (2A,)(C),
A = = 5tI, + BA)(C) for Cesl,)

Let H be any algebraic subgroup of GLg with Lie (H) = A¥(9). It is
enough to show 7Z > 2 for (GL,xH,A;®A,,Q%. Since hAh~!
€ A¥(9), for any he H and 4 € AT(9H), we have

hy | = | =
Hc{{ O * * ]}
0101 =

by Schur’s lemma. Since the normalizer of GO; is GO, we may assume
that h, e GO;. Let x = ‘(x,,...,xg) be a point of Y(k) for
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(GLyxH,A;®A;,Q®%. Clearly we may assume that xg = 1. By the
action of one parameter subgroups obtained from B and B’ in
A¥(9), we may also assume that x, = x5 = x¢ = x; = 0. Let H, be
the subgroup of H fixing x, = x5 = x¢ = x; = 0 and x4 = 1. Then
the corresponding Lie subalgebra 9, of A¥(H) consists of 4 of
A¥(9) satisfying B = B’ = 0. Since H, normalizes $,, we have

00
Hic{l 0| |0 }; AeGO3}
0101 =

and hence the action on (x,,Xx,, x3)-space is (GO5,A,) which 7 > 2 by
Theorem 1.8. Q.E.D.

ProrosiTioN 3.15. — We have Z > 2 for any P.V. in (14) in
Theorem 3.1.

Proof. — The generic isotropy subgroup of (GLs,A,) is connected
(see P.76 in [3]). Hence the generic isotropy subgroup H of its castling
transform (SL;X GLy,A,®A,) is connected and it is contained in

A | *
(o) aeeos

(see the proof of Lemma 2.6 in [S5]). Since I > 2 for (GOs,A,), we
have # > 2 for (GL, x H,A;®A*,Q°% . This proves our assertion.

Q.ED.

ProrosiTioN 3.16. — We have £/ > 2 for any P.V. in (15) in
Theorem 3.1.

Proof. — For the first P.V. in (15), we have Z > 2 by Lemma 3.10.
Now let H be the SL, — part of a generic isotropy subgroup of
(GL,xSL,xSL,, A,®A,). Then we have

4]0
Lie (H)={<T“7); A, =3A¥C)+3tl,,
2

A, = 2A(C)—4tl; for C € sy}
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(see Lemma 1.4 in [5]). By the fact that the normalizer of GO, is GO,
and by Schur’s lemma, we have

* | 0
Hc {<Tl’_;>; A € GO,}.

Since 7 > 2 for (GOs,A,), we have 7 > 2 for (GL, xH,A;®A*,Q")
and hence 7Z > 2 for the latter P.V.’s in (15). Q.E.D.

ProvposiTioN 3.17. — We have £ = 2 for a P.V. (16) in Theorem 3.1.

Proof. — Let H be the SLy-part of a generic isotropy subgroup of
(GL; X SLyx SL,,A;,®A,®A,). Then, similarly as the proof of
Proposition 3.16, we have

*10
H c {}TH;AGSAl(GL'Z)}.

Since ¢ > 2 for (GL,,3A,), we have £ > 2 for (GL, x H,A,®@A*Q")
and hence we obtain our result. Q.E.D.

ProposiTION 3.18. — We have ¢ > 2 for (GL?x Spin,y% SL,s,
a half-spin rep. @A, +1RAY).

Proof. — Let H be the SL,s-part of the generic isotropy subgroup
of (GL, X Spin o X SL,5, a half-spin rep. ® A;) at X, = (eqes, e,e5,e3€s,
€4€5,0,03,4€5, —€1€1€4€5, €1€,8,85, — € e,8385, — 1t ejeese,, e,e,,ee3,
ees, —€3€4,€,8,, —eye3). Then we have

4,0
Lie(H) = {}—;‘—h—l €M,s,4; = A(B),A,=NA'(B) for Beo,}
2

where A(resp. A’) is the spin (resp. the vector) representation of o-. By
the fact that the normalizer of GO, is GO, and by Schur’s lemma, we

*
have H < {|, 0]AEG07}. Since ¢ =2 for (GO,,A,), we have

A >
¢ = 2 for (GL,x H,A;®A%). This implies our assertion. Q.ED.
PropPosITION 3.19. — We have ¢ > 2 for (GL?x Spin,o % SL,,,

a half-spin rep. @A;+1Q@AY).

Proof. — Let H be the SL,,-part of a generic isotropy subgroup
of (GL, x Spin,o X SL;,,A;® a half-spin rep. ®A,). By checking the
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weights, one obtains Lie(H) = Lie(G,®SL,). Let G be the image of
(GL,x H,A,®AY). Then we have 1 » GL, - G - Aut(G,®SL,) - 1
(exact) and hence G is connected. Since G > G, ® GL, and
dim G =dim G, ® GL,, we have (GL;XH,A®A})~(G,%xGL,,
A,®A{,Q"®Q?%) which has £ > 2 by Theorem 1.8. This completes the
proof. Q.E.D.

TueoreM 3.20. — All non-irreducible 2-simple P.V.’s (GL: xG,p

(=p1D - - - ®py) of type I with universally transitive open orbits are given
as follows :

(1) G=SLypiy X SL,, p=A, @A, +1QA(+T) with
T=1®A(+1R®A,).

2 G=SLs x SL,, p=A, @A, + AT® 1(+1®A,(+1®A,)).

B)YG=SLs X SL,, p=A,®A; + AT+ADH ® 1.

4 G=Sp,xSL,, p=A, @A+ T, with T=1Q A¥ +
e+ AMA < k<3) except 1QA+A+AY) with m = odd,
AARI+H1IR AP+ +A, ™) (0<k<2) except A, ®1+1
®A;+AY) with m = odd, 1 ® A,(m=o0dd), 1 ® (A, +AF)(m=5).

B)G=S8Sp, xSLypy+ 1, P=AL @A + (A, +A)® 1.

(6) G = Spinyq X SL,, p = a half-spin rep. @ A; + 1 ® A,(+T)
with T=1Q® A (+1®A,).

CoROLLARY 3.21. — All non-irreducible regular 2-simple P.V.’s of type
I with universally transitive orbits are given as follows :

(1) (GL} X SLsx SL,, A,@A, +(A¥+AH®1).

(2) (GL} X Sp, X SLyp, Ay ®A; +1Q (AP + A).

(3) (GL2x Sp, X SLypm+1, M @A+ A ®1).

4) (GLY*x Sp, X SLyp+1, A1 @A +A;@1+1Q (A +A)™).

(5) (GL3 x Spin,, X SL,, a half-spin rep @A, +1Q(A;+A,)).

(6) (GL%x Spin,ox SL,, a half-spin rep @A, +1Q(A;+A;+A))).

COROLLARY 3.22. — Any non-regular irreducible P.V., which is not
castling-equivalent to (Sp,*X GO;,A{®A,), has the universally transitive
open orbit.

Proof. — By Theorem 2.19 and the proof of Proposition 3.9, we
have our result. Note that ¢/ =1 for any trivial P.V.
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(GXGL,,p®A,,Q"®Q") (degp=m<n) since we have /=1 for
(I} xGL,,p®A;) ~ (GL,,A;® - - - ®A,)(m<n) by Proposition 1.5 and
Lemma 2.2. Q.E.D.

4. 2-Simple P.V.’s of Type II with Universally Transitive Open orbits.

ProrposiTiON 4.1. — For n > m; > m,, we have £ = 1 for a P.V.
(GXGL,,p @A +p,®AT, M,, ,® M, ,) if and only if £ =1 for a
PV (G’p1®p2:Mm,,m2)‘

Proof. — Define a map V: M, ,®M,, ,—>M,, by
VX, Y)=XY for (X, Y)eM, ,®M,,, Since V(p,(4)X"B,
p2(A)YB™Y) = p,(AW(X, Y)'p,(A) for (4,B)e G x GL,, itis G x GL,-
equivariant. Let W(resp. W’) be the Zariski-dense orbit of the first P.V.
(resp. the latter P.V.). By Theorems 1.4 and 1.6 in [6], we have
Y(W) = W’. It is enough to show that \: W(k) » W’'(k) is surjective
with  GL,(k)-homogeneous fibres. Clearly we have Wc U=
{(X,Y)e M, ,®M,, ,; rank X=m,, rank Y=rank X'Y=m,} and
W' c U ={ZeM, n;rank Z=m,}. Since Y((I,,,0),(Z,0)) = Z, the
maps Y:U—> U’ and V:U(k) > U'(k) are surjective. For any
X, Y)ey~1(Z) n U, there exists Be GL, satisfying X'B = (Zm,»0) and
YB~! = ("Z,Z’). Since rank 'Z = m,, we have 'ZC’' = Z' for some
C'eM, ,-m - Put C= é CI € GL,. Then we obtain X'B'C =
(I,,,0) and YBT!C™'=(Z,-'ZC'+Z') = (Z0), ie, (X,Y)~
((Zn,;;0), (Z,0)).This implies that each fibre of Y :U — U’(resp.
V: U(k) » U’ (k)) is GL,(resp. GL,(k))-homogeneous. Hence GL,(k) acts
on each fibre of V:W(k)—> W’'(k) transitively. For any
ZeW'(k) = U'(k)n W', there exists (X,Y) in U(k) satisfying
Y(X,Y) = Z. Since Yy(W) = W'> Z, there exists (X',Y’) in W satisfying
Y(X,Y')=Z. Hence (X,Y)= (X"B,YB YHeUk)n W = W(k) for
some BeGL,, ie., YW(W(k)) = W’'(k). Q.E.D.

THEOREM 4.2. — We have ¢ = 1 for the following 2-simple P.V.’s
(4.a)-(4.c) of type II if and only if £ =1 for a simple P.V.
(GLIXG,p1@® - -+ ®p,) (deg p;=>2 for i=1,---,r) (see Theorem 2.19).

(4.a) (GLY'"xGxSL,,(c,+ -+ +0)®A,;+(p,+ --- +p)®1) for

any representation o, + --- + o5 of G and any natural number n
satisfying n > dego,+ --- + dego,.
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(4b) (GLy"xGxSL(Zdeg p;+r—1), (py+ -+ +pI®A; +(pf.; +
e PR1IHI®A+ - FAD)(A<KkLr) for any t = 0.

(4c) (GLY"XGXSL,, (p1+ -+ +p)®A; +(pys1t -+ +p)®1+

t—1
1@ A+ =+ A, +AY)(1<k<r)) for any pair of natural number (t,n)
satisfying t > 1 and n >t — 1 + degp;+ --- + degp;.

Proof. — For (4.a), we have our result by Proposition 1.5 and the
remark in the proof of Corollary 3.22. A P.V. (4b) is a castling

transform of (GL{""x G,p¥+ --- +p*¥+1+4+ ... +1). Clearly it has £ = 1
if and omly if £ =1 for (GLyXG,p,+ --- +p,) (see §2 in [2]). By

proposition 4.1, we have ¢ =1 for (4.c) if and omnly if £ =1 for
t—1

~A—

(GLY"™* ' x G,py+ +-- +p,+1+7+1), ie, £=1 for (GL,xG,p,
+ e t+p). QE.D.

From now on, for simplicity, we shall write (G,p)’ instead of

(GLX xG,p(=p,® --- ®p,)) where GL% acts on each irreducible
component p;(1<i<k) independently.

LeMma 43. — We have ¢ =1 for (GL,pn 1 XHA,®1+
pRp'(resp. A3®1+p®p’)) if and only if £ =1 for (Sp,X GLyp+1 %
HA QA ®1+1Q®p®p'(resp. A,QATR1+1®pRp’)).

Proof. — Let H' be a generic isotropy subgroup of (GL,,.1,A,
(resp. A%)). Then the GL,,,,-part of a generic isotropy subgroup of
(Spp X GLyp+ 1, A{®A (resp. A,®AY)) is H'. Since ¢=1 for
(GLyp+1,AS) and (Sp, X GLypm+ 1, A;®AY)), by Proposition 1.5, both
of ¢ coincide with # for (Hx H',p®p"). Q.E.D.

ProrosiTioN 44, — We  have (=1 for (GXGL,p4y,
PRA; +1®A,+o®1) with deg p<2m + 1, if and only if £ = 1 for
(GxGL(degp—1), p*Q@A; +1®A,+to®1)".

Proof. — By Lemma 4.3, ¢ for the first P.V. coincides with ¢ for
(GXSppXGLyp+1, oRI®1+ (p®1+1®A,)®A,), which is castling-
equivalent to (G X Sp,, X GL(deg p—1), c®1®@1+ (p*®1+1Q®A))®A,).
Then, by Proposition 3.7, we have our resulit. Q.E.D.

ProrosiTioN 4.5. — We have ¢=1 for (GXGL,pi1,p®A;+1
®A3+o®1) with deg p<2m+ 1, if and only if £=1 for
(G X Spma p®A1 +G®1)’ .
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Proof. — By Lemma 4.3, the number ¢ for the first P.V. coincides
with ¢ for (GXSp,XGLyp+1, oRIR®1+pRI®A; +1RA;®A¥)'. By
Proposition 4.1, it has the same ¢ as (GxSp,,o®1+
(PODNAU®AN(=0®1+pBA,)). Q.E.D.

ProposITION 4.6. — The following P.V.'s (1), (2), (3) have ¢ =1 if
and only if £ = 1 for (G,A*(p)+p+0):

(1) (GXGLyp+1, p@A; H1@ (A +A ) +o@1) (deg p<2n').

() (GXGLyys1, @A, +1®(AX+A,)+0®1) (deg p<2n'—1).

(3 (GXGLyp+1,p®A; T1Q(AZ+AT) +0®1) (deg p<2n).

Proof. — By Proposition 4.4, (1) 1is equivalent to
(GxGL(deg p), (p*+ 1H®A;+1®A,+0o®1)’. Since ¢=1 for
(Gx GL(deg p), p*®A;) which has a generic isotropy subgroup
{(g,p(2);g€ G}, we have our result for(1). Since ¢ =1 for
(GL,, 4 1,(A,+A)™) and their generic isotropy subgroups coincide, we
have our result for (3). By Proposition4.5, (2) is equivalent to
(GXSp,,(p+1R®A, +o®1), which is equivalent to
(G,A*(p+1)+0) = (G,A*(p)+p+05) by Proposition 3.7. Q.E.D.

ProPOSITION 4.7. — Assume that degp = odd < 2n’ + 1. Then we
have £ = 1 for (GXGL,, +1,p®A; +1@ (A, +A¥)+0o®1) if and only if
¢ =1 for (G,A*(p)*+p+o).

X Y
Proof.. — Let (W, l_'Y_’_Z_’ ) be a k-rational generic point

of (GXGLpp+1,P®A+1@A, Moy iy, 20+ 1 DAl 1) (deg p=2m’'+1).

Since £/ =1 for a trivial P.V. (GXGL,,+{,p®A;), we may assume

that W = (I,,,+1,0). Then the fixer at W acts on Z-spaces as
(GLy(y—myyA2,Alty () Which has £ = 1. Hence we may take

0 Ly
Z=J=
) - 0
By the action of
Dwer | YT
* (€ GLyy 1),
0 I2(n’-m')

we may assume that ¥ = 0. The generic isotropy subgroup of (GL, X G X
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GL;yw 1, 1Qp®A; +A;®|I®A,) at this point is given by

A 0
{(a, 4, 0 3 €GL XGXGLypyq; o'p(4)”1X

p(4)"'=X,uBJ'B=J}.
Since

as el o o] o |
o |3 o | B |

and /=1 for (Sp,—.,AY), our P.V. has /=1 if and only if
(G,A%(p)+p+0) has £ = 1. Q.E.D.

THEOREM 4.8. — We have /=1 for (GL%x SL,,x SL,,p) (m<n=odd)
for the following p's :

@D p=A QA +1@AF+A+A,) (m=o0dd, or m=2n,
n=2n"+1).

“42)p=A @A, +1®A,+A;+A;) (m=o0dd).

@3)p=A,®A, + 1 ® (A(+A¥+A,) (m=odd).

4 p=A @A + 1 ® A, +AT+AY) (m=even).

@BS5 p=A®A + 1 ®AF+A¥+AY) (m=ecven).

46 p=A®A, + 1 ®A,+A; +AT) (m=even).

Proof. — For (4.1) with m = 2n’, n = 2n" + 1, it is castling-
equivalent to (GLYxSL,,A¥+A,+A,+A¥), which has £ = 1. When
m = odd, by Lemma4.3 and Proposition4.1, it is equivalent to
(GL3xSL, % Sp,,A;,®A;+1®(A;+A,)), which has £ =1 by (5) in
Theorem 3.20. By Proposition 4.4 (with p=A;+1+1) and by a castling
transformation, (4.2) is equivalent to (GLYXSL,.;,A,+A;+A;+
A¥), which has ¢ = 1. Since the generic isotropy subgroups of
(GLyy 4 1,(Ay+A)™) coincide, we have (4.3) from (4.2). Now (4.4)
(resp. (4.5), (4.6)) is a castling transform of (4.1) (resp. (4.2), 4.3)).

Q.E.D.

Lemma 49. — We have ¢ =1 for (GLyXGLyp XGLyy oy,
IQAIRLI+ARA; +1®A)+A; ®1®AY) with 2m’ < 2n" + 1.

Proof. — Since ¢ =1 for (GL,,,,A¥) and (GL,, +.,A;), We may
assume that a k-rational generic point of

(GLyp X GLyys 1, AT@LH A @A H1QA, Q™ © My, 2+ 1 @™ )
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x|Y
is (*(1,0,...,0), }_Z—H’ '(1,0,...,0)). By the action of

| = Ilillol

(‘ iz L7 Ty | I])(E(GLzmleLz..'H)(k)),

we may assume that x =1 and Y = Z = 0. The isotropy subgroup
at this point is
lafo| [a]o]
{(| o 1410 15 |)eGLzmXGLz,,H,aeGLl,AeGLzm 15
Be Sp,, AW'B=W}.
Since

oo} | oo
lolBl

and /=1 for (GL?XSp,*SLypm_1,A;®A;+A;®1) by Theo-
rem 3.20, we have our result. Q.E.D.

THEOREM 4.10. — We have Z = 1 for
(GLY X SLy X SL,, p(=p1® . .. ®py)(m<n=o0dd)

where p is one of (4.7) ~ (4.13). Here T stands for any one of A, @ A,,
A @ AP:

@47 p=AQRA +1QRT+ (A+A)P 1.
48) p=A QA +1Q®T+ (A;+A}) ® 1 (m=even).
49 p=A QA +1 R A, +AD) + (A, +AH) ® 1 (m=o0dd).
410) p=A, ®A; +1 @A, +AH) + (A, +A)® 1.
(@411) p=A; ®A; +1Q® A¥ + AM)(+APR1).
412) p=A @A, +1R® (A, +AD) + A3 ®1 (m=5).
413) p=A®A;, +1 R A, +AD) + A, ®1 (m=4).

Proof. — By Theorem 2.19 and Proposition 4.6, we have (4.7) and
(4.8). By Proposition4.7, we have (4.9) and (4.12). Now (4.10) is a
castling transform of (one of) (4.7). From (4.7), (4.9), (4.10) and Lemma
4.8, we have (4.11). By (4.12) and Lemma 4.3, we have Z =1 for
(SLyxSLyy . *xSLs, A,@®1®1+1®@ A, +AD®1 + (1RA,)) ® A,
+ (A;@1)®AY) . Now the proof of Proposition4.1 shows that if Z = 1
for (GXGL,,p;®A, +p,®A¥) with m;, > n > m,, then we have 7 = 1
for (G,p;®p,). In our case, we have Z = 1 for (4.13). Q.E.D.
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THEOREM 4.11. — We have /=1 for the following P.V.’s
(GLYE X SL,,x SL,,p(=p;®...®p,) with m < n = odd

414) p=A QA +1®A, + c® 1 (m=odd) with c = A%,
A +FAFAD P, (A +A+AY), (A3+A)) (m=5).

415 p=A, @A +1 @A, +c®1 (m=even) with o = AP,
A +A+A) P, (A, +AP) (m=4).

4.16) p=A, ®A, + 1@AL + o ® 1 with 6 = A, (m=0dd),
A +A +AY (m=even), A, +A*+A%, A,+A* (m=5).

(417) p=A; @A + 1 QAP (AP R1I(+AP ®1)).

Proof. — By Proposition 4.4, (4.14) is equivalent to (SL>™*'x
Spp» AT®A; +0®1) (m=2m'+1), which is equivalent to
(SL,,y+ Ay +0*) by Lemma4.3. Hence, by Theorem 2.19, we have
I =1 for (4.14). For (4.15) with o = A}, it is equivalent to Sp,, X
SLyvii, Ay @ A, + 1 ® A,) since # = 1 for (GL,,, A}) (m=2m"). Then,
by Propositions 4.4 and 3.7, it is equivalent to (SL,,, -, A,®A,)" which
has Z# = 1 by Theorem 2.19. For (4.15) with 6 = (A;+A;+A,)®, by
Proposition 4.4, it is equivalent to (SL,,XSL,m-1, AI®A+
IQA,+ (A + A +A)®®1). When o=A,;+A;+A,, it is castling-
equivalent to (SL,XSL,,_;, A;+A;+ADRI+A,RAT+I®A),).
Since # =1 for (GL}*SL,,A;®A,®A,) with a generic isotropy
subgroup {1}, it is equivalent to (GL3 X SL,,_,,A,®A¥@®A¥) which
has Z = 1. When 6 = A¥+ A¥+ A¥, by Proposition 4.1, it is equivalent
to (GL3X SL,,_1, A,®A, @A ;®A,) which has Z = 1. For (4.15) with
oc=A,+ A¥™) (m=4), it is equivalent to (SL,x SL;,A¥*®A,+
1®A* + (A, +A®)®1)' by Proposition 4.4. Clearly it is also equivalent
to (SpyXSLy, A;,@QA,+APR1+1®A%’ which has /=1 by
Theorem 3.20. For (4.16), by Proposition4.5, it is equivalent to
(SL,,x SP,.,A;®A,+0c®1), which is again equivalent to (SL,,A,+ o)’
by Proposition3.7. Hence we have our result by Theorem 2.19. By
above results and Theorem 4.10, we have (4.17). Q.ED.

THEOREM 4.12. — We have | = 1 for the following P.V.’s :
(4.18) (GL3} xSp,y X SLpy 1, A{@A,; +1®A,) with 2m'< 2n' + 1.
(4.19) (GL}x Sp; X SLyy 11, A;@A; +1@A, + A, ®1).

(420) (GL} X Spy X SLyy 11, A;@A; +1QA,+1®AY).

Proof. — We have | = 1 for (4.18) (resp. (4.19), (4.20)) by (4.15)
with o = A (resp. (4.15) with o = (A, +A®) (m=4), (4.13))) Q.E.D.



PREHOMOGENEOUS VECTOR SPACES 37

THEOREM 4.13. — We have £ = 1 for the following P.V.’s :
(4.21) (GL3}xSL,xSLs,A,®@A,+1Q(A%+AY)).
(4.22) (GL}XSLyxSLs,A;\®@A;+1®(A,+A))).
(4.23) (GL3xSL,xSLs,A;®QA;+1Q(A,+A))).

Proof. — Since (4.23) is castling-equivalent to (GL3xSLs,A,
@A, DAT), we have 7 = 1 for (4.23). Since (4.21) is a castling transform
of (4.22), it is enough to show /=1 for (4.22), namely, for
(GL; XGLsXGL;,(1®A,+A;®A,))®1+1®A;®A,). The isotropy
subalgebra $ of (GL,XGLs,1®@A4,+A;®A,) at & with m = 2 in
the proof of Proposition2.15 is given by

{(o, 4) € gl; Bgls; 4= }AI—;—O—‘ ; Ay =diag (a,a—o,a—2a),

A, =diag (—a,a—a),A3=LZ: Zi Zz:l}.

Therefore the GLs-part H of the isotropy subgroup at & contains
{diag (e,e" " ',e" 2,7 ,e7!");en e GL,} and G, with m = 2 in the proof
of Proposition 2.15. We shall show # = 1 for (HXGL3,A;®A;, M5 3).

Let X = [;] be a k-rational generic point where Y e M;(k) and

Z= <u1’ Uzs Us ’) € M, 4(k). Since det Y # 0, we may assume that
215 225 Ug

Y = I, by the action of GL5. Similarly we have u; = 0(1<i<4) by

the action of G;. In this case, we have z;z, # 0 since otherwise it

cannot be a generic point. For example, one can check this by calculation

of the isotropy subalgebra. By the action of

g = diag (e,en "', en"% e g7 In) xdiag (", e7'n,eT'n?) e H x GL,
with €2 = zz;' and n = z,z;', we have 2z, =z, =1, ie, /= 1.

Note that A; ® A(g) is k-rational even if g ¢ (HXGL5)(k). Q.E.D.

THEOREM 4.14. — We have /=1 for the following P.V.’s
(GLYx SL,, X SL,,p(=p:®...®Dp,) where n = 2n’ (=even):

@24) p=A, ® A, + 1 ® AP (+ o®1) with
o= AP, AP + AP, A, + AF + A},
A +A+FA)®, AL + A, + A¥ (m=even), A, (m=o0dd).
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425) p=A @A +1 QR AFP+AF)(+0o®1) with 6 = AP,
(426) p=A; ®A; +1® (AP +AP +AP) (m=0dd).
427) p=A QA +1R@AP+(A,+AY) ® 1 (m=5).

Proof. — Since # = 1 for (GL,, A%®) with a generic isotropy subgroup
Spys (4.24) ~ (4.27) reduce to the case of type I, and we have our
result by Theorem 3.20. Q.E.D.

ProrosiTioN 4.15. — We have /> 1 for (SL,xSL,,2A,®A,+
1IQAYP) (+A®1).

Proof. — If n=2n", it is equivalent to (SL,xSp,,2A;®A,
(+A;®1)) which has Z > 2 by Corollary 3.22. If n = odd, we have
Z = 2 by Propositions 4.4 and 4.5. Q.E.D.

THEOREM 4.16. — We have # = 1 for the following P.V.’s :

(4.28) (GL*'***xSL,xSL,,A\®A,+(c,+ ---+0)®
1+1®(ty+ - - - +1,)) where (GL*'xSL,,c¥+..-.-+0c*+
uyte-+1)
is a simple P.V. with | = 1 (See Theorem 2.19).

Proof. — 1t is obvious. Q.E.D.

THEOREM 4.17. — A P.V. of the type

(GLY***'*xGx SL,,(p;+ - - - + p)®A,; + (o, +
st o )®1+H1I®(T + - - +1TL)
with 2 < degp; < n (i=1,...,k) and

(1 + - +T) # (AP +AP)

has # = 1 if and only if it is one of (4.1) ~ (4.28).
Proof. — We can find the table of all P.V.’s of this type in §§ 5-2
in [6]. From Lemma4.3 to Theorem 4.16, we have investigated the

number 7 for all P.V.’s in § 5-2 in [6] except P.V.’s which have an
irreducible component with Z > 2. Q.E.D.

PrOPOSITION 4.18. — We have /> 2 for (GL?x SL,x SLg,(A,+
AD®A,).
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Proof. — It is castling-equivalent to (GL?xSL,XxSL,,(A,+
A)®A,) where (SLy X GL,,A,®A,) = (SO¢*XGL,,A{\®A{) has 7 > 2.
Hence we have our resuit. Q.E.D.

LemMa 4.19. — We have /=1 for the following P.V.’s (1)
(GLy X Spp; A;®(A1+ A1), (2) (GL; X GLyp, I®AFP+A®(A;+AY)),
(3) (GL; X GLyp+ 1, I®AT+ A QA+ AY).

Proof. — Applying Proposition 3.7 for (G,A%(p)) = (GL;,A;®A,),
we have Z =1 for (G,A%(p)) = (GL,,2A,), ie. (1). Hence we have
(2). By Proposition4.5, (3) is equivalent to (1). Note that
(GL, X GLyp+1, 1®A,+ A ®(A,;+A,)) is a non P.V. since it has a non-
constant absolute invariant. Q.E.D.

THEOREM 4.20. — We have /2= 1 for the following P.V.’s
(GLI{ x SLm X SLm P(=Pl@ e ®pk))(n>m+ 1) .

429 p=A ®A, +1®A+AN+c®1 with o =AY,
AP + A, A% + A¥, A, + AF (m=even).

(430) p=A, @A, + 1 ® A*+A*+AH+AP R 1,

431) p=A, QA + 1 @ (A¥+A*¥+A) + 6 ®1 with o= A%,
A, (m=even).

Proof. — By Proposition 4.1, (4.29) (resp. (4.30)) is equivalent to
(SL,., A, ®A,®c)" (resp. (GL}xSL,, A + A;+A;+A,)) and hence,
by Theorem 2.19, we have our result. For (4.31), it is equivalent to (2)
or (3) in Lemma 4.20 by Proposition4.1 and hence Z = 1. Q.E.D.

THEOREM 4.21. — We have £ = 1 for the following P.V. :

(4.32) (GL3 X SL,%XSLyps1, A{@A+1QA;+A;+A)+0o®1)

with 6 = A,, A} (m=-even).

Proof. — It is castling-equivalent to (GL} X SL, X SL,,A*®A,+
1®A;+A+A))+c®1)). Since Z =1 for (GL}xSL,,A;+A;+A,)
with a generic isotropy subgroup {1}, it is equivalent to (GL; X GL, X
SL,,,A\®1Q(AT+A})+1®A;®c). By Lemma 4.19, we have our
result.

THEOREM 4.22. — We have /=1 for the following P.V.’s
(GLY X SLy X SL,, p(=p1® . .. @®py)) (m=odd) :

433) p=A, QA +1Q® AF+ADH(+AT®1 when m=5)
(n=12m(m—1)).
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434) p=A QA + 1 @AF+AF+A) m=12m(m—1)+1).

(435) p=A @A +1® A +A)(+A,®1 when m=Y5)
(n=12m(m-1)).

436) p=A, @A +1 @A +A+A) m=12m(m—1)+1).

Proof. — Since =1 for (SL,,A,®A,) (see the proof of
Proposition 2.15), we have Z = 1 for (4.33) and (4.34) by Propositions 4.1
and 2.16. A castling transform of (4.35) and (4.36) has Z#= 1 by
Theorem 3.20. Q.E.D.

THEOREM 4.23. — We have =1 for the following P.V.’s
(GLY X Spn X SLy, p(=p1® ... ®py)) (n>2m) :

@37) p=A @A, +1@A*+AN(+T) with T=A,®1,
1® A%, 1® A, (n=2m+1).

438) p=A, @A, +1®AP+AM)(+T)  (n=2m)  with
T=A®1, 1 QAM,

@39 p=A, ®A, +1® A +A,+A,)) (n=2m+1).

Proof. — By Propositions 4.1 ; 2.9 and Lemma 4.19, we have (4.37).
Since A, ® A; +o® 1+ 1® t(n=m) is equivalent to (Sp,,c+1),
we have (4.38). A castling transform of (4.39) has Z=1 by
Theorem 3.20. Q.E.D.

THEOREM 4.24. — We have /=1 for the following P.V.’s
(GL% x Spin,o X SL,, a half-spin rep. @ A, +p' (=p,®...Dp))(n=>16).

(440) p'=1Q@ (AT+AD), 1 @ (AT+AT+A) (n>17).

441) =1 A, +A) (n=16), 1 ® (A;+A;+A,) (n=17).

Proof. — Since # = 1 for (GL, X Spin,,A;®(A+A)) (see P.14 in
[1]) where A is the even half-spin representation, we have (4.40) by

Proposition 4.1. A castling transform of (4.41) has Z=1 by
Theorem 3.20. Q.E.D.

THEOREM 4.25. — A P.V. of the type (GLX***'*xGxSL,,
t
(pr+- - T P) @A H(o+---+0) ®I+1® AP+ +AW with
2 < degp; <n@=1,...,k) and (G; p;+---+p; o+ ---+
0y # (SLp, Ay +-+-+A; ; A¥ + .- + A®) has 2= 1 if and only if
it is one of (4.29)-(4.41).
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Proof. — By §5-3 in [6] and Proposition 4.18 ~ Theorem 4.24, we
have our result. Q.E.D.

THEOREM 4.26. — A P.V. of the type (GL ****xSL,xSL,,

k t
A+TTHAY @A, + (AP 77+ AP @ T+1® (AP +77+AP) jy

always the universally transitive open orbit, i.e., £ = 1.

Proof. — P.V.’s of such type are completely classified in §4 in [6].
P.V.-equivalences used there keep / invariant (cf. Proposition4.1, etc.).
They are essentially reduced to trivial P.V.’s or simple P.V.’s of type
(GL5 x SL,,,A‘I*)+'-‘:'- + A® wich have Z = 1, and hence we obtain our
result. Q.E.D.
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