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GREEN FUNCTIONS AND SPECTRA
ON FREE PRODUCTS
OF CYCLIC GROUPS

by K. AOMOTO and Y. KATO

0.

Recently there have been considerable interests in spectral the-
ory of free groups or finite free products of cyclic groups/in relation
to the theory of C* -algebras or irreducible unitary representations of
them (see [F], [H2], [II], [I2], [Sl]). On the other hand, one of the au-
thors has developed in his previous articles a spectral theory of free
groups, as a natural extension of periodic Jacobi matrices for left-
invariant convolution operators with respect to certain subgroups of
finite index by proving that the Green functions are algebraic (see
[Al], [A2]). In this article we want to develop a similar theory for
left-invariant convolution operators which are all nearest neighbour
cases in the I2 -space of a free product F of cyclic groups. But the
problems are much more complicated and delicate.

We note that in spherical symmetric cases the operators consid-
ered here are different from the ones in [II] where the Green functions
have very simple forms. Even in these cases the Green functions con-
structed in our article do not seem elementary.

Algebraicity of the Green functions has been also proved in [Sl]

Key-words : Spectra - Free products - Cyclic groups.
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under slightly general conditions. Theorem 1 here has been proved
in Theorem 1 in [C] (see also [P]).

The content of this article is as follows :

First we show that the Green functions C?(7,7' | z) in question,
where 7,7' € F and z is the spectral parameter, can be constructed as
fixed points of certain mappings which are generally algebraic (see
Theorem 1). Next we show that a detection of the spectra of the
operator can be reduced to elementary Morse theoretic arguments
for the mapping

(0.1) $ : W = ——1—— -^ z.
G(e,e\z)

where e denotes the identity of r (see Theorem 2). By this method
we shall compute the spectra of a few simple operators which seem
interesting (see 4). Some results here overlap with the ones in [Sl].

Let r be a free product of a finite number of cyclic groups Fj
of order nj :

r = Zn, * • • • * zHi ^ • - • ^ ^-Hm •

r is generated by each generator aj of Zny such that a".' = e.
We consider the symmetric random walk defined by a self-adjoint
operator A :

m

Au^) = ]>^PiK7a«) + ̂ (7^~1)),
«=1

m

in ̂ (F), where p, € R satisfy 2^p, = 1, p, > 0.
i=i

Our main theorems which we want to prove can be stated as
follows :

THEOREM 1. — The Green functions C?(7,7' | 2) for A are alge-
braic in z. The function W(z) = l/G^e, e\z) satisfies the equations

z-W =^°^°\W) forRez>l,
= ̂ (^—"m)^) for Re z < -1,
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where ^"^rn)(yy}, 0 ^ ^ < n, = M, are (he aerate
functions in W defined in 2.

We shall prove this in 2.

THEOREM 2. — (i) If a) m ̂  3, or b) m = 2, HI , n^ ^ 3 then the
spectra cr(A) of A consists of a finite number of bands of continuous
spectra included in [—1,1]. The complement ^(A^R—c^A) coincides
with the set of unstable bands :

( , . dzh^^'"^
\z = W + ̂ ^'"^\W) | W 6 R, ——————(W) > -1
1 dW

for some sequence (1/1,..., i/^) ^.

The norm of A is equal to MAX (o;, -/?) where a and /? denote
the unique values ̂ (°-.°)(^) and ̂ ("'i-^m)^) ̂ e 2; such that

dtA(°-»°)
(0.2) -^————TO = -1,dry
and

^("^•••^m)

(0.3) -!-————(W^) = -1,
dW

respectively.

(ii) Ifm=2, ni or 7^2 = 3, then the discrete spectra consist
of the set

( , , d^^\z = ^(^^(o)]———(o) < -i
1 dW

for some (1/1,1/2), 0 ^ 1/1 ^ rTi, 0 ^ ^2 ^ ^2 }•

Continuous spectra appear in the same manner as in (i).

Proof of Theorem 2. — (i)-a) follows from Proposition 3, (i)-b)
and (ii) follow from the arguments in 3.
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1.

First we assume that F is a free product of finite groups
fj, 1 ̂  j< m : r = FI * • • • *I\n. Let Fj have a system of generators
{a^l, . . . ,a^.} such that each o^ is difFerent from the identity of
r^-. Then F has a system of generators a^, 1 <, j <^ m, 1 ̂  i/ ^ g j ,
Consider the operators Aj and A in ^(I^) and ^(F), such that all

m 9 j

pj^ > 0 and 2 ̂  ̂  Pj> = 1 :
j=i i/=i

^j
(1.1) ^(7) = ̂  Pj>(^j(7aj>) + ̂ (7^)),

y=i

(1.2) Au(7) = E E ̂ ("(m.) + «(7 )̂).
j=l i/=l

Since the operator A on ^(F) is self-adjoint, there exists the
unique Green function (7(7, V | 2?), for 7,7' € F and Im z -^
0, which represents the (7,7')-component of the resolvent kernel
(^—A)"~1. Since A is left-invariant, we have the invariance property of
G(7,yi^):
(1.3) ^VI^W^eM.

So, in order to find the spectra of A, we have only to study the
behaviour of the spectral function

(1.4) -l^y-^, e | A + t0) - G^1-1^ e | A - t0)),
Z7TI

for A e R, which is our main subject in this note. We denote by
^'(7? 7' I z) ^he Green functions for Aj :

(1.5) G,(7,y I ^ = (^ - A,)^ , 7,7' e r,.

Let 7 be an element of F which has a minimal expression
7 = 7»j • • • 7«'< » 7«p € r,^. Then the following quotient does not
depend on 7 for 7j G Fj, '̂ ^ ̂  :

(1.6) G(77,, e | ^)/G(7, e | z) = G^,, e | ^/G^e, e | ^).
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This follows from a general property of Green functions on a free
product of groups. In fact we restrict the operator A to the subspace
(?(^lj) of^F), where fij consists of elements 7' € F having minimal
expressions initiating from any 7j € Fj — {e}. Then (1.6) is equal
to the quotient of the corresponding Green functions on fij. The
situation is completely similar to the case of free groups (see [Al]).

We put Fj^(z) and fj,v{z) to be the multipliers for Aj and A :

(1.7)

(1.8)

- / . G,(a^,e\z)
Fjlv(z)= G,(e,e|.)'

G(a^e\z)
fjlv(z) = r..\.\ >G(e,e | z)

for 1 <, j <, m, 1 < v < g,. Remark that at z = oo, we have

(1.9) F,,(,)- ̂ +0(^) o, ^O^),

(i.io) /„.(») =£^+o(^) o, ^o^r),

according as a^ ^ e or = e, because we have the expansions

{z - A)-1 = f^/^ and (^ - A,-)-1 = ̂ (A,)^1.
Jk=0 Jk=0

Then we have the following equations which are fundamental in the
sequel :

LEMMA 1.1.

9k

(1.11) /,>(^)=^>(^2^^p^/^^)),
W /i==i

for 1 <: j^ m and1 <: v <: g j .
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Proof. — Owing to a property of the Green functions, the
following equations hold :

m gk

zG(^e | z) = ̂ ^^{G^a^.e | z) +G(-ya^e | z)},
k=l 1^=1

(1.12)
m <7fc

^(e,c | 2;) = ̂ ^Pk^{G(a^e | 2;) + G{a^e \ z)} + 1,
Jk=l i/=l

where 7 G F— {c}. Therefore if 7 has a minimal expression 7 = 7' *7j
such that 7y € Fj — {e} and 7' = 7^ • • • 7,̂  for ^ ̂  j, then

(^2^;^p^/,^))Gf(7,e|^)
a^j ^1=1

9j

(1.13) = ^P,>{C?(7aj>,e | z) +G^aJ^e \ z)},
!/==!

rn g»

^-^E^^^))^6^ i2 :) = L
a==l /*=!

Hence (7(7'7? e | -2;) as a function of 7̂ - satisfies the equation of
Green functions for Aj in Tj with a spectral parameter

9»
^~2^^p^/,,^):

^J /A=l

(1.14) (^-2^^p^(^))u-A,u=0,
^J /*=!

except where 7j = e. Therefore by uniqueness of the ratios of the
Green functions,

ni^ f (^ G^a^e\z) G^a^e\z)
(lflu) J j A 2 ) ~ ^( i—TT" ~ ^( i—TVG{1,e\z) G(7,e|2:)

/ ^'must be equal to Fj^ ^z—2 V^ V^ Ps^fs^{z}). This implies Lemma
^j ̂ =1

1.1.
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The argument in the proof of Lemma 1.1 also proves the
following :

COROLLARY. — For any ^j E Fj - {e},

g»
G^,e | z - 2 ̂  ̂  P^fs^}}

G(^j,e | z) ^ ______9^3 ».=i_______^
G(e,e | z) \r^4^

G^e\z^^Y^p^f^)
s^j </=!

9j

We denote by Xj(z) and A^(^) the values 2 ̂ .Pj^fj,^} and
/i=i

m

^^Xj(^) respectively. Then the equations (1.11) can be rewritten
J=i
as follows :

(1.16) f^{z) = F,^z - X{z) + X,(z)).

Therefore we have

(1.17) X,{z)=.F,{z-X{z)+X,{z))
=F,(W(z)+X,^

where

ww=.-xw=^,

(1.18) F,(,)»2S,,,F,.M=,-^^.

Fj(z) has an asymptotic expansion :

9j^'" , i ^(U9) ^M=-^——+0(^),

at ^ = oo. Hence we have
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LEMMA 1.2. — The equations (1.17) with respect to Xj(z) and
X(z) have the unique Laurent series solutions at z = oo such that

9s

^PL ,
^)=-^——+o(^),

(1.20)
m g j

2EE?L
X(.). '-";• +0(^)

Proof. — Fj(z) has a power series expansion in 1/z beginning
from the term 1 / z . If we put a/ = l/W(z) then the equations (1.17)
can be expressed in the following way :

(1.21) A^=F,((l+A»/o;).

The right hand side is holomorphic at the origin with respect to uj
and Xj. The implicit function theorem implies Lemma 1.2.

2.

We now assume that for all j, gj is equal to 1 and thus Fj is
a cyclic group of order rij. Then Fj(z) = 2pjFj^(z)^ where we put
pj^ = pj, has the following expression :

1 / z \ . /1\^-1,., ^'--^W ^v"-'^,)
Vn(^) denotes the determinant \z — Jn\ where Jn is a n-th order
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Jacobi matrix as follows :

67

/O ^ \

2 ^ • • •

-. " 0 2 '

\ i °/

Vn(.z) is equal to the Tchebyscheff 2nd polynomial of degree n and
is expressed as : 2-"sln<^l^ for ^ = cos 6 (see [S2]). Then

I^pj cos 0) is equal to 2pj cosf^- - l)^/ cos "^Q. So

LEMMA 2.1. — Fj{z) has a, partial fraction as follows :

(2.2)

. 2 (2fc - I)TT4p -̂ sin
n,

W = E
;=i n,f-^-^=1 n (2fc- l )7T-

^2D,2pj
cos

n,

n,
where nj ^yj.

o(^)From now on we put p " ' = 2pj cos((2i/ — l)7r/nj), 1 ^ i/ ^ n^,

and^^^^^O.

LEMMA 2.2. — For any W G R, the equation (1.17) with respect
to X j has 7Ty + 1 real solutions ^(W),... ̂ "^(TV) which are
decreasing in TV and satisfy

(2.3)

/^^(HO+W,
^.'<+1) < ̂ (W) + TF < y^, 1 ̂  i. ̂  n, - 1,

^)W+W</?^),

and

^(^^O for W-^ +00,

^°)(IV) ~ ̂ 1) - TV for W -» -oo,
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(2.4) ^\W) - ̂ v) - W for W -^+00,

^)(T7) - ̂ •l/+l) - Ty tor TV -. -oo, 1 ^ z/ ^ ny - 1,

^^(W) - /^) - W for TV -^ +00,

^\W)^0 forT7->-oo.

Proof. — Xj = ^- (TV) is obtained as the X-coordinate of the
intersection of the graphs V = X and Y = Fj{X + TV). Fj{X}
is decreasing in each interval where Fj(X) is defined. Moreover
Fy(+oo) = Fj(-oo) = 0, and F^/3^ ± 0) = dLoo, 1 ^ A; ^ n,.
Thus we have only to apply the middle value theorem to (1.17) for

"j
X = Xj on each interval in R— ^J {/3. }. Since Fj(X) is decreasing,

Jk=l

all ^••1/ (TV) are decreasing, too.

DEFINITION. — For any sequence (^ i , . . . ,^m) such that 0 <:
m

Vj <: ^j, we denote by ^i'—1^)^ ^e function ^^-^(TV)
j=i

which is a real algebraic function without singularities for W € R.
They are all decreasing.

Remark that ^(^••••'^(TV) has the following asymptotic lines :
m

(2.5) ^-^(TV) - ̂ /^) - m'TV for F7 -^ +00,
j=i
m

- ̂ y^^ - m^TV for W -^ -oo,
j=i

where m1 (or m") denotes the number of vj different from 0 (or TTy).
Hence W{z) = l/G(e, e | z) satisfies the algebraic equations :

(2.6) z - W = ̂ -"^(W) for ^ -> +00,
= ^(n'^-t^-)(TV) for z ̂  -oo.

These equations have the unique meromorphic solution W = W(z)
in a neighbourhood of z = oo such that

(2.7) W{Z) =z+ 0(1).
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Proof of Theorem 1. — We have seen that for any 7 € F,
(7(7,7 | z) = (7(e,e | z) is algebraic in z. Since C?(7,7' | -z) is left-
invariant, we have only to prove the algebraicity of C?(7, e | z). We
assume that 7 has a minimal expression 7,̂  ... 7^ for 7 .̂ G F^., then
from Lemma 1.1 and its corollary

G(^e\z) _Gj^e\W+X^ Gj^e | W + X^
G(e,e\z) Gi,(e,e\W+X\) ' Gi^e\W+Xi,) "'

G^^e\W+X^
(2.8)

G^e\W+X^

Each factor in the right hand side is algebraic in z because
(7j(7, e | -2;), W and Xj are algebraic in z. Theorem 1 has thus been
proved.

Remark.— We have

(2.9) ^•••^(O) = 1,
^(^•i,...,^m)(o) ^ -.1^

because

(2.10) ^(O) = 2p,,

V'f^(O) ^ -2p,,

hold for 1 ̂  J ^ m, in view of the relations

(2.11) Fj(2pj) = 2pj for all n^,
Fj{—2pj) = —2p^ if n^ is even,

= -2pj(2'nj - l)/(2y7, + 1) if n^- is odd.

LEMMA 2.3. — ^°—°\W) (or ̂ -•^(IV)) is a convex (or
concave) function of W, namely

^(o,...,o)

(2.12) 4i^-(Ty) > °5

j2/,(n-i,...,^)

—y-——,——(W)<0 f o rTV€R.
dW
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Proof. — By two times of differentiation with respect to W, the
equation (1.17) implies

X^ = F^(W + Xj)(l + A';-)2 + F'^W + X ) X ' / ,
namely

X;(l - F',(W + X,)) = F^W + X,)(l + A';)2.

F'^W+Xj) is negative for Xj = ̂ \W) and ̂ ^(W). F^W+Xj)
is positive for Xj = y. (W) and negative for Xj = i p ^ ' ^ W ) . Hence
Lemma 2.3 follows.

LEMMA 2.4. — The following inequalities hold for m >, 2:

AA(O,...,O)

-^-(0)<-1'
(2.13)

/̂,("l,...,"m)

——ffl———'0^-1-

Proof. — In view of (2.10) and (2.11), we have

(2.U) ^(0)=^———1-^ for alln,,v / aW" l-F',(2pj) n, "

(2.15) ^W= ̂  =1-^- if n, is even,v / dW v ; l-F;(-2p,) n, 1

< F1^2P3) <-1 if n, is odd,
-l-F,'(-2p,) 2

by using the equalities :

^,cos.)=^.^(2p,cos(^-l)./cosf)

(nj-l)smg+sm(nj-l)^
( ) =-———~~—~^fe——'2 sin F • cos ——

2
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in particular

(2.17) ^(2^.)=l-n,.
(2.18) -Fj'(-2pj) = 1 - n, if n, is even,

1
2_ n/
—rtj———=- if nj is odd.3 ^+,

Lemma 2.4 follows.

Moreover we have

,̂(o,...,o)(^) ~ 0,

(̂0,...,0)

(T7)~0 for TV-»+00,
<W

m

^'"^(W^^^P^-mW,
j=i

^(o,...,o)
(2.19) y/ (W)^-m for TV->-oo,

dir
m

^(ni,....nm)(^) ̂  ̂ ^n.) ̂ ^^

J=l

(̂n-i,..,̂ )

,,..——(W)--m for TV->+00,diy
l̂,...,H'm)(^)^0,

d^1 »•••'"""»)
(TV)-O for TV ̂ -oo.

dTV

Hence due to Lemma 2.3, there exists only one W = W^ > 0
?uch that d^^'^^W^/dW = -1. In the same way there exists
only one W = W'^ < 0 such that d^^m\W}|dW = -1. We
denote the corresponding values of z by a and /? respectively. Then
-1 < ft < a < 1 from (2.10), (2.12) and (2.14). We have proved the
following :
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PROPOSITION 1. — W(z) = l/C?(e, e | -2:) is an algebraic function
which is holomorphic in C — [/?,a]. a and /? are rcai branch points
ofW(z) of second order.

3.

To investigate the spectra of the operator A, it is sufficient to
study the structure of {6(7,7 | z)}^r and so C?(e,e | 2;) = 1/W(2').
To see the behaviour of W(z) in (/?, a) in more detail, we consider the
following equations e(^i, ̂  • • - ? ^m) which arc all possible analytic
continuations of (2.6) :

(3.1) z - W = ̂ -"^(TV), 0 ̂  ̂  ^ 7T,.

We denote by e the union U^...^£(^i,..., i^n). Since each ^ ' ( W )
is an algebraic function of degree yTj + 1 in TV, the set C = {(2:, TV) 6
C2 | n^II^i(^ - W - ^(^•••^(TV)) = 0} defines a possi-
bly reduced affine algebraic curve of degree less than or equal to
(rTi + 1)... (nrn +1)- We denote by C the compactification of C in
CP2 which becomes a projective algebraic curve possibly with singu-
larities. The intersection ofC and the line {W = 0} in CP2 consists
of (n\ + 1)... (nm + 1) points. Therefore the degree of C is exactly
(iTi + 1) . • • (?T^ + 1).

The crucial fact is the following :

PROPOSITION 2. — Assume m ^ 3. Then for z G (/3, a) (he
equations e(^i,..., ̂ m) with respect to W have at most two non-
real solutions (denoted by W^{z)) in the complex domain of TV.
These two coincide with analytic continuations in C — [/?, a] of the
two real solutions ofe(0,...,0) (or e(n'i,... ,n'm)) from z > a
( o r z < / 3 ) .

To prove Proposition 2, we need a few lemmas.

LEMMA 3.1. — When m1 and m11 are greater than 1, then the
equation e{y\,..., Vrn) for a fixed real z has at least one real solution.
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Proof. — The function ̂ ^"'^(W) has the asymptotic lines
(2.5). Hence if m! > 1 and m" > 1, the equation e(^i,. . . , frn) has
always at least one real solution.

LEMMA 3.2. — When m1 = 1 or m" = 1, among
e(0, . . . ,0, i / ,0, . . . ,0) and £(7Ti,... ,r^-i,i/ - l,rT^i,... ,rT^), 1 ^

- •7''(/lv <_ rij, there exists at least one real solution for a fixed real z.
Proof, — The functions ^(o.-A^o,...,o)^ ^

^("•i....,n-,-i^-i.n-,+i,...,^)^^ ^^ ̂  g^^ asymptotic lines for
W —•> +00 and W —> —oo respectively :

^(0,..,0^0,..,0)(^) ̂  ̂ ) _ ̂  ̂  ̂  ̂  ̂ ^

(3.2) - /3^+l) + (m - l)/?^ - mTV if 1. ̂  ?T,,

- (m - l)^^ - (m - 1)W if v= fij for W -^ -oo.

^(n'i,...,7r^i,i/-l,7T,+i...,n'n»)/'w\

- ̂ 1) + E ̂ fc) - mw for Ty -^ +00^
k^J

^/3^-W for W^-oo.

Hence there exists at least one real solution.

Proof of Proposition 2. — From Lemma 3.1 and Lemma 3.2,
we see that there exist at least

m

(3.3) (1 + n'i) ... (1 + Tim) - ̂  n, for z > a or z < /?,
j=i
m

( l+7Ti) . . . ( l+r^)-^^-2 fo r^e (^a ) ,
.7=1

real solutions for e. Moreover since the two functions ^(0»•••'0'!/'0'•••'0)
{TV) and ^(^i.-^-i^-i^+i.-^m)^) have the same asymp-
totic lines with tangent —1, the pair e(0,... ,0, ̂ ,0, . . . ,0),
e(n\,..., yTj-i, ̂  — 1,7?j4-i,..., Tim) have one real solution W = oo

m

such that (^,W) € C — C. Hence £ has other Y^rTj real different
^=i
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solutions. The total number of real solutions, multiplicities being
counted, is at least equal to

(3.4) (1 + n-i)... (1 + yT^) for z > a or z < /?,

( l+n- i ) . . . ( l+7T^)-2 for ^€( /? ,a) .

We have seen that the degree ofC is (1 +yTi) . . . (1 +7Tm). As a result,
for z > a or < ft all solutions are real, while for z C (/?,a), besides
the real solutions found above, we have only two remaining solutions
W^(z) which may or may not be real. Proposition 2 has now been
proved.

When z (E ^(A)^ we have

(3.5) -^m^-2^^6!^
dz dz

=-^G(e,7 |^)C;(e,7 |^)<0,
-yer

because G'(e,7 | z} = C?(7,e [ z) e R. In other words T7(^) is
increasing in each component. The functions ^^'"^^^W) + W
have minimal (maximal) values at W corresponding to the right(left)
end point z of the component. This fact shows that if there exist
non-real solutions of £ for A E R, then these must coincide with
Wjb(^) = W(\ ± z'O). Hence continuous spectra appear if and only if
W{\ + iO) + W{\ - iO) for A € R.

The set

(3.6) {^^)(W)+TV|TV6R,^l>''>"m)(^)

dWdW >-1

for some (i/i,...,i/^)},

consists of a finite number of open intervals :

(3.7) (-oo, Ai) U (A2, As) U ... U (Aa^-2, \2k-i) U (ASJI., +00),

-where Ai = /?, Aa^ = a. If there appears a discrete spectrum then W
vanishes. As a result, Proposition 2 implies the following :

PROPOSITION 3. — (i) The continuous spectra o-c(A) of the
operator A consist of the bands [Ai, X^] U [Aa, A4J U ... U [\2k-i, >2k}'
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(ii) The discrete spectra are disjoint from any of the bands.
There exist discrete spectra z == ^(^'-^m^o) if and only if

(3.8) ^-••-'(0) < -i
dW

for some (^i, . . . , i/m).

Furthermore,

PROPOSITION 4. — If m ^ 3, then thcrc exists no discrete
spectrum.

Proof. — This follows from the following two lemmas.

LEMMA 3.3.

(3.0) -^4 ̂ ^,-.

The strict inequality holds for rij > 4.

Proof. — Since (1.17) implies

(3.10) ^QV)= ^ !̂-̂ )) ,
<W v / i-^(^+^.'')(^))

this lemma is a consequence of the inequality

(3.11) F',{W) ̂  -1 for ̂ i) <W < ̂ \

which can be shown from (2.15) by the following computation. If
rij > 4, we can verify the inequality

(3.12) ^(n, - l)sin^ ̂  |sin(nj - 1)0|,
Zi

for -Kin, < 0 < TT - TT/n,, namely for ̂ ') <W = Ip, cos0 < /^.1).
Hence

(3.13) F'AW) ̂  .^L^9 < .(^--l) ^ _i ,
, . „ o 721^ 44sm^-cos2 —— -

2
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?(2) - _ /^- ̂  w ^ a(°)When r^- = 4, then for ̂ 2) = -^/2pj < W < ̂ .0) = /̂2p7,

r f y / vi/ \
1

W 1
\2p, ~ ^2}

2

+

( \
1

W 1
\2pj V2/

(3.14) FJ(TV)=-^[^————| +|-,i————| h-1-

LEMMA 3.4. — We have

(3.15)

while

(3.16)

^(0) 1
^(°)^-2 forn^2'
^^^ l
—-2—(0) < - - for n, > 6,

dTV v / 2 J -

^(7r;) 3 1—i—(O)=--<-i forn,=5,
dW ' ' 5 2 J

3 1 ,
= - 4 < - 3 for r t^=4 ,

= — — for rij = 3,
o

=-- torn, =2 .ri •/

Proof. — We first prove

(3.17) ^(^(O^l-n^-l for all n,,

and

(3.18) —.r?r..^-^ 1^(^(O)^-- forn^6.

(3.17) is derived from (2.15) in view of the equality ^( (0) = 2pj.
1

rij — -
To prove (3.18) we remark that F'A—lpj) = 1 — nj or —^j———f"

^'+2
according as nj is even or odd and ^-n (0) lies in (—2py,y3"') from
(2.10). Since F'^W) is decreasing there, we have -1 > F'^-2pj) ^
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^•(^•^(O)) which implies (3.18). For nj = 5,4,3 and 2 we can
compute directly ^"^(O) and ^(^^(O)), which turns out to be
2pjcos^7r, -^; --2p^, -3; -p^, -^ and-2p^, -1 respectively.

We consider now the case where m = 2. Owing to Lemmas 3.3
and 3.4 we have

AA^i'^)(3•l!)) ^-(0) < -1-
except for the following two cases :

i) n\ or n'z is equal to 3 ii) n\ = 712 = 2.

Hence there exists no discrete spectrum except for the above two
cases. In case ii) there is no discrete spectrum. In case HI = 3 and
ri2 = 2, 3 there always appears a discrete spectrum, since

^(l.""2)-^-w-^0-
A simple computation shows that there is no discrete spectrum when
ni = 4, 5.

It is conjectured that the same holds for n^ >. 6.

4.

We give some examples (see also [Sl]).

Example 1. — r = Z2 * • • • * Z2, m >, 3.
m products

Then the first part of the equation (2.6) becomes

2z + (m - 2) = ^W2 + 16p1 + • • • + ^W2 + 16p^ for z ̂  +00,

(4.1) = -^W2 + \Qp\ - ... - ̂ W2 + 16ĵ  for z -. -oo,
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-W+^/W^lGp]
(4.2) ^\W) =

^ -W - Jw2 + 16p2,
^\W) = ————v————^

where we put pj = p^i for simplicity. We assume that
Pi > p2 > • • • > pm > 0.

i) Case where p\ > p\ + ... + p^.

There exist the unique real values W^ and W^^W^ =
— W - ) which are solutions of the equations :

respectively. The existence of W^ is easily seen. To prove the
(i\

existence of W^ , we consider the behaviour of the right hand side of
(4.4) as a function of real TV. If W -> ±00, then it has an asymptotic
form :

(4.5)
^2 _2

^-^•-^^}

Since p\ - pj - • . . - p^ > 0, there exists the unique W = H^ > 0
such that the right hand side of (4.4) equals m - 2 at W^. It
is greater than m - 2 for W > W^ and smaller than m - 2 for
W^W^.Infact
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W
. / T J 7 2 i 1 C ' > . v /

(46) - 1 f-VW2+ 16P21{W + ̂ w2 + 16 .̂
j=2 ^/W2 + 16p]{W + ̂ W2 + 16pj)p]

Jw2 + 16pi W + Jw2 + 16p2,
But ' y and ———Y are strictly decreasing for

^W2 + 16p] W + ̂ W2 + 16p]

W >_ 0 and (4.6) vanishes for W = W^. Hence (4.6) is positive for
W > W^ and negative for 0 ^ W < W^. The same reasoning
shows the unique existence of W^\ There is no critical value of W
from other equations e(^i,.. . , ^m).

We denote by A^\ A^A^ = -A^) the corresponding values
of z. Then /? = A^ < A^ < 0 < A^ < A^ = a. There is no
discrete spectrum. Thus a(A) coincides with [A^, A^] U [A^, A^].

ii) Case where p^ < pj + * • • + p^.

The equations (4.3) have the two real solutions W^ and W^\

The equations (4.4) have no real solutions. For suppose that We be a
real solution. Then the same argument as above shows that the right
hand side of (4.4) is greater than m - 2 for W > We and smaller
than m - 2 for W < We. But for W -^ +00, (4.5) shows that it is
smaller than m - 2. This is a contradiction. Let A^ and A^ be the
corresponding values of z. There is one band of continuous spectra
[A^^A^. ] and there is no discrete spectrum.

Example 2. — T = Za * Za.

From (2.6) we have

(4.7) ^TV=^-TV+^(TV-pl)2+8^+^(TV-p2)2+8pj.

This equation can be explicitly solved with respect to W :
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(2^-^)2+9(p2-pl)2+^(T)
(4.8) W{z)=^———-2

(2.-^) =(p2-pi)2

where I?(-2;) denotes

(4.9) D(z) = ^ - ̂  - X^z - A^)^ - AaX^ - ̂ 4),

where Ai = ^~^(4pi - I)2 + 8, ^ = ^-||pi~p2|, As = J~A2,

and \4 = - — Ai. There are two bands of continuous spectra
Zf

[^i»^2] U [A3,A4] and one discrete spectrum z = — — . (See Fig. 1.)

/ / z = W

//- z = ±1^- Pi)2 +8p? ± ̂ (^-pz)2 +8pj + ̂

Fig. 1 (See ex. 2).

Example 3. — F = Za * • • • * Za, m > 3.

From (2.6) we have

(4.10) (m^2)W+2z^l=f^±y/(W-p^+8p].
j=i
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If p'j < —^— ̂  pi for any j, we have
k^j

(4.11)
d l̂.-^m)

(TV) < -1 for - oo < W < +00,
dTV

except for (1/1,..., i/^) = (0, . . . , 0) and (1,..., 1). In this case the
spectra <r(A) consists of one band of continuous spectra [/?,a], where
a and /? denote the two solutions z of

(4.12) ±(m-2)=f;————=^
^J(w-p,y+sp]

respectively.

We assume now m = 3. Then the functions W+•^f)(vl''"t'v3\W)
have asymptotic forms as follows :

(a)!^^0-0-0)^)

^+^±^1) for^+oo,
W

.-2TV+l-M±d±^ forTV-.-oo,
2 TV

(l^T^^0'0'1)^)
2 i ,-2 2>,

l(-Pl-P2+P3)+ l+2(pl+p2•pj) for TV-.+00,
IV

»2 , -,2 ^2l
^-^+|(p^^-^)+^-2^^-^ forl^-oo,

(c)TV+^o• l•o)(TV)
1, , 1 2 ( D 2 - D 2 + D 2 )

~-(-Pi+P2-p3)+-+ v '1 ,,2 3/ for W-^ +00,z 4 ^y

._,V+^_p,+p.)+12(rf^±£D fc^^_»,
Z 4 IT

(d) TV+^^'^CW)

~ -^+ ̂ -Pi +P2 +p3) + i + 2(p? "^ "'pj) forW^+oo,
z 4 IV

- i^-^-^)+ l-2(p?"pj~p32) f"^--°o,2 4 TV
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^w+^'^m
-l(Pl-P.-.3)+i4-2(-p?+;j+^ forT^+oo,z 4 W

- -W+^-pt +p,+p,)+l+2^-P^-P^ forW-.-oo.
2 4 TV

(f)lV+V>( l•o• l)(F7)

--^+ l(pl-P2+p3)+ i+2(~p?+pj~^) forTV^+oo,
2 4 W

- i(-Pl+P2-P3)+^-2(•p?+^•p32) forW-.-00,
2 t W

(g)W+V>( l• l•o)(TV)

- -^+ ̂ Pi +P2 -P3)+ ̂  2("^ "pj+pj) forTV^+oo,2 4 14^

~ l(-Pl-P2+P3)+——2(•p?-pj+pj) for W -.-co,
2 4 w

(h) TV^-^1'1'1^)

^ -2TV+ ̂  +^ +P3)+ ̂  ̂ "^ "^ -pj) forlV^+oo,
z 4 TT

~^- l(p,+p,+p3)+i+2(p?+pj+pj) forTy-.-oo.
^ 4 TV

We further assume that the inequality holds : p\ + pj < pj.
Then as is seen from the asymptotic forms (a) ~ (/i), the function
W+^°\W) (or W+^^^W)) has the unique minimal value
^0,0,0 (or Ao,o.i). For, if there exists another minimal Ag o n ^en

the equation £(0,0,1) would have more than 3 real solutions for ^,
smaller than Ao,o,o or Ao,o,i- This contradicts that the number of real
solutions of e is at most equal to 8. In the same way the function
TV+^(i,i,i)(^) (or W+^(1'1.0)(TV)) has the unique maximal value
Ai,i,i(or Ai^o). Similar arguments show that :

(^•1^) ^i,i»i < ^0,0,1 < Ai,i,o < Ao,o,o •

For z € (Ao,o.i,Ai^o), there exist just eight real solutions of 6,
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SO

(4.14)
^(^2,^3)

dW
(0) < -1,

</iM >1)1//,(l,l,l)
except for 'jmy—(0), which is equal to -1.

Consequently the spectra or(A) consists of two bands of continu-
ous spectra [Ai,i , i ,Ao.o,i]U[Ai,i ,o,Ao,o,o]. (See Fig. 2). Ifp?+pj ^ pj,
this fact does not hold for all (pi,p2,P3). In fact if we take pi = p^ ==
p3 = g-, then cr(A) consists of one band [Ai^ i j ,Ao,o , i ] because there
exist neither maximal nor minimal values A i j o ^ o o i -

. = ^ ± ̂ (W-p,)^ 8p] ± ̂ (^-p2)'+8rf± ̂ ^-P3)24-8^

y^pi <p2<;?3. rf+^<pi

(a'), (a") denote the asymptotic lines for
W == ±00 of the curve (a) : z = W + ̂ <o•o•o)(Iy) and so on.

Fig. 2 (See ex. 3).
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Example 4. — F = l^ * • • • * TL^ m >, 2.

Wj == ^( (W) and the equation (2.6) can be explicitly written by
using Cardano's formula for cubic equations :

(4.15) W] + 2WW] + (W2 - 4p])Wj - 2p]W = 0,

i m I 1 ____= (i - ̂ -)w+ ̂  ^ y^w+^w
(4.16) + ^a,(W) - ̂ /Wm,

where Oj(W) and Pj(W) denote

(4.17) dj(W), = W3 - 9p]W,
f3j(W) = -6p]W4 - SQp^W2 - 192p^

For W = 0, there correspond z == ±pj,i ± • • • ̂ Pj,s' But none of them
are eigenvalues for A in view of Corollary of Proposition 3.

The authors would like to thank Prof. Y. Shikafca for a prelim-
inary advice for graphic computation of algebraic curves.
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