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GREEN FUNCTIONS AND SPECTRA
ON FREE PRODUCTS
OF CYCLIC GROUPS

by K. AOMOTO and Y. KATO

Recently there have been considerable interests in spectral the-
ory of free groups or finite free products of cyclic groups, in relation
to the theory of C*-algebras or irreducible unitary representations of
them (see [F], [H2], [I1], [I2], [S1]). On the other hand, one of the au-
thors has developed in his previous articles a spectral theory of free
groups, as a natural extension of periodic Jacobi matrices for left-
invariant convolution operators with respect to certain subgroups of
finite index by proving that the Green functions are algebraic (see
[A1], [A2]). In this article we want to develop a similar theory for
left-invariant convolution operators which are all nearest neighbour
cases in the [?-space of a free product I’ of cyclic groups. But the
problems are much more complicated and delicate.

We note that in spherical symmetric cases the operators consid-
ered here are different from the ones in [I1] where the Green functions
have very simple forms. Even in these cases the Green functions con-
structed in our article do not seem elementary.

Algebraicity of the Green functions has been also proved in [S1]

Key-words : Spectra — Free products — Cyclic groups.
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under slightly general conditions. Theorem 1 here has been proved
in Theorem 1 in [C] (see also [P]).

The content of this article is as follows :

First we show that the Green functions G(v,v' | 2) in question,
where v,4' € I" and z is the spectral parameter, can be constructed as
fixed points of certain mappings which are generally algebraic (see
Theorem 1). Next we show that a detection of the spectra of the
operator can be reduced to elementary Morse theoretic arguments
for the mapping

1
(0.1) W= —o2
G(e,e | z)

where e denotes the identity of I' (see Theorem 2). By this method
we shall compute the spectra of a few simple operators which seem
interesting (see 4). Some results here overlap with the ones in [S1].

Let T be a free product of a finite number of cyclic groups T';
of order n; :

'=2Z, *---xZ,_ .

I is generated by each generator aj of Z,; such that a;." = e.
We consider the symmetric random walk defined by a self-adjoint
operator A :

Au(y) = ) pi(u(rai) + u(vai)),

=1

m
in £2(T'), where p; € R satisfy ZZp,- =1, p; >0.
i=1
Our main theorems which we want to prove can be stated as
follows :

THEOREM 1. — The Green functions G(v,7' | z) for A are alge-
braic in z. The function W(z) = 1/G(e, e|z) satisfies the equations

1—W = ,/,(0_,---,0)_(W) for Re z > 1,
= ¢(n1,-~,"m)(W) for Re z < —1,
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where 1/)(”1,"'r"m)(W)’ 0 S vj S 7_7:] = [n—z‘L], are the a]gebra-ic
functions in W defined in 2.
We shall prove this in 2.

THEOREM 2. — (i) Ifa)m > 3, or b) m = 2,ny,n2 # 3 then the
spectra o(A) of A consists of a finite number of bands of continuous
spectra included in [—1,1]. The complement o(A)°*R—o(A) coincides
with the set of unstable bands :

dr‘/)("ly"-y"m)
{z=W 4yt (W) | W eR, = —()> -1

for some sequence (vy,..., um)}.

The norm of A is equal to MAX (@, —f) where a and  denote
the unique values %© 0 (W!) and (1 #m) (W) (see 2) such that

d (o,...,0)
(02) W = -1,
dw
and
d (Fl»'“vﬁm)
(03) Wy = -1,
dw
respectively.

(i) If m = 2, ny or ny = 3, then the discrete spectra consist
of the set

depv12)
{z= WO —(0) < -1

for some (v1,12), 0< 1 <7y, 0 <, < 52}.

Continuous spectra appear in the same manner as in (i).

Proof of Theorem 2. — (i)-a) follows from Proposition 3, (i)-b)
and (ii) follow from the arguments in 3.
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1.

First we assume that I' is a free product of finite groups
Fj, 1<j<m:T'=Ti*---xy. Let I'; have a system of generators
{aj1,-..,aj4;} such that each a;,, is different from the identity of
T;. Then I has a system of generators aj,, 1 <j<m, 1 <v <g;.
Consider the operators Aj and A in 2(T';) and £(T), such that all

m 9j
Pj,» > 0 and Zzz-pj,,, =1:
j=1v=1
: 9i
L) Au() =) piw(ui(rais) + u(va})),
o
(12) Au(r) =YY piw(u(ras) +u(vaj})).
Jj=1v=1

Since the operator A on £2(T') is self-adjoint, there exists the
unique Green function G(v,¥" | z), for 7,9 € T and Im z #
0, which represents the (v,7')-component of the resolvent kernel
(z—A)~1. Since A is left-invariant, we have the invariance property of

G771 2) :
(1.3) G(7,7' |2) =G('v,e | 2).

So, in order to find the spectra of A, we have only to study the
behaviour of the spectral function

(149 (GO e | A+i0) = Gy e [ A= i0)),

for A € R, which is our main subject in this note. We denote by
Gj(7,7" | z) the Green functions for 4; :

(1.5) Gi(,7' | 2)=(z— 4;)7% , 7,7 €T;.

Let v be an element of I' which has a minimal expression
Y = %j---%.» %, € Ti,. Then the following quotient does not
depend on 7 for v € T'j, j #i¢:

(16) G(77ja € I z)/G('y,e I z) = G(7j’e I z)/G(e, e I Z)'
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This follows from a general property of Green functions on a free
product of groups. In fact we restrict the operator A to the subspace
£2(K2;) of £2(T'), where 2 consists of elements 4' € I' having minimal
expressions initiating from any v; € I'; — {e}. Then (1.6) is equal
to the quotient of the corresponding Green functions on §2j. The
situation is completely similar to the case of free groups (see [A1]).

We put Fj,(z) and f;.,(z) to be the multipliers for A; and A :

Gj(aj,,elz
(17) Fj,y(Z) = —G(_(e_e—l,lz—)),

G(a7,,e| 2
(1.8) fiw(z) = Cinel 2

Glee|z)

for1<j<m, 1<v<g; Remark that at z = co, we have

PJ, 1 2P 1
(1.9) Fi(z) = 0(22) or +0(22),
()= Piv 1 2Pjw 1y,
(1.10) fiulz) = B +0(22) or +o(22)
according as a , # e or = e, because we have the expansions
(z—A)"'= Z:Ak/zk'H and (2 — 4;)7' = Z(Aj) k kL,
k=0 k=0

Then we have the following equations which are fundamental in the
sequel :

LEMMA 1.1.

(1.11) finlz) = Fj, (z~—2ZZpL_”fL,,,(z))

k#j p=1

forl1<j<mandl<v<yg;.
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Proof. — Owing to a property of the Green functions, the
following equations hold :

m gk
2G(r,e|2) =) Y Prew{G(raru,e| 2) + Glyags,e | 2)},
k=1v=1
(1.12)
m gk
2G(e,e | z) = Z Zpk,,,{G(ak,,,,e | 2) + G(a;’f,,e | 2)} +1,
k=1v=1

where v € I'— {e}. Therefore if 7 has a minimal expression vy = v'-7;
such that v; € I'; — {e} and 4/ = i, - -+ ¥, for i¢ # j, then

=253 ponfon(2)Glmre | 2)

s#j n=1
9;
(1.13) = pip{G(1ajp,e| 2) + G(raj} e | 2)},
v=1
m g,
(z -2 Z E p,,,,f,,,,(z)) G(e,e|2)=1.
s=1 p=1

Hence G(v'vj,e | z) as a function of +; satisfies the equation of
Green functions for A; in T'; with a spectral parameter

g
z—2 Z }: Ds,ufsu(2)

s#j p=1

(1.14) (z—2zg2p,,"(z))u—Aju=0 ,

s#j n=1

except where v; = e. Therefore by uniqueness of the ratios of the
Green functions,

G(')’Iaj,u,e I Z) _ G(7'a;|1/ae | Z)
G(+sel 2) G(7,e| 2)

(1.15) fiv(z) =

9s
must be equal to Fj, (z—2 Z ZPa,uf,,,,(z)) . This implies Lemma

s#jp=1
1.1.
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The argument in the proof of Lemma 1.1 also proves the
following :

CoRroLLARY. — For any v; € I'; — {e},

9s
Gi(rirel 2=2D Y popfon(2))

G(vj,e| 2) _ s#jv=1 .
Gle,e | 2) N
GJ'(C, e l z—2 Z Z Pa,ufs,u(z))
s#j v=1

gi
We denote by Xj(2) and X(z) the values 2 ij,,‘fj,”(z) and

p=1
m
EX j(2) respectively. Then the equations (1.11) can be rewritten

j=1
as follows :

(1.16) fiv(z) = Fj,(z — X(2) + X(2)).

Therefore we have

(1.17) X;(z) = Fj(z — X(2) + X;(2))
= Fj(W(z) + X,(2)),
where
W(z)=2-X(2)= G(el e),a
9; 1
. i(2) = wFju(2) =2 = =————-
(1.18) Fj(2) 2;1’1» iv(2) Gj(e,e] 2)

Fj(z) has an asymptotic expansion :

9;
2) v

(1.19) Fi(z) = i;——+o(zi2),

at 2 = co. Hence we have
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LeEMMA 1.2. — The equations (1.17) with respect to X;(z) and
X(z) have the unique Laurent series solutions at z = oo such that

[}
2) #},
Xj(z) = -E-j;——— + O(—);
(1.20)

m 9j

2) > P

X@)=—22=— 1 0(5)

z

Proof. — Fj(z) has a power series expansion in 1/z beginning
from the term 1/z. If we put w = 1/W(z) then the equations (1.17)
can be expressed in the following way :

(1.21) X; = Fi((1+ X;w)/w).

The right hand side is holomorphic at the origin with respect to w
and X;. The implicit function theorem implies Lemma 1.2.

We now assume that for all j, g; is equal to 1 and thus T'; is
a cyclic group of order nj. Then Fj(z) = 2p;Fj(z), where we put
Pj,1 = Pj, has the following expression :

Lo () + (9

=
Pn;—-1 2pj

(2.1) Fj(z) =

¢n(2z) denotes the determinant |z — J,| where J, is a n-th order
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Jacobi matrix as follows :

= ©

1
0 3
3o
¢n(2) is equal to the Tchebyscheff 2nd polynomial of degree n and

is expressed as : 2""%92 for z = cosf (see [S2]). Then
F;(2p;j cos 8) is equal to 2p; cos(%’- - 1)0/ cos n-21-9. So

LEMMA 2.1. — Fj(z) has a partial fraction as follows :

ﬁj 4pl sin2 M
o
(2.2) Fi(z)=) —— TRy
k=t “f(r — cos -———")
Pj nj

where 7 [n—z-’-] .

From now on we put ,B;") = 2pjcos((2v — 1) /n;),1 < v < 7;,
and ,6‘(,-0) = ﬂ;-"ﬁl) =0.

LEMMA 2.2. — For any W € R, the equation (1.17) with respect
to X; has nj + 1 real solutions 1/)§-0)(W),...,¢§~"’)(W) which are
decreasing in W and satisfy

B <¥P W)+ W,
23) B <P W)+ W < B 1<y <y -1,
W) 4 <

and

z/)_(,-o)(W) ~0 for W — +oo,
¢§o)(W) ~ ﬂ;l) -W for W — —oo0,
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24) W)~ Y —W for W — +oo,
(v) (v+1) —
¥; (W)~,3j" -W forW— -0, 1<v<7;—1,
YWY ~ BT — W for W — 400,
¢§~Fj)(W) ~0 for W— —o0.

Proof. — X, = "’ (W) is obtained as the X-coordinate of the
intersection of the graphs ¥ = X and ¥ = Fj(X + W). F;(X)
is decreasing in cach interval where Fj(X) is defined. Moreover
Fj(+00) = Fj(—o0) = 0, and F;(f) £0) = o0, 1 < k < 7;.
Thus we have only to apply the middle value theorem to (1.17) for

nj

X = X on each interval in R— U { ,B;k)}. Since Fj(X) is decreasing,
k=1

all ¢§")(W) are decreasing, too.

DEeFINITION. — For any sequence (v1,...,Vm) such that 0 <
m

vj < Tj, we denote by (*i»*m) (W) the function Y 4\ (W)
J=1

which is a real algebraic function without singularities for W € R.
They are all decreasing.

Remark that $(*1++¥m)(W) has the following asymptotic lines :

(2.5) Y (W)~ S YD —m' W for W oo,

=1

~ Zﬂ;"““) -m"W  for W — —oo0,
=1

where m' (or m") denotes the number of v; different from 0 (or 77;).
Hence W(z) = 1/G(e, e | z) satisfies the algebraic equations :
(2.6) 72— W =0 (W) for z — 400,

= pFBm) (W) for 2z — —oo.

These equations have the unique meromorphic solution W = W(z)
in a neighbourhood of 2 = oo such that

(2.7) W(Z) =z + O(1).
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Proof of Theorem 1. — We have scen that for any v € T,
G(v,v | 2) = G(e,e | 2) is algebraic in 2. Since G(v,v' | 2) is left-
invariant, we have only to prove the algebraicity of G(v,e | z). We
assume that 7 has a minimal expression 7;, ...7;, for v;; € T;, then
from Lemma 1.1 and its corollary

G(’Y,elz)_G,‘l(’)’il,CIW'i'Xil)-Gi,('}’,‘z,CIW#—X{,).“

Gle,elz)  Gilee|W+Xy) Gile,e| W+ Xi,)
Gi,(1i,,e | W+ X,,)

Gi,(c,ch-{—X,'.) -

(2.8)

Each factor in the right hand side is algebraic in z because
Gj(v,e| z), W and X are algebraic in 2. Theorem 1 has thus been
proved.

Remark.— We have

(29) pO0(0) = 1,
1/)(?1‘1,...,?1',,.)(0) > __1,
because
(210) $1(0) = 2p;,

$5(0) = ~2p;,
hold for 1 < j < m, in view of the relations

(2.11) Fj(2pj) = 2p; for all n,
Fj(=2pj) = —2p; if nj is even,
= ——2pj(277j - 1)/(2'ﬁj + 1) if njis odd.

LEMMA 2.3. — %@-0(W) (or 3(™1»+#m)(W)) is a convex (or
concave) function of W, namely

d2¢(0,...,0)
dw?
d2,/,(7fu---,'f7m)

dw?

(2.12) (W) >0,

(W) <0 for WeR.
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Proof. — By two times of differentiation with respect to W, the
cquation (1.17) implies
namely X =F{(W+ X;)(1+ X))* + Fi(W + X)X},
X!(1 - Fj(W + X;)) = F} (W + X;)(1 + X))
Fi(W+X;) is negative for X; = ¢\ (W) and ¢§”i’(W2. FI(W+X;)
is positive for X; = ¢§0) (W) and negative for X; = ¢§n,' )(W) Hence
Lemma 2.3 follows.

LEMMA 2.4. — The following inequalities hold form > 2 :

(2.13)
d«‘/)(ﬁl )'"y;m)

0) < -1
aw ©

Proof. — In view of (2.10) and (2.11), we have

dy® Fi(2p; —n;
(2.14) id 0) = i ,pJ) . ki for all nj,
daw 1 — F;(2p;) nj
dyp’™) F'(=2p; —n
(2.15) 4 (0) = ’(, ;) . Rk if n; is even,
F'(—2p;
__,(_P_,?__<_l if nj is odd,

T 1-Fi(-2p;) 2
by using the equalities :

-1 d n; n;
Fj(2pjcosf) = = Eé-(2pj cos(—2i - 1)0/ cos —-2]—)
_(nj—1)sin6 +sin(n; —1)§

(2.16) = v
2sin6 - cos? n—;—-
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in particular

(2.17) F;(2pj) =1-n;j, .
(2.18) Fi(—2pj)=1-mn; if njis even,
_ 1
2_ M5 .
= —gnj T if nj is odd.
n; + ‘2‘

Lemma 2.4 follows.

Moreover we have
1/)(0""'0)(W) ~ 0,

dd,(o,...,o)

e (W)~0 for W — +o0,

1/)(0""’0)(W) ~ Zﬂ;l) —mW,
Jj=1

d¢(o,...,o)

2.19

(W)~ —-m for W — —o0,

,/,(Fx,---,?m)(‘,y) ~ Z ﬂgfi) —mW,

j=1

dep Tt eim)
aw

P TreTm) (W) ~ 0,

(W)~ —-m for W — +o0,

dep T rem)

(W)~0 for W — —o0.
dw

71

Hence due to Lemma 2.3, there exists only one W = W/ > 0

such that dyp (@9 (W)/dW = —1. In the same way there exists
only one W = W! < 0 such that dp(Frrmm)(W)/dW = —1. We

denote the corresponding values of z by a and f respectively. Then
-1 < B <a<1from(2.10), (2.12) and (2.14). We have proved the

following :
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ProposITION 1. — W(2) = 1/G(e, e | 2) is an algebraic function
which is holomorphic in C — [3,a]. a and (3 are real branch points
of W(z) of second order.

To investigate the spectra of the operator A, it is sufficient to
study the structure of {G(7,7 | z)}yer and so G(e,e | z) = 1/W(z2).
To see the behaviour of W(2) in (8, @) in more detail, we consider the
following equations &(vy,vs,...,Vy, ) which are all possible analytic
continuations of (2.6) :

(3.1) 2 =W = prrm) (W), 0<v; <7,

We denote by € the union U,, .. ,,. €(v1,...,Vm). Since each 1/)5-")(W)
is an algebraic function of degree 7+ 1 in W, theset C = {(z, W) €
C | I, I (2 — W — ¢pem)(W)) = 0} defines a possi-
bly reduced affine algebraic curve of degree less than or equal to
(@1 4 1)...(7m + 1). We denote by C the compactification of C in
CP? which becomes a projective algebraic curve possibly with singu-
laritics. The intersection of € and the line {W = 0} in CP? consists
of (ty + 1)...(@m + 1) points. Therefore the degree of C is exactly
m14+1)---(Tm +1).

The crucial fact is the following :

PROPOSITION 2. — Assume m > 3. Then for z € (f,a) the
equations €(v1,...,Vn) with respect to W have at most two non-
real solutions (denoted by Wi(z)) in the complex domain of W.
These two coincide with analytic continuations in C — (8, a] of the
two real solutions of €(0,...,0) (or e(@y,...,7tm)) from z > a

(or z < B).

To prove Proposition 2, we need a few lemmas.

LEMMA 3.1. — When m' and m" are greater than 1, then the
equation e(v1,...,Vm) for a fixed real z has at least one real solution.
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Proof. — The function ¢(""""”"')(W) has the asymptotic lines
(2.5). Hence if m' > 1 and m" > 1, the equation &(vy,...,v,,) has
always at lcast one real solution.

LEMMA 3.2. — When m' = 1 or m" = 1, among

e0,...,0,v,0,...,0) and e(ny,...,7j-1,¥ — L,Wj41,...,7tm), 1 <
j—th
v < mj, there exists at least one real solution for a fixed real z.

Proof. — The functions  ¢(©-0»00)(W)  and
P -1 =17 4107 m) (W) have the same asymptotic lines for
W — 400 and W — —oo respectively :

,‘/)(0,...,0,1/,0,...,0)(W) ~ ﬂgu) —W for W — +00,
(3.2) ~ B 4 (m = 1) —mW if v £ 75,
~(m— 1)ﬂ§~l) —(m-1)Wif v="nj for W — —oo0.

,!p(’r'{l,...,ﬁj_l ,v—l,ﬁ,‘.‘.l...,ﬁm)(m/)

~BY V3B —mW for W — oo,
ke
~ ﬂg-”) -W for W — —oo.
Hence there exists at least one real solution.

Proof of Proposition 2. — From Lemma 3.1 and Lemma 3.2,
we see that there exist at least

(3.3) (1+m)...(1+7m) =Y 7 forz>aorz<p,

Jj=1
m
(1+m)...(L+7n)— ) 7;—2 forz€(B,a),

i=1
real solutions for €. Moreover since the two functions 1(0»+0:#:0,--,0)
(W) and p(Feomi-1v=Lm41mm) (W) have the same asymp-
‘totic lines with tangent —1, the pair £(0,...,0,2,0,...,0),
e(my,...,nj—1,¥ — 1,Mj41,...,m) have one real solutlon W = 00

m

such that (z,W) € C — C. Hence ¢ has other ZH]- real different
i=1
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solutions. The total number of real solutions, multiplicities being
counted, is at least equal to

(3.4) 14+7m)...(1+7m) forz>aorz<pg,
14+7)...014+7,)—2 for z€(B,a).

We have scen that the degree of € is (1+7;) ... (147m). As a result,
for z > a or < B all solutions are real, while for z € (8, @), besides
the real solutions found above, we have only two remaining solutions
W4(2) which may or may not be real. Proposition 2 has now been
proved.

When z € 0(A)¢, we have

= —ZG(e,v | 2)Gle,7 | 2) <0,
~€T

because G(e,y | z2) = G(v,e | 2) € R. In other words W(z) is
increasing in each component. The functions ¢*t-¥m)(W) + W
have minimal (maximal) values at W corresponding to the right(left)
end point z of the component. This fact shows that if there exist
non-real solutions of € for A € R, then these must coincide with
W4i(X) = W(A £10). Hence continuous spectra appear if and only if
W(X +i0) # W(X —10) for A € R.
The set

d»l/)(yl v"tum)(W)
dw

for some (v1,...,vm)},

(3.6) {prrm)(W)+ W | W €R, > -1

consists of a finite number of open intervals :
(37) (—00, Al) U (/\2, /\3) u...u (/\2];-2, Agk_l) U (/\2k, +OO),

where A; = 8, Ay = a. If there appears a discrete spectrum then W
vanishes. As a result, Proposition 2 implies the following :

ProposiTioN 3. — (i) The continuous spectra o.(A) of the
operator A consist of the bands [A1, A2] U [A3, Ag]U. .. U[A2k—1, A2k].
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(i1) The discrete spectra are disjoint from any of the bands.
There exist discrete spectra z = 1(“1»++*m)(0) if and only if

d (”lv'""m) 0
porm)

(3.8) L,
dw
for some (v1,...,Vm).
Furthermore,
ProprosITION 4. — If m 2> 3, then there exists no discrete
spectrum.

Proof. — This follows from the following two lemmas.

LEMMA 3.3.

(0
—i/)—’—(—)-S—l for1<v<m;—-1
dw 2

The strict inequality holds for nj > 4.

(3.9)

Proof. — Since (1.17) implies

) ' @)
(3.10) Wiy = Fi(W+¢; ((fV)) ’
w L= Fj(W +4,"(W)

this lemma is a consequence of the inequality

(3.11) FW)< -1 for g™ < W < Y,

which can be shown from (2.15) by the following computation. If
n; > 4, we can verify the inequality

(3.12) %(n,- ~1)sin8 > |sin(n, — 1),

for m/nj; < § < m — m/n;, namely for ,B;-F") < W = 2pjcos < ﬂ;-l).
Hence

(313)  F(W) < ——Ri= l)s’nno,g <z oy
4sin @ - cos? ? 4
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When n; = 4, then for ﬂ§2) =—~/2p; < W < ﬂ;o) = /2pj,

2 2

1 1
w1 | | W, 1

— __+_
2p; V2 2p; V2

LEMMA 3.4. — We have

(3.14) FYW) =

IA
L

dy¥ 1
(3.15) —*’—(0) <—= forn;>2,
daw 2
(%5)
dip;™’ 1
o ——(0) < -5 fornj > 6,
while
(75)
by 3
(3.16) d;/V ( )——g<—— fornj =5,
——§<—-— for n; = 4,
4
— for n; =3,
=—= forn;=2
Proof. — We first prove
(3.17) Fi5®0)=1-n; < -1 forallnj,
and
7 1 .
(3.18) F}(ng ’)(0)) < -5 fornj > 6.
(3.17) is derived from (2.15) in view of the equality 1/)-(;))(0) = 2p;,.
— 1
9" 5
To prove (3.18) we remark that F(—2p;) =1—nj or — 3n1n » 1
i =

_ _ 2
according as nj is even or odd and 1/)5."’ ) (0) lies in (—2pj, ,Hg-"’ ) ) from
(2.10). Since Fj(W) is decreasing there, we have —1 > Fj(~2p;) >
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F}(z/)gﬁ")(O)) which implies (3.18). For n; = 5,4,3 and 2 we can

compute directly 1/)53" )(0) and F]'(t,b.(,ﬁ’ )(0)), which turns out to be

2pj cos %7!‘, —-%; —2pj, —3; —pj, —% and —2p;, —1 respectively.
We consider now the case where m = 2. Owing to Lemmas 3.3

and 3.4 we have

dw(”h”Z)

3.19
(3.19) o

(0) <-1,

except for the following two cases :
i) ny or ny is equal to 3 ii) n; = ny =2.

Hence there exists no discrete spectrum except for the above two
cases. In case ii) there is no discrete spectrum. In case n; = 3 and
ny = 2, 3 there always appears a discrete spectrum, since

A simple computation shows that there is no discrete spectrum when
Ny = 4, 5.

It is conjectured that the same holds for n, > 6.

We give some examples (see also [S1]).

Example 1. — T'=Zy %---xZ3, m > 3.

m products

Then the first part of the equation (2.6) becomes

2z +(m —2)=4/W2+16p +--- + /W2 +16p?, for z = +o0,
(4.1) = —y/W2+16p? —--- — /W2 + 16p2, for z = —00,
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W + /W? + 16p?
(4.2) PO(W) = :

2
—W — y/W? + 16p?
W) = 2,
2
where we put p; = pj1 for simplicity. We assume that

PL>p2> > pm > 0.
i) Case where p? > p2 +--- + p2,.
There exist the unique real values Wil) and Wf)(W_f) =

-w® ) which are solutions of the equations :

(4.3) +(m —2) =

w w
_— e —
/w2 + 16p? VW?+16p2,

(4.4) +(m—2) =

-W w
Tt e
\/W? + 16p2 vVW? +16p;,

respectively. The existence of Wil) is easily seen. To prove the

existence of Wf), we consider the behaviour of the right hand side of
(4.4) as a function of real W. If W — +oo, then it has an asymptotic
form :

2 _ .2 _ .. _ .2
(4.5) N:};{S(pl 1’2vV2 Pm)+m_2}.

Since p? — p2 — .- — p%, > 0, there exists the unique W = Wf) >0
such that the right hand side of (4.4) equals m — 2 at W_(:). It
is greater than m — 2 for W > Wf) and smaller than m — 2 for
W < W, In fact
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{ W W ~( _2)} VW2 + 16p?

+...+
\/Wz.'_lﬁpg VW? +16p?, \/ W2+ 16p} — W
m /W2 4 16p3(W + 1/ W2 4 16p?)p?
(4.6) —1— 1( Pi)P1

=2 \/ W2 + 16p3(W + /W2 + 16p%)p’
W2 + 16p} 4 W + 4/ W? + 16p?

W216p2 W+ /W2 +16p2

W > 0 and (4.6) vanishes for W = Wf). Hence (4.6) is positive for
w > Wiz) and necgative for 0 < W < Wf). The same recasoning

But

an are strictly decreasing for

shows the unique existence of W . There is no critical value of W
from other equations e(v1,...,Vm).

We denote by /\(il) , ,\gf)(,\ﬁ’ = —/\gf)) the corresponding values
of z. Then 8 = A «A® <0< /\S_z) < /\g}) = a. There is no
discrete spectrum. Thus o(A) coincides with [/\(_l), /\(_2)] U [/\S}), /\ff)].

ii) Case where p? < p2 +--- + p2,.

The equations (4.3) have the two real solutions W_f_l) and W,

The equations (4.4) have no real solutions. For suppose that W, be a
real solution. Then the same argument as above shows that the right
hand side of (4.4) is greater than m — 2 for W > W, and smaller
than m — 2 for W < W,. But for W — 400, (4.5) shows that it is
smaller than m — 2. This is a contradiction. Let Ag_l) and A" be the

corresponding values of z. There is one band of continuous spectra
[)\(_l) , /\E:)] and there is no discrete spectrum.

Example 2. — T = Z3 x .
From (2.6) we have

1 1 1
(47) 2=W = Z—W+E\/(W—P1)2+8p§+§ (W = p2)? + 8p2.

This equation can be explicitly solved with respect to W :
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(2:-3) +9 ) + VD)

(48) W)= :
(22 - %) = (p2 —P1)2

where D(z) denotes
(49)  D(z)=(z- -) (2 = M)(z = 22)(z = As)(z — Aa),
where \; = ———\/(4p1 —1)2+48, A2 = -—-|P1 —p2|, A3 = %—)\2,

and \y = 5 — A1. There are two bands of continuous spectra

[A1,A2] U [A3, A4] and one discrete spectrum z = —%. (Sece Fig. 1.)

\\ /x—PV
S AN -L_ z=+4- \/(W—In)?-f-Spf:I: \/(W pz)7+8p2+—

= - +—
z=|p1 - pa| 1

I '|+1
= —=|p — —
P — P2 1

Fig. 1 (See ex. 2).

Example 3. — T =Z3*---x L3, m > 3.
From (2.6) we have

1 m
(4.10) (m=2)W +2:~ > = Do/ (W - p;)2 +8p% .
-
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If p? < Zg Z pi for any j, we have

k# j
dep@rrvm)

(4.11) (W)< -1 for—o0 < W < +o0,

aw

except for (v1,...,vm) = (0,...,0) and (1,...,1). In this case the
spectra o(A) consists of one band of continuous spectra [3, a], where
a and (3 denote the two solutions z of

(4.12) +Hm—-2)=Y. 2 ;
j=1 \/(W —p;)* +8p]
respectively.
We assume now m = 3. Then the functions W + ¢(*1:¥2:¥3) (W)
have asymptotic forms as follows :
(a) W +4000W)
2(pi + P + p3)

~W + for W — 400,
2 2 2
~—2W+%—g(—pi‘;i—t£3—) for W — —oo,
(b) W+ 90D (W)
1 1 2 2 2 __ 2
NE(—Pl-m+p3)+Z+_(p_1+v1;'—2—p3) for W — o0,
1 1 2(p} +p; — P
~—W’+§(p1+p2—p3)+z— (P} VI;Q Pa) for W — —o0,
(c) W+ @10(Ww)
1 1 | 2(p} — p} + P
~§(—p1+pz—ps)+z+—§p—‘—vf,ﬁ—ps)- for W — +oo,
1 2(pf —pj +p3)

1
~—W+§(p1—p2+p3)+z for W — —oo0,

(d) W +y @D (W)

w

1 1 2(p} —p3 —p3)
~ =W + =(=p1 + —4 20 T2 0
+ 2( p1+p2+ps)+ " W
1 1 2(p} —pi—p3)
2(1)1 P2 P3)+4 -

for W — 400,

for W — —o0,
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(e) W+ 900 (w)

2( pl +p2 +p3) for W = +00
W )

(+P1 P';)
~—W + = +p3) +
(p1+192 p3) 4+ W
() W+¢<““>(W)

1
N—(Pl p2 — P3)+ +

for W — —oco0,

1 2 2
~—W + =(p1 — p2 + p3) + + (=pi + 73 = p3) for W — +o0,
2 4 w
1 1 2(—pf +p; —p})
~ —~(—=p1 + p2 — for W — —
2( p1+ p2 — p3) 4 W — —09,

(g) W + 10 (w)
2(—p? — p} + p3)
w

W )

1
~ W + ‘2‘(Pl + p2 — p3) + + for W — 400,

= Fm)+g

2 P1r— P2 T P3 4

(h) W + 1D (W)

2(—p} — p5 — p3)
W

2(p? + p% + p3)
W

1 1
~—2W+§(p1+p2+p3)+:1‘+ for W — 400,

1 1
NW_E(P1+P2+P3)+2+ for W — —o0.

We further assume that the inequality holds : p? + p2 < p2.
Then as is seen from the asymptotic forms (a) ~ (k), the function
W + @00 (W) (or W + (%1 (W)) has the unique minimal value
X0,0,0 (or Xo,0,1). For, if there exists another minimal Ag, ;, then
the equation ¢(0,0,1) would have more than 3 real solutions for z,
smaller than Ag 9,0 or Ag,0,1. This contradicts that the number of real
solutions of ¢ is at most equal to 8. In the same way the function
W 4+ pLLD(W) (or W 44110 (W) has the unique maximal value

A1,1,1(0r Ap1,0). Similar arguments show that :

(4.13) A1,1,1 < Ag0,1 < A1,1,0 < Ao0,0 -

For z € (X0,0,1,A1,1,0), there exist just eight real solutions of ¢,
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SO

dd)("‘ y2,v3)

4.14
(414) dw

(0) < _11

( "y
except for —L—(O), which is equal to -1.

Consequently the spectra o(A) consists of two bands of continu-
ous spectra [A1,1,1, X0,0,1]U[A1,1,0, Ao,0,0]- (See Fig. 2). If p} +p3 > p3,
this fact does not hold for all (p1, p2, p3). In fact if we take p; = p; =
p3 = 6—, then o(A) consists of one band [A1,1,1, Ao,0,1] because there
exist neither maximal nor minimal values Ay 1,0, A0,0,1-

11
(a") = () 2= gVWom) +aid s \/(W m)* +8p3+ \/(W n)? + 805
\ z ,’m<m<m,p,+m<m

/
(a)// (@) = (h")

/

(@)= ("))
() = ("N

(") = @)
(==

@)

") =()
(d") = (")

(a'), (a") denote the asymptotic lincs for
W = too of the curve (a) : z = W + %29 (W) and so on.

Fig. 2 (See ex. 3).
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Example4. — T =Zy*%--- %24, m > 2.

W; = gbgo)(W) and the equation (2.6) can be explicitly written by
using Cardano’s formula for cubic equations :

(4.15) W} + 2WW} +(W? — 4p})W; — 2p3W =0,

z= (1-—- %-)W—}- %i{i’/a’j(w)‘l‘\/ﬁj(w)

i=1

(4.16) + {/a,»(W) —\/Bi(W) ¢,

where a;(W) and §;(W) denote

(4.17) aj(W),=W? - 9p2W,
Bi(W) = —6piW* — 39p;W? — 192p%.

For W = 0, there correspond z = %pj;£---£p;,. But none of them
are cigenvalues for A in view of Corollary of Proposition 3.

The authors would like to thank Prof. Y. Shikata for a prelim-
inary advice for graphic computation of algebraic curves.
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