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Introduction.

Let K= R or C. Let X and Y denote analytic spaces over
K, and let ¢:X — Y be a morphism. Let ¢*: 0y — 0O
denote the associated homomorphism of the structure sheaves. Suppose
that & and & are coherent Oy- and @ -modules, respectively,
and that ¥: ¢ — % is a module homomorphism over the ring
homomorphism ¢*.

Let a € X. Then ¢* determines a homomorphism of local
rings ¢} : Oy oy ~ 0Ox,4 and V¥ determines a module
homomorphism ¥ ,: g,, — %, over ¢F. We write
O, = Ox,,, etc, whenAtherg is no pogsibility of confusion. Let
o Opay — 0, and ¥,: 9, — F, denote the induced
homomorphisms of the completions.

Let s € N. Let X; denote the s-fold fiber product
X;={a=@",...,dY€X’:9@")=...=¢ (")},

and let ®:X; —> Y denote the induced morphism.

We study the variation with respect to a = (a', ..., d") € X
of the module of formal relations

s
Q?a= N KerVY .,

i
i=1 a

and of associated invariants such as the Hilbert-Samuel function
H of ?q,(a)/gi‘,:

, g
H, (k) = dimy )

Rs T Mo@) * Yo

(where mg ) denotes the maximal ideal of Og,).

We show (cf. Theorem C) that the Hilbert-Samuel function H,
is upper semicontinuous in the (analytic) Zariski topology of X3
in each of the following cases:

(a) In the algebraic category. (Here we can use the (algebraic)
Zariski topology.)
Key-words: Morphism of analytic spaces — Module of formal relations —

Hilbert-Samuel function — Diagram of initial exponents — Zariski semicontinuity —
Division and composition of ¢~ functions.
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(b) If X is smooth, ¥ =¢*: @, — @0y, and ¢ is
regular in the sense of Gabrielov [14]; i.e., the Krull dimension of
%(a)/Ker ¢¥ is locally constant on X.

(¢) If X is Cohen-Macauley and ¢ is locally finite ; i.e., for
all a €X, 0, is a finite @,,-module via the homomorphism
or.

(d) Inthe coherent case: X =Y, ¢ = identity.

Semicontinuity in the coherent case (d) is, of course, known
classically. The image of a morphism ¢: X —> Y is not, in general
coherent. Nor, in general, is the Hilbert-Samuel function of

é<z>(a) /ﬂw(a) , where 2., = N Ker ‘i’a, semicontinuous as
a€o~ 1 (b)

a function of a € X. Nevertheless, we conjecture that the Hilbert-
Samuel function H, is always Zariski semicontinuous as a function
of a € X; .

We prove that, in general, Zariski semicontinuity of H' is
equivalent to two other important conditions on the variation of the
module of formal relations %, (Theorem A):

(1) A uniform version of a lemma of Chevalley [10]. In the
coherent case, this is equivalent to a uniform version of the Artin-Rees
theorem.

(2) Zariski semicontinuity of a diagram of “initial exponents”
associated to z introduced by Hironaka (cf. [8], [15], [23]). This
diagram gives a combinatorial picture of the module £, , in the spirit
of the classical Newton diagram of a formal power series.

The diagram of initial exponents and the condition (2) depend
on a local embedding of Y in affine space K” and on a presentation
(P$ —> & — 0 of ¥ . We can assume that 91’, is a submodule
of K[[y]]¥, where K{[[y]] denotes the ring of formal power series
in y=(,,...,»,). Using the condition (2), we prove that X;
admits an analytic stratification with the property that, along each
stratum, £, is generated by finitely many g-tuples of formal power
series in ¥ whose coefficients are functions analytic on the stratum
and meromorphic through its frontier (cf. Theorem B). We conclude
that H, is Zariski semicontinuous on X;; , for a given positive integer
s, if and only if it is Zariski semicontinuous in the case s = 1.

Our results on the variation of %, have important applications
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to the solution of equations involving differentiable functions. Suppose
that X and Y are smooth real analytic spaces. Then ¢ induces a
homomorphism ¢*: €7 (Y) — €~ (X) between the rings of
infinitely differentiable functions. Let A and B denote p x ¢ and
p x r matrices, respectively, whose entries are analytic functions
on X. Let &:€7(Y)? — €~ (X)? denote the module
homomorphism over ¢* defined by ®(g)(x) = A(x) * g (¢ (x)),
where g = (g(,...,&,) € €7(Y)?, and let
B.:¢°XY — ¢7(X)

denote the ¢ “(X)-homomorphism induced by multiplication by
the matrix B.

There is also an induced homomorphism ®: @09 —> @% over
¢*: Oy —> Oy, and aninduced O@x-homomorphism

B: 0% — 0%.
Let ¥: 0% — Coker B denote the homomorphism over ¢*

induced by ®. (Locally, any ¢*-homomorphism from @% to a
coherent @y -module has this form.)

For every a € X, there is a Taylor series homomorphism

f — f, from €%(X)? onto 0% . Let
(® €7(Y)? +B. €°(X))

denote the elements of €7(X)? which formally belong to
® €7(Y)? +B. €7(X) ; ie, {f€ €°(X)? : forall b€ ¢(X),
there exists G, € @] such that f, —®,(G,) € ImB,, for all
a€¢ ()} . Then (P €7(Y)? +B.¥7(X)) contains the
closure of ® €7(Y)? +B.%¢7(X)” in the €~ topology on
¢~ (X)? .

Suppose that ¢ is proper. We prove that if the Hilbert-Samuel

function H, of (Pg(a)/Ker V¥, is Zariski semicontinuous on X,
then

d € (Y)Y +B-€"X) =@¢°(Y)? +B.¢° X)) (%

(Theorem D). Because ¢ is proper, then (locally in Y) there is a
bound s on the number of distinct submodules Ker ¥, of
0}, where a€ ¢ ' (b). The conditions (1) and (2) above are
applied with this s to prove (*).
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It follows from (a) above that (*) holds if ¢: X — Y is
a proper morphism of Nash manifolds and A and B are matrices
of Nash functions on X (Theorem E). This seems to be the first
general result for modules over a ring of composite differentiable
functions.

From (a) - (d), we also recover several classical results, including
Malgrange’s theorem on ideals generated by analytic functions [27,
Ch. VI] and his €= version of the Weierstrass division theorem [27,
Ch. V]. The solution [5] of the composition problem of Glaeser [16]
follows from (b).

This article was distributed in preprint form in the spring of
1984. Some of our results were announced in [6]. We gratefully
acknowledge valuable discussions we have had with Herwig Hauser
and Gerald W. Schwarz.

CHAPTER 0
MAIN THEOREMS, PROBLEMS, EXAMPLES

We continue to use the notation of the introduction. Let N
denote the nonnegative integers.

1. Preliminaries on local analytic invariants.

Leta €X},a = (@',...,a%), andlet GE Gota)- The following
lemma of Chevalley [10, § II, Lemma 7](cf. Lemma 8.2.2) estimates
the order of vanishing of G in terms of the order of vanishing of
¥ (G, i=1,...,s

Lemma 1.1, — Let a € X7, a=(a',...,a%). For each kEN,
there exists 8 €N such that if GE G,y and ¥ (G)Em*}! . &
a a

~ ai’
i=1,...,s, then GE.@a+m"+‘ @

o) " o)
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DerINITION 1.2. — Let aEX;. For each k€N, let 2(k,a)
denote the smallest L€ N satisfying the conclusion of Lemma 1.1.

Let NN denote the set of functions from N to itself. NN
is partially ordered as follows: Let H, H'€NN. Then H<H’ if
H(k)<H’'(k) forall k, and H(k)<H'(k) for some k.

As in the introduction, H, € NN denotes the Hilbert-Samuel
function of ¢ ¢4)/4%, .

1.3. Locally, we can assume that Y is a closed analytic subspace
of an open subspace V of K", and that # is a quotient of (&
restricted to Y. Let ¢':X —> V denote the composition of
¢ with the inclusion Y <= V, and let ¥': 09 —> & be
the module homomorphism over ¢' induced by V. Clearly, if
aEX;, then the Hilbert-Samuel functions H, as well as the Chevalley
estimates %(k, @) associated to ¥ and to W' coincide. In order to
study the local variation of these invariants, we can, therefore, assume
that Y is an open subspace of K" and that ¢ isa free @y-module.

1.4. Hironaka’s diagram of initial exponents.

The notation of this subsection will be used throughout the
article. Let K[[y]]1=K[[y,,...,»,]1] denote the ring of formal
power series in n variables. Let R be a submodule of K[[y]]9.
Following Hironaka [8], [15], [23], we associate to R a subset N(R)
of N*" x {1,...,q}.

If B=(@B,,....8,)EN", put |B|=8, +...+8,. We order
the (n + 2)-tuples (B, ,...,B,.7. 18]), where

(B./)EN"x {1,...,q},

lexicographically from the right. This induces a total ordering of
N"x {1,...,q}.

Let GEK[[¥]]¢,G=(G,,...,G,). Write G, = Y gz ;¥F,
BENnR
j=1,...,q, where gﬁ,/EK and yf denotes ylﬁ'...y” We
also let y#/ denote the g-tuple (0,...,y% ..., 0) with y# in
the j'th place, so that G = Zgﬂ’l.yﬁ". Let
B,j

Bn
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supp G = {(B,/)EN" x {1,...,q}:85;#0}

and let »(G) denote the smallest element of suppG. Let in g
denote g,(G)y”(G).

We define the diagram of initial exponents N(R) as
w(G):GER}. Clearly, RN(R) + N” = ®(R), where addition
is defined by

B, Dty=B+v,7), B, DEN"x{1,...,9},yEN".

Put 2(n,q)={NRCN"x{1,...,q}: R+N"=N}. Let
NRE D(n,q). Then there is a smallest finite subset B of N such
that ®# = B + N”. Wecall 8 the vertices of NN.

The set 2 (n,q) is totally ordered as follows: Let R!, N?
€ 2 (n,q). Foreach i =1,2, let (B,’;,i,‘;), k=1,...,t, denote
the vertices of M indexed in ascending order. After perhaps inter-
changing R' and 9?2, there exists t€N such that (li,lc,j,1‘)=(6,2c ,j,f),

=1,...,¢t, and either (1) ¢, =¢t=1t,, 2)t; >t=1t,, or (3)
t,,t,>t and (B, ,, jrl+|)<(ﬁf+1'jf+1,)' In case (1), N1 = N2,

In case (2) or (3), we say that R! < N2.

Clearly, if ! D N?, then N! < N2,

Assume that Y is an open subspace of K” and that ¢ = 03{.
If b€Y, then @b identifies with the ring of formal power series

K[[»]] in the affine coordinates y =(y,,...,y,) of K7. Let
aEX;. We put

R, = N(R,).

2. Semicontinuity : Theorems A, B, C.

Let £ be a partially ordered set and let Z be an analytic space.

DerINITION 2.1. — A function #:7Z —> I is (analytic)
Zariski (upper-) semicontinuous if, for every a€Z and every
irreducible germ of an analytic subset V of Z at a, there exists
a germ of a proper analytic subset W of V such that
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M#Fx)=#(y) if x,yEV-W,;
Q)#(x)<H#(y) f xEV-W,yeEW.

(We use the same notation for a germ at a point and a representative
of the germ in a suitable neighborhood.)

Remark 2.2. — If # :Z —> I is Zariski semicontinuous,
then, for all 0 E€Z, {xE€Z :5#(x)=0} is a closed analytic subset
of Z. The converse is true provided that Z is totally ordered.

By Zariski semicontinuity of the Hilbert-Samuel function H,
(respectively, of H, (k) for fixed k, or of the diagram of initial
exponents %,), we understand Zariski semicontinuity of the
corresponding function on X; with values in NN (respectively,
in N, orin 2 (n, q)).

We conjecture that H, is always Zariski semicontinuous on X;,

Remark 2.3. — For each bEY, let R = N Ker \ila.
ace~1(b)
Suppose that K=C and ¢ is proper. Then the direct image ¢*9’
is a coherent sheaf of @y-modules [17], and ¥ induces an
0 y-homomorphism V¥,: ¢ — ¢, #. If bEY, then KerV¥,,
= N Ker ¥, . It follows from a theorem of Siu [35,
ac¢o— L (b)

Thm. 2] that R = (Ker ‘I’*b) . Hence the Hilbert-Samuel
function of gb/gi’*b is Zariski semicontinuouson Y.

On the other hand, if K =R and ¢ isfinite, the Hilbert-Samuel
function of €¢¢(a)/§t’*¢(a) need not be Zariski semicontinuous
even as a function of g€ X. For example, take X=R?, Y=R?
and define ¢ by o(x,,x,)=(x,,x,(x3 +x,x,), x3+x,x,).
Let ¥ =¢*:0, — 0. Then the Hilbert-Samuel function
of {?¢(a)/@*¢(a) is constant on the half-lines {x, =0,x, >0}
and {x, =0,x, <0} but has different values on the two half-
lines.

If ¢ is not proper, the Hilbert-Samuel function of {;Q)(a)/'%*(b(a)

need not even be topologically semicontinuous. For example, with
K =R or C,define ¢: K— {0} — K2 by

¢(t)=(cost,sint+sin(1/t)) and take ¥ =¢*.
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THEOREM A. — Let X and Y denote analytic spaces over K,
and let ¢:X —> Y be a morphism. Suppose that % and ¢
are coherent Oy- and Oy -modules, respectively, and that
V: ¢ — % is a homomorphism over the ring homomorphism
¢*: 0y, —> O04. Let sEN. Then the following conditions are
equivalent:

(1) The Hilbert-Samuel function H, is Zariski semicontinuous
on X%,

[}

(2)H, (k) is Zariski semicontinuous on Xfo, for each fixed
kKEN.

(3) Uniform Chevalley estimate. Let K be a compact subset
of X;. Then, for every k€N, there exists L =2(k,K)EN such
that 2(k,a)<X forall a €K.

Assume, moreover, that Y is an open subspace of K" and
that & = 0% . Then each of the conditions above is equivalent to:

(4) The diagram of initial exponents R, is Zariski semi-
continuous on X;.

2.4. Special generators.

Although the modules £, are not, in general, the completions
of stalks of a coherent sheaf, we can deduce from the semicontinuity
of R, a precise description of the variation of £, with respect to
a, which replaces Oka’s theorem in the coherent case.

Let R be a submodule of K[[y]]?, where y =(y,,...,¥,),
as in 1.4. Let (B;,j;), i=1,...,¢, denote the vertices of N (R).
By the formal division algorithm of Grauert [18] and Hironaka [1]
(cf. Theorem 6.2), for each i=1,...,¢, there is a uniquely
determined element G{ER such that in Gi=yPi/i and
supp GiN N (R) = {(B;,/)}. Then G',...,G" generate R (cf.
Coroliary 6.8). Following Hironaka, we call this canonical choice
of generators the standard basis of R.

THEOREM B. — Let X, Y , ¢, #, ¢ and ¥ be as in Theorem A.
Assume .that Y is an open subspace of K", ¥ = 0%, and
N, =N (R,) is Zariski semicontinuous on X7. Let ay € X3, Then
there is a neighborhood U of a, in X; and a filtration of U by
closed analytic subsets,
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U=X,2X,D...0X,,,=0.

u+1
such that, foreach \=0,...,u:
(1)N, isconstanton X, — X, ,,.

(2) Let G",, i=1,...,t, denote the standard basis of
R, CK[[y119, where a€ X, — X, ,,. Write

Gy (y)=Zgy (@y?

Then each g; j is a meromorphic function on X, with poles in
Xyat1- ,

Remark 2.5. — Although the coefficients of the elements of the
standard bases are meromorphic on each X, in Theorem B, the
elements of the standard bases themselves need not be meromorphic,
even in the coherent case. For example, let S/ C @ , be the sheaf
of principal ideals generated by xf —Xx, x§. Then, for each
a=(ay,a,,a;) EK> such that a? —a,a2=0 and a, #0,
n,=(01,0,0+ N3. The standard basis of ]a has one element
G,(x)=a, +x, —(a, +x,)"? (ay +x;), where the square root
is determined by a, =a;/2a3. Of course, G, (x) can be rewritten

x, |12 X,
G, (x)=x, ta, |1 - |1+ 1+— R
a a,

so that the coefficients of its power series expansion are rational
functions of a.

Remark 2.6. — Using Theorem B, we prove that the diagram of
initial exponents %, is Zariski semicontinuous on XZ, for a given
integer s, if and only if it is Zariski semi-continuous in the case
s =1 (Proposition 9.6). Nevertheless, in applications of our theorems
on the variation of £, (e.g., in Theorem D below), the choice of a
suitable s plays a critical part.

2.7. Invariants of Gabrielov [14].

Let ¢: X —> Y be a morphism of analytic spaces. Assume
that X is smooth. Let a € X. Let r, (¢) denote the generic rank
of ¢ near a.Put

060 . O
% =d —
Ker ¢: r3 (@ m Ker ¢*

a

r, (@) = dim
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(where dim denotes the Krull dimension). Then r, (a) <r, (a) <r, (a).
The formal rank r, (a) is the degree of the Hilbert-Samuel polynomial
of @, /Ker ¢ ; in particular, if the Hilbert-Samuel function of
@Na)/Ker ¢+ is Zariski semi-continuous on X, then so is r, (a).

We say that ¢ is regular at a if r;(a)=r;(a). Clearly,
regularity at @ is an open condition. We say that ¢ is regular if it
is regular at each a € X. For example, if ¢ is algebraic, then it is
regular.

Example 2.8 (Grauert-Remmert [19, I1.5.2], Gabrielov [13]). —
Let X be the open unit disk in K2. Define ¢: X —> K> by
¢(x,,x,)=(x,,x;x,,x,x,¢ %) (Osgood).Let a€ X N {x, =0}.
Then r  (a) = 2, but r,(@)=r,(a)=3. Put

© s j! o
fx,,x,)=Y Y = xi xithk+1
1 2 ;:1 k:o (]+k)' )
; : S U
CUvvay)= X I v = Y

j=1 i=1

Then f converges in X, G is divergent, 'f=d‘>: (G) but
fE oy Ops ,- Define Y :X — K* by y,=¢,(x), i=1,2,3,
where ¢ = (¢, ,6,,6¢,), and y, =f(x). Then y, —G(y,.y,, ;)
generates Ker ¢, but Ker \1/:=0. In particular, for ¢y we get

a’

ry@=2,r,()=3 and r; (a) = 4.

Remark 2.9. — Let ¢ : X —> Y be as in 2.7. Gabrielov [14]
proves that if r, (@) =r, (a), then

(i) r, (@) =ry(); ie., Ker ¢;k is generated by Ker qﬁf;

(i) @, Ny (Oya)) = 05 (O (ay)-
In fact, by [4] and [30], (ii) is equivalent to the regularity of ¢ at a.

(These results are not used in our theorems ; but see Remarks 2.11
and 4.3 below.)

THEOREM C. — Let X, Y, ¢, F, % and ¥ be as in Theorem A.
Let s€N. Then the conditions of Theorem A are satisfied in each
of the following cases:
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(1) Algebraic case. ¢ : X —> Y is a morphism of algebraic
spaces (cf. (3], [24])), & and % are coherent modules over the
structure sheaves Oy and Oy of X and Y, respectively, and
V: % — F is a homomorphism over the ring homomorphism
"0y, — 0.

(2) Regular case. X is smooth and ¢ is regular, ¥ = ¢*:
0, — 0y.

(3) Finite case. X is Cohen-Macauley and ¢ is locally finite.
(4) Coherent case. X =Y, ¢ = identity.

Remark 2.10. — In the coherent case C(4), the uniform
Chevalley estimate A(3) is equivalent to a uniform version of
the Artin-Rees theorem: Let X be an analytic space and let
H#C F be coherent sheaves of @y -modules. Let K be a compact
subset of X. Then there exists A =A(K)E N such that, for all
kKEN and all a€K, #, Nmf* e F Cm} .o ; cf. [39, Thme.
3.8]. In fact, there exists A = A(K) such that, for all k€N and
all a€K, #,N m:“‘ cF, = m: - (N m;‘ - #,) (see Remark
7.6).

Remarks 2.11. — (1) In each case of Theorem C, the analogues
of Gabrielov’s results (2.9) hold: Let a€Xs,a=1(',...,a%).

s s
Let ¥,: 9y, — & &, denote the composition of & ¥ ,;
a

i=1 i i=1 ¢

with the diagonal injection %g,y — D Gy and let ¥,

i=

denote the induced homomorphism of the completions. Then:

(i) Ker ¥, isgenerated by Ker ¥, .
n s
(i) ¥ (F o) N & F ;= ¥, (44
i=1 :
In the coherent case, these follow from Krull’s theorem. For the
algebraic and finite cases, see Lemma 12 13 and Corollary 12.17,
and Remark 14.12, respectively.

(2) Suppose that (ii) above holds at each aEX;. Then the
conclusion of Theorem B can be strengthened as follows: Let
4, €X,—Xy4, and let =G . i=1,...,t. Then, for each
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i, g' is convergent and é';v(a) = G"; for all a in a suitable neigh-
borhood of @, in X, — X, ,, (cf. Theorem 9.1).

2.12. Lbcalformulation of Theorems A - C.

The assertions of Theorems A - C are local in X;. Replacing
our analytic spaces and coherent sheaves by appropriate local models,
we can assume that the module of formal relations %, is given as
follows:

Let M and N denote analytic manifolds over K, and let
¢$:M —> N be an analytic mapping. Let A (respectively, B)
be a pxq (respectively, p xr) matrix whose entries are analytic
functions on M. If a €M, let A, (respectively, B,) denote the
matrix of elements of ¢, induced by A (respectively, B). If
G=(G,,...,Gq)€(0g(a), we write Gog¢, for (¢5(G)),...,97(G,)).

s
If aeM, a=(@,....,a°), put R,=N A,  where
a:

a
i=1
= ) N o ) . i = iE Ar. .
@ai Ge @;(a) : Aa,. (G ¢ai) + Ba‘. Hi =0, for some H 001}
Theorems A -C will be reformulated and proved in this local

context. Our problems, from this point of view, concern the solution
of a system of equations of the form

f(x)=A(x)-g(@(x))+B(x).h(x),

where f=(f, ,...,fp) is given and g=(gl,...,gq) and
h=(h,,...,h,) are the unknown functions.

3. Geometry of subanalytic sets.

Our conjecture that the Hilbert-Samuel function H, is always
semicontinuous has the following consequence: Let N be a real
analytic manifold (i.e., a smooth real analytic space) and let E be a
closed subanalytic subset of N. Then the points of E near which
E is not semianalytic form a closed subanalytic subset C of E.
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To prove this, we consider the class of Nash subanalytic subsets
of N;i.e., the images of proper real analytic mappings ¢ : M —> N
such that M is smooth and ¢ is regular [5], [7]. Every closed semi-
analytic set is Nash. The non-semianalytic (respectively, non-Nash)
points of E, i.e., the points which do not admit neighborhoods in
which E is semianalytic (respectively, Nash) form a closed subset
of E.

Let ¢ : M — N be a proper real analytic mapping, where M
is smooth. If r, (a) = dim @d,(a)/Ker(f): is Zariski semi-continuous
on M, then = {a€M:r,(a)>r,(a)} is analytic. By 2.9(i),
Z={a€M:¢ is not regular at a}. If r,(a) is constant on M,
then ¢(Z) isthe non-Nash points of ¢ (M).

If E has pure dimension k, then there exists ¢ as above such
that ¢(M) = E and r,(a) = k for all a €M [21](3); therefore, the
subset of non-Nash points of E is subanalytic. The same conclusion
follows in general (9).

Put E; =E. Inductively, let E,,, denote the complement
in E, of the smooth points of E, of the highest dimension. Then
each E, is subanalytic [36]. Let b €E. We claim that E is semi-
analytic near b if and only if each E, is Nash near b. Indeed, if
E is semijanalytic near b, then so is each E, [26]. Suppose each
E, is Nash near b. In a suitable neighborhood of b, there are
closed analytic sets Z, such that E, CZ, and dimE, = dim Z, .
Let Sing Z, denote the singular points of Z,. Then
D, = E, —(Z,,, Y Sing Z,) is open and closed in
Z,—(Z,,, Y SingZ,). Thus D, is semi-analytic [26]. If E,,,
is semianalytic at b, then E, = D, UE,,, is too. By induction,
E = E, issemianalytic near b. '

For each A, let C, dcnote the non-Nash point of E,:; C,
is closed and subanalytic. The subset of non-semianalytic points of
Eis C=UC,.

4. Differentiable functions: Theorems D, E.

Suppose that X and Y are smooth real analytic spaces and that
¢:X — Y is a morphism. Let A and B be pxqg and pxr

(3) For a simple proof, see E. Bierstone and P.D. Milman, Semianalytic
and subanalytic sets (to appear).

(4) This has been proved by W. Pawlucki, Points de Nash des ensembles
sous-analytiques, Mem. Amer. Math. Soc. (to appear).
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matrices, respectively, whose entries are real analytic functions on X.
Let ®: €7(Y)? — €~(X)? denote the homomorphism of
modules over ¢*: €=(Y) — €~ (X) defined by

P@E)(x)=A(x)-g(p(x)),

where g€ €~(Y)?, and let B. :¢=(X)" —> ¢~(X)* denote the
€ ~(X)-homomorphism induced by multiplication by the matrix B.

There is also an induced homomorphism ¢ : 09 — 0%
over ¢*: 0Oy —> 0y, and an induced @4-homomorphism
B: 0y — 0% . Let % = Coker B, g=0%, and let
¥ : ¢ —> & denote the ¢*-homomorphism induced by &. Let
(@€~(Y)? +B.¥"(X))" beasin the introduction.

If Z is a closed subset of Y, let (Y ;Z) denote the ideal
in €7(Y) of functions which vanish on Z together with their
partial derivatives of all orders.

THeoreM D. — Let X,Y,¢,A,B, ® and ¥ be as above.
Suppose that ¢ is proper. Let s be a positive integer, and assume any
of the equivalent conditions of Theorem A on Y. Then, if
feE(@e~(Y)? +B. €=(X)")", there exists g€ €=(Y)? and
h € €=(X)" such that

f(x)=A(x)-g(¢(x)) +B(x)-h(x), 4.1

for allh x € X-. If, moreover, Z is a closed subanalytic subset of Y

and f, €ImB, for all a€ ¢~ '(Z), then (4.1) is satisfied with
gES(Y ;Z)9.

Remark 4.2. — According to Remark 2.6, any positive integer
s, e.g., s=1, serves in the hypotheses of Theorem D. Nevertheless,
our proof depends on a suitable choice of s: Let £ denote the
image of B: @) — @% . Then # is a coherent @-module.
By Theorem C(4), each point of X admits a coordinate neighborhood
U and a filtration of U by closed analytic subsets,

U=X,2X,D...0X,,, =9,
such that" the diagram of initial exponents % (%,) is constant on

Xy —Xy41> A=0,...,¢. For U small enough, there is a bound on
the number of connected components E of each

Xy —Xas )Mo 1 (b), bEY
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(cf. A'Corollary 11.6). Moreover, the module of formal relations
Ker V¥, is constant on each such E (Proposition 11.1). (For example,
it B=0, then Ker ¥, is constant on each connected component
of a fiber ¢~ ' (b).)

It follows that, if ¢ is proper, then (locally in Y) there is a
bound s on the number of distinct submodules Ker \ila of ég,
where a€ ¢! (b). It is with this s that we prove Theorem D.

With s as above, (® ¢=(Y)? +B - ¢~(X)")" ={f€ €~ (X)? :
for all a€ X", a=(',...,a**"), there exists G, € é;(al)
such that faf - ¢a,.(Ga)E ImBat., i=1,...,s+1}.

As a consequence of Theorems D and C(1), we obtain:

THeorREM E. — Suppose that M and N are Nash manifolds
and that ¢ : M —> N is a Nash mapping. Let A and B be p xq
and p xr matrices of Nash functions on M, respectively. Define
& :¢"(N) — €"M)* by ®(g) = A. (g0 ¢), where gEET(N)?,
and B.:€°M) — €M) by multiplication by B. If ¢ is
proper, then

PEN) + B €"(M) = (PE~ (N + B-¢"(M)")" .

From Theorems D and C(2), we get the composition theorem
of [5], which generalizes earlier results of Glaeser [16], Schwarz [34]
and Tougeron [38]. From C(4) and (3), we recover, respectively,
Malgrange’s theorem on ideals generated by analytic functions
[27, Ch. V1] and a result of Merrien [28].

Remarks 4.3. — We use the notation of the beginning of this
section. Let a € X;, a=(',...,d").

(1) There is an analogue of Theorem D for germs of €~ functions
at {a',...,a*}, without the hypothesis that ¢ is proper. The
conclusion isa €~ version of 2.11 (1) (ii).

(2) Let #, denote the submodule of Ker ‘f’, generated by
€~ relations at a; ie. g-tuples g= (g, ,...,gq) of germs of
&> functions at ®(@) €Y such that A . (go ¢) vanishes modulo
ImB. asagermat {a',...,a*}. Then

Ker¥, C#7CKer'¥,. (4.4)
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The conclusion of Theorem D implies: Every formal relation (i.e.,
every element of Ker ‘i’a) is the formal Taylor expansion at ¢ (a)
of some €= relation. In each case of Theorem C, this is also a
consequence of 2.11 (1) (i) and (4.4).

Example 4.5. — The Malgrange preparation theorem. Let P (¢, \)
d

denote the polynomial ¢4 + » N\ t97/ of degree d in ¢, with
i=1

generic coefficients A=(\,,...,A;). Then every €~ function

fx,t)=f(x;,...,x,,t) can be written

d
fx,)=P(,N)-Q(x,t,N)+ }_‘ Rj(x,)\)td“i,

j=1

where Q,R,,...,R, are €~ [27,Ch.V]. This follows from
Theorem E, where M=N=R"*9  ¢:M —> N is the mapping

d-1
L N N R CIL T VT L MR S

i=1

B=0 and A(x,t,\,,...,N\;_,) isthe 1xd matrix (1 ¢....¢t9"").

Indeed, by the formal Weierstrass division theorem and an easy

interpolation argument, %“(M)= (b ¢~(N)¢)". Therefore, given

f(x,t) €, there exist €~ functions R (x,N\),j=1,...,d,
d d

such that f= t4-i, (R; o ¢). Hence f(x, )~ Y t"'fRI.(x, N

i=1 i=1
d-1

is divisible by ¢ + ' N t4=I+ N, =P(t, N).
j=1
In this example, Zariski semicontinuity of the diagram of initial
exponents N, is not difficult to show directly: We can use s=d.
Then M‘; can be identified with

x=(x,t,,..., 0 ,\;,...,\;,_,)ERn*2d-1.

d-1 d—1

d ' d—j — .d . d—j

o+ Y N 19+ Y Ntd~7 foreach k, £},
I':] : I‘:]
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Ifx=(x,tl,...,td,)\,,...,)\d_l)EM;,put
d-—1

— — 4d N d-—-j

cy=—rd =Y e
i=1

and let m(x) denote the sum of the multiplicities of the distinct
d-1
roots f, of the polynomial p(z,x)=2z¢+ 3 )\I.z"‘f+c(x);
i=1
i,e., m(x) is the degree of the greatest common divisor in R|[z]
d

of the polynomials p(z,x) and q(z,x)= U (z—1¢t)?. It follows

i=1

from the Euclidean division algorithm that, for all mé&N,

‘ {xGMg:m(x)>m}

is a closed algebraic subset of M?.On the other hand, if x € Mg,

then the verticesof R, CN”*9 x {1,...,d} are precisely
B;,i)=0,d-i+1), i=1,...,d—m(x)

(cf. Example 8.5.1).

Remark 4.6. — The conclusion of Theorem D implies that
®€¢=(Y)! +B . ¢7(X)" is a closed subspace of €>(X)?, with
the ¥~ topology. Using Theorem B and techniques of [7], we can
prove, moreover, that, under the hypotheses of Theorem D, the
canonical surjection

€)Y o ¢°X) — P ¢°(Y)1+B . €¢”(X)

admits a continuous linear splitting. Details of this result will appear
elsewhere (%).

5. Organization of the paper.

Throughout this article, we exploit the elementary but powerful
formal division algorithm of Grauert [18] and Hironaka [1], [8],
which is recalled in § 6.

(5) E. Bierstone and P.D. Milman, Local analytic invariants and splitting
theorems in differential analysis, /srael J. Math. (to appear).
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Section 7 contains a variant of the classical coherent case C(4).
Let X be a closed analytic set and let #(X,Z) denote the ring
of meromorphic functions on X with poles in a proper closed analytic
subset Z (i.e., analytic functions on X —Z whose germs at each
a€Z are induced by complex meromorphic functions (cf. [32,
Ch. IV, §5]) on a local complexification Xf of X whose poles
lie in Z‘a: ). For modules generated by power series with coefficients
in # (X,Z), we give elementary proofs of the conditions analogous
to A(1)-(4). Power series with meromorphic coefficients arise,
for example, in Theorem B. The results of § 7 are needed in §§ 9,
10, 13 and 14. The techniques illustrate the utility of the diagram
of initial exponents: consequences of Lemma 7.2 include Zariski
semicontinuity of the Hilbert-Samuel functions associated to a coherent
sheaf or to the fibers of an analytic morphism (Lejeune-Teissier
[25, Ch. I, Thme. 8.2.9]) as well as the generic flatness theorem of
Hironaka [22, Rmk. 2.6].

The constructions (and the notation) of § 8 are central to the
article. Theorems A and B are proved here and in the following section.

Chapters Il and III are independent. Our results on €~ functions
are placed in Chapter II; Theorem D is proved in § 11. The proof uses
Malgrange’s theorem on ideals generated by analytic functions.
However, we give an elementary proof of the latter in § 10, as an
immediate application of § 7 and the formal division algorithm.
Consequently, the only results used to prove Theorem D, apart
from the techniques in analytic geometry developed here, are
Whitney’s extension theorem [27, 1.4.1], Eojasiewicz’s inequality
[27, IV.4.1] and an estimate of Glaeser [16, §§ 4,5], [37,
pp. 180-181].

The combinatorics of the diagram of initial exponents bears on
questions of convergence or differentiability in the following way
(cf. Corollary 7.7 and § 10): In the notation of 1.4,let GE@§
=K[¥1}?, G=(G,,...,G,). By the formal division algorithm,
G has a unique representative modulo #, such that supp GNN, = Q.
If B=@B,,...,B,)€ N”, let D® denote formal differentiation of
order . If suppGN RN, =@, then D*G, =0 forall (B,/))E N, ;
in particular, supp D GN R, = ¢ forall BEN".
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Chapter III includes cases (1)-(3) of Theorem C. Our proof,
in each case, is presented for arbitrary s€N. Although s=1
suffices, by Remark 2.6, the general setting involves no extra cost
and provides the most direct route to the corresponding result on
differentiable functions.

The algebraic hypothesis in Theorem C (1) is essential only to
the following point in our proof: With reference to 2.11 (1) (i) above,
we show that any GE £, =Ker‘i’a can be approximated to any
order by algebraic relations. In the local representation of 2.12,
this amounts to considering a system of equations of the form

AXx)-g()+Bx)-h(x,p)= Y q;(x,y)(y,— ¢, (x)),

i=1

where A,B and ¢ are algebraic, and finding an algebraic
approximation g(y), A(x,y), 4q;(x,y) to a given formal
solution. Since the equations are linear in # and the q;, this
special case of ‘‘Artin approximation with respect to nested
subrings” follows from Artin’s theorem [2]; cf. Theorem 12.6.
(A general version has recently been proved by Popescu [33]).
Example 2.8 shows that the corresponding assertion in the analytic
category is false (cf. Remark 12.8).

CHAPTER 1
VARIATION OF FORMAL RELATIONS

6. Preliminaries : the formal division algorithm.

Let K be a field and let K[[y]] denote the ring of formal
power series in y=(y,,...,»,) with coefficients in K. We use
the notation of 1.4.

Let g',...,8" €EK[[¥]]” andlet B,,j)=v(g),i=1,...,¢
We associate to g!',...,g' the following decomposition of
N" x {1,...,p} :Set Ay, = @ and define
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A, =B, j)+NY)Y— U A, i=1,...,1
0<k<i

Put A=N"x{1,...,p} - U A,

1<i<t
Clearly, for every f€ K[[»]]?, there exist unique
q9€K[[y]],i=1,...,¢, and r° EK[[y]1?

such that
(B[’ji)+suppq? CA}) i=1,"‘>t:
supp r® C A, 6.1)
t .
and =3 ay yritere,
S =1

THEOREM 6.2  (Grauert [18, § 2], Hironaka [1, Ch. 1, § 1],
(81). —Let g',...,g"€KI[[¥]1? and let (B;,j)=v(g"),
i=1,...,t. Then, for every fEK[[y]]P, there exist unique
q; €Ky, i=1,...,t, and r€EK|[[y]]? such that

B;. i) tsuppq; CA,i=1,...,¢,
(6.3)
supp rCA,

t
and =53 q¢g+r
i=1
Proof. — Uniqueness. By (6.3), v(q,g)CA,i=1,...,1¢,
and »(r) CA. Thus inf is one of the in(q,g’)=ingq,-ing’ or
inr, since their exponents lie in disjoint regionsof N” x {1,...,p}.
Therefore, if the ing, and inr do not all vanish, neither does f.

Algorithm. Write g'= 3 g; ,.y"'i, i=1,...,t Suppose
B,j
FEKI[[y]117. Let q9,r° beasin(6.1). Put

4(N=@p )7 -q] €KLY, i=1,....1,
and r(f)=r° €K[[y]1]?. Let
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EN=r-3% q,(Ng' -r(f)

t
i=1

t

-\ i Bidy _ i
2 a8 ;¥ gh).

i=1
Foreach i=1,...,¢,
v, () - & v ghy)
rrh

=v(g , ¥ =g v @ (N> B i)+ @ (NS0,
Therefore, v (E (f)) > v (f). Define

4;(E'(f) and r=3 r(E (), (6.4)
0 i=0

q; =
j
where E°(f)=f and E/(f)=EE-1(f)), j>1. It follows
that these series converge in  the Krull topology and that
v(f—Zq,8" —r)>v(E/(f)) for every jEN; thus f=Zgq,g" +r.
a

Il[/g

Remark 6.5 — Let A be an integral domain. Suppose that K
is the field of fractions of A. Let A[[y]] denote the subring of
K[[»]] of formal power series with coefficients in A. Suppose
that g!,...,g"€A[[»]]?P. Let S denote the multiplicative
subset of A generated by the gzi'il" and let S™!A denote the
corresponding localization of A ; i.e., the subring of K comprising
quotients with denominators in S. Then S 'A[[y]]1CKI[[»]].
By (6.4), if fEA[[y]]?, then q,€S'A[VI]. i=1,...,1,
and r€SA[[¥]PP.

In fact, if A is any ring and each g;i i;= 1, the formal

division algorithm applies to give quotients and remainder with
coefficients in A.

Remark 6.6. — From the proof of Theorem 6.2, v(r)=v(f)
and v(g)+v(g)=v(f),i=1,...,t. Let m denote the
maximal ideal of K([[y]]. It follows that, for every k€N, if
f€ mk . K[[¥1]?, then r€m*.K[[y]]? and each q; € m K 18]
(where m® =K[[y]] if £<0).
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Remark 6.7. — Assume that K= R or C. Suppose that f and
g'!,...,g" converge. Then the ¢; and r all converge [1, Ch. 1,
§ 11, [8],[15,Ch. 1, § 3].

COROLLARY 6.8. — Let R be a submodule of K[[y]]P. Let
N =N(R) be the diagram of initial exponents of R, and let
B;, i), i=1,...,t, denote the vertices of N (without repetitions).

Choose g'€R such that v(g')=@B,;,j), i=1,...,t. Then:
t
() M= U A, and g',...,g" generate R.
i=1
(2) There is a unique set of generators L. ., ff of R such

that, for each i, infi=yP"li and supp(f —yPirinnan =¢.
If K=R or C, and R is generated by convergent elements, then
each f' converges.

We call f!,...,f" in(2) the standard basis of R.

Proof of Corollary 6.8. — (1) is clear from Theorem 6.2. For (2),
divide yﬁ"""' by g'!,...,g": By Theorem 6.2, there exist unique
qi EK[[¥1],k=1,...,t,and r" €EK[[y]]? such that

. t
Yrli="% qi gk + 5 and (B,,j,) +suppql CA,, suppri CA.
k=1
Then f'= yB"j’ —r¥ satisfies the required conditions. The second
assertion of (2) follows from Remark 6.7. a

COROLLARY 6.9. — Let R be a submodule of K[[y]]P. Put
E=KI[[y]]?/R. Let Hg denote the Hilbert-Samuel function of
E; ie, Hg(k)=dimg E/m*¥*'.E, k€N. Then Hg (k) is

the number of elements (B,j)EN" x {1,...,p} such that
B,NE RN(R) and |BI<k.
Proof. — By Remark 6.6. o

Remark 6.10. — (1) Let R and E be as in Corollary 6.9.
Let 8 denote the vertices of N (R). It follows from Corollary 6.9
that Hg (k) coincides with a polynomial in k, for

k=Y max {f; :(B,/))EB,B=B,,...,B,)}

i=1
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(the “Hilbert-Samuel polynomial’’).

(2) In particular, let f(y) €K[[y]] and let E=X[[¥]11/(),
where (f) is the principal ideal generated by f(y). Let u=|v(f)].

k+n, .
Then Hy (k)= ( ) if 0<k<u,and
n

H, (k)= (k:") - (k+n"_“) if k> u

Thus, Hg (k) coincides with a polynomial of degree n—1 in &,
for k>u, and the coefficient of k"~! in this polynomial is
p/(n—1)".

7. Power series with meromorphic coefficients.

Let K=R or C. Let K[[»]] denote the ring of formal power
series in y =(y,,...,»,), and let m denote the maximal ideal of
K{[»1].

Let U be an open subset of K™ and let X be a closed analytic
subset of U. Let Z be a proper closed analytic subset of X.

Let #(X;Z) denote the ring of meromorphic functions on
X with poles in Z (cf. § 5). It is easy to see that h € # (X ;Z) if
and only if € @ (X —1Z) and, locally in X, there exist finitely
many pairs of analytic functions f;, g such that ﬂgi—_' oCcz
and h=f,/g; outside ZUgl.‘l ). If Z=¢@, then A (X;2Z2)
is the ring @(X) of analytic functions on X. Let a€X - Z.
There is an evaluation mapping 2 —— h(a) of #(X;Z) onto

K. If g= X g, ¥ €aX;D)[IP, we write g(x;y)
8,

=3 gﬁ,j(x)yﬁ’f, and g (a,y) =g ;(a) ¥#+J when the coefficients
are evaluated at x =a. Let »(g) €N" x {1,...,p} denote the
smallest ($,/) such that 8p. ) €M (X;,Z) is non-zero. Put
ing =gg ,(x)¥P>7, where (8,7) = v (g).
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Let f1,....,7€4(X;Z)[[y]]?P. Let # denote the sub-
module of A (X;Z)[[y]]? generated over #(X;Z)[[y]] by
Yoo, Put * ={v(g):g€EA}. Clearly, RNR+N'=0n.
If a€X-Z, let &, denote the submodule of K[[y]]?
generated by the f*(a;y); put N, =N(,) and let H, be
the Hilbert-Samuel function of K[[y]]? /s, .

LeMMA 7.1. — Forall a€EX —Z, N< N

a*

LeMMA 7.2. — Assume that 0€E€ X, that the germ of X at
0 is irreducible, and that every connected component of the smooth
points of X is adherent to 0. Then there is a proper analytic subset
Y of X containing Z such that:

(N, =N forall a€X—-Y. In fact, for every vertex (B,])
of R, there exists gERB such that v(g)=B,j)=v(g(a;-))
forall a€X -Y.

(2) H, is constanton X — Y.

(3) There exists NE N such that

A, Nm ALK [[y]]P = mt (2, Nt K[[p]]P)
forall REN and a€X - Y.

Proof of Lemma 7.1. — Let a€X —Z. Let (&, j), i=1,...,s
(respectively, (B;, k;), i=1,....¢) denote the vertices of 9N,
(respectively, ® ) indexed in ascending order.

Consider h € o/, such that v(h)=(a,,j,). Say

q

h(y)= Y ¢, ff@:y), ¢,(»)EK[[¥]IL

2=1
Define g€ # by g(x, y)=Z ¢ (»)f*(x,»). Then v(g)<(a,,j,)
since, in any case, the coefficient of y*1*/l is nonzero. Thus B, , k)

<v(e) <(,7,). If B, k) =(a,j,), then v(g)=(a,j,)
=v(ga;-).

Now suppose that, foreach i =1,...,r, we have:

(i) B;, k) = (o;,j), and (ii) there exists g'(x;y) € & such that
v(g) = (o,j)=v(E@;-)). If s=r, we are done. Otherwise,
consider h(y) = Zc,z(y)f’2 (a;y) € o, such that v(h) = (045741
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say in h =ya'“’i'“. Put g (x;¥) = Z ¢y () f¥(x;y) € B. Then
v(g)g(ar-}-] 7j’+1)‘ If v(g) = (ar+1 ;jr+]);» then (By+1)jr+l)
<@y, s0pe). I v@) <(a,,,,i,4+,), then either: ()v(g) &

U (o) + N" and Bryy,ips ) <(@4,.0p4,), or (i) v(g)€E
i=1
O (o,7) + N".

i=1

In the latter case, v(g)=(x +v,j,) for some j=1,...,r
and some +yEN”". Then ing=gai,+7,il(x) . yaiﬂ"‘, where

8 a;+y,j; (@) =0 since g(a;y)=h(y).and inh=ya’+"i’*‘. On
ai,]i

the other hand, ing’= gj,l.,‘,o‘. x)-y

, where grij,i.- (@) # 0 since
v(gia;-)=(a,j,). Let

8 (x5y) =84, ;, (%) - (X 5Y) = &opuq,;, () - V7 - g1(x5y).

Then g'(a;y) =g, ;@) - g(@;y), sothat v(g'(a;+)) = (&, ,f4y)
and v(g) <v(g) < (&,,,,7,4,)- The result follows by induction.

Proof of Lemma 7.2, — Let (B;,k),i=1,...,¢t, denote the
vertices of % . Foreach i, choose g’ € # such that v (¢') = (8, k).
Put

t
Y=ZuU U {xGX:g“;i’ki(x) =0}.

i=1

Let a€X—Y. Then ¢g'(a;y)€Ex, and v(g(a;.))
=(B;,k). Thus ® C R, . By Lemma 7.1, %, = % .(2) follows,
by Corollary 6.9.

Let a€ X —Y. Let h€ &, . By (1)and Remark 6.6,

t

hy)= L c, ) g (a;y),

i=1
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where, if h€ m?.K[[y]P, then fach ¢ € i TP put
A = max, |B,|. Theneach ¢,€ m*=*. m ¥ pyg
A, N m® K [[p]P C @t (o, N R K [[Y]P).
The opposite inclusion is trivial. '
m]

Let U be an open subset of K" and let @ = @, . Let
a € U. We identify @, (respectively, éa) with the ring of

a
convergent power series K{y} (respectively, the ring of formal power

series K[[»]]), where y =(y,,...,»,).

Remark 7.3. — Let o C OP be a coherent sheaf of @-modules.
Suppose there are f',...,f?€ 0 (UP which generate &, for
all a€U. Foreahj=1,...,q,

flx+y)y= X DPfix). P81,
)

where DP = ay®1/ay%1 .. 3y’ and 1 =8,!...8,!. Thus the
' induce elements of @ (U)[[y]P which, when evaluated at
a €U, generate &,. In this case, Lemma 7.2 (1) holds with each
g@;y) EK{y}. Let &, denote the completion of o, ;

Ay = 0, oA, .

THEOREM 7.4, — Let U be an open subset of K", and let
0 = Oy . Let o C O bea coherent sheaf of O-modules. Then:

(1) The diagram of initial exponents N, = N (.92’,,) is Zariski
semicontinuous on U.

(2) The Hilbert-Samuel function H, of 0F%|«, is Zariski
semicontinuous on U.

(3)‘ Uniform Artin-Rees theorem. For every compact subset
K of U, there exists N € N such that

g, Nmi* . 02 = ml. (g, m). 0F)

a

for all LEN and all a €K.

Remark 7.5. — The Hilbert-Samuel function of 0°/s, equals
H,, by Krull’s therorem. Likewise, the formal and convergent versions
of the Artin-Rees theorem are equivalent. The uniform Artin-Rees
theorem, as stated in Remark 2.10, clearly follows from 7.4 (3).
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Remark 7.6. —Let A and B be submodules of K[[y]]? and
K [[¥11?, respectively. Put F=K[[y]]?’/A and G = K [[y]]?/B.
Let ®: G —> F be a K[[y]}rhomomorphism, and let H=Im &,
R=Ker ®. Let 2,AEN. It is easy to see that the following
conditions are equivalent :

(1) (Artin-Rees estimate) H N M  FC wm%.H.
(2) (Chevalley estimate) ! (*** .F)C R + m*.G.

Proof of Theorem 7.4.— We can assume there are f!,..., f?

€0 (U)? which generate &, for all a€U. Let X be a closed
analytic subset of U. Assume that 0 € X, that the germ of X at 0
is irreducible, and that every connected component of the smooth
points of X is adherent to 0. We apply Lemmas 7.1 and 7.2 with
Z=¢, and # C 0 (X)[[¥]]° generated by the elements induced
by the f’, as in Remark 7.3.

Let a €Y, where Y is given by Lemma 7.2. Let %, denote
the submodule of Ox 4 [[¥1)° induced by the f/. Then
N = N(#,), by 7.2 (1), and N(L,) < N,, by Lemma 7.1.
The assertion (1) follows.

Since & is coherent, then H, (k) is topologically upper-
semicontinuous, for each fixed &k (cf. [37, I11.5.3]). Then (2) follows
from (1) and Corollary 6.9. Finally, (3) follows from 7.2 (3).

COROLLARY 7.7. —Let U and o be as in Theorem 7.4." Let
a, € U. Then there is a neighborhood V of a, and a filtration of
V by closed analytic subsets, V=X,DX,D...02X,,, =0,
such that, foreach k =0,...,2:

(1) R, = N(A,) is constant on X, — X ,, -
) (2) Let gf, ,i=1,...,t, denote the standar_d basis of
&, CK [[y1)?, where a € Xy — X¢yy. Then each g, converges.

Write gf, ) = 2 gg’i(a) yﬁ’i. Then each gf,’l. is a meromorphic
ﬁ)j

function on X, with poles in X, ,,.
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(3) There exist (p-tuples of) analytic functions g' defined
in a neighborhood of X, — X, ,.,, whose power series expansions
at each a € X, — X, ,, are the g..

Proof. — (1) and (2) follow from 7.4 (1), Remark 6.5 and
Corollary 6.8. For b in a sufficiently small neighborhood of
a in X —Xgi1s gb—at+y)ed,. If ing§=ypi”i, then
supp (g5 (b —a +y) Py ne, =¢, since RN,=N, and
“supp (& () —yy @ =¢. Hence ingi(b—a+y)= yoli
and, by the uniqueness of formal division, gj, b—a+y)=g 0.
(3) follows. U

Let U be an open subset of K™ , andlet Z C X denote closed
analytic subsets of U. We conclude this section with some remarks

on relations among elements of  (X;Z)[[¥]]?, where
y=(y1 1""yn)-
Let f',....f'€ #(X;Z)[[¥]]°. For each a€EX—Z,

let %, CK[[y]] denote the module of relations among the
i@y ie, #,=18€0)=@& 0),...,8 ) € K[ such
that > g () f’ (@;y) = 0}.

]

ProrosITION 7.8. — Let a, € X. Then there is a neighborhood
V of ay in U, and a filtration of X NV by closed analytic subsets,

XNV=X,D2XD...0X,,,=2ZNV,

satisfying the following property : For each k=0,...,t, there
are finitely many elements g, € # (X, ;X)) [[Y]* such that
the g (a;y) generate R, , forall a € X, —X, ., .

Proposition 7.8 can be proved by a straightforward modification
of the standard proof of Oka’s theorem [32, Ch. IV, § 2]. It can also
be proved using the techniques of § 8 below ; see Proposition 9.4.

Proposition 7.8 has the usual functorial consequences. We will
need the following :
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COROLLARY 7.9.—Let f' ..., f% ¢g',.... 8" €#4(X:Z) [[¥]]”.
For each a € X —1Z, Let @, (respectively, &, denote the
submodule of K |[[y]1® generated by the f'(a,y) (respectively,
by the gi (@;y)). Let ay, € X. Then there is a neighborhood V
of a, in U, and a filtration of X NV by closed analytic subsets,
XNV=X,2X,2...2X,,, =ZNV, satisfying the following
property : For each k= 0,...,t, there are finitely many elements
h,’i € M (X ;Xp1 ) V1P such that the h,’i (a;y) generate #, N,
for all a€X, —X,,,.

8. Local invariants of an analytic morphism.

The notation of this section will be used in the remainder of
the article.

8.1. A lemma in linear algebra.

Let R denote a commutative ring with identity. Consider a
diagram of R-modules and homomorphisms:

0— E' — E— E"—> 0

o| s ]
00— FF—F — F' — 0,

where the sequences are exact and the squares are commutative. We
regard E' and F' as submodules of E and F, respectively. Let
p € N. We define

Ad®D € Homg (F, Homg (A? E',A**! F))
by the formula
AdD(w)(ny A...Am)=wADn A...AaDn,,

where w €F and n,€E',i=1,...,p. (Ad°D means the identity
mapping of F.) Let ad’D € Homg (F',Homg (A°E',A?*! F'))
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denote the homomorphism obtained by restricting Ad? D to F’'
(ad” D depends only on D).

If p>rankD, then Ad?D=0. If p=rankD, then
Ad?Do A vanishes on E’, hence factors through E'; say
Ad?Do A=Com. (The rank of D means the least ¢ such that
A"D =0 forall 7> 0).

Suppose that B: G —> F is a homomorphism of R-modules.
Let p=rankD and let S=Ad?DoB. Let 6 €N and let
T=ad’°SoC, where Ad?P Do A=Conw. (If =0, then T= C.)
If o=rank S and At €ImB, where £ € E, then Ad° Do A ¢
€ImS, sothat Toré=0. Thus KerTOn {¢€EE: Af €ImB}.

LemMMA 8.1.1. — Let the notation be as above. Suppose that
R isa field K. If p=rank D, then:

(1) Im D = Ker Ad®? D = Ker ad® D.
(2) Ker C = 7w (Ker A).

If, moreover, g =rank S, where S= Ad? Do B, then:
B)KerT=n{t€E: AfE€ImB}.

Proof. — Since rankD =dimg ImD, it follows that if
p=rankD and w&€KerAd?D, then w€ImD; ie., (1)
holds. (2)is (3) with B=0. To prove (3): Let o=rank S
and let §¢€E. Suppose £ =mntE€KerT. Then C&" € Kerad®$S
=ImS; ie., there exists nE€G such that Ad? Do Af = C¢”
= Sn = Ad” Do Bn. Therefore At —Bn€KerAd” D =ImD, so
that Af —Bn = D§, where {€E'. Hence A(f—¢)= Bn and
'=nt=m( Y.

(m]

82.Let K=R or C. Let M and N denote analytic manifolds
over K, and let ¢: M — N be an analytic mapping. Let A
and B be pxgq and pxr matrices, respectively, whose entries
are analytic functionson M.

Let a€M. We write @,= 0y ,, etc., when there is no
possibility of confusion. Then ¢ determines homomorphisms of
local rings @) : Oy, —> 0, and ¢;: 0, — 0,, and A

(respectively, B) induces module homomorphisms A, : 0‘: — @ﬁ
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and A, (9" — (9” (respectively, B, : 0’ — 07 and
B, (9' — (9”) Let ®,: 03, — 0 denote the module
'homomorphlsm over ¢, defined by & (g)=A, - ¢)(g), where

g= (g, ,.;.,g,,)e 0%, and &7 () =(8;(g)), -, 85 (g)).
Let ®,: 0%, — 0?2 be the analogous module homomorphism
over ¢a .

Let s€N. Let pr denote the fiber product
M; ={a=(@,...,a)EM*:¢(a")=...=¢@@%)},
and let ¢: M‘; —> N be the induced morphism.

s
— & 0°
—_ ai
=1
denote the composition of €B q)i with the diagonal injection
=1

q
0"(‘) — ie:Bl 0'»(0)’ and let

— 1 .
Let a=(@ ,...,a’)GM" Let @, : 0;@

s
Likewise, &, : 09, . — @ @"1 and

@« i=1 @

. é o — & o'

iz e i=1 @

For each k€ N,(i), and Ba induce linear mappings

s g .
A @ Yo & i
Kk k+1 _ @ = k+1 g
m q i=1m . 0P
0@ * 4@ e or
s @; s @pi
B@: ® ———M— — & — ¢ |
(=1 mk*r1 _ or =1 mk*1 | opP
ai i o o

respectively. If 2>k, we get a commutative diagram
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o mSer - 04 titgyqa) M . ($(@) Op@
e+1 . 2+1 7 k+1 H
"ow * %@ "o@ * @) "ow * %@
l Dy (@) l A, (@) A, @)
o é m:‘“ . 0’ é é:, g , @) é @f,
—_ _— —
i=1 m“’ 0P +1 merl | @p i=1 mk*1 _@p
o o o o
(8.2.1)

where the rows are exact and IIf ; (a), Il , (¥(a)) denote the
canonical projections. Likewise, H’é,k (@)° By (a) = B, (a)° H;,k (a).

Put #, = (GE 02, :d,(G)EImB,}. Write

09 R, + mk 04
?@) ¢(a) [10)]
Jow (k) = T R, (k) = .
9@) 09 a k+1  7q
Mew * O Mow * Pp@

Let E @)= {§€Jg0 K):A @EEIMB, @}. If L=k, let
Eg (@) = 1L, , (?(a)) (Eq (@)).

The following is a reformulation of Lemma 1.1 (Chevalley
estimate) :

LeMMA 8.2.2. —Let a€EMg,a= a',...,a%. For each
k € N, there exists LE N such that if Ge mw, and

2+
(Da(G)ElmBa +i§Bl m L, 0‘1”1,

then GE &, + mget. 03, .
Proof. —Let kEN. If ¢, =% >k, then

®, (k) C Ey, , @ CEy @)



220 E. BIERSTONE and P.D. MILMAN

and the projection N E, 2 @ — N E 2 (@) is onto. It
- , >0, >0

follows that &, (k)= N E,,(@). Since dimy Joq (k) <o,
>k

there exists £ € N such that £, (k) = E; ; (a).

DEFINITION 8.2.3. — Let a € M. For each k €N, let 2(k,a)
denote the smallest £ € N satisfying the conclusion of Lemma 8.2.2.

~ If a€M;, let H, denote the Hilbert-Samuel function of
0';(“)/.%’“; thus H, (k) = dimg Jg(, k) R, (k). If k<&, define
dg,k (@) by

T, (K)
d, , (@) = dim 2@ "
2,k K Ey . @)
Remark 8.2.4. — dg x (@) < H, (k) and %, (k) C EQ’,‘ (a), with
equality in each case if and only if £ = € (k ,a).

Our main theorem A can be reformulated as follows:

THEOREM 8.2.5. —Let s € N. Then the following conditions
are equivalent :

(1) Uniform Chevalley estimate. Let K be a compact subset
of M;,. Then, for every k € N, there exists 2 = 2 (k,K) EN such
that 2(k,a) <® for all a€K.

(2) H, (k) is Zariski semicontinuous on M, for each fixed
k€EN.

(3) The Hilbert-Samuel function H, is Zariski semicontinuous
s
on M.
Assume, moreover, that N is an open submanifold of K".
Then each of the above conditions is equivalent to :

(4) The diagram of initial exponents N, = N (R,) is Zariski
semicontinuous on Mg -

Suppose that X is (a representative in a small neighborhood
of) an irreducible germ of a closed analytic subset of M$, at some
point. Our proof of Theorem 8.2.5 will be based on a construction
which associates to X and k € N, a linear transformation T,’f(a)
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defined on Jq,(a) (k), depending analytically on a and satisfying
the following condition: there are countably many proper analytic

subsets of X such that, for each @ in their complement D, , £, (k)
= Ker T:(a).
Let a, €M ,ay=(ay,...,ay). Let X denote a germ at

a, of a closed analytic subset of Mg .

s
Let U= Il U be a product coordinate neighborhood of

i=1

a, in M, and let V be a coordinate neighborhood of ¢ (a,)
in N, such that ¢(U)CV,i=1,...,s. Shrinking U if
necessary, we can assume that X is a closed analytic subset of U

such that each connected component of its smooth points is adherent
to a,.

We use « (respectively, B) to denote multiindices in N7
(respectively, N*). If g=(g,,...,8,) € o), write (Dﬁg)|ﬁ|<9
for the vector whose components are the derivatives

B B
Dng = E)””g]./ayll Lyt e o)

(with respect to the coordinates of V), [B|<%,j=1,...,q,
ordered by (B,j,|B81) lexicographically from the right.

For each i=1,...,s, define ®: 0(V)? — o0(U'P by
P'(g)=A.(go¢), where g€ @ (V)?, and

B': U — o'y

by B'(h)=B.h, where h € O(U'Y. Let € N. By the chain

rule, there is a commutative diagram

oV — & oUH

1Bl<®
l“’i l Aq

ouyY — & oU),
la|< Q
where the upper horizontal arrow is g —— (DPg o (¢ lU'))|B|<Q ,

the lower is f = (D%f) 4 <o, and A} is a matrix with entries
in (U). Likewise, there is a commutative diagram
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oy — & oY
la|< R

B B}

oUHY — & oUH,
la | Q

where the upper horizontal arrow is # +—> (D%h) 1< g €tc.

For each i=1,...,s, the composition X “— U — U
of inclusion and projection induces a mapping @(U') — @(X),
where @(X) denotes the ring of analytic functions on X. Let
a€X. We write Aé’a (respectively, Bfm) for the matrix of
elements of Oy , induced by Afz (respectively, sz), and for the

induced @y ,-homomorphism & 0%,— & 0%,
1B1<2 la|< 2

(respectively, & 0% ,

— & 0% ,). We get commutative

jal< 2 i< 2
diagrams
s s
o9 —_— & 019 e o, —m™ & o oI
®@) Bil<e @ i=1 @ =1 laj<e 9

N N

s s L s
& 0°,— & & 0%, ® 0°F,— & @ 0°
i=1 a i=1 |a|<Q ! i=1 a =1 |a|<Q

3

(8.2.6)

where A, , (respectively, By ,) is the matrix with vertical blocks
AQ .o (respectively, diagonal blocks B;,a), i=1,...,s. If 82k,
there is a commutative diagram
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0 — 52 0;1( . ® o
k<|BI< 2 : 181< 2 1BISk

l DQ,k,a l AQ,J Ak,a

s s
60— ®© ©® o05,— © & 05

s
P —
) %.a & & 0%, 0
=1 k< la|<2 1=1 |a|<® =1 laI<k

(8.2.7)

Let Aq,a, ﬁg’a, ﬁq_k’a, ﬁQ'k’a denote the morphisms of the
completions induced by A, ,, etc.

Let my , denote the maximal ideal of @y ,. Let
0% .a > Ox,q/Mx =K

be the canonical projection (“evaluation at a’’). The horizontal
arrows in (8.2.6) induce identifications

@q
9(a) ~ Y q
& [ X,a ,
e+1 q 1B1< 2 IIIX

m(p(a) . O¢a) 8 ,a
s (pti ~ s Ox.q !
@ - a @ — @ @ ,
i= e+1 4 =
=1 ot [=1]al<e |y 4

a a

where ¢ =r,p. Using these identifications, evaluation at a
transforms the diagram (8.2.7) (or the analogous diagram of
completions) into the diagram (8.2.1).

8.3. The Hilbert-Samuel function and the Chevalley estimate.
Let ¢, kEN, =k. Let aGpr. We apply the formalism of
8.1 to the diagram (8.2.1) and the linear mapping By (a). Put

Py x (@) = rank DQ,k (a).

pQ,k (a)

Then Ad DQ X (a) o A,2 (a) factors as

AdP LK@ D, , @A, @=C,, (@o Hg,k (o (a)).
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Put o, , @) =rank S, , (@), where
— AqPe, k(@)
Se « @=Ad"5¥77 D, (a)o B, (a),
(
and put T, , (@) = ad®% k(@ Sk @eC,, (@):

Remark 8.3.1. — By Lemma 8.1.1, E,, (a)=KerT,, (a)
and dQ’ £ (@) = rank TQ' « (@).

Let a, € M; and let X, etc.,be asin 8.2 above. Let

Py k (X) = max Po k (@).

acX

P k(X)

If a€X, then Ad DQ' « (@) o Ag (@) factors as

Ad®2K D @) o A@) =CF, @oTl, , (e(@)).
Put o’é' . (@) = rank S;‘, , (@), where
SX, @ =Ad"%*" D @) B, @),
and fet 0, , (X) = max oy . @). Put
T @ = ad”% ¥ X @) CX, @.

Let
d?z" , (@) = rank Té" , @ and d,  (X) = max d;‘, L @.

‘aeX

Let
Yy, = {a€X: Po, k (a)<pQ,k(X)}’

= {aEX:a’Q"k(a)<oQ’k‘(X)},

2, k.
X = Yo VZ, (V{aEX:d], @)<d, (X))
Then Y, ,,Zy, and X, , are closed analytic subsets of X. If

X is irreducible, then X, , is a proper analytic subset of X and,
forall a €X — Xy ., 0 , (@) =0}, (@) =0y , (X) and

dy 4 (@)= d’Q" @ =d, , (X).
Let k€ N. Put
D, =X- U X, (8.3.2)

>k

If K=C and X isirreducible, then D, isdensein X.
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LemMAa 83.3. — For all a,b€D,, H,(k)=H,(k) and
L(k,a)=2(k,b).

Proof. — Let a€D,. Then d,,(a)=dy, X), ¢>k.If
2>Q(k,a), then, by Remark 8.2.4, H, (k)= dg r (X). Let
a,beD, . Choosing 8=L2(k,a), 8=22(k,b), weget H, (k)= H, (k).
The second assertion follows from Remark 8.2.4.

DEFINITION 8.3.4. — We write Hy (k) = H (k) and 2(k, X)
= Q(k,a), for any a€D, . (Hy (k) is the “generic Hilbert-Samuel
functions”).

Remark 8.3.5. — (1) If £ =2 (k,X), then Hy (k) = dy , (X).

(2) If a€X and 2> k, then, by Remarks 8.2.4. and 8.3.1,
R, (k) C Esz,k (a) = Ker TQ,,‘ (@) C Ker T,’ik (@). Suppose a €D, .
Then T, , (@) = Tg , (a). If, moreover, £ > 2 (k,X), then

R, (k) = Ey , (@) = Ker T, (a).

PRroOPOSITION 8.3.6. — Let aOEM;,, and let X, etc., be as
above., Let k€ N, Then:

(1) If £=29%(k,a) for all a € X, then H, (k) is constant
on X — X, -

(2) Suppose X is irreducible. Let £ = 2(k,X). Let Y be

a proper analytic subset of X. If H, (k) is constant on X —Y,
then £ =2 2(k ,a) forall a € X —(XQ’,‘ uY).

Proof. — (1) If 2= 2 (k,a) for all a€< X, then,by Remark 8.2.4,
H, (k) =dy , (@) = dy , (X) forall a € X — X, , .

(2) By Remark 8.3.5, H, (k) = dQ,k (X) for all a € D, . Since
H, (k) is constant on X —Y and d,z,k (a) = dsz,k (X) on
X — XQ’,‘ , then H, (k)= dQ,k (@ on X—(Xg,UV Y). By
Remark 8.2.4, 2> 2(k,a) for all a € X —(Xg,k vY).

[m]

Let @=>k. Let a €X. Clearly, rank Dy , , < pg , (X), with

P k(X)

equality if D, is adherent to a. Hence Ad Do xa®Aog
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factorsas Cy , ;o 1Ily , . (cf. (8.2.7)). Put

d°9,k(X) S

TQ,k,a SZ,k,a° C!Z,k,a >

where S, , , = AdPHF Dyra°Bog. Let Cop, and Ty,
denote the analogous homomorphisms of the completions. If X is
irreducible, then oy , (X) =rank Sy , ,. Evaluation at a transforms
Coyq and Cy, , (respectively, Ty, , and Ty, ,) into CJ, (a)
(respectively, TY, (a)).

ProroSITION 8.3.7. — Suppose that X is irreducible. Let k € N.
Then, for all a € X, H, (k) = Hy (k).

Remark 8.3.8. — Suppose that, for all a € M |
Ker @, = é¢(a) - Ker @,

(cf. Remarks 2.11). It is easy to see, then, that H, (k) is topologically
semicontinuous for each fixed k& (cf. [37, 11.5.3]). In this case,
Proposition 8.3.7 is immediate.

Proof of Proposition 8.3.7. — We can assume that K = C. Let
L=2(k,X). Let a€X and let & ,...,% denote a basis of
R, (k). For each i=1,...,¢t, choose a representative G, of
§ in %,, and let H, = (Hf.’)lmq denote the image of G; in

& (ﬁ‘,’(’a (i.e., the image by the upper horizontal arrow in the
1B1< 2

left-hand diagram of (8.2.6), for the completions). Then
Ay ,(H) € ImBy ,,

so that l:lqyk’“(Hi) € Ker TQ,k,a ,i=1,...,¢.

By Krull’s theorem, there exist convergent generators n, ,...,n,
€KerTy,, of Ker Ty, ,. Since the & =T, , (H) (@ are
linearly 'in,dependent, then the n;(a)€ Ker sz(’k (@) span a linear
subspace of dimension =¢. If x € X is close enough to a, then
the 7m; can be evaluated at x, and the n;(x)€ Ker T;k (x) span
a linear subspace of dimension =¢. Taking x €D,, we have
Hy (k) = H, (k) < H, (k), by Remark 8.3.5.
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8.4. The Hilbert-Samuel function and the diagram of initial
exponents, Assume that N = V is an open submanifold of K" . If
aEM;, let R,C N” x {1,...,q} denote the diagram of initial
exponents RN, = N(#,). We continue to use the notation of 8.2
and 8.3. Assume that X is irreducible. We introduce a ‘‘generic
diagram of inijtial exponents” RN, :

DEFINITION 8.4.1. — Let k (X) denote the smallest kK € N such
that Hy (%) coincides with a polynomial in £, if 22 k.

Suppose k=>k(X). Put 2=0(k,X). Let a€X. Let
te€ & 0% ,; say &=(%) <k, Where each

I81< k ‘
kg =g, 85,0 € 0% 0.

Let »(¥) denote the smallest (8,7) € N" x {1,...,q} such that

,#0. I YEN', define STEE @ 0%, by
| k

_L_ B—v
(6—7)!2 ’

0 , otherwise.

if y<§p
(Sys)p =

LEMMA 8.4.2. — Let a € X such that D, is adherent to a
(ie., any a€X if K=C). Let §€KerTy, , and yEN".
Then S”§€XKer Ty, ,.

Proof. — Consider the evaluation (S"§)(x) of S'¢ at x € X
a. If Ker Ty, (x) = &, (k), then (S7§)(x) € Ker Ty, (x):
dentifies with

mgk £ @) B E A, + mhEL L 03 C KD,

and (S”§) (x) identifies with

. .
" (lﬁék £ () °/B !,) € &+ Moty Y4 -

In particular Tz(’k x)- (S8 (x) =0 for all x € D, near a. Thus
Tox.a (8¢ =0.
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DEFINITION AND REMARK 8.4.3. — Set

Ny =w(E):EE€EKer T } + N,

2,k,aq
According to Lemma 8.4.2,

Ry N{B,7):1BI<k}={():§EKer Ty, ,}.
The definition of Ny isindependent of k 2 k (X).

Remark 8.4.4. — Suppose that k =2k (X). Put 2= Q(k,X).
It is easy to see that there is a proper closed analytic subset Z' of
X such that, for all a € X —Z',

Ker sz(,k (@)= {§@:EEKer Ty, ,}.

Let B;,k),i=1,...,tx, denote the vertices of Ny . For each
i, let ¥ €KerTy, , such that v(§) = (8,,k);

£ =) i<k, 1<j<q - Put

t
X .
Z=7'U U {xEX:Egi’ki(x)=0}.

i=1

Since X is irreducible, Z is a proper closed analytic subset of X.
From Remark 8.3.5, we obtain :

LEMMA 84.5. — N, =Ny forall a €D, N (X —Z).

ProrosITION 8.4.6. — (1) Forall a € X, Ny <N, .

(2) Let Z be as in Remark 84.4. If a€ X — 1, then
N, TN, .

Proof. —We can assume that K=C. Let a€X. Let
(o,j),i=1,...,1, (respectively, (B;,k;), i=1,...,1ty) denote
the vertices of RN, (respectively, N, ), indexed in ascending order.
Let k€N such that k= k (X) and H, () coincides with a
polynomial for £ 2 k. Let £ = € (k,X).

The arguments will be similar to those for Lemma 7.1. To
prove (1), first consider G € %, such that » (G) =(«,,j,). Then
G induces an element ¢ € Ker Tq’k,a such that ¢ (a) € Ker T)Q(,k (a)
is the projection of G to %, (k) C Ker T,’Z" . (@). Since

KerTy , o= Ox ,-KerTy, 4,



RELATIONS AMONG ANALYTIC FUNCTIONS I 229

there exists nE€KerTy , , such that n@)=¢§@). Let Z be
as in Remark 8.4.4. Evaluate n at x€D, N(X—-Z) near a:
n(x) € Ker T?Z(,k (x) and v(n(x)<(v,j,). @(n(x)) makes
sense when 7n(x)€ Jq»(x) (k) is not zero). By Lemma 8.4.5,
By, kp)svin(x)<(ey, /). If  B,,k)=(v,j), then
v(n(x)) =(a,,j,) forall x€X near a.

Now suppose that, for each i=1,...,¢, we have:
(i) B;, k;) = (e, j;); (i) there exists n' € Ker Ty .o such that
V(nf(x))=(ai,jl.) for x€X near a. If t, =¢, we are done.
Otherwise, consider G&€ %, such that v(G)=(a,,,,j,4+,). As
above, there exists n € Ker Tq k,q such that n(a)€ %, (k) is the
image of G. Evaluate n at x€ D, N(X—Z) near a:
nx)EKer TY, ) and v (n (%) < (@y,,/py,). I v(n(x)
= (@i Jesr)s then By k) S(yy,7ey). I v(n(x)
<(@, 4y sJ;+1), then either: (i) »(n(x)) & LtJ (o;,j;) + N* and

i=1
Brry skes 1) <@y sdesy), or (i) »(n(x) € _Ol CHARNS
i=

In the latter case, v(n(x)) =(o; + v, j,), forsomei=1,...,¢
and some y€N"; thus nam,,.'_(a):o and Mo, + v, j; x)#0.
On the other hand, n’;,'_,l.i (@)#0. Let

!
;.

L E— R 7 L
(0 + 1 Tty ST

.
M = Mo, M-
Then n' € Ker TQ'k,a,n'(a’)=nLi,,.i(a) .n(a), and

v )N<vm (X)<(¥4y, jreq)-
(1) follows by induction.

To prove (2), consider & and Z from Remark 8.4.4. Let
a€X -Z. Consider G&€ £, such that v(G)=(, j,), where
1<t<t,. As before, there exists n&€KerT,, , such that
n(a) € &, (k) is the image of G. Evaluate n at x € D, N (X — Z)
near a: n (x) € Ker T;k (x) and v (nx) < (o,j,). If
v(n(x)) = (o,j,), then (a,,j,) €Ny, by Lemma 8.4.5. Otherwise,

vin(x) =@ +v, k) <(, j,),

for some i=1,...,ty and some yEN"’ Thus Mgt ,k; (@) = 0
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and Ng+4,6;6) #0. On the other hand, Efii’ki(a)#o’ since
ac€X —Z7Z. Let

B!

P —= i e ——t
" S @, + 7)1 vk

- SY g
Then n'(d) =& ,, @ -n@ and »(n(x) <v(n' ®)<(a,j,).
(2) follows by induction.

ProPOSITION 8.4.7. — Suppose that k=2k(X). Let Y be a
closed analytic subset of X. Suppose that H,(k) = Hy (k) for
all a€X —Y. Let 2= 82 (k,X) and let Z be as in Remark 8.4.4.
Then N, = Ny foral a€X—(YUZ).

a

Proof. —Let a€X—(YUZ). Then N, C Ny, by
Proposition 8.4.6 (2). Since H, (k) = Hy (k), %, = Ny .

8.5. Proof of Theorem 8.2.5. — (1) and (2) are equivalent, by
Propositions 8.3.6 and 8.3.7. (3) trivially implies (2). (2) implies (4)
by Propositions 8.4.6 (1) and 8.4.7. (4) implies (3) by Corollary 6.9
and Proposition 8.3.7.

Example 8.5.1. — We show that condition (4) of Theorem 8.2.5
is satisfied in Example 4.5. The notation is from 4.5. Let a € M‘;.
We will prove that the vertices of %, C N"*“x {1,...,d} are
B,i)=0,d—i+1),i=1,...,d—m, where m=m):
Write a =x°,¢9,...,69,A,...,A%_)) and ?(a) = x°,7?),
where \® =\, ..., A9). It is enough to show:

M It (Ry,...,R;_,,+1,,0,...,00€ £,, then each
R;=0.

(2) There exist analytic functions S;(A), j=1,...,m,
defined near A°, such that, for each i=1,...,d —m,
©,...,0,S,,...,5,,1,0,...,00€ &,

(where 1 isin the i'th place from the right).
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We use the following observation [29] : Let

P q
gz, pu) =2 + 2, wizP~l and  h(z,v) =27+ > v; 2977,
ji=1 i=1
where u=(u,,...,up),v=(vl,...,vq). Write

ptq

gz,m)-h(z,p)=22%0+ 2 N\ (u,p)zP 977,
=1

Then the Jacobian determinant det (OA/d (u,v)) is the resultant
of g and #&.

Let {tgx} denote the distinct ¢, and let m, denote the
multiplicity of the root t}; of p(z,a). Then Zm, =m and

p(z,0)=g@)-MGE—1)"*, where g(t}) #0,i=1,...,d. By

the preceding observation and the implicit function theorem,

d
2+ YN =N T]a. @0,
j=1

where m
a .
4@,V =2""+ ¥ a,N2",
=1
d—m
gz, N=z""+ ¥ b;(\) 4—m-i
j=1
and

(i) each ay; (N\) and b; (M) is analytic near N
(i) g(2) =g (z,\%;
(iii) each (z —£{)"" = q, (z,\%).

Define Si(k),j—_—l,...,m, by
m .

o XS,z =TTq, (2,0,
[+

j=1
Then the S,. (M) satisfy (2).



232 E. BIERSTONE and P.D. MILMAN

To prove (1), consider analytic functions R,.(x,7\) near

x°,\%,j=d—m+1,...,d, such that
(Ryser s Ry_ps1,0,...,00€ &, .
d
Let GGx,t,N)= 2, t"_’RI.(x,?\). Then for each a, G
j=d—m +1

d
is divisible by 74+ X A 97/, and thus by qq (#,\), in the ring
j=1
of formal power series centered at (x°,t2!,)\°). By (iii) and
uniqueness in the formal Weierstrass division theorem, the quotient
of G by ¢, (¢,\) belongs to R[f], where R denotes the ring of
formal power series centered at (x°,A°). Therefore, G is divisible
by IIq, (¢#,N\) in R[f]. Since degree G <m = degree I1q, (¢,N),
o [¢3

then G =0 i.e., each R, = 0, asrequired.

9. Special generators.

Let M, N, ¢, A and B be as in 82. Let s€EN. Let
a, =(ay,...,d) EMj and let b, =¥(,). Let X denote an
irreducible germ at a, of a closed analytic subset of My. Let
S .
U= Il U’ be a product coordinate neighborhood of a, in M*,
j=1
and let V be a coordinate neighborhood of b, in N, such that
¢(UHYCTV,j=1,..., s. Shrinking U if necessary, we can assume
that X is a closed analytic subset of U such that each connected
component of its smooth points is adherent to a, .

We continue to use the notation of 8.2-8.4. Assume that V
is an open subset of K" . Let RN, denote the generic diagram of
initial exponents (cf. 8.4.3), and let (B;,k),i=1,...,¢, denote
the vertices of % . Our main theorem B and Remark 2.11 (2) are
consequences of the following :

THEOREM 9.1. — Assume there is a proper analytic subset Y
of X such that %, = Ny forall a€ X —Y. Foreach a € X —Y,

let G,()= yﬁi’k' — rf, Ww,i=1,...,t, denote the standard
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basis of #,, where, for each i, in G} =ybPr*i gna

suppri N ¢, =@

(cf. Corollary 6.8). Write r! (y) = Z rg I(a)y""'. Then:
ﬂ,i

(1) For each i=1,...,t and B,j)EN"x {1,...,q},
r;’iE.l(X;Y).

(2) Suppose that Y =@ and that 9?,,0 is generated by
9?,0 N 0‘;0. Then, for each i=1,...,t, =Gl € 0¢ and
g.( 0 =G' for a € X sufficiently close to “o In parttcular R,
is generated by #,N 0"(‘,) in some neighborhood of a, in X.

Proof. — We can assume that K=C. Foreach i=1,...,¢,

put fA(x)=A(x)- ¢(x)ﬁ" ki (in local coordinates, where ¢ (x )ﬁ" o
denotes the composition of yﬁ" ki with y=¢(x)). Let a€X -Y.
Put

H! () = (9@) + )’ *1 = yfr X440 (y).

Then, foreach i =1, R

supp HL ()N Ry =@ 9.2)
and f(x)—A (x)-(H,ed YX)EMB , j=1,...,5; ie,
a a: a a
(F')icyjcs —Ba B EMB,.

For each 2EN, let *F! (respectively, *H.) denote the image
of (f )l <j<s (respectlvely, of H') by the lower (respectively,

upper) horizontal arrow in the completion of the left-hand diagram
(8.2.6);thus,

°F! A, -*H.EmmB, ,. 9.3)

~

Recall that °H! is the element of & @2 induced by
1B1< 2 ’

5 : i
(D*H. o @ 2 igi< e Wrnte H (H‘“)wm2

where each HY € 0, and Hy  =(H} ) .-

from (9.2) that H;’i,a = 0 for all (B, HE Ny

(HB i ﬂ)lﬂl<2 1<j<gq’

It follows
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Let k€N and let 2=92(k, X). From (9.3), it follows that

ad® e kX g o AgPekX) p

REi — T kyyi
R k,a ° Fa TQ,k,a.' Ha’

Q. k,a

8 — AP E(X) A .
where SQ_k'a Ad Dq'k'a o BQ,a’

Let e(k) denote the number of exponents (B,7)

€N"x {1,...,q} such that (B8,j) & Ny and |B|<k.
Suppose that a € X — (X, , VY). By the formal division theorem
6.2 and Corollary 6.9, Remarks 8.2.4 and 8.3.1, and Proposition
8.3.6(2), rank T;‘,k (@) = e(k); moreover, if W, (k) denqtes the

subspace  {H=(Hg ;)ig1<k,1<<q Emzk (éx,a/”‘x,a - Oy )

HB;':O if (B,/)€ Ny}, then rank TX, (@) |W, (k)= e (k). Then,

by’ Cramer’s rule, for all BEN", |B|<k, and all j=1,...,q,
we  obtain 5;;,1. , ng’i € 0(U) such that =qf;@+#0 if
This gives (1). a €X — Xy, VY), and H’(;’i'a = ;’j’a/‘nﬂ’j_a.'

Now suppose Y =@ and %, is generated by %, N 01‘,’0.
Then g =G € 0% ,i=1,...,1, by Corollary 6.8 (2). For a

sufficiently close to a, in X, éfp(‘,) (y)=g'(e@)— b, +y)E %,.
But supp (éfp(a) —yﬁ"’k") N Ny, =@. By uniqueness of the standard
basis, G‘a (y)=g”:p(a)(y). We have proved (2). ]

PrROPOSITION 94. — Let M be an analytic manifold over K,
and let Z C X denote closed analytic subsets of M. Let f',..., f9
eM# (X;2)[lyllP, where y =(,,...,y,). For each a€EX - Z,
let #, C K[[y]]? denote the module of relations among the fla;y).

Let a,€X. Then there is a neighborhood U of a, in M, and
a filtration of X N'U by closed analytic subsets,

XNU=X,2X,2...29X,,,=2ZN0U,
such that, for each k=0,...,r:
(1) N (R,) is constant on X, — X, ,, .

(2) Let G"; ) = yﬁ"'k"—-rf,(y), i=1,...,t, denote the
standard basis of R, (as in 9.1), where a € X, — X, ,,. Write

) = E.. ri (@) y*7. Theneach ry ,€ M (X, :X, 4 ).
s/
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Proof. —If a€X—Z, let ®,:K[[y]]? — K [[¥]]? denote
the homomorphism given by the p x ¢ matrix whose columns are
fYa@;y),...,f%@a;y), and let &, C K[[¥]]? denote the image
of ®, . By Lemma 7.2 (3), there exist a neighborhood U of aq,
and A€ N such that &, N TR ¢ [Y1)P € i®. &, , for all
€N and a€(X—Z)N U (where 1t denotes the maximal ideal
of K [[»]]). Then, by Remark 7.6,

e (MUK YIP) C &, + 0L K ([[V]),

for all LEN and a€(X—Z) N U. With this uniform Chevalley
estimate, the arguments used to prove Theorems 8.2.5 and 9.1 can
be repeated to obtain the result.

m]

We conclude this section with two ‘“glueing” results, which
provide alternative reductions of the problem of verifying the
conditions of Theorem 8.2.5. The first reduces the problem to the case
that the source M is connected, and the second to the case s = 1.
We use the notation of 8.2.

LeMMA 9.5. — Suppose that M is a disjoint union
M=M UM,.
Let ¢;=¢IM,, i=1,2.Let s€N. Suppose that, for each
t€N,t<s, one of the conditions of Theorem 8.2.5 is satisfied

when ¢ is replaced by ¢, or ¢, and s is replaced by t. Then
the conditions of Theorem 8.2.5 are satisfied.

Proof. — Let t € N, t <. Suppose that I is an ordered subset
of {1,...,s} containing ¢ elements (perhaps I = @). Put
'M; = {a=(al,...,a’)GM“;J:a"EMl ifand only if i€ I}.
Then 'be identifies with the fiber product

M;,¢IXNM2T‘;2 = {(al ,02) € Mtl.d)] X M;quz : ?l (al) = <P2 (az)} .

Clearly, be is the disjoint union U 'M’d, over all ordered subsets
I of {1,...,s}.

Suppose I =(1,...,8) (I=¢@ if ¢=0). Then it is enough

to show that 82.5 (4) holds in 'M§ =M, x M; S . Let

aEIM"d‘,; say a=(a",...,d"), where al=(a',...,a')€Mtl‘¢l
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and a, =@"',..., 8 €M} . Let s, =t,s,=s—¢t. Then
2 2,09 1 2

Ro = Rgy N R,,, where for each i=1,2, R,, is the module
of formal relations at q,€ M:.i¢i associated to the mapping

¢;:M; — N and the matrices of analytic functions A and B
restricted to M;. Therefore, the result follows from Theorem 9.1,
Corollary 7.9, Lemma 7.2 (1) and Proposition 8.4.6 (1) (cf. the proof
of 9.6 below).

PROPOSITION 9.6. — Assume that N is an open subset of K".
Then the diagram of initial exponents R, = N(R,) is Zariski
semicontinuous on M;, , for a given positive integer s, if and only
if it is Zariski semicontinuous in the case s = 1.

Proof. — Let s be a positive integer. Since M = M;, is embedded
in M; by the diagonal mapping, Zariski semicontinuity of R, on
M; implies semicontinuity in the case s = 1. On the other hand,
suppose that N(#%,) is Zariski semicontinuous on M, where
#,={GE 63, :9,(G)EImMB,}, a€EM. Let a, €M, and
let a, € X C U as at the beginning of this section. By Proposition
8.4.6 (1), it suffices to find a proper analytic subset Y of X such
that %, is constant on X —Y. Let u': M} — M denote the
projection onto the i'th coordinate; i.e., u(a) = ai, where
a=@,. ..,d€M,,i=1,...,s. Then &R, = A #;. By

i=1
the hypothesis and Theorem 9.1, there is a proper closed analytic

subset Z of X such that, for each i=1,...,s, N( #,(a)) is

constant on X — Z, and the coefficients of the standard gasis of
%"i(a), as functions of a € X —Z, belong to #(X;Z). The
result follows from Corollary 7.9 and Lemma 7.2.

Remark 9.7. — It follows from Theorem 8.2.5 that the same
assertion is true with M a (possibly singular) analytic space. The
proofs of Lemma 9.5 and Proposition 9.6 apply also to the case that
M is singular.
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