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THE TRACE INEQUALITY AND EIGENVALUE
ESTIMATES FOR SCHRODINGER OPERATORS

by R. KERMAN (!) and E. SAWYER (%)

1. Introduction.

This paper deals with potential operators T, given at Lebesgue
measurable f on R" by a convolution integral

(Tof)(x) = J

 JR

) O (x—y)f(y)dy,

provided this integral exists for almost all x € R". The kernels ®(y) are
radially decreasing (r.d.) functions; that is, they are nonnegative, locally
integrable radial functions on R", which are nonincreasing in |y|. These
Te include the Riesz potential operator I, whose kernel K, is defined
directly as

K(y)=1y*", O<a<n

and the Bessel potential operator J, with kernel G, defined in terms of its
Fourier transform G, by

Ga (C) = J

G (x)e **dx = (1+]0?) "2, 0<a<n.
Rll

Given an r.d. kernel ® and 1 < p < oo, we wish to characterize the
(possibly singular) positive Borel measures p on R" for which there exists
C > 0 such that

(L1) J (ToN(x)” du(x) < CJ J(x)? dx
Rn R'l
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for all nonnegative measurable f. Clearly this will be true if and only if
To is a bounded linear operator between the Lebesgue spaces LP(R")
and L?(R"n). An important special case, with p=2 and ®=G,, arises
in estimating the spectrum of Schrodinger operators and will be considered
in detail below. Another special case is treated in Stein [19], where it is

n—k

shown that (1.1) holds for J, when p = p,,a > > where

m(E) = m(EnR"),

m, being k-dimensional Lebesgue measure on R* considered as a subset of
R". The inequality of [19] can be stated in the equivalent form

J N5 %,0,...,0Pdx,, ..., dx,
Rn

< C‘[ f(xis ., x)Pdxy, ..., dx,.
R’l

It is thus a statement about the restriction, or trace, of J,f. For this reason
we follow other authors in referring to (1.1) as « the trace inequality ».

Generalizing results of Adams [1] and Maz’ya [14], K. Hansson in [12]
has characterized the p satisfying (1.1) in terms of capacities (see also
B. Dahlberg [8]). He shows the trace inequality holds if and only if K > 0
exists for which

(1.2) w(E) < K cap (E)

whenever E is a compact subset of R". Here cap (E) denotes the L7
capacity associated with the kernel @,

cap (E) = inf{j f(x)Pdx:f=0 and Tef>1 on E}
R"

A criterion such as (1.2) can be difficult to verify for all compact sets E.
On the other hand if one only requires (1.2) to hold for a class of simple
sets such as all cubes Q with sides parallel to the coordinate axes, the
resulting condition is no longer sufficient (D. Adams [2]). For example,
when n=p =2, I% doesn’t satisfy (1.1) with p,, yet inequality (1.2) for

1
cubes, which amounts to p,(Q) < K|Q|2, holds. In fact, with
1

f(x) = x, 2|ln le_‘x[o‘;] [o‘%] (x1,%,), I% f is infinite on
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2
right side is finite. Examples of this nature were first pointed out in [2].

1
{(xl,O) 10 < x4 <—} and thus the left side of (1.1) is infinite while the

Theorem 2.3 below gives a necessary and sufficient condition for (1.1)
that involves testing an inequality over dyadic cubes Q, namely

1.3) '[ (MgpXon) (x)P dx < Kf dp < ©
Q Q
where p' = P I’ the constant K > 0 is independent of Q, and

1
(Mo fi)(x) = sup [—J @(y) dy] j f(y)du(y).
xeQ |Q| 1 Q

Iyl<IQ

Alternatively, (1.1) is equivalent to
(1.4) J (Toxom)(x)” dx < KJ dp < oo for all dyadic cubes Q.
R" Q

To compare (1.2) and (1.4), we note that (1.2) is equivalent by an
elementary argument (see Theorem 4 in [2]) to testing the inequality in (1.4)
over all compact sets Q. The reduction in (1.4) to testing over dyadic
cubes Q is essential in obtaining sharp estimates for the higher eigenvalues
of Schrodinger operators in § 3. For a different characterization involving
test functions see Stromberg and Wheeden [21].

In the special case where To = I,, the equivalence of (1.1) and (1.3)
can be established by dualizing inequality (1.1), using the «good A
inequality » of B. Muckenhoupt and R. L. Wheeden [15] in order to replace
I, by its associated maximal operator M,, and then using the
characterization of the weighted inequality for M, in [18]. The general case
of the theorem is proved along similar lines, the crucial new estimate being
an extension (Theorem 2.2) of the « good A inequality » in [15].

As an application of Theorem 2.3 we obtain a sharpened form of recent
results of C.L.Fefferman and D.H. Phong on the distribution of

eigenvalues of Schrodinger operators, H= — A — v, v > 0([10];
Theorem 5, 6 and 6’ in Chapter II). Roughly speaking, their results show
that for many v > 0, the negative eigenvalues of H= — A — v are

_2
approximately given by — |Q| » as Q varies over the minimal dyadic
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2 _ '
cubes satisfying |Q|” ! j v > C. Theorem 3.3 below shows, as suggested
Q
by condition (1.3), that this picture extends to arbitrary v > 0 if the

2_
fractional average, |Q|” lf v, is replaced by
Q

L 2ix = L
o j [0 (o) )P dx = 1 L L (x0) (<)o (x) dx,

the v-average over Q of the Newtonian potential of yqv. Certain of the
results in [10] have been generalized by S. Y. A. Chang, J. M. Wilson and
T. H. Wolff ([S]) and by S. Chanillo and R. L. Wheeden ([6]). This is
discussed in more detail in § 3. Further applications of Theorem 2.3 have
been announced in [13].

2. The trace inequality.

We begin by deriving the basic properties of r.d. kernels ® and Borel
measures W for which the trace inequality holds. For the sake of
completeness, we consider here and in § 3 the more general trace inequality

@1 [ L" (TeN)(x)* du(X)]Z < C[ L"f ()P dX};

for all nonnegative measurable f, where 1 <p<g< . For p<gqg
and many r.d. kernels @, the trace inequality (2.1) can be characterized in
terms of very simple conditions — see e.g.[12]. However, many
applications, such as that in the next section, require the case p = q.

ProposiTioN 2.1. — If (2.1) holds for a non-trivial r.d. kernel ® and a
non-trivial Borel measure n, then (i) p is locally finite, that is, J dp < o

Q
for all cubes Q, and (ii) @ satisfies

2.2) J Py dy <o  foral r>0.
Iylzr

Proof. — Choose ¢ >0 so that ®(2¢) > 0. If B is any ball of
radius ¢, and if y, denotes the measure of the surface of the unit ball in
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oo [ ) <[ [cora]
B B

1
< [Ynsn]p||T¢l'Op < 0.

R", then

Hence J dp < oo and this proves that p is locally finite.
B

To obtain (2.2), fix R > 0 so that j dp > 0 where B is the ball of
B

radius R centred at the origin. Momentarily fix S > 2R and
let f(x) = ®(x)" " 'Xrey<sy(X).  For  |x| <R, we have
Tof(x) = j O(x—y)P(y)P tdy = CJ ®(y)” dy. Indeed,
2R<|yl<S 2R<(yl<S

O(x—y) = ®(y) for all y satisfying |x—y| < |y| and this in turn holds
provided |x| < R,|y| = 2R and the distance between X and J is

[x] Iyl
sufficiently small. With this estimate, (2.1) yields

Cf @(y)” dy (J du)% < [J(Tof)" du]%
2R<(yl<S B
1
<C [ j O(y)” dy:l;-
2R<yI<S

Letting S — oo yields j ®(y)” dy < oo and this proves (2.2).

|y|=2R

To obtain a criterion for (2.1) to hold, we look at the inequality dual to
it. A standard argument shows this dual is, with the same C > 0,

o
b

23) [ j (Tafi)x)” dX]p, < C[L"f ()? du(x)]

where p' =

_q
l’q_q—l and

(Tof)(x) = Ln D(x—y)f(y) du(y).
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The behaviour of T, in (2.3) is determined by that of the maximal
operator M, given at a positive Borel measure v by

(Mov)(x) = sup [L f o(y) dy] f dv.
Wlir) o

Iyi<iQf
Note that the first factor on the right side is the average of ® over the ball

1

of radius |Q|" centred at the origin. In the’'case when @ is the kernel K,
for the Riesz potential operator, then M, is the usual fractional maximal
operator M, (see e.g. [3] or [15]).

THEOREM 2.2. — Let ® be an r.d. kernel and v a positive locally finite
Borel measure on R". Then

@) Mov)(x) < C,M(Tgv)(x), x€R”

where M denotes the usual Hardy-Littlewood maximal operator and the
constant C, > 0 depends only on the dimension n.

(b) There exists y > 1 and a positive constant C, depending only on n
so that for all A >0 and all Be(0,1],

{Tev>YA and Mgv<PBy}| < C,,g {M(Tev)>A}.

Proof. — To a given cube Q in R” associate the cube Q* having the
same centre as Q but edges 7\/;z times as long as those of Q.

To prove (a) fix xeR" and a cube Q containing x. Then

r»

f (Tev)(y) dy = dyj ®(y—z)dv(2)
. Q* * Q

JQ

= dv(z)f O(y—2z)dy
Q Q*

LY
,

> @(y) dyf av (y)
‘ Q

LY

Iyl<IQ"

1
since {y;|y—z|<|Q|" < Q*, whenever ze Q. Hence,

-n
-n 2

n
W J | @(y) dy JQ dv (y)

Ivi<iQl”

M(Tov)(x) >
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and so

n

Mov)(x) = 7'n° M(Tov)(x), x € R".
We now show (b). Given A > 0, let
Q, = (M(Tov)>A}.

Decompose €, into disjoint Whitney cubes Q with Q* n @f # & . See
De Guzman [11]. Let {Q,} be those Whitney cubes for which there is an
x, € Q, satisfying (Mgv)(x;) < BA. Fixing attention on such a Q,,
which we’ll denote simply by Q, we define v, and v, to be restrictions
of the measure v; the first to Q*, the second to R* — Q*. We claim it is
enough to obtain a dimensional constant C, > 0 such that

Q4 Tev, < C,A

on Q. Suppdse for the moment that (2.4) has been proved and take
v > 2C,. Then

(e QiTmm > 14 < freQiTap >3},

Now,
2.5 J O(x—z)dx < j ®(y) dy .
Q ¥ 1
This means Iyl<135-1Qf"

j (Tovy)(x) dx = f dxj O(x—y) dv(y)
Q Qe Jor

=j dV(y)f ®(x—y)dx SJ @(y) dyj dv(y)
. Q \/4 1 Q*

m<igier
< (/m"1QIMev)(x) < (73/n)"BAIQI.
Thus with C = 2(7./n)",

A 2
{x € Q;(Tovy)(x) > %}l< "y L (Tovy)(x) dx > C g 1Ql-

Therefore,

|{Tov>7A and Mev<BA}| = ¥ I{x € Qu: (Tov)(x) > 7}

k

< %‘3 T Q< cg {M(Tev) > A}
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To prove (2.4) we’ll require the fact that C, > 0 exists with

2.6) o) < ®@)dz, 0 <r <yl

ly—zl<r

As @ is nonincreasing, this would be true if it were known to hold
whenever @ is the characteristic function of a ball centred at the origin.
For this it suffices to know that the set of z in the ball |y—z| <r
satisfying |z| < |y| occupies at least a fixed fraction of the ball. The

change of variable z = |y|v, followed by the rotation that sends Y o

[yl

e; = (1,0,...0), reduces the problem to the relative size of the
intersection of the balls |v] < 1and |[v—e,| < 5,0 < s < 1, to the size of
the ball |v—e;| < s itself. But for these sets the result in clear.

If xeQ (where Q denotes some fixed Q,) and yeR" — Q*, then
1 1
|[x—y| =2 |Q|*. Thus taking r = |Q|* in (2.6), we get

(Tvy)(x) = J O (x—y)dv(y)
Rn_Q:
G
< - dv(y) O(x—y—2z)dz.
r R"-Q* lzl<r

Making the substitution v = x — z, the last expression becomes

’

'[ (Tev2)(v) dv < %f (TeV)(x) dx < % AMQ*| = CA
Ix—vl<r *

G
r"

with C, = (7\/;:)"C;,, since Q* intersects R" — Q, = {M(Tyv) <A} by
the Whitney condition. This completes the proof.

THEOREM 2.3. — Suppose ® is a nonnegative, locally integrable
radially decreasing function satisfying (2.2). Then for 1 < p < q < oo and
W a positive locally finite Borel measure on R", the following statements are
equivalent :

1. There exists C > 0 so that whenever f is a nonnegative measurable
function on R"

1 1
[J (Tof)(x)* du(x)]E <C [L Sy deI;-
R’l n
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2. There exists C' > 0 so that for all dyadic cubes Q

1

[LjMwWVhT<CM@F<w

where p' = _P_, q = 1 .

p—1 q—1
3. There exists K > 0 so that for all dyadic cubes Q

1

[LmﬂwMVMTsKw®F<w.

Moreover, the least possible C, C' and K in the above are all within
constant multiples of one another, the constants being independent of ®
and n.

Proof. — Let M¥ denote the dyadic analogue of M, given by

M&Pv(x) = sup [LJ‘ (D(y)dy]f dv
x € Q dyadic |Q| 1 Q

y<iQl
for xeR" and v a locally finite positive measure. We claim that for all

such v,

@7 I IMZVI” < J IMov|?” < CIJ | TovI”,
R" n R"

R
(2-8) J ITov|” < C; | [Mgv|? < Csj IMgv|?",
R R R

where the constants C,, C,, C; depend only on n and p(l<p<o).
The first inequality in (2.7) is trivial and the second inequality follows from
part (a) of Theorem 2.2 and the classical L? inequality for M ([18]). The
first inequality in (2.8) follows from part (b) of Theorem 2.2 as in [6].
Finally, to prove the second inequality in (2.8), we apply a standard
covering argument to {Mgv>A} (where A >0) to obtain the existence of
cubes (Q,), with disjoint triples satisfying

a) [_1 j o(y) dy] f dv>\ forall k
‘le 1 Qi
M<IQ"
(ii) [{Mgv > A}| <C;|Q,‘|.

Now each Q, is covered by at most 2" dyadic cubes (I}), ;c;n With
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27"|Ql < |I| < |Qql. There is at least one of these dyadic cubes, say

I, =1, with dv > 2‘"j dv. Then, since ® is r.d. and
I Qi

Ll < 1Qul,

[_1_ f o(y) dy] f dv> 27" forall k
[Tl 1 Iy

<"
and so (JI, = {M&v>2""A}. Since the I, ’s are pairwise disjoint, we
p .

have
H{Mov>A} S CY Q] S CY L
k k

< Cl{M®v>2"m}|

and (2.8) follows upon multiplying this inequality by A”~! and then
integrating over (0,00).

From (2.3), (2.7) and (2.8) we obtain that the trace inequality in 1. holds
if and only if there is C > 0, comparable to the one in (2.1), for which

1
7
s

1
2.9) U (M& 1) ()" dx:|p, < CU Y du(x)] for all f.
R" R"

Theorem A of [16] (with M@ in place of M, ,, the proof is unchanged)
shows that (2.9) holds if and only if there is C > 0, comparable to that in
(2.9), for which

; 1
(2.10) [L" Mg (xq AW’ ] < Cp(Q)* <

for all dyadic cubes Q. Theorem 2.3 now follows easily. The trace
inequality 1. implies its dual (2.3) which in turn implies 2. upon taking
f = %o Inequality 2. implies 3.by (2.7) and (finally,
3.=>(2.10) = (29) = 1.

3. Schrédinger operators.
In this section, Theorem 2.3 is used to refine the estimates for

eigenvalues of a Schrodinger operator H = — A — v given in Theorem 5,
Chapter II, of [10]. By -eigenvalues, we mean the numbers
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A <A< --- <Ay... where Ay is the maximum over all N — 1

{Hu,u)

Cu,up

all ueQ(H),<u,®>=0,j=1,...N—1. Here Q(H) denotes the

form domain of H (see[16]) and (Hu,u) =J (|Vu|?2—v|u|?) for
R"

ueQ(H). Recall that I,f(x)= J |x—y|2 "f(y)dy denotes the
Newtonian potential of f. R

tuples ®,, ... ®y_, of the quantity inf > the infimum being over

THEOREM 3.1. — Let H= — A — v, where v(x) >0 is locally
integrable on R" and n > 3. Denote the v measure of Q, j v(x) dx, by
Q

|Ql,. There are positive constants C, c¢ depending only on the dimension n
such that the least eigenvalue L, of H satisfies E, < — A; < E,;, where

Eom SUP{IQI‘Z’";IQIJ‘j Iz(xov)v>C}
Q

Ebig

sup {IQ‘_Z/"; QI ! J IZ(XQU)UBC}.
Q

Example 3.2. — Consider Example V in [10]: a particle in a
rectangular box B =B, x B, x --- B, with side lengths
8, <94, < ---9,. Let v=yxp and let xz denote the centre of B. Since
sup [Q,| ~* f L (xev)v = Liv(xp) ~ 8 + 8,3, + 8, 8, log (35/3,)

Q Q
~ 6, 8, log (1 + 0;/95,),

Theorem 3.1 yields the correct order of magnitude for the energy, E
needed to trap a particle in B, namely

critical »

Euea = sup 1 -0: = A—Ep>0} = 1/8, 8, log (1 + 85/3,).

A refinement of Theorems 6 and 6’ in Chapter II of [10], similar to the
one above, is given in

THEOREM 3.3. — Let H= — A —v where v(x) >0 is locally
integrable on R" and n = 3. There are positive constants C, c¢ depending
only on the dimension n such that :

(A) Suppose )»12 0 andlet Q,, ..., Qn be a collection of cubes of side
length at most A 2 whose doubles are pairwise disjoint. Suppose further that
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inlv—lj Iz(ijv)UZC, 1<j<N. Then H has at least N
QA
eigenvalue]s < —A.

(B) Conversely, suppose A >0 and that H has at least CN
eigenvalues < — N. Then there is a collection of pairwise disjoint (dyadic)

1
" cubes Q;,...,Qn of side lengths at most )\ 2 that satisfy
|Qj|u_1j LG 2c, 1<j<N.
Q !
Roughly speaking, Theorem 3.3 says that the negative eigenvalues of H
are approximately given by — |Q| %" as Q ranges over the minimal

dyadic cubes satisfying |Q|, ! I I,(xqu)v = C.
Q

In [10], results corresponding to Theorems 3.1 and 3.3 were obtained

with the quantity |Q|, ‘I I,(xqu)v replaced by the simpler average
2_y
ClQj»

Q
part (B). A comparison of these quantities is made in Remark 3.5 at the

end of this section. Chang, Wilson, and Wolff [S] show part (B) of

Theorem 3.3 holds for v if supIQI%_lJ v(x)CI)(|Q|%v(x))dx< 0,
Q Q

1
v in part (A) of Theorem 3.3 and by Cp|Q|%‘%<J vp)ﬂ in
Q

o0

d
where @: [0,00] — [1,00] is increasing and J X < 0. See also-

1 xX®@(x)
Chanillo and Wheeden [6].

Proof of Theorem 3.1. — The Schwartz class S is dense in Q(H) and
thus we have

inf S _

1 ue Q(H) <usu> ues J‘lu|2

= inf {o > O;J|u|2v < leulz + ajul?
= J(l&lz + 0)|d(8)|* d&, u e S}

= inf {a>0;J(I}ﬁzv<Jf2,f> 0}
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where Ij is the operator with r.d. kernel K} defined by
KD"E) = (&P +a) ¥ Thus K’(x) = G,(x) and

Ki(x) = a G (a2x)

If we let C, denote the least constant such that

J(I?f)zv < CalJ‘f2 forall f> 0,

then — A, = inf {a;C,<1}. By Theorem 2.3,

3.1 G~ Sup o j[l“{()cov)]2

in the sense that the ratio of the left and right sides is bounded between two
constants independent of o and v. We now show that, in fact, the
supremum in (3.1) need only be taken over those cubes Q with

f [I3(ev))*  and

1 -1 . 1
Q" <o 2 To this end, set M= sup —
o 1Ql
Q/nga—112
. . 1 -1 )
suppose Q 1is a cube with |Q|» > a 2. Express Q as a union of
congruent cubes, Q;, having pairwise disjoint interiors and common

1 1 -1
sidelengths, |Q;[", satisfyingicx 2 |Q,|" o 2. Then, we claim

(32 I[I? ) = %, Jlﬁ (e Ti (o)

iJj

<czfmuww

< CMYIQ/, = CMIQ],.

1
2

1
The second inequality holds by definition of M and since |Q;|* < a
To prove the first inequality, we consider two cases. First, when Q; and
Q; are adjacent, we simply use

1 1
.ﬁumpnuyosijuumpr+5jmu¢M?

To treat the case when Q; and Q; have a distance of roughly k
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sidelengths between them, k > 1, we require the facts that

_1 2 _1
K3(x) ~ [x|>™" if |x| <o 2 and K&(x) < Co 2 ¢ V™ if x| > o 2
for which see [4]. We then have

’

n—2

JF{ ()15 (xqp) = f (X)) v(x) dx < Ca 2 e7MQulIQl,.
Q;

1
However, Ii(xq)(x) > Ca 2

for xe Q, and so

1 1

Q<% f 0o = = f I (100) () dx.
C Qi C Qi

Thus

21Qil,1Qjl, < 1QilT + 1Qy17

<o o <[ ] ]

Q; Q;

< Cocl_%< I (15 (xo1* + f [I?(xojv)F)-
Q; Qj

Now, for a fixed cube Q;, there are at most Ck"~! cubes Q; ata
distance of roughly k sidelengths from Q;. Combining all of the above,
we obtain

2| Bl < C[l + k""e—"] > J[P{(XQ,.U)]2
ij k=1 i
i)
which yields the first inequality in (3.2). From (3.1) and (3.2), we have
C,~M and since f[l“{()(Qv)]2 = J‘ S(V)v = J‘Iz(xov)v when
_1
|Q|% < o 2, we finally have

1
C,~ sup ——jl v)v
Q/nga—172

and Theorem 3.1 follows readily.

Proof of Theorem 3.3, part (A). — As in [10], it suffices by elementary
functional analysis to construct an N-dimensional subspace Q = Q(H) so
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that {(Huu) < — A J |u|?> for u in Q. Our hypothesis implies

1
j B(xev)v = C forj=1,... N.
1Qjl, Q J

11
Since f I3 (xov)v < <J [Iﬁ(va)]2u>2|Q|§ by Holder’s inequality, we
Q Q

actually have
(ko0 > Cf B(xep)v. 1<j<N.
Q; Q;

This suggests we let Q be the linear span of {f;}]., where f; = ®,I} (xqjv)
3 . . .
and @; = 1 onEQj with supp ®@; contained in 2Q;. Here the ®; are
dilates and translates of a fixed ® € C®(R"). We have immediately that
(3.3) jf}v > cj Biopv for 1<j<N.
Q

By hypothesis, the supports of the f; are pairwise disjoint and so we need
only establish

3.4 A=A+Nffpp < j(f,-)zv for1 <j<N

in order to conclude (Huu) < — A J |u|? for u in Q, as required. To

3
prove (3.4), we let G; = 2Q; — EQJ- and compute that

(= A+N)f; = (= A+ VO T3 (op)]

= top + 1o~ A+ VO (o))

since I4 = (= A+A)"!. Now
A 1 2 1 2
A,Lfp = . Iz(ijv)v < c fiv (by4.3)) < 3 fiv
j

provided C is chosen > 2. It remains to verify

(B.f> < C’j IZ(ijv)v for all j since then (3.4) will follow from (3.3)
Q
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and the previous estimate provided C > 2C'. Now

(3.5) IBj] < xg,[@;|AL(xq)| + 2|V, |IVI; (o)
+ (A [AD;DT3 (2o )]

-

Using the estimates |D*K4(x)| < C|x|27 "%, for s > 0 and |x| < CA 2
(see [4]) we obtain that on Gj,

Brqp)(x) < CIQ)+ ™ J v
Q

IVEtq2) ()] < CIQ, " f 0
Q

|AL; (o) (¥)| < CIQ;I_lj v
Q
_1
These inequali;ies, together with [®;| <1 IVo;| < C|Q;| ™,

Z
n

|A®;| < C|Q;| ™ and the hypothesis A < |Q;| ", yields

(3.6) D;, E;, F; < ClQ;I Q-
Since fi(x) < Clel%'lj v on Gj;, (3.5) and (3.6) imply
Q

3.7) (B, < CIQ;I" Q2.

Finally,
2, 2
[Q;l" (I v) C(mmI*(va))<J )
Q Q

< ‘[ 2(XQ v)v
Q}

and this, combined with (3.7), shows that (B;,f;> < C J 2()(Q v)v and
completes the proof of part (A) of Theorem 3.3. Q

Proof of Theorem 3.3, part (B). — We follow closely the argument of
C. L. Fefferman and D. H. Phong in ([10]; proof of Theorem 6 in
Chapter II), but with certain modifications designed to avoid the use of a
square function. As in [10], it suffices to suppose v bounded and to show
that if Q,,...,Qun are the minimal dyadic cubes satisfying



THE TRACE INEQUALITY 223

1 _1
|Q| J 2()(Qv)v c and |Q;" <A 2, then H= — A — v has at
Jjlv

most éN eigenvalues < — A (where the constant C is of course
independent of the bound on v). As usual, this will be accomplished by
exhibiting a subspace Q = L? of codimension < CN such that

(3.8) (Huu) > — XJ‘IuI2 forall u in Q.

We consider only the case A =0, the case A > 0 .requiring easy
modifications. We begin by defining additional cubes Qy.;, ..., Qy as
in[10]}; ie. let B be the collection of all dyadic cubes Q with

1 :
IQT_[ I,(xqv)v = ¢ and define the additional cubes Qu,;, ..., Qu to
v JQ

consist of (i) the maximal cubes in B, (ii) the branching cubes in B

and (iii) the descendents of branching cubes in B. The descendents of a

cube Q in B are those Q €B which are maximal with respect to the

property of being properly contained in Q. A cube in B « branches » if it

has at least two descendents. As shown in[l10], M < CN. Still
M

following [10] we define E, = R" — U Q; and E; = Q; minus its
j=1

descendents for j > 1. In analogy with estimates (i) and (ii) of [10], we

shall prove that the weights v; = Xep satisfy

3.9) ﬁj I (xqvj)v; < Cc forall0 < j < M, Q dyadic cube.
v Q
In order to make use of (3.9) and the trace inequalities it implies we
shall have to define the subspace Q so that
(3.10) |u(x)| < CIl(xEleuD(x) for xeE;,0<j<M,uecQ.
Indeed, if both (3.9) and (3.10) hold, then for ueQ,

M
jlulzv= ZI |ul?v;
i=0 JE;

CZ [0, (x| Vull’o; by (3.10)

i

u[\/]gé',

E
<C f |Vu|> by (3.9) and Theorem 2.3

< —[IVulz if ¢ small enough,
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and this is (3.8) for A =0. Thus it remains to construct Q of
codimension < CN such that (3.10) holds. In the case 1 <j < N, E; is

a cube and (3.10) holds whenever u = 0 by the following inequality of
E:
E. Fabes, C. Kenig and R. Serapionji ([9]; Lemma 1.4)

u(x)—ﬁj u

For the case when E; is not a cube we will need the following lemma.

(3.11)

< CI4 (%ol Vul) (x) for xe Q,Q a cube.

Lemma 3.4. — Suppose Q., ..., Q, are pairwise disjoint dyadic
subcubes of a dyadic cube Q in R". Then there are (not necessarily dyadic
k

or disjoint) cubes 1,, ..., I, suchthat Q — | ) Q; U I, and m < Ck
ji=1

i=

where C is a constant depending only on the dimension n. The above holds
also for Q = R" if we allow the cubes 1; to be infinite, i.e. of the form
J, xJ, x ---J, where each J; is a semi-infinite interval.

This lemma has been obtained independently by S. Chanillo and R. L.
Wheeden [6], with a proof much simpler than that appearing in a previous
version of this paper. As a result, we refer the reader to [6] for a proof of the
lemma.

We can now define the subspace Q. For each j with j=0 or
N +1<j<M, apply Lemma 3.4 with Q = Q; and Q,, ..., Q, the
descendents of Q] (for j=0, take Q=R" and Q,, ..., Q, to be the

. /A

maximal cubes in B), to obtain cubes I, ..., Iff with E; = () I¥ and
J i=1

m; < C (# of descendents of Q). Note that E; = Q; for 1 <j < N.

Now define

Q= {u;j u=0for 1<j<N andj u=0
< i
for N+1<j<M, j=0 and 1<i<m;}.
If xeE;, N+1<j<M or j=0, then xesome I and thus for
ueQ, lux)| < CI 1 9 V) (x) < CL (15| Vu)(x) by (3.11). Thus (3.10)
holds. Finally, the codimension of Q is at most
N+ Y m<N+C ) (# ofdescendentsof Q)
j=0

j=0
N+1<jsM N+1g<isM

<N+ CM+1) < CM
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It remains now to establish (3.9). We begin with the case j # 0 of (3.9),
and follow the corresponding argument in [10]. Since suppv; = Q;, we
need only check (3.9) for dyadic cubes Qe B with Q = Q; and in fact,

2’!

only for proper dyadic subcubes of Q; (since if Q = () Q;, then

i=1

L I (xqv) = J[II(va)]2
= 1 | Lo g < 3T | g0
<C, ;an J[II(XQ,.U)]2
= C, é . L (xqv)v) .-

As in [10], the only « non-trivial » case occurs when Q;e B is neither
minimal nor branching and Q contains Q¥/, the unique maximal
Q;, 1 <i <M, that is properly contained in Q; (see the argument on
p.- 157-158 of[10]). To obtain (3.9) in this case we use a Whitney
decomposition in place of the Calderon-Zygmund decomposition used
in [10]. There is a dimensional constant C so large that we can choose
pairwise disjoint dyadic subcubes Q, of Q — Q*(=E;nQ) such that
each Q, satisfies

(3.12) either |Q,| = |Q}| and dist (Q,,Q) < C

_ dist (Q,,Q)

or2 < < 2C

diam Q,
Then

j L, (xqvpv; = Zf Iz(XQBU)U
Q a,B JQq
<C Z Jll (XQGU)I1 (XQBU)
{a,B;Qq touches QB)
+ C Y L(xq)v =D + E.

{0uB:1QpI <1Qq Q
and QG’QB do not touch}

Now (3.12) shows that the number of QB touching a given Q, doesn’t
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exceed a dimensional constant and so

D < CZJ.[II(XQJ’)]Z = CZJ L(Xo,0)v < Cczj‘ v; = ch v;
a a Qq a JQq

Q

since the Q, are notin B. Condition (3.12) also shows that if |Qy| < |Q,|
~ A N o1
and Qg, Q, do not touch, then dist (Qp,Q,) = c|Q,|”. Thus

ceer((Jor, 21,
o Qu B:1QpI<1Qq Qﬁ

A 2 1 A
But Q" 1[ v < T—J Iz(xQﬂv)v < ¢ since Qy ¢ B and, by (3.12),
QB |Qﬂlv QB

the number of QB of a given size does not exceed a dimensional constant.
Thus

A 2_ A 1.2
E<Cc2<j v)IQuI" oy [ Y O1Ql ]
« Q {k;2K1<1Qql} LIQgI=2k"

<Cch v=CcJ v; (since n>3)
a JQ, Q

and this completes the verification of (3.9) for j # 0. For j = 0, we again
suppose Q dyadic in B. If Q csome Q,,...Qy, then
supp v, " Q = & and (3.9) holds trivially. Otherwise, Q contains a
unique maximal Q;(1<i<M), say Q*, and we may argue as above to
obtain (3.9). This completes the proof of Theorem 3.3.

2
Remark 3.5. — In [10] it is shown that suplerlf v<C is
Q Q

2_1 1/p

necessary and sup |Q[» r (J v") < C,,p > 1, sufficient for the L?
Q Q

trace inequality (1.1) with Te = I,. We give here a direct proof that

(.20 sup QI * f

v < Csup|Ql;! j L (4qv)
Q Q Q

2.1 lp
< C,sup |Q|» p(J v”> s p>1.
Q Q

The first inequality in (3.20) follows from the observation that

I, (xQv)(x) = CIQI%_lj v for x in a cube.Q.
Q
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2.1 Up
Let B, = sup |Q|" P(I v”> . Suppose first that v satisfies the A
: Q Q

condition of B. Muckenhoupt. Choose p so close to 1 that the reverse

1/p
Hoélder condition (lQI“J v”> < C,,IQ)“j v holds for all cubes
Q Q

Q. LetM, f(x) = suplQI%_IJ |fl. Since M;(xqv) < B, on Q,
xeQ Q

l; 1/p
3.21) J Iz(va)v<< J Iz(va)P’> < j v”)
Q Q Q
1/p 1/p
< C,,<J Mz(xov)"'> <J v"> (see [15])
Q Q

1/p
< C,,B,,[Ql”"'(L v”) < C,B, Lv.

For the general case, we use the observations in [10] that

1
v* (x) = sup (IQI -1 J v”) ’ satisfies the A, condition and
Mt < Cp%p ([10]; p. 1Q53). The above argument then yields (3.21) with
vt in place v. Since v < v*, (3.20) follows. This is of course obvious
from Theorem 2.3, but can also be proved directly. Finally, we point out
that the condition M,,(v*) < C, is equivalent to the boundedness of M,,
from L2 to L2(w") ([17]). Together with the inequality
I, f(x)| < C,M,If1(x)"*Mf(x)"/"" of D.R.Adams, this yields another
proof that M,,(v”) < C, is sufficient for the L? trace inequality (1.1) with
Te =1,. J. M. Wilson has recently communicated to us yet another
proof.
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