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MULTIPLE SINGULAR INTEGRALS
AND MAXIMAL FUNCTIONS

ALONG HYPERSURFACES

by Javier DTJOANDIKOETXEA

0. Introduction.

Homogeneous singular integrals on the product space Rn+m^

T/= p.r.K*/, with K(x,y) == S l ( — . y - \ \ x \ - n \ y \ - m and

Q.(u,v)du=[ n(u,v)dv=0, are bounded in L^R"-^),
Js"-1 Jsm-l

1 < p < oo, when some regularity conditions are assumed on Q, as can
be seen in [5]. In [6] weighted inequalities are obtained for these operators,
always assuming some regularity on the kernel. In this paper we get both
L^-boundedness and weighted inequalities for T with size conditions on Q
instead of regularity, namely : T is bounded in LP(Rn+m), 1 < p < oo ,
if ^eL^S^xS^"1), q > 1, and in ^(w), for the natural class of
weights w (described below in § 2), if Q e L00. Our study of T is based
on its decomposition as

T/=Ea,,,*/
k,j

where a^j are Borel measures given by

a,,,(^)= ff K(x,y)g(x,y)dxdy.
JJ2k^\x\<2k+i

2J^\y\<2J+l

Also Hilbert transforms along surfaces can be decomposed in an

Key-words: Multiple singular integral - Maximal function - Fourier transform - Operators
along surfaces.
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analogous way. For a surface S in R3 parametrized as (s,r,(p(s,t)) we
define

u^ ^ f00 f00 ^ . ^dsA
H/(X) = p.V. /(Xi-S,X2-^X3-(p(5,0)———

J - oo J - oo sr

and we can write

H/= Z ^-*/
k,j= — oo

where the Borel measures a^j are now defined by

°kj(g) = ^(s.r.q^O)5^
JJ2^N<2^+1 sr

2^|r|<2-/'4-1

When (p(5,Q = Wt\^, a,P > 0, H is known to be bounded in L^R3),
|l/p-l/2| < e for some s > 0 (see [8], [12] and [13]). Associated to the
surface S we have the maximal function

i f^ i r^2
M/(x) = sup ,— /(.Xi-5,X2-r,X3-(p(s,0)^A

/il^X)'1!^ JO JO

which is controlled by

^/(x)=sup|^,*/(x)|
kJ

where the ^j are positive Borel measures given by
^k+\ ^j+l

^jfe) = 2-^' g(5,t,(p(5,0) ̂  A.
J2fc j2/

M is bounded in L^(R3), 1 < p < oo, if (p(s,0 = I s r i r p (see [3]) and if
(p(0,0) = Vq>(0,0) = 0 and (p has nonvanishing second order derivatives
at the origin (see [2]). We get the boundedness of M and H in the whole
range 1 < p < oo for these surfaces and also for some others having a
contact of infinite order at the origin with the OX^X^ plane. These
problems on surfaces appear as a natural generalization of their analogues
on curves, and are posed in [11].

All the results are obtained from the two general theorems stated in § 1.
Two families of measures {^j} and {c^j} being given, we study the
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boundedness in L^ of the operators

Jif(x) = sup|^.*/(x)|
kj

T/(x)=^a,,,*/(x).
kj

Here a .̂ will be positive Borel measures and o .̂ will have zero integral.
The technique is based on the cutting of the multipliers (the Fourier
transforms of u^ and c^j) according to a certain Littlewood-Paley
decomposition which allows us to obtain L^-norm inequalities. The method
works when some decay and regularity conditions are supposed on the
multipliers. The extension of the results to more than two parameters is
straightforward but it complicates the notations considerably. In § 2 we
give the applications to multiple singular integrals and in § 3 we deal with
maximal functions and Hilbert transforms along hypersurfaces.

This paper extends to the multiparametric case the results in [4] and the
proofs of § 1 and § 2 follow the same pattern as for the one-parameter case
of [4]. Nevertheless, for the sake of completeness, we state them here. In § 3
the estimates on the Fourier transforms and the boundedness of maximal
functions required by the conditions of theorems 1 and 2 must be proved
(lemmas 2 and 3). As expected. Van der Corput's lemma is an important
tool in obtaining the estimates; the boundedness of the maximal functions
is a consequence of some inequalities involving lower dimensional maximal
functions which in some cases are bounded by an induction hypothesis.

I should like to thank Jose L. Rubio de Francia for his help throughout
this work and the referee for his useful suggestions.

1. General Results.

Let us introduce some notation. We write R" = R"1 x R"2 x R"3 and
xeR" as x = (x^x^,x^ with x,eR\ i= 1,2,3.

If / is a function defined on R" and ^6R"'0'=1,2) we define

A^/(Xi,X2,X3) =/(^l+/ll^2^3) -/(^1^2^3)

^/(^l^.^) =/(-^1^2+^2^3) -/(^1^2^3)

^/(^^AX)).
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Given a measure p, in R" we define ^ in R^-^ ^(2) ^ R"i+"3^
^(1,2) ^ RH3 ^ ^y ^(1)^ ^ ̂ ni ^ ̂  ^ ^(2)^) = ^(R"2 x F) ,

^•^(G) = ^(R"ixR"2xG) where E, F, G are Borel sets in R^^
R"i+"3, R"3 respectively.

Finally, we write |a| for the total variation of the measure CT and
r^ = inf^r01) for t > 0.

The main theorems of this paper are the following:

THEOREM 1. — Let \ikj be uniformly bounded positive measures in R".
Suppose that for some a, b > 1, a, P > 0, and for all kj e Z

l^/yi^Cl^l-01!^!^
|A^,(0,^,^)1 < CI^H^I-P

|A^,,(^,0,^)1 ^ Cl^l-01!^!!3

|A^ ,̂(0,0,̂ )1 < Cla^J^^IP

with C independent of i;. Suppose also that the maximal functions

M^=sup|^*gJ, f = 1,2
kj

M< l '2)g=sup|^ lJ2>^|
kJ

are bounded in L^ /or every p > 1. TTi^n,

^/(x)=sup|^.*/(x)|
kj

f5 bounded in L^R") /or a« p > 1.

THEOREM 2. — Z^t (Jfcj be Borel measures in R" such that \\o^j\\ ^ 1
and

l^/^I^CIa^J^I^I^

/or sow^ a, b > 1, a, P > 0 and for all k, j e Z . 7f
a*(/) = sup|[<j^.[*/| i5 bounded in L^R") /or sow^ ^ > 1, then,

kj

T/(x)=^a,,,*/(x)
kj
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and g (/) (x) = ( ̂  [ Ok, * /(x) |2 )2 an? bounded in U (R") /or
\kj ' /

1-1 J_
P ~ 2 < 2 q '

We shall prove first theorem 2 and use it to prove theorem 1. We begin
with a lemma needed in the proof of theorem 2:

LEMMA 1. — Let CTfcj be Borel measures in R" such that \\0kj\\ ^ 1-
V <^*(/) = sup 11 CT .̂ | */| is bounded in L^R") for some q > 1, the

following vector valued inequality holds

[(SK^d'y <c[(zi^¥
\\k.j / PO \\k.j /

, 1 1 1
fw P o - 2 ' 2 , -

Proq/1 — We present here a proof different from that of [4]. The
inequality

Zl^j*^jl < Zl^j
kj 1 k,j

is obvious because Ho^H < 1. On the other hand, the hypothesis on a*
gives

I I sup | a^,* ̂ ,|||, ^ llo^sup |̂ ,|)||, ^ C||sup|^,|||,.
kj k,j k,j

Interpolation between these inequalities provides the lemma when

— = ^( 1 + -) • The case po > 2 is then obtained by duality. D
Po ^V Q/

Proof of theorem 2. — Take two Schwartz functions, \|/1 e ̂ (R"1)
\|/2 e ^(R"2) such that

supp(v|/1)'c^< |̂ ,| <2l, i = 1,2

0 ^ (v|/1)' < 1, f = 1,2

E Î H î)!2 = Z l^2)^^)!^!.
k = — oo j = — oo
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If VI/,1 and ^ are defined by (^)'(^) = (i)/1)^^) and
(^)'(^) = 01/Wi;2), we can write

T/ = Z E CTtj * ('K1^®^) * (^+,®^J */= S T,,,J.
k,j l,m l,m

Then, ||T/||p ^ ^ l|T^/||p and we estimate each of the terms of this sum

by interpolation between the L^-norm and the L^-norm (po as in
lemma 1).

IIWÎ  ^ C fr|a,., * (v|/^,®^J */|2^
I \kJ )

^ c' fzi(^^®^j ̂ /i2^ ^ c"||/ii
\k.J / PO

where the first and last inequalities are given by Littlewood-Paley theory
(see [10]) and the second one follows from lemma 1.

The L2 estimate is provided, as usual, by PlanchereFs theorem

IIT^IIJ^zff.Ja^)!2^)!2^
k , j J J \ j

where

A^ = ^ e R^a-^1-1 < |^| <a-k-l+l,b-^-m-l < |̂ | < ̂ -w+l} .

The hypotheses on a^/^) imply

IIT^/II^Ca-^fc-^ll/ll,.

1 1 1 - 9
. < —» we have - = , + ——p 2| 2q p 2 po

Now, when

0 < 9 < 1 and then

for some 9 with

IIT/11, < Z ||T,,/||, ^ C S a-^b-^\\f\\, ̂  C,||/||,.
l,fn l,m

The proof of \\g(f)\\p ^ C||/||p is similar. It can also be deduced from
the preceding result, by observing that for every sequence {s^ },
£ k j = ± l , the operator TJ = E^^fcj*/ has a bound in U

kj
independent of the sequence of signs; then, the inequality for g(f) is
obtained by randomization. D
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Proof of theorem 1. — Let 01,02 be positive Schwartz functions in
R"1 and R"2 respectively, such that (^^(O) = OD2)^) = 1 and define

(^) î) = (^T( î)
(^fa2)=(^T(^2).

Then, we define the measures a^j by

^) = M )̂ - (^r^w0^,^)
- (< f̂(^)M^O,i;3)
+ (^r î)(^r ?2)^(0,0^3)

which satisfy the size hypotheses of theorem 2. Moreover, for every / ̂  0,

Mf{x) ̂  sup ((D,1 ® n^) */(x) + sup (0>2 ® ̂ ) */(x)
kj kj

+ sup^^O2®^2)) */(x) + g(f)(x)

where g(/)(x) is the quadratic mean of {a^j *f(x)}i,j as in theorem 2. If
Mi is the Hardy-Littlewood maximal function acting on the Xf-variable,
we have

sup (<D,1 (g)^) */(x) ^ CM^^y-Cx)

sup (O2®^) */(x) ^ CM^^^x)

sup^1®^2®^1;2^/^) < CM.M^^x)
kj

where Kl^^ M^ and Kl^'^ act on the corresponding variables. M^
and M^ are known to be bounded in L'', p > 1; ^(1), M^ and
IV^11^ are also bounded in 17, p > 1, by hypothesis. Since g is
bounded in L2 , so is M. From the definition of a^j we deduce the
boundedness of a* in L2; then, theorem 2 applies and yields the

4
boundedness of g (and, therefore, of ^) for ^ < p < 4; but then o* is

also bounded in such range of p ' s and a new application of theorem 2 gives
0

the boundedness of g and ^ when _ < p < 8. Successive applications

of theorem 2 allow us to obtain the whole range 1 < p < oo . For p = oo
the boundedness is trivial. D
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2. Multiple Singular Integrals.

The homogeneous singular integral operators in R" defined by

T/(x)=p.v. f wf(x-y)dyJR" \y\
with 0 homogeneous of degree 0 and mean value zero over the unit
sphere are known to be bounded in LP(Rn), 1 < p < oo, under the
hypothesis ^eLq(Sn~l), q > 1. This result is usually obtained by the
method of rotations ofCalderon and Zygmund [1]. It is elementary when Q
is odd (even with QeL^S""1)) and when Q is even, the operator is

n
written as T = — ^ R?T, where {Rj?=i are the Riesz transforms,

1=1
which are bounded in L^R"), 1 < p < oo. Then, the result for odd
kernels is used to handle R/T (see [1] for the details). A general Q can
now be decomposed in its odd and even parts.

We can generalize these operators to p""^ in the following way : Let

T/(x,,^) = p.v. ff ^^^/(x,-^,^-^)^! dy,JJRnxR^\yl\ \y2\
where y ^ e R " , j^6^ an(^ ^ = ^i/l^il l = U. The cancellation
hypothesis on Q becomes

[ "(/i ̂ 2) dy\ = [ 0(/i ,/2) dy, = 0.
Js"-1 Js'"-1

If we intend to apply the method of rotations to this case we find that for
the easy part, the oddness of 0 in each one of the variables y\ and y\ is
needed, i.e.,

"(/1^2) = - "(-/1,/2) = - "(/I, -Yl) = "(-/1,-/2)

for every y^ e R", y ^ e R " " . Therefore, the rest of the method seems too
difficult to be adapted here.

Anyway, we can show that, also in this case, Q e ̂ (S""1 x S"1"1),
q > l , is enough to obtain the boundedness of T in LP(Rn+m),
1 < p < oo. We do this by decomposing T as

pfc+l ^j+\ ^ „

T/0c)= Z ^v)f(x,-ru^-sv)dudv——
k , j = - a o J 2 k JU JJsn-lxSm-l rs

= £ °kj */oo
kj
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and applying theorem 2. Actually, we shall prove a somewhat more general
result because an extra factor of the type Ml^ilJ^I) ^ allowed in the
kernel.

COROLLARY 1. — Let K(xi,X2) be a kernel of the form

K(ru,sv) = r^s" ̂ (r^fi.^v)

for r,5 > 0, (u,u)GS"~1 x S"1"1. Suppose that

a) ^l(u,v)du = 0 , VreS"1"1

Js"-1

^(u,v)dv=0, VMeS"- 1

Jsm-l

QeL^S"-1 xS"1-1), q > 1.
/•RI pR2

fc) l/i^s)!2^^ ^ CRiR2 /or ^^^ R i , R 2 > 0 . Then,
Jo Jo

Tf= p.v. K*/ is bounded in L^R"), 1 < p < oo .

Proof. - Write T/=^c^,*/ with
kj

y.2^+1 /•2^'+1 /•/•

^j(y = 0(M^)^(r,s)
J2k j 2 J JJs^-^S'"-1

, - _ - .. , - dr ds
. exp (— 27n(^i. ru + ̂ 2 •su)) ̂ u dv —— •rs

We apply theorem 2 (without the third variable ^3); let us verify the
conditions of the theorem :

^k+l ^j+\ ^

I^W^C Q(u,r)
J^ JU JJs^-lxS"1-1

exp (- 27if(^. ru + ̂ 2 • sl;)) du dv
rs

,2^+1 /»2;+1/•2'c-^l /»2^1 r /»/• _____
= C Q(M,r),n(i/,i/)

J2 fc j2^ LJJ(Sn- lxSW- l)2

exp (- 27ii (^ . r(u - u') + ̂  • s(v - v'))). du dv du' dv^ dr ds

rs
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NOW

.2<;+1 ,y+l

exp (- 2it»(^. r(u - «') + ̂ . s(i; - i/)))drds

2* j2^ rs
C

^|2^.(t<-i/)||2^.(i^')l'

Moreover, this integral is also bounded by 1; thus, the bound can be taken
as C^. (u-«')| -'12^. (u-i/)|-6 for arbitrary e, 0 < e < l .
Holder's inequality gives

iWdudu'
(I

|CT,,,(i;)| < C || ft ||,
<\Js"-•xs"-'|2^l.(M-u')r7,

dvdv' \l/^'
Us'"-'xS'»-'|2^2-(^-f')l^

and choosing e such that sq' < 1 we get

|o,,,(^)| < C|2^ | -'12^1 -e.

For the other estimates the cancellation properties are needed :
<.2<c+l /. i «y+l F

|A,o,,,(0,̂ )| < Sl(u,v)h(r,s)
1 J^ Js"- ' | j2^ Js'"-l

ds dr
exp (- 2ir^2. so) riu — |exp (- Ini^. ru) - 1 1 du — •

The inner integral can be estimated as before and we obtain the bound

2<:+1 „ , p^+l ^ _^2^+1 F / /•2^+l , \^-

C \h^s)\2-) \Wu^)\\^-,
J2fc Js^^Jl^ 5/ v]sn-\i '^l2^ ll^'01^-1)

rfu^^l^l-6 ^ CIIQIIJ^IH^I-8.

The symmetric condition, interchanging the roles of ^ and ^. ^ similar.
The fourth condition

|A^a,,/0,0)|^C|2^J^^^

is a simple consequence of the cancellation properties.
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Finally, we must obtain the boundedness of o* and this will follow
from theorem 1. In fact, since

^k+\ ^j+l ̂

(1^1)^)= |Q(u,r)||fc(r,5)|
J2k j2J JJs"-1^-1

. exp (— 27cf(^i. ru + ̂ 2 •sy)) ̂  ̂  ——rs

the above estimates are also available here and

a2/c+l /•2./+l » i \-1-(io,.,ir(o)^ i^)i2— riion,
,fe j2; rs /

is a uniformly bounded sequence. On the other hand, the partial maximal
functions of theorem 1 are controlled (if^^O) by

/»2^+1 ^

W^^i)^ ||0(M,-)||^s-i)?i(r)^(Xi-^)^^
J2k JS"-1 r

f2^1 dswith Ti(r) = |/i(r,5)|2— and its analogue for X2 . Then, the
Ju s

boundedness of the partial maximal functions is a consequence of the one-
parameter result ([4], corollary 4.1). Thus, CT* is bounded in L/, p > 1,
and then theorem 2 implies that T is bounded in L^, 1 < p < oo .

D
After this corollary where L^-estimates have been obtained with size

conditions on Q instead of the regularity assumed in [5], we give another
corollary where we get weighted norm inequalities with somewhat more
restrictive conditions on the size of 0 (now, Q e L°°), but without the
regularity conditions used in [6].

The class A^ of weights w for which we obtain estimates in 17 (w)
can be described as those nonnegative locally integrable functions such that

/ 1 r \ / 1 r v-i
sup ^- w(x)dx p , w(x)-^-^dx] < + oo

R \W JR / \W JR /

where R is the product of two arbitrary cubes of R" and R"" respectively.
Alternatively, we can say that w e A^ if for each x^ e R", w(xi, •) is in
A^R"") with constant independent of x^ and a similar condition holds for
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w(-,X2). These are the weights for which the strong maximal function

mxl9x2) = ̂ WWxB(W\

1/C^i-^1^2-^2) I ̂ 1^2
JjB(0,Ai)xB(0,/i2)

is bounded in L^w) [7].

COROLLARY 2. — Let
K(x,,x,) = ̂ .^(IxJ.I^DIxJ-^l-"

be a kernel such that /ieL°°(R2), Qe L^S""1 x S^) and

Sl(u,v) du = 0(M,iO dv = 0
Jsn-l Js"1-1

then T/(x) = p.v. K */(x) 15 a bounded operator in L^w), w e A ^ ,
1 < p < oo.

The proof of this corollary follows step by step that of corollary 4.2
of [4]. We only need to be sure that all of them generalize to the product
setting :

i) The extrapolation theorem of Rubio de Francia [9] allows us to
restrict the problem to p = 2;

ii) if w e A$ the Littlewood-Paley inequalities associated to a product
decomposition hold in L^w) [7];

iii) |akj|*/(x) ^/?0c), Vfej; therefore CT* is bounded in L^vv),
w e A ^ r

iv) if w e A $ , then for some e > 0, w^8 is also in A^.

From (ii) and (iii), the operators T^ in the proof of theorem 2 are
uniformly bounded in L^vv). By (iv), the same is true in L^w^8).
In te rpola t ing this wi th the unweigh ted inequa l i t y
ll^m/IL ^ Ca"011^"31'"11 I/I 12, we obtain an exponential decay in the
L^viO-norm of T^, finishing the proof.

3. Maximal functions and Hilbert transforms along surfaces.

Consider a surface S in R 3 , parametrized as (s,^,(p(5,r)) with
(p(0,0) = 0 and even in each one of the variables, i.e.,

(p(-s,0 = (p(s,-r) = (p(-5,-Q = (p(5,r), s, t > 0.
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The maximal function along S is defined by

^/(x)= sup ——If ' 1 P/(^-s,X2-r,X3-(p(s,0)^A
o^qhi^lJo Jo

1=1,2

and the Hilbert transform along S is

rr dsdt
H/(X) = p.V. /(Xi-5,X2-^C3-Cp(s,0)————-

JJN<CI 5r

|t|<C2

Both integrals will be a priori defined only for Schwartz functions. The
numbers Ci and C^ appearing in such definitions depend on S and can
be + oo . When they are finite we can suppose, without loss of generality,
that they are exact powers of 2.

Let us define a new maximal function
^k+\ F2^+ l

^f{x) = sup .̂ py /(xi - s,X2 - t,x^ - (p(s,0) ds dt
fe^Ni 2 j2^ j2^'
^N3

= sup ^ .̂ */(x)
fc^Ni
^N3

where l^^1 = Ci , l1^1 = €2. It is easy to see that

Mf(x) ̂  4^(|/|)(x)

and the estimates for J^ in ^(R3) will provide those of M .

On the other hand, write
N\ N2 ^ .2^1 ..

H/(X)= Z Z /(x,-5,X2-r,X3-(p(5,0)————
k=-oo j=-oo J2fe J l J st

Ni N2

= Z Z ^.*/(x).
k=-oo j = - oo

^T and H are now written in such a way that we can apply theorems 1
and 2. Observe that the boundedness of <j* required in theorem 2 will here
be a consequence of that of ^ .

In this paragraph Df(p(s,t) stands for the derivative of (p with respect
to the f-th variable O'=l,2); D?(p(s,0 = D^(D,(p(s,r)) and
Di2(p(s,r) = Di(D2(p(5,r)).
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Three types of surface will be considered here :

Type 1. - (p(s,Q = \s\^t\^ a , ( 3 > 0 . See [3] for the maximal
function and [8], [12] and [13] for the Hilbert transform. Here
Ci = C^ = + 00 .

Type 2. - (p(5,r) is an even function of class C2 in a neighbourhood
of the origin with D?(p(0,0) and Dj(p(0,0) ^ 0, D,^(sfi) nonnegative if
D^(p(0,0) > 0 (resp. nonpositive if D^(p(0,0)<0) and a similar condition
over Di2(p(0,r). See [2] where the,result for maximal functions is obtained
without conditions on D^. Ci and C^ must be chosen such that
|D?(p(s,r)| ^ A (f=l,2) for some A > 0 in 0 < s ^ C^ 0 < t ^ C^.

Type 3. - (p(5,r) is an even function of class C2 such that D^(p(s,0
and Di2(p(s,0) (resp. Dj(p(5,t) and Di2(p(0,0) are nonnegative and
nondecreasing in 5 > 0 (resp. in t>0). In this case Ci and C^ must be
chosen such that these conditions hold in 0 < s ^ C i , 0 < t ^ C^.
Observe that surfaces with a contact of infinite order at the origin with the
coordinate plane OX^X^ are allowed; for example,
(p(5,r) = s2?2^-^-^-^) for which Ci = C^ = + oo.

We can then state the following result:

COROLLARY 3. — If (p is a function of one of the preceding types, then

IWIIp ^ cy/i^, i < p ^ + oo
HH/II^ ^c^i i /n^ , i < p < + oo.

As a consequence of the boundedness of M and following a well-
known method we can deduce that

i r^i p2
lim,-,- /(^i-s,X2-^3-(p(5,0)rfsA=/(x) a.e.
/l^O'^l' t2JO Jo
/12-.0

for every / which is locally in L^R3), p > 1.

The proof of this corollary is nothing but an application of theorems 1
and 2 to the measures ^,j and a^ defined above. As indicated the
boundedness of a* is a consequence of that of ^ and the remaining
conditions of the theorems are contained in the following two lemmas.
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LEMMA 2. — If (p fs of one of the preceding types
^k+\ ^j+l

Hk,/y = 2^7 , exp (~ 27^(^s + ̂ 2r + ̂ (s,0)) rfs dt

and

^/y = ex? (- 27u(^s+^+^(s,0))-^
Jj2^<H^-H ^

2^<|t |^2^+l

verify the size properties of theorems 1 and 2 wi^ft a == b = 2.

In the following lemma M^ represents the Hardy-Littlewood maximal
function acting on the f-th variable (f= 1,2,3).

LEMMA 3. — a) If (p is of type 1, then

M^/OC) ^CM,M,f(x)
M^x) ^CMiM3/(x)
M^W ^ CM3/(x)

b) If (p f5 o/ r^ 2 or 3, r î̂ n

^(^/(x) ^ CM^M3/(x)
M^^x) ^CM^M3/(x)
M^'2^) ^ CM3M3/(x)

\vhere Yi anrf y^ are the plane curves (s,(p(5,0)) and (f,(p(0,0) anrf M^
and M denote their associated maximal functions.

From the results of maximal functions along curves we know that M^
and My are bounded in L^R2), p > 1 (see [4]); the Hardy-Littlewood
maximal function is also bounded in such L^s therefore, the inequalities in
this lemma give the boundedness of the « partial» maximal functions
required in theorem 1.

Proof of lemma 2. — It is enough to prove the lemma for j^j because
the estimates for a^j are similar after application of the second mean value
theorem for integrals and the evenness of (p.

After a change of variables the integrals are taken over 1 < s ^ 2,
1 < t < 2 and the exponential function in the integrand becomes
exp [—27^(2^15-1-2^2^+^3^(2^,2^))]. The estimates near zero are now
trivial, they come from the factors [exp (-^Tu^^s)— 1] and
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[exp(-27ri2^20-l] present in the integrand. Then, we need only to
obtain the part of the estimates near infinity. Both are symmetric, therefore,
we shall show that

l^/yi^c^i-01

for the three types of surface.

Type 1. - Since fc,,(y = A (2^,2^,2^+^) with a = ̂ ,, the
only thing to verify is |p(^)| ^ C|^|~^.

If a 9^ 1 we know (see [11]) that

i r2
I ) exp^TnOi^+Ti^))^! <C(Ti?+r|i)-1/4

then,

lte)l r2! r2
^ exp(- 2ni(^s-^^s^))ds dt

Ji I J i^c ri^+^r^d^ci^i-1/2.
When a = 1 slight changes are needed :

lte)l ^ exp(-27if(^+^)5)rf5 A

because I(A,B)

v -1-r
-r

sinn^i+^tP)
^i+^)

'sm(A+Bt^)\

rit<C|^|-1/2

A + B^ rit <C|A|- 1 / 2 .

In fact, if |A| ^ l^^BI it is trivial. If |A| < 2P+1 |B| we make the
change of variable T = A + Bt; then dx = B^~1 dt and
dt ^ C|B|-1 d-c. We get

I(A,B)^C|B|-1
*A+2PB

M+B

sin T
dx < C I B I - ' l o g l B I ^ C|B|-1/2

<C|A|-1 /2 .

Type 2. - Take the domain {0<s^C^,0<t^C^ such that
\D^(s,t)\, |D2(p(s,0| ^ A > 0. In such a domain D^(s,t) is bounded
(because <peC 2 ) , then [D^^s,!^, ID^^OI < B sup (2^2^).
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Write
g^s) = l^s + ̂ (IW)
g^t) = i^t + ̂ <p(2W)

and N = sup (kj). Then,

/ fi | r i
|uit,(yi < min e\p(-2nig^s))ds\dt,

exp(-2ic(^,(t))(fo ds •

From
g'Ks) = l̂ D^s t̂)
^(t) = 22^3Dj(p(2'ts,2^)

and the condition for the second derivatives we have |̂ 'i(s)| ^ 22fc |^3|A,
\g'z(t)\ > 22•'|^3|A; then. Van der Corput's lemma implies

w iH^i^c^r1/2.
On the other hand, ^i(s) = 2^i + 2k^D^^>(2ks,ljt) is monotone

and when |^| > B2N+1|^|, |^(s)| ^ ^|2^i|. Then, in such region,

Van de Corput's lemma gives
|^,,(i;)| ^C|2^i|-1.

In the complementary region the estimate (*) yields

|U,,,(i;)| ^ €12^11-^B-1 < CW^B-1.

Type 3.

l^,,<yi < I j exp^Tt^* exp (- 27t((2t^s+^3(p(2'ls,2yt))) rfs dt.

Write g(s) = 2"^s + ^3(p(2ks,2^); then,

'̂(s) = 2^ 4- 2^3Di(p(2'-s,2^)
and

g"(s)=22t^D2(p(2ts,2^).

For each t , we split the interval 1 < s ^ 2 into two parts, Ii and
I^, as follows: on I i ,

(D,<p(2 )̂ - D,<p(0,2^3l ^ ̂ +D^O'2Jt^\
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and on ^ the opposite inequality holds. I^ and ^ are intervals because
DiCpC^O is increasing. Moreover, on I ^ , g ' is monotone and
\g\s)\ ̂  2k- l |^+Dl(p(0,2J0^3|. On the other hand, since D?(p is
nondecreasing in 5

D^(2W) ̂  Pi<P(2^2^) - DMO,2h)
2^5

and we have |^(s)| ^ 2fc-2|^+Dl(p(0,2^3| on 1^. From Van der
Corput's lemma we get for the inner integral the bound
Wl^+D^O^O^I)-1/2. Now,

1 )̂1 ̂  W^l-^f2 l+D,(p(0,2^)|3 ' ^ d t .
Ji Si

It is clear that the part of this last integral where D^O^)^/^ ^ - 1/2
or ^ — 2 is bounded; then, it remains to see that the integral over the
interval (a,b) where - 2 ^ DMW)W, ̂  - 1/2 is also bounded.
After a change of variable u = D^(0,2h)^/^ we have the bound

r - i /2 /.-i/2
J Il+^|- l /2 |2^2(p(0,2^)^/^|- l^ ^ 4
r - i /2 /.-i/2
| ^ |1+^|-1/2|2^D^(P(0,2^)^/^|-1^ ^ 4 l l + ^ l - ^ 2 ^

because from the hypothesis on Di2(p(0,r) we have

^(0,2-^^?.̂ .

Proof of lemma 3. — a) The first two inequalities are similar and we
prove only the first. In fact, we shall prove the following

1 p ^2

M2 JO JO

1 f^l ^2
r-. /(Xi-^.^-S^rfsA ^ CMiM3/(x).
'll'l2 JO JO

After a change of variables the left-hand side becomes

i r^i r5^
,,- /(^-s,x2,x3-0r< l^-15-^p- l^^.
'I1'I2 JO Jo

If (3 > 1, r^/P)-1 is decreasing and

/t5aAP/•^

t^-ldt=^h^
Jo
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then, the integral is bounded by

2 pi
— M^f(x^-s,x^,x^)ds ^ 2MiM3/(x).n\ Jo

If P ^ 1, r^-1 < s^"0^-13 and we obtain the bound

—— f ' M,f(x,-s,x^x,)ds ^ 2MlM3/(x).
P^i Jo P

The third inequality is easier,

sup [ f /(x^x^x^-l^^s^dsdt
k,j JO JO

^ sup f(x^,x^,x^-hs^)dsdt
h>0 Jo Jo

r1
^ sup /(xi,;^,^—^01)^ ^ 2max (l,a l)M3/(x).

A > O Jo

b) Suppose that the second derivatives are positive. In the inner integral
of

1 pi r p2 -|
, , - /(xi-5,X2,X3-(p(5,Q)^ \ds
' ^ i ^ i j o LJo J

we make the change of variable T = (p(s,r) — (p(s,0); we get

i P1 r r^5'^)-^5'0) ~1
.-, /(x,-S^,X3-(p(s,0)-T)((p,-ly(T+(p(5,0))Ap5
^i^Jo LJo J

where (p,(0 = (p(s,0 and (p,"1 is the inverse function. But
((p^ytT+^s.O)) = (D2Cp(5,0)~1 is positive and decreases when t (and
therefore r) increases; its integral over the interval (0,(p(5,/i2)—<p(s,0)) is
h^. Then the double integral above is bounded by

i r'1
— M3/(xi-s,X2,X3-(p(5,0)) ds ^ M M,f(x).
rl! Jo

Finally, for the third inequality we apply to

1 f^ l p2

V~T f(x,,x^x^-^t))dtds
h\h2^0 Jo
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the same change of variable. This gives

1 fi
r~ ^/(^l^^S-^O))^.
rll JO" 1 JO

If (p(s,0) = 0 the proof is finished; if not, a new change of variables
T = (p(s,0) yields the desired bound. Q

If (p verifies D?(p(0,0), Dj(p(0,0) ^ 0 as in type 2, but without
conditions on D^, lemma 2 still holds. Then, we can use the estimates for
the associated maximal function proved in [2] and deduce the boundedness
of the Hilbert transform for a class of surfaces larger than those of type 2 :

COROLLARY 4. - Let (p be an even function of class C2 in a
neighbourhood of the origin mth D^(p(0,0) and Dj(p(0,0) + 0. Then,

IIH/II^C^II/11^, 1 < p < + oo.

The extension of these results to hypersurfaces in Rn+l (n > 2) is
straightforward. The three types of hypersurface corresponding to the
preceding ones are:

1) cp(r i , . . . ,^)= n 1^1\ a .>0
1 = 1

2) Dj(p(0,.. .,0) ^ 0, j = 1 . . . . . n and D,,(p(^,.. .,^)|^o is zero or
has the same sign as Dj(p(0,.. .,0), ij = 1, . . . , n . j

3) D^(p(^,.. .,^) is nonnegative and nondecreasing in tj ' and
^•^(^i,-. ',Q\tj=o is nonnegative and nondecreasing in r;.

In all cases, cp(0,... ,0) = 0, (p is even in each one of the variables and
(p e C2 in a neighbourhood of the origin in the last two cases.

The proof of the analogue of corollary 3 is by induction. Lemma 2 and
its proof are similar in this context. The inequalities in Lemma 3 involve
now maximal functions along lower dimensional manifolds which are the
sections of the hypersurface with the coordinate hyperplanes, i.e.,

(ri,...,^_i,0,(p(ri,...,^_i,0))

and its analogues. The boundedness of these maximal functions needed in
the application of theorem 2 is a consequence of the induction hypothesis.

Finally we apply the boundedness of the Hilbert transform along
surfaces of type 1 to get estimates for convolution operators homogeneous
with respect to a multiparameter group. We state the result in R3 where
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the kernel must verify

K(sx^tx^,s^x^ = s-1-^-1-^^,^,^).

In such a case, see [8] theorem 2.1, K is determined by its values on the set
fi. = { — 1 , + 1 } x S1. Moreover, a formula for the integration in « polar
coordinates » holds

f f(x)dx = [ I 0 0 I00f(su^tu^sat^)sl+atl+ftM(u)d^du
Jp3 Jnjo Jo st

where M(u) is a function on Q bounded between two positive constants.
If K is odd in the first two variables and H^f stands for the Hilbert
transform along the surface (su^,tu^,\ s I" \t\^)

p.v.K*/(x)=lim f K(u)U(u)( f00 [' f(x,-su,^-tu^
^JQ \Je Js -

« . ds dt\ ,
X3 -s01^)—— \du

Sl ]

- \ K(u)M(u)HJ(x)du
^Jn

thus, if T/= p.v.K */,

IIT/H^f \K(u)\\M(u)\\\HJ\\,du.
4Jn

Now, it is easy to see that the L^-bound of H,, is independent of u. It is

enough to change f into f(x) = f[ -1-» -2 » ̂  ) above. Then, we have, , , „ . \ M I M^ u^.1proved the following: \ i 2 37

COROLLARY 5. — Let K be a measurable function on R3 such that
i) K^Xi,^,^^) = s"1"^"1"^^)
ii) K is odrf in x ^ , x ^ .

iii) |K(u)| rfM < + oo . Then, ||T/||^ ^ C |̂|/||̂  1 < p < oo, where
Jn

T/=p.v. K*/.

An example of a kernel K verifying the preceding conditions is:

i^ i01"1]^ |P~ 1

K(X,,X,,X3) = ̂ (^2)|^|^2,!^-
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