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THE DIRICHLET PROBLEM
FOR THE BIHARMONIC

EQUATION IN A LIPSCHITZ DOMAIN

by

B.E.J. DAHLBERG(*) C.E. KENIG^*) G.C. VERCHOTA(***)

Introduction.

The main purpose of this work is to study and give optimal
estimates for the Dirichlet problem for the biharmonic operator
A2 on an arbitrary bounded Lipschitz domain D in R\ with
the boundary values having first derivatives in L^BD), and
with the normal derivative being in L2 (3D).

In recent years considerable attention has been given to the
Dirichlet and Neumann problem for Laplace's equation in a
Lipschitz domain D, with JL^OD) data, and optimal estimates.
This started with the work of B. Dahlberg ([5], [6], [7]) on the
Dirichlet problem, and has now reached a very satisfactory
level of understanding. We now know optimal estimates for
both the Dirichlet and the Neumann problem, in the optimal
range of p ' s and we also have good representation formulas for
the solution in terms of classical layer potentials, (see [6], [ I I ] ,
[12], [18], and [8]).

In this work we initiate the corresponding study of the
Dirichlet problem for the biharmonic operator A 2 . One of
our main results (Theorem 3.1) states that if D is a bounded
Lipschitz domain in R", and we are given /6L^(3D), and
^EL^SD), there exists a unique biharmonic function u in
D, which takes the boundary values /, and whose normal
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9uderivative — equals g on 3D , both in the sense of
8N

non-tangential convergence, and such that the non-tangential
maximal function of V u is in L^SD). In a forthcoming paper, ([9])
the first two authors will show that u is in the Sobolev space
H^^D). In [16], Necas has obtained a very weak solution to the
above problem (he shows that u G L2 (D)). The novelty here resides
in the much stronger (best possible) estimates for the solution.

The main idea in our work is to reduce the Dirichlet problem
for the biharmonic operator, to bilinear estimates for harmonic
function in D. These bilinear estimates are Lipschitz domain
generalizations of the fact that the paraproduct ([3]) of two L2

functions is in L1 . We obtain our estimates, using results in [5],
[7], by integration by parts, and the deep results of Coifman,
Mclntosh and Meyer ([2]).

We also show that given a Lipschitz domain D, there is
e > 0, such that the above L2 results extend to 1̂  results
for 2 — e < p < 2 4 - e . This is accomplished by real variable
methods, which show that 1̂  results in the neighborhood of
p = 2 are consequences of the L2 results. After the submission
of this manuscript, the refereee communicated to us that the
results of section 4 in fact follow from a general functional
analytic, unpublished theorem of G. David and S. Semmes.
(See the body of section 4 for the exact statement of then-
theorem, and its application in our specific instance).

For C1 domains in the plane, J. Cohen and J. Gosselin ([!])
have recently established results analogous to our, in 1^,
1 < p < °°, by the method of multiple layer potentials.
G. Verchota ([19]) in a forthcoming paper has shown how to
modify the approach in this paper to obtain \? results,
1 < p < oo for C1 domains in R" , n > 2 . In the last section
of our paper we show, by appropriate counterexamples, that for
Lipschitz domains, our results are sharp in the range 1 < p < 2.
Whether this is also the case for the range 2 < p remains an
open problem.

At this point we would like to thank Professor E.B, Fabes
for his kind interest in our work, and for many helpful discussions.
We are particularly indebted to him for the arguments in
Section 3.
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We would also like to thank the referee for bringing to our
attention the unpublished work of G. David ans S. Semmes.

Before beginning the major part of this work, we will introduce
some of the basic notations and definitions, and recall some basic
results that will be used throughout the paper.

Capital letters X , Y , Z will denote points of a fixed domain
D C R" , while P, Q will be reserved for points in 9 D Lower
case letters x ,y ,z are reserved for points in R"~ 1 . The
letters s , t will be reserved for real numbers.

DEFINITION. —A bounded domain D C R" is called a Lipschitz
domain if corresponding to each point QE 3D there is an open, right
circular, doubly truncated cylinder Z(Q,r) centered at Q, with
radius equal to r , whose basis is at a positive distance from 9 D,
such that there is a rectangular coordinate system for
R" , ( x , s ) , x E R"~ 1 , 5€ R , with s'axis containing the axis of Z ,
and a Lipschitz function (^:R"~1 —> R

(i.e. |(/?0c)-^(z) | < M \x -y I , for all ;c, .>/eR"~1)
such that Z H D = Z H {(x, s): s > ̂  (x)} , and Q = (0 ,<p(0)).
Any such cylinder Z will be called a coordinate cylinder, and the
pair (Z, </?) will be called a coordinate pair.

By a cone we mean an open, circular, non-empty truncated
cone. Assigning one cone F(Q) to each Q E 3 D , we call the resulting
family {F(Q): Q G 8 D} regular if there is a finite covering of 3D
by coordinate cylinders, such that for each (Z(P,^),(^) there are
three cones a,j3 and 7, each with vertex at the origin and axis
along the axis of Z such that

a C j3 | {0} C 7

4
andforall(x,^(x)) = QG-ZFOD,

a - h Q c r ( Q ) c r ( Q ) | { Q } C ^ + Q ,

(7 + Q) c D n z,
( 4 )

and such that { — Z { still cover 3 D. Here rZ is the dilation of

Z about Q by a factor r.
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Given a regular family {F}, there is a constant 00,
depending only on {F} such that for any QG3D and any
X E r ( P ) , | X - Q | > C | X - P | and |X - Q | > C |P - Q |.

DEFINITION . - Given a function u in D and a regular
family of cones {F}, we define the nontangential maximal
function N^) (Q) = N(^) (Q) = sup | u(X) |.

xer(Q)

We say that u(X) converges non-tangentially a.e. to /(Q) if
for any regular family of cones {F}, we have lim u(X) = /(Q),

for a.e. QE3D. xexro?)

A surface ball A = A ( Q , r ) will be the intersection of a
coordinate cylinder Z = Z ( Q , r ) with 3D. We need to recall
three theorems of B.E.J. Dahlberg.

THEOREM 0.1 ([5]). -Let D be a bounded Lipschitz domain.
Fix X * E D, and let cj be harmonic measure for D, with pole
at X*. Then, a) a? is absolutely continuous with respect to

surface measure a of 3D, b) Let fc(Q) = --^(Q) Then
da

k E L2 (da). Moreover, for any surface ball A C 3 D ,
/ 1 /• , M/2 c fw^ -w '̂"'-

c) Surface measure is absolutely continuous with respect to harmonic
v dc^ 3 Gmeasure, d) // fe^Q) = ——(Q), then kx(Q) = ——(Q,X)

ua W
is the non-tangential limit at Q of N Q . V G ( - , X ) , where
NQ denotes the unit normal at Q E 3 D .

THEOREM 0.2 ([6]). -Let D be a bounded Lipschitz
domain. There exists e = e(D) > 0 such that if 2 — e < p < oo^
and /E 1^(30, da) there exists a unique harmonic function u
in D such that u converges nontangentially a.e. to f and

l^r^llLP^^^rll/ll^^.

u will be called the Poisson extension of f.
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THEOREM 0.3 ([7]). - Let D be a bounded Lipschitz domain,
and /EL2 (3D,da) be such that j ^ f k d a ^ O . Then, if u
is the Poisson extension of /, we have

c-l ^3D f2da< L disKX^Dm^X^dX^C./^ f^do.

DEFINITION . — For a bounded Lipschitz domain D, we
say that /e 1^(30) if /E 1^(8?, da) and if for each coordinate
pair (Z ,<^) , there are lf(Z H 3 D) functions g ^ , . . . , g^
50 r/^r

/ A(xWx^(jc))dx = /' 9 h ( x ) f ( x ^ ( x ) ) d x ,
\n^\ ) \n-\ 9X^

for all / zEC^ZOR"- 1 ) .

It is easy to see that given /GL^(3D) it is possible to define
a unique vector v^ /^R" , at almost every Q E g D so that
11^/llin/^ ^ ^ ls equivalent to the sum over all the coordinate

L/r ( 0 D , do )

cylinders in a given covering of 3D of the If norms of the
locally defined function gy for /, occurring in the definition
of U[. The resulting vector field, v^/ will be called the
tangential gradient of f. In local coordinates, v^/ may be
realized as

(g^(x ,(^(x)),..., gn~^ ,<^(x)) ,0) - < (g^(x ,</?(x),...,

^i(^,<^)),0),N^^>. N^^(^).

Thus, L^(3D) may be normed by

\\f^^\\f^P^^W\\^^y

THEOREM 0.4 ([12], [18], [8]). - Let D be a bounded
domain in R", with connected boundary. There exists
e = e (D) > 0 such that if g € 1 (̂8 D), 1 < p < 2 + e , there exists
a unique function, u, such that

(i) Au = 6 in D
(ii) u—^ g nontangentially a.e.

(iii) W^)^^y<C\\g^^.
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The case p = 2 of Theorem 0.4, is due to D. Jerison and
C. Kenig([12]). The general case is due to G. Verchota ([18]). Also,
see [8] for another proof.

DEFINITION. — Let (r,0) be polar coordinates for

R\ 0 < r < o o , 6 E S'1"1

the unit sphere in R". A domain D in R^ is a starlike Lipschitz
domain (with respect to the origin) if there exists <^:S"~1 —^ R , < ^
is strictly positive, and \^(0) — ^ ( 6 ' ) \ < M | Q — Q9 \ for all
0,0'eS"-"1 , so that D = { ( r , 0 ) : 0 < r < ^ ( 0 ) } .

Note that if D is an arbitrary Lipschitz domain, and (Z,(^?)
is a coordinate pair, I I V (^ IL < M , then, for appropriate
6 > 0 , f l > 0 , 6 > 0 , which depend only on M, the domain
D 0 U is a starlike Lipschitz domain with respect to XQ = (0 ,&5) ,
where U = {(x ,0 : \x \ < 5 , 1 1 1 < a 8}.

In the sequel we will assume for simplicity that n > 3. The
results remain valid when n = 2 with the obvious modifications.

1. Estimates for Green potentials and bilinear
operators involving harmonic functions on starlike

Lipschitz domains.

The main results in this section are :

THEOREM 1 . 1 . — Let Sl be a bounded, starlike (with respect
to the origin) Lipschitz domain in R". Let v be the Poisson extension
in n of an L^D.da) function f. Let f rEC^H) , and consider
the Green's potentials

u(X)= f G(X,Y)&(Y)-H—(Y)dY,7=l , . . . ,n .
J Sl 01.

Then,

IIN(v^"L2^)<cl l&IICl(n)•^"L2^)•
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THEOREM 1.2.— Let St be a bounded, starlike (with respect
to the origin) Lipschitz domain in R". Let u,v be harmonic
functions in Sl, with u ,i;GLip(ft).
Then, for j = 1 ,. . . , n, we have

I p- By
^M(x)^^?c?x<cll""'-2(a»^)"l;l^(8"^)'

where C depends only on Sl.

This theorem can be thought of as the Lipschitz domain analogue
of the fact that the paraproduct of two L2 functions is in L1 (see [3]).

The main step in the proof of Theorem 1.1 is the following
estimate for Newtonian potentials.

LEMMA 1.3.— Let (p:R"~1 —^ R have compact support,
with || V <p IL ^ M. Let Sl be the region above the graph of ^..
Let ^C^(R"). Let v be the Poisson extension of g\^ in S2.
(Theorem 0.2 easily extends to this situation). Then, the Newtonian
potential

»W=L ix-Y1!"-2^00^

satisfies

11 ̂ l̂l̂ ) ̂ 11^ (<,,,>

where C depends only on M.

Proof. — Let B be fundamental solution for the biharmonic

equation A2 , i.e. Ay B(X - Y) = — 1 ^ , X ¥= Y. (For
I •'̂  — I

example, if n > 5 ,B(Y) = C^ |Y I4""). Let e^j = 1, . . . , n be the
standard basis of R" . We recall the definition of the Riesz transforms,
R.v of v , / = 1 , . . . , n — 1 . They are harmonic functions which
together with v satisfy the generalized Cauchy-Riemann equations,

a n~~l a
i.e. — — = - I .-Y-^- (See [17]).ax^ y = i aXy.



116 B.E.J. DAHLBERG, C.E. KENIG, G.C. VERCHOTA

Using the summation convention, the integrand for the Newtonian
potential we are considering, is

82 Be8 Q B-^-^-^B^\/ ^v2BY, BY, BY,. BY^ BY,,

a a a a a a
^aY^aY^'B^aY,;8^"

a a a a2 a
+»;^Y;BaY;•'-BYiB^Y;R'•'

a a_ / _a_ _a_ _ _a_ _a
" ^ a Y ' a Y " ' " " BY. , BY B

a a
'W, w,1 u ^n n-l "'n-l

•'^ai:^"'7^^"^8^'7^
a2

B e., V R, v >

e) ,vi;>

= C?,V 1 ; > + < ^ , V R , u > ,

where < , > is the inner product in R", and

a a a a0 d B ————B)
^_,aY^_. ' BY, BY, I 'a =- (-JLJL- -- V av av " ' • • • 'BY, aY„

-» a a a2

ft = T.7 ̂ T B ^ - TCT B^y •BY2 "''// aY, aYn
Note that ?,^, /= 1, . . . , n — 1 are divergence free vectors. Given
the conditions on v it is easy to see that integration by parts is allowed
inside the Newtonian potential, and thus,

"(X)=Lk-N/(Q)——B(Q-X)
3Q/ 9Q«

+N,.(Q)-L-i-B(X-Q) g(Q))
"v" BQ, BQ,

+ ( ̂ ^ ^-^-B(Q - x) - ̂ ^ ̂  B(Q ~ x))
2

aQ2" BQ» BQ/.
R,i;(Q) do(Q).
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Because of Theorem 0.3, and classical arguments (see [18] for
the details in a similar situation), it is easy to see that

iî "^)^"^.)
with C depending only on M.

Thus, u(X) is simply a sum of boundary potentials of the form

^a^^"^^^' where

^"L^^ll^L^)-

The fact that N(v^) is in L^^da) now follows from the theorem
of Coifman-Mdntosh Meyer on the boundedness of the Cauchy integral
on Lipschitz curves, ([2]), by standards arguments. (See [18] for the
details in similar circumstances).

Lemma 1.3 localizes in a fairly easy fashion. We have :

LEMMA 1.4.— Let D be a bounded Lipschitz domain in R".
Let v be a harmonic function in D^CC^D) . Let f r G C ^ D ) ,
and consider the Newtonian potentials

^-X ix^r2^^00^^ ^—^
Then,

11^)11^0) <c"611cl(D)" l ;"L2^)•

Proof. — I f suffices to examine the L2 norm of N(v^) on
the intersection of 3D with coordinate cylinders Z , with the
property that 3Z is still a coordinate cylinder. Fix such a cylinder,
and let ^CC^(.3Z) be such that ^ = 1 on 2Z. For

x e r ( Q ) , Q e z n a D ,
consider

^ f .Y^.^d-^Y)) . 6(Y) ——i;(Y)dY.
^D | A I| 9Yy

An integration by parts, together with the support porperties of ^
and Theorem 0.2, yield a non-tangential maximal function with the
correct bound on its norm. Thus, it suffices to consider u with



118 B.E.J. DAHLBERG, C.E. KENIG, G.C. VERCHOTA

b € C^(3Z). Without loss of generality, the axis of Z may be taken
to be in the Xy, direction. Denote the n — 1 dimensional ball that
forms the top of 3Z by B, and let IQ > 0 be such that

B = { x e a 3 Z : x , = = r o } .
Let Y, X G B be denoted by (y , to) and (x , to) respectively. Let
g ( x , y ) be the Green's function for Laplace's equation in B. Then
Riesz transforms of v may be defined in 3Z 0 D by

^^'-Xl0 ̂ -^-^/B S(x.y)^v(y.t,)dy

(see [18]). Note that the values of R^(X), for X in K n 3Z, where
K is a compact subset of D are bounded by sup | v \, which, by

K
Theorem 0.2 is bounded by C||u| | 3 . The same is true for

Jicnaz \^RfVm\2dX. Therefore, by Lemma 5.2 in [18], and

Theorem 0.3, we see that^^^ N(R^)2 < C f^ v2 da .

Consider first the Newtonian potential u, with / = n. The
arguments of Lemma 1.3 go through unchanged, except for the
appearance of integrals over D, in the representation of u, of

r 8 3 9b
the form ^ —— ,—B,(X - Y) —— (Y) w (Y) dY, where w is

dY, dY^ QY^
either v or a Riesz transform R.v. These integrals can be thought
of as integrals of integrals of the same type that we had before, and
hence, they can be handled. The lemma is then proved for / = n.
For f^n, we merely replace v by R.V and the lemma follows.

In order to pass from Lemma 1.4 to Theorem 1.1, we need a
couple of simple lemmas.

LEMMA 1,5.-Let D be a bounded Lipschitz domain in R".
Let v be the Poisson extension in D of an L^D.da) function
f. Then, for X G D ,

^ |G(X,Y) | |Vz ; (Y) |dY<Cxl l / l l^^ ,

where Cx depends only on D and dist(X,8D).
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o Jproo/ ," u suffices to consider only the integration over a strip
S, of width comparable to dist(X,9D), up to the boundary For
Y in this strip, projections Q(Y) onto the boundary may be uniquely
defined. By [5 ] (also see [ 13 ]),

|G(X,Y),<Cdist(Y,aD)-^S
a(A(Q(Y)))

where A(Q(Y)) is a surface ball centered at Q(Y) of radius
comparable to dist(Y,3D). Thus, the integral over S is bounded by

C ^ dist(^,QD)M(kx)(Q(\))\^vm\dV

<C(^ disUY.aDm^Y))2^)172

(^ dist(Y, 3D) M (k^ (Q(Y)) rfY )112 ,

7 X _ ^£t;x

where k =-^- (see Theorem 0.1), and M denotes the Hardy-

Littlewood maximal operator on 3D. The first integral is bounded

by (XD ^(Q)^(Q))1/2 by Theorem 0.3. The second integral

is bounded by Cx by the maximal theorem and Theorem 0.1.

LEMMA 1.6.-Let D be a bounded Lipschitz domain in R"
Let v be the Poisson extension in D of an L^QD.da) function
f, and let b(=L (D). Then. for X £ D,

^/D G(X,Y)6(Y)v.(Y)rfY=^ ^-G(X,Y)A(Y)v.(Y)rfY.

Moreover,

f^ IVxG(X,Y)||v,,(Y)|rfY<Cxl|6||oo||/||^^

where Cx depends only on D and dist(X,3D).

^•^r^f\Let r>o be ^"P^^ to dist(X,3D) and so thatdist(B,,(X),9D) is comparable to r. For

Y€B,(X), l7xG(X,Y) l<C/|X-Yr-1
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and thus, it suffices to consider

lin̂  -L/D\Bm [G(X+6,Y)-G(X,Y)]6(Y).vi ; (Y)dY,
|e|^0 |e| N rv

where e € R" . For e small, Y ^£ B^(X), Harnack's principle and
the mean value theorem for harmonic function show that the difference

V I C^ FY Y^ I
quotient is bounded by ————9-——. The lemma now follows from

Lemma 1.5 and dominated convergence.

Proof of Theorem 1.1. - For 0 < r < 1 , let u,(Y) = i;(rY),
3^and define Uy to be the Green's potential of b - .—. Let
OY/

I\(Q) = {X E F(Q): dist(X, 9r) > e} .

Define, for Q E 3 ft ,N,(v^) (Q) = sup |V^(X) | . Since by
xerg(Q)

Theorem 0.2, /,(Q) = v(rQ)—>f in L^da), as r — > 1,
Lemma 1.6 shows that for all Q E 3 ft ,

N,(V^)(Q)= lim N,(v^)(Q),e>0.
r t l

Each Uy is the sum of a harmonic function, H^ and a Newtonian
potential by Theorem 0.4,

W7".) 1^)^11 ̂ (30^)-

But, since Green potentials vanish at the boundary, the L\(9D,da)
norm of Hy is identical to the one of the corresponding Newtonian
potential. This, by Lemma 1.4 is dominated by 11^1^2^ \- Thus,
" N ( v ^)I I L2(^) < c " 6 "cl (D) "^"L2(^)- By Fatou's lemma,

"^(V^I^^^GII^ICICD)^^.)-
The theorem now follows by monotone convergence.

In order to deduce Theorem 1.2 from Theorem 1.1, we need
one more lemma.

LEMMA 1.7.— Let f^V°(D). Consider the Green's potential
u(X)=f^ G(X,Y)/(Y)dY. Then,
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lim N Q . V M ( X ) = / ' ^((^/(Y^Y,
X-»Q JD

xer(Q)

for a.e. Q(da)- Here, k^ (Q) = OJ (Q) (see Theorem 0 1 )
da(Q)

Proof. - It suffices to consider the case when / = 1 . Let
r= dist(X,8D). For Y € B M , ( Q ) n D , where M is a large constant
to be chosen depending only on the Lipschitz character of
D , | V x G ( X , Y ) | < C / | X - Y | " - 1 . Thus,

x^ ^WQ)nD IVxG(X,Y) |dY=0.
xer(Q)

It suffices then to justify the use of the dominated convergence

theorem for ^ \̂BM.(Q) ^ • ^G(X,Y) dY. Let A,(Q)
xer(Q)

denote the surface ball of radius r about Q. Write

^((^^(Y.QmQ)

where k(Q) is the density of harmonic measure at some fixed
X*€D. (See Theorem 0.1). K(Y,Q) is the so called kernel function

of D. Since Y is away from X, I VxG(X,Y) | <—|G(X,Y) |. By

Lemma 5.8 of [13] (see also [5],

'G(x •Y) I < ̂ T f^, K(Y ' P) k (P) da(P).

By theorem 5.20 of [13], K(Y,P) < CK(Y,Q) for PGA,(Q), if
M is chosen large enough. Thus, for Y ̂  By^(Q),

|VxG(X,Y)|<c(^-^ ^(P)da(P)).K(Y,Q)

<CM(A:) (Q) .K(Y,Q) ,

where C depends only on D, and M is the Hardy-Littlewood
maximal operator. Since ke L2 (3D, da) ,M(k) is finite a.e. on
3D. It suffices to show that f^ K ( Y , Q ) d Y < + o o a.e. (da).
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But this is clear since f^ ( f^ K(Y,Q) rfY) dco(Q) = |D |, using

the fact that a? and a are mutually absolutely continuous
(Theorem 0.1).

Proof of Theorem 1.2. - u(X) = f ^(Q)^(Q) da(Q).
»/ O A &

Hence,

^ "(x) ̂ (x) dx 'X (L ^Q)"(Q) do <Q>) • ̂ rfx

=L "^(X ^(Q)|^(X)dx)da(Q).

By Lemma 1.7,

L kx^ ^mdx^ ^ ^ - X VxG(X,Y)——(X)dX.
Yer (Q)

Theorem 1.2 now follows from Theorem 1.1.

2. The Dirichlet problem for A^ with L2 data in starlike
Lipschitz domains.

The main result in this section is :

THEOREM 2.1. -Let Sl be a bounded Lipschitz domain in R" ,
starlike with respect to the origin. Let g EL 2 (3ft, da). Then, there
exists a unique function in u in Sl, such that

(a) A2^ = 0 in ft
(b) lim u(X) = 0 fora.e. Q E 8?2 ,

X-»-Q
xer(Q)

(c) lim NQ - v^(X) = g(Q) fora.e. QCQSl
X-Q

xer(Q)
(d) I IN(V.) l l ,^^<+oo.
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In fact IIN(u)|| +||N(v«)|| ̂ <C||^| ^ere C
depends only on t2. l )

Moreover, there exists a harmonic function v, that is the Poisson
extension of a unique L2 (9SI, da) function so that

"(x) = X ^'^ t^W + 2Y . vi;(Y)] rfY,
where n is the dimension.

Proof. -We begin with the existence part of Theorem 2.1. Let
/£L (9n,do), and let u be the Poisson extension of / in n.
Form the Green's potential

"(x) = /n ^.Y) t^(Y) + 2Y . vi;(Y)] d\ .

By Theorem 1 . 1 , 11N(V«)11^ <C||/|| where C
depends only on n. Using tlwfuhctlons u, and ̂ '^ in the proof
of Theorem 1 . 1 , Lemma 1.7 and standard arguments we may conclude

that ^ NQ.VU(X)=|^(Q) exists a.e. (da), and in
xer(Q)

L2 (an, da). Thus, we can define a bounded linear operator

T^On^-^On,^) by T/=^. We claim that T

ismvertible. In fact, let f,=v,\ . By Lemma 1.7 and Fubini's
theorem, we have

L/^
= f»n W) (f^ ^ (Q) [nv,(\) + Y . 7i,/Y)} rfv) rfo (Q)

= L ^rW + 2Y . Vi^(Y)} . ^(Y) c/Y =f^ div {Y . (^(Y))2}^

=^ Q • NQ//Q)2 rfo(Q)

by the divergence theorem. Letting r —> 1, and using the fact that
for a bounded Lipschitz domain which is starlike with respect to the
origin, Q . N Q > C , for Qe3i2, where C depends only on the
Lipschitz character of 3ft, we see that

L ̂ w^wi^^.
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This shows that T is invertible in L2 (8^2, da). Therefore, given
g € L2 (ai2 , da), if we let i; be the Poisson extension of / = T~l (jg),
it is clear that u will satisfy (c) and (d). To verify (b), note that
Uy verifies (b) by the proof of Lemma 1.7, and that V(u) E L2 (8S2, da)
because of (d) and Lemma 1.5. (b) now follows from standard
arguments. That u verifies (a) follows from the fact that v(\) and
Y . V v ( Y ) are harmonic. This concludes the existence part of
Theorem 2.1. In order to establish uniqueness, introduce the smooth,
starlike domains I2y of Lemma 3.5 of [13], which are contained
in X2 and increase to Sl. Note that in Sl. we have uniqueness of
the Dirichlet problem for A2 , and so, using the existence part of
the Theorem, and the case p = 2 of Theorem 0.4, we see that for all
uCC00 (ft?, with ^u = 0 in ^,

IIN^)"L2(e^)+"Nn/^)llL2(e^)
Qu

<C"UIL2(^^,^)+1^^|L2(^^,,^)-

where C is independent of / ,N^ . denotes the non-tangential
/ 9umaximal function associated to Sl,, and —— the normal derivative/ 8Ny

on a?2y. If A2^ = 0 in Sl,u(X) ———> 0 for a.e. Q, and
X-Q

xer(Q)
l |N(v^) l l T 2 r a n d ^ < ^ ' h o o ' dominated convergence shows that the
right hand side of the above inequality tends to 0 with / , while the
left hand side goes to ||N(^) ||̂  ̂  + || N(v^)ll^ ̂  . Thus
u = 0 in R, and the proof is complete.

3. The Dirichlet problem for A2 with L2 data in an arbitrary
bounded Lipschitz domain with connected boundary.

In this section we extend Theorem 2.1 to arbitrary bounded
Lipschitz domain with connected boundary.

THEOREM 3.1. -Let D be a bounded Lipschitz domain in R"
with connected boundary. Let /E L^D),^ L^D). Then, there
exists a unique function, u, in D such that
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(a) A2^ = 0 in D
(b) Hm u(X)=f(Q) a.e. (da)

x->oxerf t )

(c) lim NQ . VM(X) =g(Q) fl.^ da
X-^Q

x e r (Q)
(d) IIN(V^)| | ,^^<-hoo.

In fact,

" N^ "L20D ,<,<,) + II N^") 11.200 .^< c {^11^00) + 11^ "LW

wA^r^ C depends only on the Lipschitz character of D .

In order to prove existence, we first utilize some results of
Necas ([16]) to see that a very weak solution exists.

DEFINITION. - M=^o,^):^ =g |^^i =j^- /o^ 50^

^CW^O)). ̂ ^ W 2 . 2 ( D ) = L E L 2 ( D ) : ^ ~ ^ ^ G L 2 ( D ) j .
; ( oX, dX,8Xy. )

THEOREM 3.2 ([16]). -Let D be a bounded Lipschitz domain
in R" with connected boundary. Then,

(a) M is a dense subspace of L^OD) x L^BD).
(b) Given ^EW^^D) there is a unique ^EW^^D) so that

(i) f A ^ A < p = 0 for all (^GC^(D)

(ii) ^ --^eW^^D) == rt^ cto^^ o/ C^(D) m W 2 • 2 (D) .
(c) TA^e exists a constant 00 depending only on D such

that for all u as in (b),
l^llL2(0)<C{||^||,^^;+H^||^^},

wA^ C depends only on the Lipschitz character of D .

LEMMA 3.3. -Let D be a bounded Lipschitz domain in R" with
connected boundary. Then, if u is a weak solution of the biharmonic
Dirichlet problem in the sense of Theorem 3.2, we have
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11^)1^(30^)^ ^"L^SD) + l aNl lL^aD^a)

\^here C depends only on the Lipschitz character of D .

Proof. — For a fixed P^ e 3 D, consider a continuum of
coordinate cylinders 0Z = 0Z(Po), 1 < 0 < 2, all of which have
the property that 0 Z Ft D is a starlike Lipschitz domain. Since
^GW^CD) , by Fubini's theorem, for a.e. 6 ,u is a weak solution
in OZ H D with data in L}(Q(6Z H D)) x L^a^Z n D)). For any
such 0 , let ?2 = 0 Z H D. Let now ^ be the unique solution of
the biharmonic Dirichlet problem with the same data as u on 3 B,
so that ||N(v^) l l r 2 ^ a o \ ^ °° • (Such a "u is provided by Theorem 2.1
and the case p = 2 of Theorem 0.4). We can also assume that ^
is starlike with respect to the origin. Let ^(X) = i7(rX), 0 < r < \.
By the results in Theorem 2.1,

a^_(h^H _^
3N 3N L 2 ^ ) ^ °"^^"L^n)4-

as r —^ 1 . Then, as z^GW 2 ' 2 ^) , part (c) of Theorem 3.2 shows
that \\u ~'ur\\^/l(^\——^ 0, and hence u = ?7 in ^2. Therefore,
using Theorem 2.1 once more, we see that,

LBD N(v^a<C^2 da ^^L2(3(0ZnD))

4- ^2 1

^N||L 2(^(0 z n D))j '

The right hand side is clearly bounded by

„/.. .. . II3^^""'^o)4- ^Iko^/, .^iv.i2).
Covering 3D with finitely many such Z^, we obtain

L ^^^^^''""^^"'ll^ll^0)
+JD I v y P + ^ j .
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Choose now a smooth domain D', compactly contained in D, so

that C / \^/u\2 <— I ^(^u^da. By standard interior^D\D' - 2 ^ao

elliptic estimates, / | V u |2 rfx ^ C / u2 d x . The lemma nowJD ' »/D
follows from part (c) of Theorem 3.2.

Proof of Theorem 3.1. —Existence follows easily by (a), (b)
of Theorem 3.2, and Lemma 3.3, by standard arguments. To prove
uniqueness, we only need to introduce smooth domains D .̂ C D,
which approximate D in a similar manner as in the proof of
uniqueness in Theorem 2.1 (see for example [18] for the existence
of Dy). The uniqueness proof is then the same as the corresponding
one in Theorem 2.1.

4. L2 booster theorems.

The purpose of this section is to show that the L2 results
established in section 3 for all Lipschitz domains have an automatic
real variable improvement of themselves. In this section we show
that given a bounded Lipschitz domain D in R\ with connected
boundary, there exists e > 0, which depends only on the Lipschitz
character of D so that we can uniquely solve the Dirichlet problem for
the biLaplacian in D , with data in L^ (3D) and normal derivative in
LP(^D, da), for 2 — e ^ p ^ 2 - t - e . This fact does not depend
on the particular boundary value problem that we are treating and
it is proved from purely real variable considerations. In fact after
the submission of this manuscript, the referee communicated to us
the following general functional analytic results of G. David and
S. Semmes (unpublished), which easily yields our If results for
2 - e < p < 2 + e .

THEOREM (G. David and S. Semmes). — Let ft be a measure
space with a positive measure p.. Let O o ^ > 0 , a o < 1, and let
T : \f(Sl ,JLI) —> L^(n 3/1) be a bounded linear operator, with norm

smaller than or equal to B for — — — < a^. A Iso assume that
2 p
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T : L2 ——> L2 is an isomorphism, and that ||T~1 ||^2) < A. Then,

T : If —^ L^ z'5' a/i isomorphism for — — — < 5^ ^ vW^/z
1 9 n2 p

8 ~ 2AB *

The argument given here for the range 2 < p < 2 + e was
first discovered by the first two authors in [8]. In section 5 we will
show that our If results in the range 1 < p < 2 are sharp. Whether
they are also sharp in the range 2 < p < oo remains an open problem.

THEOREM 4.1. —Let D be a bounded Lipschitz domain in R",
with connected boundary. Then, there exists e > 0, which depends
only on the Lipschitz character of D, so that for any
2 -e<p < 2 4- e , and /€ L^(3D , d a ) , g C lf(9D,da), there
exists a unique function u in D , ^c/z that

(a) A2^ = 0 in D
(b) lim M(X) =/(Q) a.e. (da)

X-^Q
x e r (Q)

(c) lim NQ . v^(X) =g(Q) a.(?. (A?)
X-^Q

x e r (Q)
(d) HN(V^)| | ,^^<^oo.

/M /flC^,

(*) IIN^)11,^^+IIN(V^)||,^^

< c <^l^(aD) + ^l^(^D)>
where C depends only on p and the Lipschitz character of D.

Proof. — We will first treat the case 2 — e < p < 2. As in the
proof of Theorem 3.1, it is enough to treat the existence part of the
Theorem, together with the a priori inequality (*). We will first
show(*), when /E L}(QD) ,gC L^aD.dcr), for the solution u
constructed in Theorem 3.1. By standard arguments, this will suffice.
Let {F(Q)} be a regular family of cones on 3D. Pick another regular
family of cones {r'(Q)} with F(Q)\Q C F'(Q). Let
m(Q) = Np(^)(Q) + Nr(V^)(Q),m(Q) = N^)(Q) + N^(V^)(Q).
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For X > 0, let F^ = {Q E 3D : m(Q) < X}. Let F^ = U F'(Q).
QGF^

Then, there exists a compact subset D' C D such that if
D^ = F^ U D', then D^ is a bounded Lipschitz domain, with
connected boundary, whose Lipschitz constants depend only on the
ones of D . Moreover, 3D^ 0 8D = F^ , a(3D^\F^) < C a(8D\F^),
\u(Q)\ + | V ^ ( Q ) | < \ for Qe3D^, and {F(Q)},QeF^ extends
to a regular family of cones in D^ , which we will denote by {I\(Q)} .
By the L2 theory in D^,

f ^(Q^aCQ)
JF^

< f^ [Nr^(^( (Q) + Nr^ (^?u) (Q)]2 da (Q)

<C;^ ,^|^,^(^)2,^

where C depends only on the Lipschitz character of D. The last

term is bounded by C f (/2. + I V/12 + g2) da + CX2 a(3 D\F^).[ is j^
We next remark that for 0 < e < 1 we have

^D m2~eda^cf^ m2m~€da'

In order to show this, note that a classical argument (see [10], for
example) shows that m(Q) < CM(w) (Q), where M denotes the
Hardy-Littlewood maximal operator on 3D. A well known result
from the theory of weights (see [4] for example) is that, for any
0 < e < 1 ,M(m)6 is a weight in the Muckenhoupt class A ^ . Thus,
M(m)-6 is in the Muckenhoupt class A^ , and hence, by a theorem
of Muckenhoupt ([15]), the maximal operator is bounded on
L^aD.Mtm)-6^). Therefore,

f M(w)2 M^)-6 da <C f m2 MW da»/ 3D »/8D

<C [ m2 m-6 d a ,J3D 9

and our remark follows from the maximal theorem.
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Thus,

f m2^ da
«/3D

< C L m^m~e da = e f°° \-e-l ( f m2 da ) d\
•/9D Jo v > / {Q^D-.nKK)^

^X^ x-e-l (/{QeaD=.<^ + IVI2^2) ̂

+Cef^ X - € + l o{Qe^D:m>X}dX

< C /ao (/2 + | v,/|2 + r2) W da + C e /ap in-1 da .

If we now observe that, by classical arguments (see [10] for example)

L m2~eda<CL ml~eda'
and that (/ + I V^/1 + g) < m for a.e. Q, we obtain the desired
estimate for e small enough.

The case 2 < p < 2 + e follows from an argument of the first
two authors (see [8] or [14]).

The results in this section also easily follow from the general
functional analytic result of G. David and S. Semmes mentioned
above, once we observe that the operator T used in the proof of
Theorem 2.1 is also If bounded for p sufficiently near 2. This
follows from an examination of our L2 proof.

5. Some If counterexamples.

In sections 3 and 4 we have shown that given a bounded Lipschitz
domain D in R" , with connected boundary, there exists e > 0,
which depends only on the Lipschitz character of D so that, if
2 - e < p < 2 + e , given any /EL^(3D), and geif(QD) there
exists a unique biharmonic function u, in D , such that

Quu 3D = f and ^j 3D = g m the non-tangential sense, and

"N(v^"L^D..a)<oo•



BIHARMONIC EQUATION IN LIPSCHITZ DOMAIN 131

In fact, we showed that, for this range of p ' s ,

<*) "^"L^D.^-Hl^^ll^O.^

^"^(aD)^"^.^

where C depends only on p and the Lipschitz character of D .
The purpose of this section is to show that, at least in the range

p < 2 this is sharp. In fact, we will show that given p < 2 , there
exists a bounded Lipschitz domain D C R 2 , with connected
boundary, and a biharmonic function u in D, with

N^EL^D.d^.NCv^eL^aD.rfaL^O,

and such that u = 0 on 8 D , _ = 0 on 3D, in the sense of

non-tangential convergence. By the uniqueness argument used in the
proof of Theorem 3.1, it is clear that (*) cannot then hold as on a
priori inequality for all smooth domains. We will also show that if D
is as above, and /E L\ (3D) ,g E L2 (8D), and u is the solution given
in Theorem 3.1, the estimate (*) cannot hold. We emphasize that
our counterexamples work for the range p < 2. Whether our results
are sharp or not in the range p > 2 remains an open problem.

Our counterexamples are based on the following lemma :

LEMMA 5.1. — Given q < 2, but sufficiently close to 2, there
exists a real number 7^ and an angle 9q < TT such that if S is
the sector S^ = (re16 :0 < r < oo,~ Q^ < Q < Q^ ^ (he functions

^(^^-^fsin ( l - ^O +7^ sin (l +^9}

and

v^r,e)=rl+^ sin (l --HO +7. sin(\ + i) 0}
[ v q / q \ q/ J

are biharmonic in S^ , and satisfy
i »\ i ^

u,(r, ±9<,)-v,(r,±0,)=^^u,(r,±Q^=^^v,(r,±6,)=0,

for 0 < r < °o .
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Before proving the lemma, let us discuss its consequences. Let
^A = {re^ : 0 < r < s} , s > 0. Let D^ C S^ be a bounded
Lipschitz domain with connected boundary such that 2A C 3 D, and
3D\1A is C°°. To show non-uniqueness for p < 2 , fix such a p ,
and choose p < q < 2. Consider u as in Lemma 5.1, but restricted
to D . Using the L2 theory in D^ , a biharmonic function in D ,
with the same data as u^ , may be subtracted from u^ , so that the
resulting function w is biharmonic in

^,N(^,N(7^)^(30,,^),

Sw
but H^ and —a are 0, non-tangentially a.e. on 3D • w cannot

be identically 0, for then N(v^) would be in L^flD ,do)
which is easily seen to be false. To see that (*) cannot hold in D
as an a priori estimate for the L2 solutions, first note that

4 _
Ai; q ( r , 0 ) =—r1^"1 sin(l — 1/^)0 does not have boundary values

in the dual of If^D^) although it is in L^BD^). Let u bean L2

9u
solution with u 1^ = 0 , and — supported in 1A. Under these

- o-N
conditions, with v^ as in Lemma 5.1, we can apply the divergence
theorem on D , to yield

r 9u /* Qv 8A^
Lw^^J^ (^'a^a-N^ d a '

By standard results on C°° domains, higher derivatives of u on
3D \2A may be controlled by the V3 norm of its Dirichlet data
on the boundary of a C°° domain D'C D where say,

BD'na D^ =3D^\3/2A.
This data is in turn controlled by N(v^) , which if (*) holds, is

controlled by —- , D / , A ^ - we would then conclude that At; isI^NIr^1^ •
in the dual of L^D^), which is false.

Proof of 5.1.—In the complex plane, consider the complex
valued biharmonic functions

z01 -h 'yzz^.a.-yER^eC.
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Let u(r,0) = ̂  sin a6 + 7^ sin (a - 2) 6 be their imaginary parts.
Consider the sectors S^ , 0 < Q^ < TT . Finding the desired biharmonic

9u
functions u with u=_==0 on 3S^ leads us to finding

a(0),7(0), so that at 6 = 6^

t /(a, 7,0) = sin a6 + 7 sin (a - 2) 6 == 0
(5.2)

^(a,7,0)=acosa0 + y(a - 2) cos (a - 2) 0 ^= 0.

In the limiting case, when 6 = TT , the interesting solutions are

^W = ̂  TOO = - 1 . If

' a / a/'
a^ 37
^ 3^
3a 87 0 =ir

a = 1/2
7=- 1

is an invertible matrix, then, by the implicit function theorem we
will be able to solve (5.2) for a and 7 as C1 function of 6 , Q in
an interval around T T , with a(7r)=l/2, 7(7r) = - 1. A calculation

0 11shows that the above matrix is , which is clearly
L-27T 0

invertible. Differentiating (5.2) implicitly with respect to 0 , and

evaluating at B = TT gives (/(TO^X). Thus, if 6^ < TT is
7T

sufficiently close to 7r,a(0o) < 1/2, and a(@o) / 1/2 as Q^T!.
This establishes the existence of u^ as in 5.1. To obtain v all we
need to observe is that is u(z) is biharmonic, so is \z\2u(\|z) = v ( z ) .
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