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ON THE DISTRIBUTION OF INTEGRAL
AND PRIME DIVISORS
WITH EQUAL NORMS

by B. Z. MOROZ (*)

This is an exposition of the material presented in my lectures given at
Orsay in March 1983.

1.

Consider r finite extensions fc i , ..., k, of an algebraic number field
k, a finite extension of Q, and fix an ideal class Aj in kj, 1 ^ j < r .
Let

V(A) = {a|a,eA,, N^a^ = ... = N^aJ

be the set of r-tuples of divisors having equal norms. Following E. Hecke,
[I], one associates to a divisor of a number field a point in Minkowski
space, the real vector space corresponding to this field; we study the
distribution ofintegrall and prime divisors in V(A) regarded as points of a
real manifold, in the spirit of [1]. For technical reasons we consider here
only the case k = Q (compare [2] and the appendix to this paper).

We use the following notations: card S, or simply |S|, denotes the
cardinality of a firfite set S. Let L be an algebraic number field of degree
n over Q:

D is the ring of integers of L,
o* is its group of units,
I is the group of fractional divisors of L,
Io is the monoid of integral divisors,

(*) Supported in part by a French Government visiting grant.



2 B. Z. MOROZ

^ is the set of prime divisors,
83 and Si are the sets of complex and real places of L,
S = S i u S 2 , |S,| =: r, 0=1,2), n= r i+2 r2 ,

{R w e SL^, = ' l denotes the completion of L at w e S ,
C, w G S^

"-fc::^; ^'^
Let us introduce the algebra X = ]~[ L ,̂ of dimension n over R,

w e S

refered to as Minkowski space associated with L. Let ^: L -> X be
the componentwise embedding of L in X. The group o* of units acts
freely as a discrete group of transformations on the multiplicative group
X* = f[ L^ of non-zero elements of X; let Y=X*/v|/(o*) be the group

weS

of its orbits. E. Hecke, [l], introduces « ideal numbers » (compare also, [3]-
[6]) and defines GroBencharaktere to be able to study the distribution of
integral and prime divisors among the areas of Y. We recall this
construction, as well as the results of [3]-[5] to be generalized here. Let N :
X ->• R+ and N ~ 1 : R+ ->• X denote the norm map N : x ->• ]~[ ||xJ|

w e S

and its right inverse N~1 : (-^ (( l /n,.. ..r^"). Since N is trivial on
vKo*), one obtains Y = R+ x Yo, where

YO: =Xo/^(o*). Xo: ={ jc |xeX,N(x)=l} .

Let ^o l^ ̂  gfo^P of characters of Yo and K € ^o» one can regard X.
as a character of X* trivial on ^(o*) and on N^R.,.. Thus

(i) MX) = n iixji^f^V^
w e S \\xw\/

where a^eZ, ^eR, x^ denotes the projection of x on L^, and,
moreover, ^(ex) == K(x) for eex|/(o'11),

Z ^ - + 2 E ^ = 0 , a,e{0,l} for weS i .
w e S j weS^

It follows from the Dirichlet theorem on units (compare [l], [6]) that
Y = R+ x IL x (Z/2Zy°, where IL is a torus of dimension n - 1,
and r o ^ y - i . Therefore, Yo = Z""1 x (Z/2Zy°, and there exist
characters ^ i , . . . , ^ _ i multiplicatively independent over Z and such
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that any K e ̂ o has the form

(2) ^ri^^ ^z.
v = l

(JC ^^^where X/(x) = ]~[ —!-) , a^e{0,l}. The map \|/ induces an
w e S . l^wl/
A I \ |Y i

v e S j Yl-^wl,

(p : L*/s>* -^ Y
embedding

of the group of principal divisors L*/D* of L in Y. Composing (p with
the projection of Y on R+ x 3^ one obtains an embedding

(po: L*/o* -̂  R+ x XL.

Since the group H: = I/L* of ideal classes is finite, one can define an
embedding

(3) / : I - > R ^ x 3 : L

which coincides with (po on L*/o*. It follows from the work cited above
(see, in particular, [1] and [3]-[5]) that both integral and prime divisors are
asymptotically equidistributed when identified by means of (3) with points
of the real manifold R+ x IL. To be more precise, let us introduce a
parametrisation of 3^ induced by the basic characters
Kj(x) = exp (2ni(f>j(x)), 1 ^ j < n — 1, 0 < (p/Oc) < 1, and identify a
point x e 3:L with its image (^ (x),... ,^ -1 (x)) € T" ~ 1 , where T
denotes the unit circle in C*. We call a subset

T = {;x|^(p/x)<^+8^, l</^n-l}

of IL elementary whenever 0 < X, < .̂ + 8, ^ 1. A set T c 3^ is
called smooth if there exists a constant C(r) > 0 such that for every
A > 0 one can find a systetn t = {-Cy} of elementary sets with the
following properties : card (() < A"01"1^

Tv r\ ̂  = 0 for v ^ v', T c (J ^, mes( (J Ty] < C(r)A,
T y € ( \Tyn^Tg60 /

where mes is the normalized Haar measure on XL (so that mes (IL)= 1)
and Sx denotes the boundary of T. The following theorem has been
proved by J. P. Kubilius, [4], and, a few years later, by T. Mitsui, [5].
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THEOREM 1. — For any smooth set T ^ IL ̂  ̂  ̂ ^ class A e H

card{a|aelo, /(a) e(0,x) x T, aeA} = CDLmes(T) x + O^-^
n

ca rd{p |pe^ , /(p)e(0,x) x T, peA}
_ mes (x) r^ dx
~ /i J2 logx

+ 0 (exp (- C2 ̂ /log x)x),

where the constants c ^ , €3 > 0 depend on L, but not on x -> oo , and COL
denotes the residue of the zeta-function of L at s = 1, A : = |H| is the
class number of L.

The characters ^ .==^o/ are called basic GroBencharaktere; the
group

{ n-l 1

1= H l ^ = x n ^ , w , £ Z , x e H ^
j=i J

where H is the group of ideal class characters, can be identified (see, e.g.,
[6]) with the set of unramified idele-class characters trivial on R+ . The
map

(3') g ' : I ^ R^ x T"-1

given by
g ' : a ̂  (NL/QO , Hi (a),... ,^ -1 (a))

is compatible with (3) under the above identification of 3^ and T"~1.
Theorem 1 may be viewed as a multidimensional equidistribution
principle, in the spirit of the classic memoir ofHecke's, [1]. We should like
to refer to [8], [9], [10] for some applications of this principle. One can
improve the error term in the second formula using the method of
trigonometric sums (see, [3], chapter 2, and [7]). About thirty years ago
Yu. V. Linnik suggested (and communicated to his colleagues and
students, [11]) that one could generalize Theorem 1 to treat the integral and
prime divisors in V(A). As an example of this programme (compare [2]
and references therein), we prove here the following result. Let 1^, ^, 2,
and hj denote the monoid of integral divisors, the set of prime divisors, the

r
torus Ifc. and the class number of kj respectively; let h = ]~[ hj and

1 j= i
I = 2i x • • • x I,., moreover, let ^ = {p | pj e 3P ̂  and
TO = {a | dj e 1̂ } be the sets of r-tuples of prime and integral divisors
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respectively; let K = k^ . . . k, be the composite of the fields fe i , ..., fe^,
let rij and Dj be the degree [kj: Q] and the discriminant of kj and n
be the degree [K: Q] of K. Consider the map

g j ' ' 4 ^ Zj

induced by the embedding (3'), so that, when ly is identified with T"/~1,

g j : Oj ^ (n,i (a,), . . . , ̂ ._ i (a,)), a, e ?o,

where {^y | l^^n ,—l} is the set of basic GroBencharaktere of fey,
j = 1, . . . , r, and introduce a zeta-function

(4) Z(fe,,...,fe,;5)= ^ ^...^m-5,
w = l

where a^ = card {a , |o ,6 iy , N^./Q^ = w} is the number of integral
divisors of kj whose norm is equal to w. One can show (see [12], [13])

r

that if n = ]~[ n,, then
j=i

/c\ ^/i i \ ^K(5)(5) ^-••^^'i^)9

where L(s,0) = ]~[ ̂ ^(p"8)"1, ^(t) is a rational function of (, p
p

varies over rational primes, and, moreover, O^^p"5) ^ 0, oo for

Re s > — for almost all p the function 0 (̂1) is a polynomial of degree

not larger than n - 1 and such that (^(O) = 1, —O^l^o = 0. Inat
particular, the Euler product

Lcs.a^n^o^r1
p

converges absolutely for Re s > - '

r
THEOREM 2. — If kj is Galois over Q for every j , n = I~[ n, and

j=i
(D^,D^) = I for j ^ ^ (the discriminants are pairwise coprime), then for
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any smooth set T £ 1 on^ has

card{a|a6V(A)n!o. |a| < x^(a)€T} = ̂ ^^x + O^-i),

card{p|peV(A)n^, |p| =x,^(p) ex}

= "̂  KM + 0(xexp(-C2^iog^))

for some Ci , €2 > 0 depending on k^, ..., fcy, bi^ nor on x -^ oo , w^r^

/ r \ j
H'- = E ^k,/Q^j)-for ^ = {ai,...,aJa^ePo},

\j=i ' /r

and
fx du

^•^iog^ ^=^--^-
One can view Theorem 2 as a statement about statistical independence

of the fields ki, ..., k y . To be more precise, let

T = TI x • • • x T,., Ty c 3:̂

then (under the above assumptions) the probability to find a e V(A) with
g(a) € T is equal to the product of the probabilities that dy e Aj and
gj(cij) e T^, 7 = 1, ..., r. Thus the condition

(6) N^/Qdi = .. . = N^a,

affects the probability of the event:

« ai e AI , ..., a, € A,, ^i(ai) e TI , ..., g,(a,) € T, »

neither for r-tuples of integral, nor of prime divisors. On the other hand,
Theorem 2 may be regarded as an assertion on representation of integers
by decomposable forms. As a special case of this theorem
(ni= • — =n^=2), one obtains the following result.

PROPOSITION 3. — Let /i, .. .,^r be binary positive definite primitive
quadratic/arms mth pairwise co-prime fundamental discriminants. Then the
number of integral solutions

(X^,X^,. . •5.^2r-l»-^2r)
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of the system of equations

fl (^1^2) = • - • = /rC^r-l^r)

subject to the condition fi(x^,x^) < N is equal to

AN + CKN1-^)

for some A > 0, c > 0 independent on N.

It turns out that for two quadratic fields (n 1=^2=^=2)

L(s,<D)=L(25,Xo),

where ^o(n) = ( x 2 ) (see, e.g., [13], §5). Therefore we obtain the
\ n )

following result.

PROPOSITION 4. - Lei kj = Q(^/D,), j = 1,2, (D^.D^) = 1. Then

card {a|aeV(A) n Io, |a| < x,g(a)er} = COKmes(T)^ + O^-0')
flLl2»Xo^

wft/i Ci > 0 independent on x .

We remark finally that the 0-constants depend on T only through the
« constant of smoothness » C(x), as can be readily observed from the
proof of Theorem 2 given below.

2.

Further on we write Io(K), ^(K), H(K), ^i(K) for the monoid of
the integral divisors, set of prime divisors, class group and the set of basic
GroBencharaktere of K. Theorem 2 will be deduced from the following
four lemmas.

LEMMA 1. — Let (pi, (pa, e satisfy the inequalities

0 ^ < P l ~ e < ( P l < ( P 2 < ( P 2 + e ^ l -

There exists a real valued function /€C°°[0,1] such that 0 ^ f(f) ^ 1 for
(e[0,l], / ( t )= l for te[(pi ,(p2], f(t) = 0 for r^[(pi-e,(p2+£],
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/'(O ^ 0 for (pi - e < t < (pi and (p^ < r < (p2 + e

0 | <pi - e (pi <?2 <P2 + e 1

This is a well-known lemma of elementary calculus; we choose one of
such functions to be denoted by /((pi,(p2,e; .).

Let C,, CK be the idele class groups of fe,, K, and /, be an idele
class character of fe, trivial on R+; we define an idele class character

(7) x: = n X,°NK.
j = i j

in K, and an L-function

L ( X i , . . . , x , ; 5 ) : = ^ ^(a0 . . .Xr(ar) |a |~5 ,
0 € V

where V = {aja, e ?o, ̂ a, = . . . = N^aJ.

r
LEMMA 2. - // n = p ^., then L(^,...,^;5) = L(s,%)L(5,<D)-1,

H^TO L(s,/)= ^ X^NK/Qtt-5/or Res> 1, and L(s,0>) as defined
06lo(K)

in (5) wfr/i <D(P) depending on X i , . . . , Xr ^^ ̂ ^ r/i^ properties similar to
those of the polynomials in (5).

This follows from the results cited before, [12] (or [13]).

r
LEMMA 3. - Let n = f] ^., then

j= i
3n+l

(8) E Xi(ai) ... Xr(a.) = ̂ (x)^—— + 0(a(x) n2 x1-^),
a 6 V , | a | < x JL(1,^)

(9) £ Xi(ai)...X,(a,)
06Vn^»,|a|<x

= ^(X) [̂  + ofxexpf- ^ .))J2108X \ \ loga(x)+^iogx
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where Ci , c^ > 0, g(y) = < , the 0-constants and c^ , c^C 1 » x := A

depend on k^, ..., fc^, but not on X i» • • • » Xr Mwkss ^2 = 1 , nor on x;
Z (kJ+I^J) = ^(X)» w^w X is-given by

w e S

(10) X(a) = n f^-l01^
W 6 S M^wl/

/or a = 1 (modf(/)), aeK*, a^eZ, fc^eR; a^ denotes the image of
a fn K ,̂ /or w e S and f(/) is th^ conductor of /.

Proo/. — To prove (9) one remarks (see, e.g., [14], Lemma 1) that for
any a € V n 3P satisfying the condition « |a| = q is a rational prime »
there exists one and only one prime pe^(K) such that N^.p = dj.
Therefore,

E Xi(ai) ... X.(a,) = E x,(ai) ... x,(a,)+0(x1/2)
a€Vn^»,|a|<x aeVn^,|a|=^

S X(P) + 0(x1/2)
p6^»(K), NK/QP<X

and (9) follows from estimates obtained in the work cited above (see [4],
ch. I, § 8, lemma 4, or [5], § 2, lemma 6) (*). By a standard argument one
obtains (see, e.g., [15], lemma 3.12)

A(x):= ^ Xi(ai) ... Xr(ttr)
aeV,|a|<x

1 FC+IT yS /Y1'1'^

-24-^ ̂ ••••••'''•^"•(-i")'
where c = 1 + (logx)"1, T > 0. It follows from lemma 2 that

1 p/2+e-KT^s ^ ^

A(x) = — - L(5,x)L(5,0)-1 d5 + gW ———
27tiji/2+e-rr 5 L(l,0)

+ O/̂ ) + O/ f (|L(a+fT,x)| + |L(a-ir,x)|) ̂  da)
\ 1 / \ J l / 2+£ 1 /

because L^O)"1^ = 0,(1) for Re s > , + e.

(*) Alternatively one can deduce (9) from lemma 2.



10 B. Z. MOROZ

By a Phragmen-Lindeloftype of argument (compare, [6], pp. 92-93 and
[5], pp. 14-15) one deduces from the functional equation for L(s,x) and
Stirling's formula for the F-function an estimate

(11) L(a+^)=0^(l+|r|f(l-<y+e)a(^+e)
3n 3n
^-(1-CT+e)

in the region 0 ^ CT < c. Substitution of (11) into the estimate for A(x)
we have just written out leads to (8).

LEMMA 4. - Let kj be Galois over Q for each 7, n = f[ n,,

(D^ D^) = 1 for J + ̂  X = 1» o^ Xj ^ unramifiedfor each j. Then
Xj = 1 /or ever^ j.

Proof. - Let us assume first that ^ is of finite order for every j; then,
being unramified, it is an ideal class character. One can deduce from class
field theory, [17], that (under the above conditions)

{(NK/,,A,. . .,NK/,A)|A 6 HK} = Hi X . . . X H,,

where H, is the ideal class group of kj; in particular, for any A^.eH.
there exists A(=HK such that N^A = A^.; N^A = 1 for £ ^ j . If
X = 1, then ;

1 =ri(X.oN^)(A)=x/A,);

and we see that Xj = 1 • Assuming ^ = 1 we deduce, now that ^ is of
finite order for any j. Let Gy be the Galois group of k, and G be the

r

Galois group of K; since n = fl n/' we have G ^ °i x • " x Gr-
j= i

The character

(XyoNK^-^n^oN^
^j

is, therefore, G^-invariant; since [Cj: NK/^.CK] = ^ is finite, we see that
^ is G^-invariant. Take pe^,; since ^(p) = X^P7) for yeG,, we
see that (x/p))^ = (x/P)/^, where N^/QR = ̂ . But any idele class
character in Q is of finite order, and it follows, therefore, that ̂  = 1 for
some £\
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3.

Theorem 2 can be deduced from lemma 3 and lemma 4 on purely
formal lines. It is an easy consequence of these lemmas and the following
form of the WeyFs equidistribution principle (compare [I], p. 37, and [18],
Satz 3). To state it we appeal to lemma 1 and write

/(<Pi >q>2 »e; t) = ^ €„ exp (27rint),

so that

(12) Co=((p2-(Pi)+0(e) , c"=o(|„,^

for any fixed integral k ^ 1.

PROPOSITION 5. — Let

3: = {exp (27tf(pi), ..., exp (27ri(pJ|0 ^ (p, < lj= 1,... ,m}

be a torus of dimension w,- T be a smooth subset of I, G be a finite Abelian
group with the group of characters Q and

£={^...^|^€Z,^:X^X,}

be the group of characters of 2, x = ( . . . , exp (27ri(p,)=x,,...) e 2.
Consider a set W and (hr^ maps:

^:W-.3:, ^ : W - > G , N : W ^ R + ;

we denote by W th^ set of functions on W defined by

W = {nlH(a)=()io^)(a)()i'o^)(a),?iet, ^efi},

where a varies over the elements of W. If

(13) E X(a) = ^Oc)A(x) + 0(xB(^,a(x))-1)
Na<x

for 5C 6 W, w^r^

fl , ^=1 and ^=1 , , . .... . . ^ i , i
^'{o, otherwise ' A(.) = 0(x), a(x): = £ĵ |
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/W

X=(?LO^)(^'og2), >.'eQ, X = n ^ ,
J=l

^n /or any smooth subset x of X and any y € G we have

(14) c a rd{a | a eW, ^(a)=y, ^i(a)er, Na<x}

-̂ '•"SMi))-
where b(x) can be chosen to be equal to b^(xY with v > 0, and fci(x) is
determined by

s W—^)^ = bl(xr1' a^ = £ 1^1
/I,...,^=-oo D{,X,a{€)) j = ^

m fl ^. = 0
wfrA aOQ = f] a/^.), a/ .̂) = ^ . k J , ., k can be chosen to be any

j = l (/./ » € ! ^ u

positive integer.

Proof. — We deduce (14) from (13) for rectangular T by means of
lemma 1 and then prove (14) for any smooth T S I. Let

T = {(p|i|/^(p^<^+8^,7=l,...,m}.

Choose e > 0 and set (using notations of lemma 1)

//(<Py)=/(^,^+8j,£;(Py),
fj~(Vj) = /(^-£,^—£+8,,£;(p,),

'"-"/'••
Let ^V denote the left hand side in (14). Obviously,

I F-fei(a))<^^ ^ F^a)).
Na<x Na<x

g2(a)sy ^2(a)=Y

On the other hand,

(16) E F^a^—E E xMF^a))^^)).
NO<JC l^l No<x xe<5

^(^"Y
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00

Write f^(t) = ^ <^xp (27cint) and denote the left hand side in (16)
n= — oo

by ^r±. It follows from (16) that

^± = Z c^n) S n(a),
peW Na<x

where

^(^)=^x(y)n^ ^ ^((^...^o^Kxo^).

Equation (13) and estimate (12) give

^± = —fn^W) + o(xe) + 2:1^(^)1 z ^(<»)
l^'V^l / HeW Na<x

H^l

= AM"^ + 0(xe) + of $: jc^^l B^^))-^).
l̂ l \H<=W /

Thus

^'± = A(;c)m^-T) + o(;c£) + O^-^xfciM-1).

By choosing e^1 = fci(x)~1 one obtains (14) with b(x) = fr^x)1^^1.
Now let T £ 3: be a smooth set and ( = {x^} a system of elementary sets
with the properties

card (r) < A""*, ^ n T^ = 0 for v ^ V,

T S J T,, mes( (J T,)<C(T).A
T^et \'CvnT^0 /

for some A > 0. Applying (14) to every r ^ e r one obtains

^.AM-^+OfCM^+O^),

and it is enough to choose A^1 = .— to finish the proof.
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To deduce Theorem 2 from Proposition 5 we take
G = Hi x • • • x Hy, where Hj denotes the ideal class group of k,,
and define W to be either V(A) n Io, or V(A) n ̂ . By lemma 3, one
can take

A(x) = L^O) x9 B(x9aw) = ~^±1
o(x) 2

in the former case, and

A / \ f" ^x iw / \\ / Czlogx \A(x)== }^~9 B0c,o(x)) = exp .———————=
J2 lOg X \log fl(^) + ,/logX/

in the latter case. Lemma 4 assures that g(y) = 0 for a non-trivial
character ( X i » - - - » X r ) °f H; it can be checked easily that

r

^(x) ^ ^3 Z ^(Xj) f01" some constant €3 depending only on the fields
j=i

ki , ..., k y , and that in both cases b(x) has the required form to assure
the right error terms in theorem 2.

4.

The condition (D .̂, D^) = 1 for j ^ <f in theorem 2 and in lemma 4
can be replaced by a weaker one: for every rational prime p one has
(€j(p),ei(p)) = 1 for j + i, where .̂(p) denotes the ramification degree
of p in kj (compare [17]). Following the interpretation given to the scalar
product of L-functions in [19] one may try to interpret theorem 2 as a
statement about distribution of integral points on algebraic tori. Finally we
should like to refer to [20]-[24], where the problem discussed here or similar
questions were studied.

Acknowledgement. — We are grateful to Professor P. Deligne and
Professor M. Gromov for several conversations related to this work, to
Dr. R. Sczech for the reference [6], and to the referee for numerous
remarks and comments.

Appendix.

Following [2] we discuss here the general situation making no a priori
assumptions on kj, 1 < j < r, and k. As before, K denotes the
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composite field of k i , . . . , k , . . Given any idele-class character
^ : Cj ->• C* normalized by the conditions X, o N~ 1 = 1 and
|X/a)| = 1 , put

bn(tj) = E X/o)»
^kj/k^

and define

L(5;Xl,. . .,Xr) = Z^nOOl) • • • ^(Xr)!^"5,

where n, a vary over integral divisors of k, kj. It follows then from the
results cited above (see [12], [13]) that

(A.O) L(s ;Xi , . . .,X.) = n L(s,^)L(s,<&)-1,
j= i

where L(5,̂ .) are Hecke L-functions,

(A.I) L(s^)=Y\^(\p\-s)-l.p
^^(O is a rational function such that ^(t) = 1 -h ^^(O, g^eC^]
for almost all p (here p varies over the prime divisors of k). Moreover,
both v|/i, . . . , I|/Y and ^(p) are exactly computable as soon as Xi » • • • • » Xr
are given. In particular, the product (A.I) converges absolutely for

Re 5 > . and

L(5,<D) + 0, oo

in this half-plane. If fc i , ..., fe,. are linearly disjoint 6ver k, then v = 1
r

and \|/i = Y[ Xj°NK/fc. is an idele-class character in K; if r = 2 and
j= i 7

ki , k^ are quadratic extensions of k with co-prime discriminants, then
L(s,0) = L(25,Xo) tof some idele class character /o of k (depending on
X i » X 2 ) • We now apply these results to obtain estimates for the sums

S = E Xi(di) ...Xr(ttr),
oeVQ
|0|<X

Spr = Z Xl(Pl) • • • Xr(Pr).
PeVp,
IpKx
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where Vo = {a|N^ai= . • . =N^a,, a,e?o},

Vp.= {p|peVo,p,.e^}.

The implied constants in 0-symbols depend on / i , . . . , X r ; this
dependence can be expressed in terms of a(^\ . . . , a(^) but we shall not
do it here. Let Vo be the number of trivial \|^.:

V o = l { / l ^ = l } | ,
then

(A.2) S = ^ (logx)*-1^ x + 0(x1-^),
k=l

FX ^

(A.3) S,, = Vo | ̂  + 0(x exp (- y'^/logx))

for some exactly computable constants c^ , . . . , c^ and y > 0, / > 0.

The estimates (A.2) and (A.3) follow from the properties of the L-
functions (A.O) and (A.I) along the same lines as the corresponding
estimates in the text.
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