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ON THE DISTRIBUTION OF INTEGRAL
AND PRIME DIVISORS
WITH EQUAL NORMS

by B. Z. MOROZ (*)

This is an exposition of the material presented in my lectures given at
Orsay in March 1983.

1.

Consider r finite extensions k,, ..., k, of an algebraic number field
k, a finite extension of Q, and fix an ideal class A; in k;, 1 <j<r.
Let

V(A) = {ala;e A}, Nypty = -+ = Nk,,/kar}

be the set of r-tuples of divisors having equal norms. Following E. Hecke,
[1], one associates to a divisor of a number field a point in Minkowski
space, the real vector space corresponding to this field; we study the
distribution of integrall and prime divisors in V(A) regarded as points of a
real manifold, in the spirit of [1]. For technical reasons we consider here
only the case k = Q (compare [2] and the appendix to this paper).

We use the following notations: card S, or simply |S|, denotes the
cardinality of a firfite set S. Let L be an algebraic number field of degree
n over Q:

o is the ring of integers of L,

o* is its group of units,

I is the group of fractional divisors of L,
I, is the monoid of integral divisors,

(*) Supported in part by a French Government visiting grant.
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2 is the set of prime divisors,
S, and S, are the sets of complex and real places of L,
S = Sl v Sz, lSjI = rj (]=1,2), n= rl + 2r2,

R S
L, = { » WES denotes the completion of L at weS,

Ix], wes,
lIx|l = { . for xeL,.
2

Let us introduce the algebra X = [] L, of dimension n over R,
weS

refered to as Minkowski space associated with L. Let y: L - X be
the componentwise embedding of L in X. The group »* of units acts
freely as a discrete group of transformations on the multiplicative group
X* = [] L* of non-zero elements of X; let Y=X*/{y(v*) be the group

weS

of its orbits. E. Hecke, [1], introduces « ideal numbers » (compare also, [3]-
[6]) and defines GroBencharaktere to be able to study the distribution of
integral and prime divisors among the areas of Y. We recall this
construction, as well as the results of [3]-[5] to be generalized here. Let N :
X >R, and N7!: R, - X denote the norm map N: x — [] |Ix,ll

weS

and its right inverse N~!: ¢t — (¢'/",...,t). Since N is trivial on
Y(v*), one obtains Y =R, x Y,, where

Y,: = Xo/V(v*), Xo: = {x|xeX,N(x)=1}.

Let Y, be the group of characters of Y, and A€ Y,; one can regard A
as a character of X* trivial on Y(v*) and on N'R,. Thus

1) Ax) =[] ||xw||“w(i"—)"”,

weS |xwl

where a,€eZ, t,eR, x, denotes the projection of x on L,, and,
moreover, A(ex) = A(x) for €ey(v*),

Y ty+2 Y t,=0, a,e{01} for weS,.

weS; weS,
It follows from the Dirichlet theorem on units (compare [1], [6]) that
Y =R, x I, x (Z/2Z)°, where T, is a torus of dimension n — 1,
and ro, <r,. Therefore, Y, =Z""! x (Z]2Z)?, and there exist
characters 1, ..., A,_; multiplicatively independent over Z and such
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that any Ae¥Y, has the form

n—-1
) A= ] A™N, m,eZ,
v=1
where N(x) = [] (;—wl> w, a,€{0,1}. The mapV{y induces an
weS; w
embedding
' @:L*¥o* -5 Y

of the group of principal divisors L*/v* of L in Y. Composing ¢ with
the projection of Y on R, x I, one obtains an embedding

®o: L*/o* - R, x I;.

Since the group H: = I/L* of ideal classes is finite, one can define an
embedding

3) f:1 - R, xT

which coincides with ¢, on L*/v*. It follows from the work cited above
(see, in particular, [1] and [3]-[5]) that both integral and prime divisors are
asymptotically equidistributed when identified by means of (3) with points
of the real manifold R, x ¥,. To be more precise, let us introduce a
parametrisation of I; induced by the basic characters
Ai(x) = exp 2mi@j(x)), 1 <j<n—1, 0<¢@;(x) <1, and identify a
point xe I, with its image (A;(x),....A,_;(x))eT"" !, where T
denotes the unit circle in C*. We call a subset

of T, elementary whenever 0 < A; <A; +3;<1. Aset 1T is
called smooth_if there exists a constant C(t) > 0 such that for every
A >0 one can find a system t = {t,} of elementary sets with the
following properties : card (f) < A~V

wnt, =g for v#Vv, 1< J1, mes( U ‘tv)<C(‘t)A,

T, €t TyNoT£

where mes is the normalized Haar measure on I (so that mes (T)=1)
and dt denotes the boundary of 1. The following theorem has been
proved by J. P. Kubilius, [4], and, a few years later, by T. Mitsui, [S].
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THEOREM 1. — For any smooth set 1 = I, and any ideal class A eH

®; mes ()

card {alael,, f(a)e(0,x) x T, aeA} = p

x + O(x'")

card {p|lpe?, f(p)e(0,x) x T, peA}
mes(t)f‘ dx
2

A fog x + O(exp (—c,/log x)x),
where the constants ¢,, ¢, > 0 depend on L, but not on x - oo, and o
denotes the residue of the zeta-function of L at s =1, h: = |H| is the
class number of L.

The characters p; = A;of are called basic GroBencharaktere; the
group

n—1
[= {u|u=x I1 u;"',m,eZ,er}’
j=1

where H is the group of ideal class characters, can be identified (see, e.g.,
[6]) with the set of unramified idele-class characters trivial on R, . The
map

3) g: 1 >R, xT" !

given by

g a —»(Nyqa,py(a),....1n,-1(a))

is compatible with (3) under the above identification of ¥, and T" !,
Theorem 1 may be viewed as a multidimensional equidistribution
principle, in the spirit of the classic memoir of Hecke’s, [1]. We should like
to refer to [8], [9], [10] for some applications of this principle. One can
improve the error term in the second formula using the method of
trigonometric sums (see, [3], chapter 2, and [7]). About thirty years ago
Yu. V. Linnik suggested (and communicated to his colleagues and
students, [11]) that one could generalize Theorem 1 to treat the integral and
prime divisors in V(A). As an example of this programme (compare [2]
and references therein), we prove here the following result. Let Ij, 2;, ¥;
and h; denote the monoid of integral divisors, the set of prime divisors, the

torus ij and the class number of k; respectively; let h = [] h; and
j=1

T=3, x---x%T,, moreover, let £ = {p|p;e?;} and

I, = {a]a;eI}} be the sets of r-tuples of prime and integral divisors
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respectively; let K = k, ... k, be the composite of the fields k,, ..., k,,
let n; and D; be the degree [k;: Q] and the discriminant of k; and n
be the degree [K:Q] of K. Consider the map

gi:h > I
induced by the embedding (3'), so that, when I; is identified with T%~',
g 4 (), oy 1(), oelf,
where {u,|1</<n;—1} is the set of basic GréBencharaktere of k;,
j=1,...,r, and introduce a zeta-function
4) Z(ky,..., k,;s5) = f:l al ...a%m"s,

where 4 = card {a;|a;€ I, N, qa; = m} is the number of integral
divisors of k; whose norm is equal to m. One can show (see [12], [13])

r
that if n = [] n;, then
i=1

()
T LD

(&) Z(ky,- . k3 s)

where L(s,®) = [[®P(p~%)"!, ®P(¢) is a rational function of ¢, p
4
varies over rational primes, and, moreover, ®P(p~%) # 0, oo for
1
Res > x for almost all p the function ®®(¢) is a polynomial of degree
d
not larger than n — 1 and such that ®®(0) =1, EQ(MIFO =0. In

particular, the Euler product

L(s®) = [[o®(p~ 9!

converges absolutely for Res > %

THeEOREM 2. — If k; is Galois over Q for every j, n= [] n; and
j=1
(D;,D)) =1 for j # ¢ (the discriminants are pairwise coprime), then for
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any smooth set 1 < I one has

g mes (1)

e © T OET

card {alae V(A)n 1y, |a] < x,g(a) et} =

card {p|peV(A) N 2, |p|=x,g(p) et}
_ mes (1)

= li(x) + O(x exp (—c,4/log X))

for some c¢,, ¢, > 0 depending on k,, ..., k,, but not on x - oo, where

r 1 3
la]: = (1; N,‘j/Qaj>; for a = {a;,...,a,|a;e i},

and

u(x).-=r W = (. ).

. logu

One can view Theorem 2 as a statement about statistical independence
of the fields k,,...,k,. To be more precise, let

T=7Ty X +** X T, 1; € 3,

then (under the above assumptions) the probability to find ae V(A) with
g(a)et is equal to the product of the probabilities that a;€ A; and
gi(apert;, j=1,...,r. Thus the condition

(6) NkllQal = - = Nk,/Qar
affects the probability of the event :

«a,; €Ay, ...,0,€A,, g(a)ET, ..., g(a)eET,»

neither for r-tuples of integral, nor of prime divisors. On the other hand,
Theorem 2 may be regarded as an assertion on representation of integers
by decomposable forms. As a special case of this theorem
(n,=---=n,=2), one obtains the following result.

ProposITION 3. — Let f,, ..., f, be binary positive definite primitive
quadratic forms with pairwise co-prime fundamental discriminants. Then the
number of integral solutions

(xl 3X25. - "x2r-lax2r)
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of the system of equations
Si(x1,x3) = -+ = filxzp-1,X2)
subject to the condition f(x;,x;) < N ‘is equal to
AN + O(N'79

for some A >0, ¢ > 0 independent on N.

It turns out that for two quadratic fields (n,=n,=r=2)

L(s,®) = L(2s,%0)

D,D
where %, (n) =< ln 2) (see, e.g., [13], § 5). Therefore we obtain the

following result.

ProposiTioN 4. — Let k; = Q(/Dj), j= 1,2, (D;,D;) = 1. Then

g mes (T)

card {alae V(A) n I, |a] < x, g(a) et} = WL Coxo)

x + O(x'~)

with ¢, > 0 independent on x.

We remark finally that the O-constants depend on 1 only through the
« constant of smoothness » C(t), as can be readily observed from the
proof of Theorem 2 given below.

2.

Further on we write I,(K), 2(K), H(K), p(K) for the monoid of
the integral divisors, set of prime divisors, class group and the set of basic
GroBencharaktere of K. Theorem 2 will be deduced from the following
four lemmas.

LEMMA 1. — Let ¢@,, @,, € satisfy the inequalities
0<0Q, —€<@; <P, <P, +e<1.

There exists a real valued function fe C*[0,1] such that 0 < f(t) <1 for
tel01], f()=1 for telo,,9,], f(O) =0 for t¢[p,—€,9,+¢],
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ft)#0 for ¢, —e<t <@, and @, <t < @, + €:

A

I
|
|
|
|
|
L

' - >
0l o,—¢ o ¢, 9+ |

This is a well-known lemma of elementary calculus; we choose one of
such functions to be denoted by f(9,,9,,¢; .).

Let C;, Cx be the idele class groups of k;, K, and yx; be an idele
class character of k; trivial on R,; we define an idele class character

) X = n XjONK/kj
j=1

J
in K, and an L-function

L(Xl 9 v -’Xr;s) L= ZV XI(al) e Xr(ar)lal_sy

where V = {ala;e I}, Ny o0, = -+ = N, o0,}.

LemMMA 2. — If n= [] n;, then L(xy,...,%:5) = L(s;x)L(s,®)"*,
j=1
where L(s,y) = Z X(@)Ngoa ° for Res > 1, and L(s,®) as defined
aely(K)
in (5) with ®® depending on ¥, ...,%, and having the properties similar to

those of the polynomials in (5).
This follows from the results cited before, [12] (or [13]).

r
LEMMA 3. — Let n= [] n;, then
i=1

3n+1

+0(a(y) 2 x'™),

WX
®) V;I B x1(ay) ... %(a) =g T(L.0)

)] Z x1(ay) ... x.(a)

aeVn2a<x

=g jx dx + O(x exp(— c log x ))
2 logx ?log a(x) + /log x
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0, 1
where ¢;, ¢, >0, g(x):{l if 1 the O-constants and c,, c,
depend on k,, ..., k,, but not on ¥, ...,%, unless x* =1, nor on x;
Y (la, +b,)) = :a(x), when x is given by
weSs
a \™
(10) 1@ = [T(==) lol™
wes Iawl

for « =1 (mod f(y)), «eK*, a,eZ, b,eR; a, denotes the image of
a in K, for weS and §(x) is the conductor of .

Proof. — To prove (9) one remarks (see, e.g., [14], Lemma 1) that for
any aeV n 2 satisfying the condition «|a] = q is a rational prime »
there exists one and only one prime pe £(K) such that NK,,‘jp = q;.
Therefore,

Z XI(al) 0 Xr(ar) = z XI(al) oo Xr(ar)+o(xl/2)
aeVNn2, la<x aeVn2,la=¢q
q<x

Yy P+ 0

pe2(K), Ng/Qp<x

and (9) follows from estimates obtained in the work cited above (see [4],
ch.1, § 8, lemma 4, or [5], § 2, lemma 6) (*). By a standard argument one
obtains (see, e.g., [15], lemma 3.12)

A(x) = Z X1 (al) e Xr(ar)
aeV,la<x l c+.‘|‘xs

x1+c
= — —LMys---sXr38)d O— )
2ni J._i S (1 Xr3s) ds + (T )

where ¢ =1+ (logx)™', T > 0. It follows from lemma 2 that

1 12+e+iT ys WX
= = L(s,)L(s,®)"'d Ay
A(X) i rseoiT § (S X) (S ) s + g(X) L(l,d))
xl+e ¢ x°
+ o(_) , o,( f (L(+T.0l + IL(G=it, ) = dc)
T 1/2+¢ T

1
because L(s,®)" ' = O,(1) for Res > 3 + €.

(*) Alternatively one can deduce (9) from lemma 2.
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By a Phragmén-Lindelof type of argument (compare, [6], pp. 92-93 and
[5}, pp. 14-15) one deduces from the functional equation for L(s,x) and
Stirling’s formula for the I'-function an estimate

3n 3n
(11) L(o+it,y) = ot<(1 +i)? '”"a(xf”)

in the region 0 < ¢ < c¢. Substitution of (11) into the estimate for A(x)
we have just written out leads to (8).

LemmA 4. — Let k; be Galois over Q for each j, n= [] n;,
j=1

(Dj,D,) =1 for j# ¢, x =1, and y; be unramified for each j. Then
x; =1 for every j.

Proof. — Let us assume first that y; is of finite order for every j; then,
being unramified, it is an ideal class character. One can deduce from class
field theory, [17], that (under the above conditions)

{(NgyA,....NgyAJAeHg} = Hy x -+ x H,,

where H; is the ideal class group of k;; in particular, for any A;eH;
there exists A € Hy such that Nx/ij =A;; NgyA=1 for £#j. If
x =1, then

1= H (% 0 N JA) = 1,(A);

and we see that y; = 1. Assuming y = 1 we deduce now that y; is of
finite order for any j. Let G; be the Galois group of k; and G be the

Galois group of K; since n= [][ n;, we have GG, x --- x G,.
ji=1
The character
(XjONK/kj)_l =11 X © Ngy,
¢ #j

is, therefore, Gyinvariant; since [C;: Ny, Ck] = d; is finite, we see that

xji is Gpinvariant. Take p e 2;; since x;f(p) = ;'f(py) for yeG;, we

see that (x;(p))" = (x;(p))", where N, op = pi. But any idéle class
character in Q is of finite order, and it follows, therefore, that x§ =1 for
some ¢ .
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3.

Theorem 2 can be deduced from lemma 3 and lemma 4 on purely
formal lines. It is an easy consequence of these lemmas and the following
form of the Weyl’s equidistribution principle (compare [1], p. 37, and [18],
Satz 3). To state it we appeal to lemma 1 and write

[
f(91,0,.€;0) = Y c,exp(2rint),

n=-—ao

so that

(12) co = (92— 9,) + O(e), Cp = O<_—l_>

|nF£*"
for any fixed integral k > 1.

PRrROPOSITION 5. — Let
T = {exp 2mip,), ..., exp 2mip,)|0 < ¢;<1,j=1,...,m}

be a torus of dimension m g~ t be a smooth subset of T, G be a finite Abelian
group with the group of characters G and

T={A0...MmteZ ) xx;

be the group of characters of I, x = (...,exp (2niQ)=x;,...)eT.
Consider a set W and three maps :

g1 W-oTI, 2: W -G, N: W > Ry;
we denote by W the set of functions on W defined by
W = {nip@=Rog)@O og,)(a),Aed, ¥ eG},
where a varies over the elements of W. If
13) Y x(e) = g(ARX) + O(xB(x,a(x) ™)
Na<x

for xyeW, where

1, =1 and ¥'=1

g = {O, otherwise | A®W =00, a0:i= 3 i
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for
1=Q0Rog)Nogy), NeG, Ar=][r],

then for any smooth subset © of ¥ and any ye G we have

(14) card{alaeW, g,(a)=7, g,(a)et, Na<x}

_ mes (1) x
= A(x) Gl + O<b(x))’

where b(x) can be chosen to be equal to b,(x)" with v > 0, and b,(x) is
determined by
< 1

Y SO bW a0 =3

with a(f) = [] ;(¢)), o;(¢) = {;’_,‘{j : i 0’ k can be chosen to be any
i %

i=1
positive integer.

Proof. — We deduce (14) from (13) for rectangular T by means of
lemma 1 and then prove (14) for any smooth t < . Let

T = {@|V;<@;<V¥;+8;,j=1,...,m}.

Choose € > 0 and set (using notations of lemma 1)

fj+((Pj) = f(¥;,¥;+9;,€;9)),
fi@) = f(¥;—¢ ¥;—€+d;,¢9),

F*=1] f".
j=1
Let A denote the left hand side in (14). Obviously,

Z F (g(@) < A& < Z F*(g,(a)).
Na<x Na<x
82(0)=y gxe)=y

On the other hand,
1 _
(16) Y Frg(a) == ¥ Y 1(1)F*(g(0)x(e2(a)).

Na<x 'Gl Na<x xeG
g(@)=y
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Write fii o= Y c:; exp (2rint) and denote the left hand side in (16)

n=—oao

by A *. It follows from (16) that

HE=Y ¢t Y wa),

peW Na<x

where

c* () = IGI () ﬂ ¢y for p=(A7...Amog)(xog,).

Equation (13) and estimate (12) give

|G, na>A(x) +0Ge) + X el X w(@)
=A%) mlecs;(l’) +O(xe) + O < ZW It B(x,a(w) ! x).
Thus
NE = Ax )mleél() + O(x€) + O(e~*xb, (x)"Y).

By choosing £™*! = b,(x)”! one obtains (14) with b(x) = b, (x)/k™+1,
Now let T = T be a smooth set and ¢ = {t,} a system of elementary sets
with the properties

card(t) < A™™, ,NT, = for vV#V,

te U, mes( U ‘tv)<C(‘t).A

1Vn1#ﬂ

for some A > 0. Applying (14) to every 1,€t one obtains

mes (1)
|Gl

N = A(x) + O(C(1) Ax) + O<

A"b(x )>

. 1 .
and it is enough to choose A™*! = —— to finish the proof.

b(x)
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To deduce Theorem 2 from Proposition 5 we take
G =H, x --- x H,, where H; denotes the ideal class group of k;,
and define W to be either V(A) n1,, or V(A) n #. By lemma 3, one
can take

€1
Ax) = L(“l"jq,) x, B(xa@) = I:):

in the former case, and

[ dx _ ¢, log x
A(x) = L og x ’ B(x,a(x)) = exp (]og o0 + lo—g x)

in the latter case. Lemma 4 assures that g(x) = 0 for a non-trivial
character (yx;,...,%) of H; it can be checked easily that

a(y) <c;3 Y, a(y; for some constant c, depending only on the fields
=1

ki, ..., k., and that in both cases b(x) has the required form to assure
the right error terms in theorem 2.

4.

The condition (D;,D,) =1 for j # ¢ in theorem 2 and in lemma 4
can be replaced by a weaker one: for every rational prime p one has
(ej(p),ei(p)) =1 for j # i, where e;(p) denotes the ramification degree
of p in k; (compare [17]). Following the interpretation given to the scalar
product of L-functions in [19] one may try to interpret theorem 2 as a
statement about distribution of integral points on algebraic teri. Finally we
should like to refer to [20]-[24], where the problem discussed here or similar
questions were studied.

Acknowledgement. — We are grateful to Professor P. Deligne and
Professor M. Gromov for several conversations related to this work, to
Dr. R. Sczech for the reference [6], and to the referee for numerous
remarks and comments.

Appendix.

Following [2] we discuss here the general situation making no a priori
assumptions on k;, 1 <j<r, and k. As before, K denotes the
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composite field of k,,...,k,. Given any idele-class character
%j: C; » C* normalized by the conditions yx;oN"!'=1 and
lxj(@l =1, put

bx)= ¥ ),

Nkj/ka =n
and define

L(S;Xl" . ’9X«r) = z bn(Xl) e bn(Xr)lnl—sa

where n, a vary over integral divisors of k, k;. It follows then from the
results cited above (see [12], [13]) that

(AO) L(S, X1s-- "Xr) = l—[ L(s,\l!j)L(s,(D)'l s
j=1
where L(s,{;) are Hecke L-functions,
(A.1) L(s,®) = [[®®(pl™ ",
14

®P(t) is a rational function such that ®®(t) = 1 + t2g'P(¢), g e C[t]
for almost all p (here p varies over the prime divisors of k). Moreover,
both V,, ..., ¥, and ®P are exactly computable as soonas y;, ..., %,
are given. In particular, the product (A.1) converges absolutely for

Res>% and

L(s,®) # 0, o0
in this half-plane. If k,, ..., k, are linearly disjoint bver k, then v =1

and ¥, = [] x,-oNK/kj is an idele-class character in K; if r =2 and
j=1

ky, k, are quadratic extensions of k with co-prime discriminants, then

L(s,®) = L(2s,y,) for some idele class character y, of k (depending on

1> X2)- We now apply these results to obtain estimates for the sums

S = Z x1(a1) v Xr(ar)’

aeVy
laj<x

SP’ = Z XI(pl) e Xr(pr)’

veVp,
Ipl<x
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where Vo = {a|N, 4a;="---=N, ,q,, q;€ {},

Vpr = {pIPEVO,PjEQ}.

The implied constants in O-symbols depend on y;,...,%; this
dependence can be expressed in terms of a(y,), ..., a(y,) but we shall not
do it here. Let v, be the number of trivial V;:

Vo = |{i|¢]=l}l9
then

Vi

(A2) S=13 (logx)*"'¢, x + O(x'7),

k=1
* d
A3) S, =v j ¢+ O(x exp (—7'/log »)
2

for some exactly computable constants c,, ..., ¢, and y>0, v >0.

The estimates (A.2) and (A.3) follow from the properties of the L-
functions (A.0) and (A.l) along the same lines as the corresponding
estimates in the text.
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