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ON THE BOUNDARY LIMITS
OF HARMONIC FUNCTIONS
WITH GRADIENT IN L'

by Yoshihiro MIZUTA

1. Introduction.

Let u be a function harmonic in the half space
Ry = {x =(x,,...,x,);x, >0}

and satisfying the condition :

f lgradu(x) P x% dx < oo 1n
G

for any bounded open set G C R}, where p>1 and a<p—1.
For §€0R],y>1 and a> 1, set

T,(¢,a) = {x €ERY;lx — &l <ax)/"}.

The existence of nontangential limits of u, that is, the limit of
u(x) a x— ¢, x€T,(¢,a), was studied by Carleson [1]
(n=p=2 and 0<a<1), Wallin [10] (p =2 and 0<a<])
and Mizuta [6] in the present situation.

Recently Cruzeiro [2] proved the existence of limu(x) as
x—> §, x GT,,(E ,a), for a harmonic function u satisfying
(1) with p =n and a = 0. The existence of such limits for Green
potentials in R} was obtained by Wu [11]. Taking these results into
account, we give the following theorem :

THEOREM. — Let u be a function harmonic in R} and satisfy-
ing(1)with p>1 and a<p—1.

@ If n—p+a>0, then for each v > 1 there exists a

set E C R} such that H _p+ay (E)) =0 and
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lim u(x) (2)
x > £,xET, (§,a)

exists and is finite forany £ € 0R] — E, andany a>1.

() If n—p+a=0, then there exists a set E C IR}
such that B, ,(E)= 0 and (2) exists and is finite for any
t€0R, —E,any y=1 andany a> 1.

(i) If n—p+a<0, then lim u(x) exists and is

x - §,xERY

finite for any £ € 9R’ .

Here H; denotes the d-dimensional Hausdorff measure,
and Bs » the Bessel capacity of index (B8,p) (cf. [3]). In view
of [3 ; Theorems 21 and 22], one notes the following results :

a)lf g>1 and n—d=pq, then H,(E) <o implies
Bs o, (E)=0;

b)If ¢g>1 and n—d<pq, then By (E) =0 implies
H, (E)=0.

Recently Nagel, Rudin and Shapiro [7] studied tangential
behaviors of Poisson integrals of potential type functions (see

Sec. 4, Remark 2). Their results are not applicable to our case
unless p = 2.

Remark. — The same result as in the theorem is also valid
for a domain £2 for which any function v satisfying

f lgrad v(x)PP 8(x)*dx <o, p>1,a<p—1, (3
o

can be extended to a function satisfying (3) with £ replaced
by R", where 8(x) denotes the distance from x to 9§2. The
special Lipschitz domains in [9; Chap. VI] are typical examples
of .

2. Lemmas.

First we note the following result, which follows readily
from the factin [4; p. 165].

LEMMA 1. — Let f be a locally integrable function on R".
For >0, we set
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= (= n .14 it
Ag= (E€ORTslimsupr [ 1£(»)1dy >0},
where B(x,r) denotes the open ball with center at x and
radius r. Then Hﬁ (Ap) =0.
By [3 ; Theorem 21] and the result of [4 ; p. 165], we have

LEMMA 2. — Let f be a locally integrable function on R".
For p > 1, we set

— 1 —-1\yp-1
B, = {x,lu:usgp(logr » fB(”) [f(y)l dy > 0}.

Then B,, , (Bp) =0.

Next we prove the following technical result.

LEMMA 3. — Let ¢, >0, ¢,>0, =21, p>1 and
p—n<a<p-—1. Then

%f Ix __ylp'(l—n) ly I—ap'/pdy 1/p’
n
{ ;<clx,,<lx—yl<c2x,1,/7}
x{p-n-alp ifn—p+a>0,
(log x; 1)’ fn—p+a=0,

where 1/p + 1/p'=1 and C is a positive constant independent
of x =(x,,...,x,) with 0<x, <1/2.

Proof. — Let x*=(0,...,0, 1). By change of variables
we see that the left hand side is equal to

J

E)

’ ’ 1/p’
< Cx(p-n-olp 3L2(1 + |z|p'A=m) |z, |—op'lp dzi ”,

teq —on' 1/p’
x1-n-alp+n/p’ |x* —z [P 1=m) |z |~oP'lP dz€

where E, = {z,¢, <I|x*—z|<c, x}" 7'},
E, =B(0,(c, + Dx" 1),
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C is a positive constant independent of x with 0<x, <1. The
required inequalities are established by estimating the last integral.

In the same manner we can prove

LEMMA 4. — Let p>1 and o« <p —n. Then

1oy _ o 1/p'

N e =y = 1y, 7P P ay P
{ysxp/2<ix-yi<ixij2}

<C bcl(P—"—“)/P

for any x €R}, where C is a positive constant independent
of x.

Finally we borrow a result from [6 ; Lemma 4].

LEMMA S. — Let p>1, a<p—1 and f be a measurable
function on R" such that f [f(PIP ly,1*dy <o for any
G

bounded open set G C R". If we set

L n ., —_ 1-n = oo
E = §eeaR+,fW) 1E—yI' " 1F ()l dy :

then B, o/, , (E)=0.

Remark. — If p —a>n, then one sees that E' is empty.

3. Proof of the theorem.

Take g such that g =p if «a<0 and 1<qg<p/la+1)
if > 0. Then Holder’s inequality implies that

f [grad u(x)? dx < oo
G

for any bounded open set G C R? . Hence the function
u(x,,...,x,_;,x,) forx, >0,
—x,) for x, <0,

can be extended to a locally g-precise function w on R" in
view of [8; Theorem 5.6] (for g-precise functions, see Ohtsuka
[8 ; Chap. IV] and Ziemer [12]). Define

v(ix) =

u(x,, ..., X, _1
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E’=‘£€6Rf;f

[§—yI' ™" lgrad w(y)|dy = o
B(E, 1)

Then we have B, _a/p,p (E) =0 on account of Lemma 5. We
also define A; and B, with f(y)=|gradw(y)P |y,I*.
By Lemmas 1 and 2, we see that Hg(A;)=0 and B,, ,(B,)= 0.

First suppose n—p+a>0. Let +y>1 be given.
We shall show that (2) exists and is finite for any

EEAR, —(E'VA (,_,ia)

and any a>1. Let §€E0RI—(E'VA (,_,.q). Take
N>1 such that ¢€B(0,N), and let ¢y be a function in
C,(R") such that ¢y =1 on B(0,2N) and ¢y =0 on
R” —B(0,3N). Set wy =¢yw. Then wy is g-precise on
R" and satisfies

n b ow
wN(x)=ci}lf<§R2)(x—y)-3;r:—dy forx €R},

where ¢ is a constant, R,(x)=1log(l/|x]) if n=2 and
R,(x)=Ix*"" if n>3. In fact, since wy is continuously
differentiable on R/, the right hand side is continuous on R
and the required equality holds for any x €R} on account of
Ohtsuka [8 ; Theorem 9.11].

For x €R} , we write

wy(x) =wy  (x) +wy, (x) +wy;(x),
where

9 d
Srrearr Gy R ) (e =n) 3 .

2=

wya(x)=c¢
i=1

Il )=

wya(x)=c¢ ‘

-~

1 fB(x,It—xI/Z)—B(x,x,,/n

(2 8, Y 2

9y;

dy,

< 0 ow
w (x)=c2 (S_R x—y) —= dy.
N3 i=1 fn"-n(x,|s-x|/z) x; 2>
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Since wpy is harmonic on B(0,2N) N R}, Wn 1 (x)=0 for
x €B(0,N)NRY. It follows from our assumption §(¢E' that

f £ —yI' "l grad wy (y)| dy <. Hence Lebesgue’s dominated
convergence theorem gives

owy
dy.
ay; Y

lim wya)=c 3 [ (=R, )&—»
i

x —’t,xER+ i=1

For wy , we apply Holder’s inequality to obtain by Lemma 3,

|WN,2 ()l

V(g . ’ ‘ l/p’
< const. lx =y P A= |y, [ep P dy§
{yixp/2<ix-yi<ig-xl/2}
1/p
X ;f lgrad wy (V)P |y, |* dy%
B(x,lE-x1/2)
p—a—n 14 a 1/p
< const. %x,, lgrad w(y)P |y,I* dy
B(E,Zax,l,h)
for x €B(0,N)N T, (§,a). Since E¢A7(n_p+a) ,

lim wy ,(x)=0.
x = £,xET, (,a) N,2

Thus lim u(lx)= lim wy (x)
x = £,xETy(,a) x = §,xETy(£,a)
= lim WN,3 (x) .

- §,x€T, (k,a)

which is finite. FoREE R

If n—p+a=0, then we can prove that (2) exists and

is finite for any EEBRZ—(E'UBp), any Y21 and any
a>1.

If n—p+ a<0, then E' is empty, so that similar arguments
yield the required assertion with the aid of Lemma 4.

4. Remarks.
Remark 1. —If p>n, p—a—n>0 and u is a locally

p-precise function on R} satisfying (1), then u(x) has a finite
limitas x — §, x €RY, forany § €9R].
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Remark 2. — Nagel, Rudin and Shapiro [7] studied tangential

behaviors of functions of the form
(P, * (Kxg)(x), x = (x",x,)ER],

where P is the Poisson kernel in R7, K is a nonnegative kernel,
which is radial and decreasing, and g is a function in L?(R"~1).
The function in our theorem has a boundary value in the Lipschitz
space  AL'P(R"™!) with B=1—(a+ 1)/p locally, provided
—1<a<p+1 (cf. [9; Chap. VI, §§ 4.3, 4.5]). We do not
know whether functions f in Af”® (R"™1) can be written as

f=K=xg, where K is an appropriate kernel function which is
determined independently of f and g €LP(R"™1).

If g€l?’(R"), B=1—(a+1)/p and —1<a<p-—1,
then
F(x') = [ & _ajp (X', 0) =) g() dy

belongs to Ag’p (R"~1!), where g, denotes the Bessel kernel of order
2 (cf. [9; Chap. VI, § 4.3]). Hence u(x)= Px,, * F(x") satisfies

LB el

k ’
-aTn) u(x ,xn)
where k is an integer greater than (B, in view of [9; p. 152]. This
implies, by the observation given after Lemma 4’ in [9; Chap. V],
that u satisfies

pdx'gl’/p]pxn’l dx, <o,

[ 1EraduCP xj dx <eo. ay
+

Thus our theorem is applicable to this function u.

Remark 3. — In case p —a—n =0, our theorem gives the
best possible result as to the size of the exceptional set as the next
proposition shows.

PROPOSITION . — Let E be a compact set in OR} with
By _ajp,p (B)=0, where p>1 and —1<a<p—1. Then
there exists a function u which is harmonic in R} and satisfies
(1)' such that lim u(x',x,) does not exist for any (x',0)€E.

xpit0
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Proof. — Since Bl_a/p'p (E) =0, we can find a nonne-

gative function f € L? such that
FON= [ g, 00— ) f(y)dy = o

forany (x',0)EE. Asseenabove, P, * F(x') satisfies(1)".
Take a, ,b, and c, such that
0<a, <1,0<b, <c, <1
and P, *F, (x)>1 for (x',0)€E, where

F(x) = f{

We proceed inductively and obtain {g;}, {bi} and {c¢;} such
that 0<g,, <g, 0<g¢, <b;<g, Pak*F,.(x')<2“’

81 —asp (X', 0)=»)f(p)dy.
b1<lypl<cp}

j—1

i
if k<j and (x',00)€EE and P"i * F].(x') >ji+ Y M,
1

if (x',0)€E, where k=
F.(x") = &1 _ap (X', 00— »)f(y)dy
! f{b,<|y,,|<c,~} t-elp
and M, = max {F,(x"); (x',0)€0R}}.
Define

00

u(x',x,) = X (= 1P, *Fx").

j=1

Then one sees easily that {u(x',ai)} does not converge as
j—> o for any (x',0)€E. Since u satisfies (1)’ and
is harmonic in R}, u is the required function.

Remark 4. —Let p>1, p—n<a<p—1 and a>—1.
Then we can find a function # harmonic in R? and satisfying
the following conditions :

(i) u has a finite nontangential limit at O ;

(ii) lim sup u(x)=o for any <y >1 and any
x = 0,x€T, (0,a)
a>1,;

(iii)fﬁlgrad u(x)P x2 dx < oo,
R

To see this, letx) = (277,0,..., 0 and define
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g;Ix" —y|=t if yeB(x", 277-2)—R",

otherwise,

fj(y)=

where g; is a positive number determined later. Setting
ux) = [(x, =y, Ix = yI"" f(») dy,

where f = Z f/ , we note the following facts :
j=1

Du@ <[ Iy f(dy <C; Y g
i=1
BIf x=@27/,0,...,0,x,) and 0<x, <277, then
u(x)=C,aq log(27//x,);

c) ff(y)p Iy,,l"‘ dy < C, 2 aip 2-i(n—p+a)’

i=1
where C,,C, and C; are positive constants independent of x
and j.

Now we choose {a,.} so that (a) and (c) are finite but
lim sup ja; = . Then (a) implies that u has a nontangential

jo e .
limit at O, and (iii) follows from (c) and [5S; Lemma 6](*).
By (b) and the construction of {a,-} , (ii) is fulfilled. Thus u
satisfies (i), (ii) and (iii).
Remark 5. —If p>1 and a=p—n>—1, then for each
v > 1 there exists a function # harmonic in R such that :
(i) 4 has a finite nontangeritial limit at O;
(ii) lim sup u(x)=o for any o =% and any
x = O,xeT,y'(s,'a)
a>1,;

Gii) , lgrad w(x)P x§ dx <eo.
+

In fact we modify above f; by setting

ap|xP —y|=' if y€B(x,27/-2)—B(x),27")—R],
()=

0 otherwise,

(*) One notes that the conclusion of [5; Lemma 6] is true in case p> 1
and — 1 <a<p—1 if g in the lemma has compact support.
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and consider u(x)= Y [ (x,=»,)lx =y f;(y)dy. Then
j=1

as in Remark 3 we can choose {a,.} such that (i), (ii) and (iii)
hold.

Remark 6. — Let p>1 and & be a positive function on
the interval (0,°) such that lim A(r)(logr - ')»-! =0.
Define for £ € 9R}, rio

x €R] ;log

T, (§) =

28 < —gnven )
xn
If u 1is a function harmonic in R} and satisfying (1) with

a=p—n>—1, then lim u(x) exists and is finite
x = E,xETh ()

forany ¢ €9R} — (E'UB,), where

= n. -1
B, = % §€EOR, ; lnp&%up h(r) f

lgrad u(x )P x5 dx > 0: :
B(¢,r) "R}
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