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ESTIMATES OF ONE-DIMENSIONAL
OSCILLATORY INTEGRALS

by Detlef MULLER

1. Introduction.

If U is an open domain in Rk and if / is a smooth, real valued
function on U, one may define the associated oscillatory integral as

E/&) = [ ̂ e^^dx,
Ju

where 8 belongs to ^(U), the space of testfunctions on U.
n

When / has the form / = ^ ^j^-? where the vj/^eC00^) are real-
.7=1

valued functions and r|y are real parameters, one is interested in the
asymptotic behaviour of E^^.(&) as (T|i,.. .,T|^) tends to infinity, for
several reasons.

For example, if p, is a smooth measure on a smooth submanifold of
R"", and if the support of \\. is sufficiently small, then the Fourier-Stieltjes
transform AOti^ • -^n) "^Y always be written as E^.^.(&) for certain
functions v|/j and 8.

Good information about the asymptotic behaviour of such Fourier-
Stieltjes transforms is needed to solve the synthesis problem for smooth
submanifolds of R"" (see e.g. [7]). And, as Professor Y. Domar has pointed
out to me, such knowledge would also yield information about the decay at
infinity of solutions of partial differential equations (see e.g. [5]).

As far as I know, satisfactory aswers to the above problem have only
been given for oscillatory integrals E^.^.(9) with

k

^iA-(^i,...^k) = Z n^+Ufc+i^k+i^ i^- .^k) ,
J = l
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which correspond to surface carried measures (see [2], [4), [6]). In some
sense, the other extreme is the case where Sr^vj/, is a function of only one
real variable, which corresponds to measures on curves. For this case, we
will prove some quite general results.

2.

Let vl/eC^I.R"), v|/ = (\)/i , . . .,v|/^), where I ^ 0 is some bounded
open interval in R. For £,, T| e R" let ^ • T| denote the Euclidean inner
product on R", and correspondingly let

r|^(x) = ^ r|,v|/,(x).
j = i

Further let

|r|| : = max |r|j for T| e R".

Define the torsion T of \(/ by

T(X) = det (^l+ ̂ (x)),,. i,,̂  = det (v^WM... ̂ n+ ̂ (x)),

where \l/ is regarded as a column vector and vl/^ denotes the fe — th
derivative of \|/. At least for n = 2 we have r(x) = fc(x)|\l/"(x)|2, where k
is the torsion of the curve y = {(x,\|/(x)): x e 1} in R"^1 . Let

e(t) = e2^1 for t e R , and ^(g) = e o g

for geC^I.R). If \|/o(x) = x for x e R , then for 8e^(I), r|oeR
and T| = (r|i,... ,T|^) e R", we have

En (8)=(MT1.v(OK-Tlo).
ZnAo

So it will be slightly more general to study the behaviour of \9e(r\ -v(0|pM as
\r\\ -> oo , where

!<PlpM = sup 1^(01
t c- 0

for every (p e^(R).
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For certain reasons (see [3]; [7], Th. 4.1), we will also study |3e(r| -<|/)|A ,
where

r
HA = |(p(t)| dt

J

for every (pe^(R).

We will furst state our main results and prove some corollaries:

THEOREM 1. - Let 8e^(I). Then
(i) |^(T|.\|/)|A = 0(hp), as h| -. oo.

(ii) If for some subinterval J o / I and some a > 0

|8(x)| ^ a and |&(x)-8(^)| < a/2 /or aH X , ^ G J ,

anrf ?/ v|/ i | j , . . .,\|/Jj ar^ linearly independent modulo affine linear functions,
then there is a constant C > 0, such that

IMT1^)|A^C(l+h|)^

for all T| e R".

COROLLARY 1. — The following two conditions are equivalent :
(i) For each &e^(R), 9 ^ 0 , there are constants c > 0, C > 0,

such that for all r\ e R"

^(i+hl^ ^ I^(TI'V|/)|A ^ c(i+h|)t
(n) \|/i, . . . , \|/^ ar^ linearly independent modulo affine linear functions on

every non empty open subinterval of I.

Proof of Corollary 1. - (i) follows directly from (ii) by Theorem 1. Now
suppose that there exists a vector v e R", v + 0, such that v-v|/ is affine
linear on some open subinterval / + 0 of I. Then we have for any non-
trivial 8e^C/)

|&e(5y • \|/)|A = |&|A ^0 for all 5 6 R,

since e(sv' \|/) is the product of a unimodular complex number and a unitary
character of R.

Thus (i) is not fulfilled, q.e.d.
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Remark. — Condition (ii) of Corollary 1 is clearly satisfied if ^~1({0})
has empty interior. As will be shown later (Lemma 3), this is always the
case if \|/i, .. .,\|/^ are real analytic and linearly independent modulo affme
mappings. However one should notice that global linear independence does
not in general imply local linear independence.

THEOREM 2. - (i) If T-^O}) = 0, then for &e^(I)

IMTvlOlpM^lTil-1/^1)) as | T I | - > O O .

(ii) If &e^(I), and if there exists an XQ e I with 8(xo) i=- 0 and,
T(X()) + 0, then there exists an £ > 0 and a function ^ e C°° ((—£,£), R")
with

det^OOi;^) ... ̂ -1)^)) + 0 for all ye(-^),

sucn thar, for some C > 0,

IM^M-^IPM^CO+H)-^^^

/or all s e R and ^ e (— £,e).

Assume that T^^O}) has empty interior. Then we have

COROLLARY 2. — There exists a 8e^(I), 8 + 0, such that for all positive

a i , . . . , a,, € R wftn ^ a, ^ (n +1)-1, t/i^r^ exists a constant
i

C = C(ai,. . .,a^) > 0 suc/i t/iar

(2.1) IMTT^IpM^Cn l^-l-^
j= i

Conversely, if a^ , . . . , a,, e R ar^ positive, and if there exists a 8 e ̂ (1),
8 ^ 0 , and a C > 0 such that (2.1) tolas, (h^n

ta,^(n+l)-1 .
i

Proof of Corollary 2. — If ^"^{O}) has empty interior, then there is of
course an XQ^I with T(X()) + 0, and so, for &e^(I) with sufficiently
small support near XQ,

IMTT^IpM^co+hi)-^^)

by Theorem 2, (i).
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If ai, . . . , »„ are positive and Zo, ^ (n+l)~1 , then

nin^hl^^ for |n|> i,
j

hence

iMTT^ipM^cnhr017 for hi^ i,
y

and the same estimate holds for all T| if one replaces C by C + lO^i.
Conversely, let now 96^(1), 8 ^ 0 , such that (2.1) holds for some

o^ 0, and assume

Za, == (n+1)"1 + 8 , 8 > 0.

Since ^({O}) has empty interior, there is an XQGI with &(xo) ^ 0 and
x ( x o ) ^ 0 . Choose e > 0 and ^e C^^-e.e),^) as in Theorem 2 (ii).
Since det(^GO^) ... ^n~l)(^)) ^ 0 for all ^e (-£,£), there exists a
^oe (-£,£) with

^j(yo) + o for y = 1, •..^.
It follows

IM^o)'v|01pM ^ c^l+H)-^^^.
On the other hand, (2.1) yields

IM^o) •^IpM^cni^yo)!""7

j
=fc^l^o)l^)N-l/(n+l)N-5.

\ J /

For |5| sufficiently large this leads to a contradiction to (2.2), q.e.d.

Corollary 2 demonstrates that the result in Theorem 2 is in some sense
best possible.

3.

Before we start to prove the theorems above we will state some lemmas.
The first one is due to J.-E. Bjork and is cited in [3], Lemma 1.6 :

LEMMA 1. — Let 1^0 be a bounded, open interval in R, and let
(pe^(I), ^eC^I) with

0 < C,^ \g\x)\ + |̂ (x)| + . • • + |̂ (x)| ̂  C^
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if x e l , where C\ and C^ are constants and p is a positive integer. Then
there exists a constant C not depending on g , such that

|cpOc^2"1^ dx ^ CO+lrl)-^
I v

for every t € R.

The second lemma will be used to prove the remark following
Corollary 1. I would like to thank Professor H. Leptin for pointing out to
me a shorter proof than my original one. By « A » we denote the exterior
product in the Grassmann algebra A(R").

LEMMA 2. - Let vl/eC^Ur). Then

\l/(x) A v|/'(x) . . . A ^-^(x) = 0

for all x e I implies

^\x) A v|/^(x) A . . . A ̂ \x) = 0

for all x e I and k^, . . . , k^ e No.

Proof. — Fix X o ^ I , and assume first v|/(xo) ^ 0. if MeC°°(I,R), then

(MV|/)W= ^ f^V-^),
j-o V/

so \|/ A v|/' A . . . A vl/""^ = 0 implies

(m|/) A (M\|/y A ... A (m)/)^-^ = 0.

So, it is no loss of generality to assume

\|^(^) = 1 for x el.

If [ej}j denotes the canonical basis of R", we may thus write
n-l

^00 = Z ^jW^j + €„ = p(x) + €„, where p(x) eR""1 x {0} <= R".
j= i

This yields

0=v|/(x)A ^(x) A ... A vl/^O^pOc) A p'(x) A ... A p^-^Oc)
+ ^ A p'(x) A ... A p^-^x),
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and since p(x), p'(x), . . . , p^'^Oc) are clearly linearly dependent, we get

0 = p'Oc) A p"(x) A . . . A p^-^Oc).

By induction over n, we now may assume

0 = p^(x) A p^3)(x) A ... A p^Qc)

for x e I and kj, ̂  1.

This implies

v|/̂ (;c) A ... A v|/^(x) = ̂ (x) A p^Qc) A ... A p^x) = 0

for 0 ^ fei < k^ < ' ' ' < <€„, where we considered €„ as the function
,̂00 = ^n-

Thus we have proved

vl/^Oco) A v|/^(xo) A ... A ^(xo) = 0

for all XQ e Io = [x e I: i)/(x)^0} and kj ^ 0. By continuity, the same
holds true for XQ e To A I, hence for all XQ e I, since for y e I\T() clearly
^\y) = 0 for every fee No.

LEMMA 3. - If v|/ = (^.....vl^eC00^,!^1) is real analytic, and if
v|/i, . . . , \|/^ are linearly independent modulo affine mappings, then ^({O})
has empty interior, \vhere t denotes the torsion of \)x.

Proof. — Assume r(x) = 0 for every x in some nonempty open
interval J c: I. Fix XQ € J. Then, passing to a possibly smaller interval,
we may assume that ^ has an absolute convergent series expansion

00

^j(x)= £ ai(x-xo)11, J= I , . . . ,M , x e J .
k=0

Define vectors

and
^^O^i^neR"

^(^^....oo^R^, Mi =N\{0,1}.

By Lemma 2, ^(^o), ..., ̂ (xo) are linearly dependent for any
kj e N with 2 ^ fci < . . . < fe,,, i.e. a^ , . . . , o^ are linearly dependent
for 2 ^ ki < . . . < k,,. But this implies that a1, .... a" are linearly
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dependent, i.e. there exist v ^ , . . . , v , eR , not all zero, with

0 = E v,^, i.e.
j

Z v^A) = E v,̂  + v^{ (x - Xo) for x e J.
J J

But, since v|/ is real analytic, this equation holds for all x e I, i.e. ̂  v .̂
j

is affine linear.

4.

Proo/ of Theorem 1. — It is well-known (see e.g. [I], [7]) that for
(pe@(R) one has the estimate

(4.1) MA^{2|supp(p||(p|,|(p1,}1/2,

where |supp (p| denotes the Lebesgue measure of the support of (p. From
(4.1) one immediately gets (i) of Theorem 1.

Now, suppose there exists a subinterval J in I and a a > 0 such that
|3(x)| ^ a and |8(x) - Q(y)\ < a/2 for x , y e J , and such that
v|/i, . . . , v|̂  are linearly independent modulo affine mappings on J.
Then a simple compactness argument yields :

There are constants e > 0, 8 > 0, such that for every T| e R" with
|T|| = 1 there is an interval J^ of length 2e in J with

(4.2) h-r(x) |^8 for all xe J^ .

1^ow choose (pe^(-e,e), (p ^ 0, with < p ( x ) d j c = l . For fixed

rieR", T| ^0 , set T|' = Ir i l"1^, and choose J^ as in (4.2). Let (p be a
suitable translate of (p such that supp (p c= J^,. Then we get

(4.3) 0 < a/2 ^ (&(x)^(x) dx
I •/

= | U(x)e(T}^)(x)We(-r}^)(x)dx
I •/

^IMn-^lAhp^-Ti-vlQlpM,
since J,,. <= J.
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For ^ e R one has

{^(TTvlOH-i;) = !n>(x)e(-^x-r}^(x))dx

= f(P(^(-hl^c))^c,

where ^ is a function on [—£,£] which^ is a certain translate of the
function

x ̂  ^x + r|'.\|/(x) on J^,

where ^/ = |Ti|-1^.

But (4.2) implies

8 < |^"(x)| for every x e [—e,e].

Moreover, if we set A = 2 sup |v|/'(x)|, B = sup |\|/"(x)|, then for
jceJ x e J

1^1 ^ A|TI| :

\g'(x)\ + \g"(x)\ <^'| + JTi'|(A+B)
< 2 A + B

for every xe[—s,s].

Thus, by Lemma 1, there exists a C > 0, such that for |̂ | < A|T||

(4.4) f^(x)e(-^-Ti.<|/(jc))J < C(l+h|)-1/2.
I v I

And, if |̂ | > A|q|, then integration by parts yields

(4.5) ]f^(x)^(-^-iT^(x))dx

-II^-I11^^^)'̂ ^

< r^i^h-i ffl<P'WI,l<PWIIg"WlLY^(21thD JW"' î '(x)i2 r"
^c'lni-1,

where C' is some constant depending on <p, ^f and A only, since for
xe[-e,e] we have \g"(x)\ ^ B and \g'(x)\ = \^'+T)'^'(y)\ ^ A - A/2 for
some y e J .
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Now, by (4.4), (4.5),

l^(-n^)lpM ^ (C+C)|r||-1/2 if h| ^ 1,

which together with (4.3) proves Theorem 1 (ii).

Proof of Theorem 2. - Assume r(x) ^ 0 for every x e l , and let
& e ̂ (1), 8 ^ 0 . Passing to a smaller interval, we may even assume that
I is closed.

Set A=2sup|v|/(x)| , and for ^ ' eR, |^ |^A, -n'eR", h'| = 1,
xel

xel let

Q^'M-Z K^+TI'.VKX))^)!.
J=l

Since T-^O}) = 0, we have Q^(x) ^ 0 for every x e l , and since
Q^ (x) is continuous in ^', TI' and x on the compact space
[-A,A] x {r i ' eR": |r|'|==l} x I, there exist constants Ci > 0,
C2 > 0, such that

(4.6) C, ^Q^W^C^

for all x e I, ^/, T|' with |̂ '| ^ A, |r|'| = 1.

So, using quite the same arguments as in the proof of Theorem 1 (ii), we
can deduce from (4.6) by Lemma 1 :

^(TI-^lpM^^l+hl)-^^)

for some constant C > 0, which proves (i).

To prove (ii), we will assume, for convenience, XQ = 0, i.e. 0 e I, and
9(0)^0, T ( O ) ^ O .

Let £ > 0 such that z(x) + 0 for xe [-£,£].

Since ^"(x), ^'(x), ..., vl^-^Oc) are linearly independent for
x e [ - e,8], there exists a function ^ e C°° ([ - e.c}, R"), such that for every
X6[-£,E]

(4.7) ;;(x).v(^(;c)=0, 7 = 2 , . . . , n ,

and

(4.8) ^O.^^O^ 1.
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Differentiating (4.7) and inserting (4.8), we get

^M-vl^Oc) = 0 for j = 2, . . . , n - 1 ,
and

^(xW^x) = - 1.

Repeating this process, one inductively obtains for k = 0, . . . , n — 1

/ . ̂  Wx)' ̂ (x) =0 for j = 2, . . . , n - k,
v ' [^(x)-^1-^)^-!)^

So, if we define matrices

S(X) = (^r0^))^!,...̂  TW = (^+l)M),;=l.....n,

then (4.9) means that S(x)T(x) is an upper triangular matrix with
diagonal elements 1 or — 1, which yields

(4.10) |det (^(x)^(x) . . . ^-^(x))! = |det S(x)| = |r(x)|-1 + 0

for all x e [—£,£].

We now claim:

There is a constant C > 0, such that for 4!! y e (—£,£) and 5 e R

(4.11) IM^OO-^IPM ^ C(l+M)-l/(n+l).

Choose ^G(-£,£). Then by (4.7), ^OO-WjQ = 8^^ for
^ = 2, . . . , n + 1, and so a Taylor expansion of ^(y)'v)/ yields (for £
small enough)

(4.12) (i;(y)-v|/)(x)=a+ (3x + (x-yy^Oc) for xe(-2£,2£),

where ^ is some smooth function on (—2£,2£) which depends on y , and
where a and p are some real numbers.

Let us remark here that although g = g depends on y , sup |^y(x)| is
|x|<2e

uniformly bounded for y e (—£,£).

Now take pe^(R) with supp p c: (-£,£), p ^ O and

[ p ( x ) d x = l , and set p(x) = ^^^(x-y)).
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If we choose e small enough such that

|&(0)-8(x)| < ^ 18(0)1

for xe(—2£,2e), then we get

r i r
8(x)p(x)rix = ^Isl-1/^1^ + y)pWdx M-^^

v I «/

S^ 1&(0)| Isl-^"^, if |s|> 1;

and since

f8(x)pWx = (Q(x)e(s^y)-^)p(x)e(-s^(y)^)dx
I •/ J

^|Ms^(^)^|pMlP^(-5^(^)^)|A,

(4.11) will follow if we can show that \pe(-s^(y) •\|/)|A is uniformly
bounded for y e(—£,c) and |5| ^ 1.

Now, regular affine mappings of R induce isometries of the
Fourier algebra A = A(R), thus

\f>e(-s^y)^=\pe(-s^(y)^

where \[/(x) = iKM"1^1^-^).

Since for x e supp p and |s| ^ 1,

|5|-i/(n+i)^^(_2e,2e),

(4.12) yields

^(y)'^(x) = a + ̂  + PH-1^1^ + |s|-lxn+l^(|s|-l/<n+l)x+^).

Thus
|pe(-s^(^-v|/)|A=|pe(A)|A,

where h(x) = - s|5| - ̂  + ̂ ds] -l/(n + ̂  + ̂ ). If we again apply
estimate (4.1), we easily see that |p^(/i)|A is uniformly bounded for
y €(—£,e) and |s| ^ 1, q.e.d.
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