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THE ORDER STRUCTURE OF THE SPACE
OF MEASURES WITH CONTINUOUS
TRANSLATION

by Gerard L. G. SLEIJPEN

Introduction.

Let S be a stip; this is a locally compact semigroup with identity
element 1 of which the topology is induced by a neighbourhood base of 1
[cf. (2.1)]. In view of the results in e.g. [1], [3], [15] one may state that the
algebra L(S) of all bounded Radon measures on S with continuous
translations [see definition (2.3)] is the natural analogue of the group
algebra L!(G) of a locally compact group G. Therefore, it is tempting,
now, to look for an analogue on S of the L!(G)-module L*(G). For this
purpose, since L(S) is essentially a measure algebra and not a function
space, we look among the measure spaces for a candidate.

If, for instance, S is compact, the space of all bounded Radon measures
p for which the collection of all translates |u| % x [where x is the point
mass at x] (xeS) has an upper bound in L(S) seems to be suitable; if,
moreover, S is a group this space « coincides » with L*(S). However,
simplicity of a definition only is not a sufficient justification for a study;
many other generalizations of L®(G) are conceivable [see for instance § 7
of [19]]. Therefore, in order to deepen our understanding in the structure of
L®(G), we listed a number of properties that the least a proper analogue
of L®(G) sould have. Thus, we came to the notion of « pseudo L*-space »
[these are Riesz ideals of L(S),. with a Banach lattice structure that has
certain completeness properties [cf. (2.5.1-2)]]; furthermore the unit ball is
vaguely bounded [cf. (2.5.3)], and it «contains » all its translates [cf.
(25.4)]. In the case that S is a group, these spaces are [or, to be more
precise, can be identified via the Haar measure with] invariant solid Banach
function spaces as have been studied in e.g. [6] and [7]. By studying the
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properties of the pseudo L*®-spaces, and to observe how they work in the
induced spaces, we hope to establish those that are essential for the L®(G).

In [19], we paid some attention to the LP-spaces, induced by a pseudo
L*-space in a way as described by J.-P. Bertrandias in [2]. In the present
paper, we concentrate on the subspace of a pseudo L®-space consisting of
all measures of which the translation is [uniformly] continuous with respect
to the norm of the pseudo L*-space. To be more precise : let L°(S,B) be
a pseudo L~ -space with norm || I5. The collection of all pe L®(S,B)
for which r,[r,(x): = p * X (x € S)] is a continuous map from S into
L*(S,B) is denoted by Lgyc(S,B). The closure of {pu € LgydS,B)|support
of p is compact} is denoted by Lgyc(S,B),,. If S is a group with right
Haar-measure m and L® (S,B) = L®(S,m) [i.e.
L*(S,B) = {fm|f e L®(S,;m)}], then Lgyc(5B)={f|f: S->C
uniformly continuous} and Lgyc(S,B), = C,(S).

The problems we solve here, mainly have to do with the order structure
of the spaces in question. We show how certain order-continuity properties
of || ||% are related to the conditions « Lgyc(S,B) [or Lgyc(S,B),] is a
Riesz ideal of L®(S,B)» and «Lgy(S,B) [or Lgyc(S;B),] is a Riesz
subspace of L®(S,B)». The main result we obtain is new and of interest
also in the case that S is a group. If S is a non-discrete group with right
Haar measure m, this result runs as follows :

1) Lryc(S,B)y, is a Riesz ideal if and only if || || is order continuous on
{fm|f eL®(S,m), the support of f is compact} [cf. (4.14)].
2) Lruc(S,B) is a Riesz ideal if and only if || ||% is order continuous on

{fm|(sup {f,|x € U})m e L*(S,B)}, where U is a compact neighbourhood of
1. [see (5.10) and (5.11.2)].

In § 2, we explain our notations and conventions. Further, we give the
definitions and properties that are basic to the theory of stips, and we
introduce the pseudo L*®-spaces.

We consider the Banach-module structure of Lgyc(S,B) in the next
section. In § 4, we discuss the case that L;(S,B),, is a Riesz ideal. Next, in
§5, we generalize the obtained results to Lyyc(S,B). In the last section, we

study the conditions under which Lg,(S,B) is a Riesz subspace of
L*(S,B).

I wish to express my gratitude to dr. G. Groenewegen for stimulating
discussions on the subject of this paper.
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2. Notations, definitions and elementary properties.

In this section, we explain notations and conventions. Furthermore, we
collect some elementary properties. Conventions that are not explained in
the text are the same as the ones in [15]. Related properties can be found in
[15], [19] and [20]. For some background information concerning Riesz
spaces we refer the interested reader to [9] and [14].

S is a locally compact semigroup [the topology is locally compact
Hausdorff and the multiplication is jointly continuous] with an identity
element 1.

A" denotes the collection of all compact subsets of S. For any subset
A of S, &, denotes the characteristic function of A. The collection of all
locally Borel measurable functions f from S into C [ie. fEg is Borel
measurable for all FeX'] is denoted by m(S). For each fem(S),
Ifllo : =sup {|f(x)llxeS}. The subspace of the bounded continuous
functions in m(S) is denoted by C(S). Cyo(S): = {f € C(S)|there is an
F e A such that f(x) = 0(x e S\F)} and C_(S) is the closure of Cy,(S)
with respect to the ||| -norm.

The space of the [not necessarily bounded] Radon measures on S is
denoted by M(S). We will identify M(S) with C,,(S)*, the topological
dual space of C,,(S) [the topology on C,,(S) is given-by the seminorms
f = Ifhlle (f €Coo(S)), where h is any continuous function on S].
M(S) is a [complex] Riesz space under the obvious ordering.
Ms(S) := {peM(S)|p is o-finite}, while M(S):= {peM(S)|p is
bounded}.

Fora peM(S)* and a ve M (S)* we will write p % ve M(S) if for
each f e Cy(S)" and each x esupp (v) the bounded continuous function
fi: vy f(yx) (yeS) is p-integrable and the function po f: x — p(f)
(xeS) is v-integrable : in this case p % v is given by

p* v(f) = Ju ofdv for all feCyy(S)*.

By splitting the measures into their Jordan components it will be clear what
we mean by p % ve M(S) for a pe M(S) and a ve M,(S). If both p,
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ve My(S) and p % ve M(S) then
Kok v(f) = ﬂf (xy) du(x) dv(y) = f f(xy) dv(y) dp(x)

for every fem(S) that is |u| % |v|-integrable.

If B = M(S) is a Banach space under a certain norm p, then B, is
the collection of all p e B for which supp (u) € # and B, := p-clo(By).

2.1. DeFINITION [cf. [15], (2.1), (2.3)]. — A4 stip S is a locally compact
semi group with identity element 1 for which for each neighbourhood U of
1:

(1) xeint[U Y (Ux) n(xU)U™']  forall xeS
[where A™'B = {y|Ay nB# J} (A, BES)];
) leint[U 'onwU™']  for some v, weU.

Put $:=N{J|IJSS,T=8,IJS nSJ S ]}, [where J is the closure
cloJ of J].

2.2. ProrosiTioN [cf. [15], (24), (2.7)]. — Let S be a stip.
Then clo(§) =S, S§S =S = §§.

For each x €S, for each openset U and V of S and each ue U n S
we have that the sets U~'(Vx), (xV)U™Y, (UnS) 'x and x(U )~ ! are
open and

x € int [u" (U n8)x) n(x(U nS))u~1].

2.3. DEFINITION. — Let S be a stip.

L(S) is the collection of all pe M(S) for which one of the maps r, or
L) :=p % X, 1,(x) ;= x*kp (xeS)] from S into M(S) is weakly
continuous at 1. L(S):= {peM(S)| plx e L(S) for all KeA'}. The
collection of all Borel subsets A of S for which p(A) = 0 for all peL(S)
is denoted by N.

2.4. ProrosITION [cf. [15], (3.13) and [20], (12.7), (6.9)]. — Let S be a
stip. L(S),,. is a Riesz ideal of M(S). L(S) is an L-ideal in M(S). If
pweL(S) then both r, and 1, are norm-continuous. A n e M(S) belongs to
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L(S),. as soon as wW(F) =0 forall Fe ¥ nX. If Z< S such that
ZS = Z or SZ < Z then Z\Z is p-negligible for all peL(S).

Throughout this paper S is a stip with the additional properties :
1) clo {supp(p)|p € L(S)} = S;
2) the identity element has a countable neighbourhood base.

A stip S with property (1) belongs to the class of the foundation
semigroups [cf. [15], (2.2)]. In [18], the reader can find a discussion whether
each stip has property (1).

We require S to have property (2), only in order to avoid a number of
rather technical complications. Most of the results in this paper can also be
proved without this topological restriction, by exploiting the &-isolated
idempotents e [ie.e’=e, and {e} is a Gg-subset of
{feS|f? = f,ef = fe = f}] and the compact subgroups of S that are G-
sets [cf. [20], ch. XI].

Furthermore, throughout this paper :

2.5. DeriNtTioN [cf. [19], (5.3)]. — L*(S,B) is a pseudo L*-space under
the norm || ||%: ie. L®(S,B) is a Riesz ideal of L(S),. and the norm
| 5 on L*(S,B) has the following properties :

1) L*(S,B) is a Banach lattice under | |2 ;

2) || |5 has the [extended] Fatou-Levi property [i.e. if V S L*(S,B)
such that (i) for each V', v eV thereis a veV for which v < v,
v’ < v [we write V1] and (i) |[v||2 <1 forall veV, then V has a
least upper bound peL*(S,B) [we write Viu] and |jp||5 < 1];

3) B:= {peL*S,B)|lpll% <1} is vaguely bounded [i.e.
sup {|p(F)||pe B} < o for all Fe x#];

4) The modular function A from S into [0,00] defined by
A(x):=sup{llp*x||%|lpe BNAL(S)} (xeS) is locally bounded [i.e.
[|AEH|, < oo for all Fex].

In case S is a group the pseudo L*®-spaces can be identified, via the
Haar measure, with invariant solid BF-spaces having property L.4 as
defined in [6]..

2.6. Examples [see also (3.3) and (5.4) of [19] and in this paper (3.7),
(4.1), (4.16), (4.18), (5.7)].
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1) Let S be a group with right Haar measure m, and left Haar
measure m;. For each pe[l,00], the space L?(S,m,) is a pseudo
L®-space with modular function equal to 1. The space LP(S,m)
is also a pseudo L®-space. In this case the modular function is 84
where qe€[l,0] such that 1/g+ 1/p=1 and & is given by
3(x) := my(Kx~')/m(K) (x € S) for some Ke ¥ with m(K) # 0.

2) L(S) is a pseudo L*®-space with modular function identically 1.
3) Let U be a compact neighbourhood of 1.

For each peL(S), let |1t : = [ludll, whenever {|u|*x|x € U} has a
least upper bound py in L(S), otherwise [[u||}: = co.

The space L%(S): = {ue L(S)|||ullY < oo} is apseudo L®-space under
the norm || ||y [cf. §7 of [19]].

In case S is a group and U™ ! = U, m(U) =1 for a right Haar
measure m, we have that m(UxU)/m(UU) < A(x) < m(UxU)(x €8).

The space {peL(S) |lsup {x % |u||x € U}|| < oo} is a pseudo L*-
space as well. The modular function is equal to 1. For the case where S is
a group, this space has been studied in [12], [5], [8].

2.7. ProposITION. — a) For each K € A", there is an Mg € (0,00) such
that

IRkl < Mllplls for all peL>(S,B).

b) For each f em(S), put

[f1? := sup {|u(f)|In € B}.
A p e L(S),. belongs to L~ (S,B) as soon as
c: = sup {|p(f)IIf em(S), |IfII<1} < oo, in which case ||l = c.

¢) The modular function A is lower semicontinuous [i.e. A~ *([0,0]) is
closed (>0)] and A(xy) < A(x)A(y) for all x,yeS.

d) With & = 1/A, for each peL*(S,B), ve M(S) we have that
p*k@v)eL>(S,B)  and  |lukx GV)Iin < [V
(&) Put Q :=cloU{supp(p)pe L*(S,B)}. If neL(S) such that

nl(S\Q) = O then p << p for some peB. For each Fe X, thereis a
p€B such that plp << p for all peL*(S,B).
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Proof. — (a) Is a trivial consequence of the vague boundedness of B.
(b) By an adaptation of the proof of theorem (13.5) in [20] [see also theorem
(4.8) in [16]], for each compact subset F of S, we can find an me L(S)*
such that

P << m for all peL*(S,B).

Therefore, locally, L*(S,B) can be viewed as a Kothe function space. Since
I 5 has the Fatou property, we locally have (b).

Finally, the [extended] Fatou property now implies (b) [see also
prop. VII and theorem IV of [2]].

The proof of (c), (d) and (e) can be found in [19], (5.5), (5.9), (5.8),
respectively.

2.8. Remarks. — (1) The proof of (b), as suggested above, depends on
the fact that {1} is a Gg-subset of S. However, by an adaptation of the
arguments in § 4 of [19], one can also prove (b) without this countability
restriction for {1}.

(2) Let (L(S),®) be the Banach space endowed with the product &
given by

LBV = ABH * %v] (v e L(S)).

Then (L(S),®) is a Banach algebra, a so-called Beurling algebra [cf.

e.g. [6], p. 142] and L*(S,B) is a right (L(S),®)-module under the module
operation suggested in (d) [cf. [6], lemma 1.5].

3. B-uniformly continuous measures.

In this section, we introduce the B-uniformly continuous measures and
we prove some elementary properties.

The notion of « B-uniformly continuous measure » can be viewed as a
generalization of the notion of « uniformly continuous function» on a
group; in case S is a group with right Haar measure m, the measure fin
(f e L*(S,m)) of which the right translation r,, from $ into M(S) is
continuous with respect to || ||, [llfmll,, := esssup {|f(x)||x € S}] can be
identified with a uniformly continuous function [cf. [4]].
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3.1. DEFINITION. — A p € L*®(S,B) is said to be B-uniformly continuous
if the map r, from S into L®(S,B) is continuous with respect to the
|| |I%-norm. The collection of all B-uniformly continuous measures is
denoted by L;yc(S,B).

Recall that Lgyc(S,B)y = {p € Lruc(S,B)|supp(p) € #} [not to be
confused with

{IJIF“J € Lryc(S,B),F € f}]
and

Lruc(S;B) = || ”EO'CIO(LRUC(S’B)X)'

The spaces Lgyc(S,B) and Lg(S,B),, obviously are closed subspaces
of L®(S,B). However, it is far from clear whether these spaces are Riesz
subspaces or Riesz ideals. Before we concentrate on these problems in
§4,5 and §6 we give some « properties of Banach module type ».

If the space L;yc(S,B) is considered as a generalization of RUC, the
space of uniformly continuous functions on a group, then L;yc(S,B), and
Lruc(S,B),, are generalizations of C,,(S), respectively of C_(S). The
correctness of the view, suggested here, is emphasized by the following
property, for whose proof we refer to [19], (5.12).

As in [2] has been explained, L*(S,B) introduces LP-spaces [see also
[19], § 3]. As in the group case, these B-uniformly continuous measures with
compact support form a dense subset in any of these LP-spaces.

3.2. LeMMA. — Put 8(x):= A(x)"! for all x€S.
Then & is locally bounded.

Put vy :=sup{1/||A&yll,|U < S, 1 eint (U)}, and let V be a compact
neighbourhood of 1.

Then for each veL(S), € > 0 there is a peL(S)* [or if
S = clo U {supp(u)|p € L*(S,B)}
there is a peL(S)* n L*(S,B)] such that
supp(p) =V, ol <2/y and |v@®p—Vl<e

[where vé@®p=A(dv*0p)]. In particular, we have that the Beurling algebra
(L(S),®) has an approximate identity with bound 2/y.
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Proof. — The local boundedness of & follows easily from the fact that
the sets {x € S|3(x) < N} are open [use (2.7.c)].

Let veL(S), ¢ > 0. Put

¢ :=¢/1, € :=min(yv.ey/|VI)
and
V' :=int{x e V|d(x) e (y—€",y +€")}.

From the definition of y and the upper semicontinuity of &, it follows
that 1eclo(V’). There is an Fe X such that |v|(S\F) < ¢'. Consider
p:= v|g. Since A and & are locally bounded and p belongs to L(S) we
have that

W = {x e S|||ABp*x)—p| <&’}

is an open neighbourhood of 1. Take a p’eL(S)* such that
llp'll=1/y and  supp(p) SV nW.

Then for each feC_(S) with |[f]l, <1 we find that

ln® p'(f) —n(N)l = U5M*J_C(Af)d59'(X)— Yr(f) dp’(x)

< U[au*;mn—umwx) dp' (%)

+ U.u(f)(?)(x)—v) dp'(x)
<€ j5 dp” + [lull jIS(X)—YI dp’(x) < 4¢’.
Hence

In &® p" — pll < 4¢’.

If S =cloJ{supp(n)|neL*(S,B)} then, by (2.7.¢), thereisa peB such
that

llp—p'll < min (¢'/|Iv]};Y)

[actually, p = (fAn)oc, where ceB* and feL!S,0) such that
p' = fo, and n is a suitable natural number]. Otherwise, p := p’. Then

Ivé@®p—vil < Iv®p—p®pll + LB —p®Pl
+ @ —pll + [k=VI <7 =¢. O
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3.3. THEOREM. — Lgyc(S,B) = {p*dv|pe L*(S,B), ve L(S)} and
LRUC(S’B)co = {H*‘SV“L € Lw(S:B)uo ,VE L(S)} .

Proof. — Let peL®(S,B) and veL(S),. Put F := supp(v). Let
x €S with compact neighbourhood X.

Then
lln kv x —pkSvkylle = [Ink(AGBV*x—3v*Y)|%
< IlINAGY % x —8v* V)| < [WIIBNAE pxll 1BV % X — v % Y.

Since A and & are locally bounded and 8v e L(S), the continuity of r,
at x follows. Furthermore for a p e L(S) we have

lln%8p —p*Splgll% < lullliplskll (K€ X)

and, consequently,
p*x dpell |I%-clo{p*dplx|Kex}.
Apparently, {p%0v|peL®(S,B),v € L(S)} S Lguc(S,B).

Take a peLgyc(S,B), and € > 0.

Then V:= {xeS||luxx—p||%<e} is a neighbourhood of 1. There is
a velL(S) such that |lv|| = v(V), ||ov| = 1. By a combination [for
details see (2.1) of [11]] of the Eberlein-Smulian and the Banach-
Grothendieck theorem, for any fem(S), with |f|> <1 we have that

(v —p)(f) = U&l*i(f)—u(f) ddv(x)

< jllp*?c—ull'; ddv(x) < €.

The factorization theorem of Cohen leads now to the result in the theorem.

a

Several characterizations of measures p e Lgyc(S,B) can be given. A
basic one is formulated in the next theorem; the proof as presented is an
adaptation of the arguments in (3.2) of [15].

Another characterization can be found by generalizing the results in
[13], in the following way.
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If peL>(S,B) such that {ux%Xx|xeA} is separable in L®(S,B) for
some o-compact subset A of S of which 1 is an L(S)-density point [i.e.
for each open V with 1€V, thereisa veL(S) for which v(A nV) # 0]
then p % x € Lgyc(S,B) for any xe§. [Take an xe€$. By a reasoning
similar to the one in [13], find a compact K containedin A n §~! x that
is not L(S)-negligible and on which r, is continuous. Next, look for a
veS and a compact neighbourhood V of 1 such that KKv € xV and
prove that r,,; is continuous on V. Finally, apply the next theorem in
order to obtain the announced result.] In particular, if pe L*(S,B) then
B % x€Lgyc(SB) (xe8) as soon as r, is L(S)-measurable.

3.4. THEOREM. — Let pe€ L*(S,B).

Then p € Lgyc(S,B) if and only if r, is weakly continuous at 1 [i.e.
continuous with respect to the weak topology of L*(S,B)].

If peLlgyc(S,B) and f € C(S) is uniformly continuous [i.e. x—f, isa
continuous map from S into C(S)] then fu e Liyc(S,B). In particular, we
have that fu e Lgyc(S,B) for all peLgyc(S,B) and feC_(S).

Proof. — Note that h e L*(S,B)* for each he L*(S,B)*, xeS if h,
is defined by h, (v) := h(v*X) (ve L*(S,B)).

Let peL*(S,B) for which r, is weakly continuous at 1. In order to
prove that r, is norm-continuous on S, we may suppose that p is real

First, we shall show that r, is weakly continuous on S. Let (x,),., be
asetin S that converges to x € S. Suppose h € L®(S,B)* is real and such
that (h(u%Xx,)),.o converges to a CeR. We shall prove that
C = h(p*Xx); then we may conclude that r, is weakly continuous at x.
According to the Hahn-Banach theorem there is an % e L®(S,B)* such
that for each real veL®(S,B)

limlinf h(v¥Xx,) < h(v) < limlsup h(v*X,).
Let ¢ >0 and let U be a compact neighbourhood of 1. V is the
collection of all ve U for which both
h(uxv)—h(w <& and  |h(u¥0)—h, W) <e.

Then 1eint(V). Takea veint(V) n$ and note that x eint [v~!(Vx)]
[cf. (2.2)]. Therefore, there are a A, e A and a family (v,),., in V for
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which v,x = vx, for all AeA, A > L,. We find that

C - 2 = lim h(uxX,) — 2e = h(n) — 2e < h(u%v) — ¢
< limlsup h(p¥v*Xx,) — & = limlsup h(u*v) — ¢
< h(p) < limxinf h(uxv) + € = limxinf h(p*v*X,) + €
< h(u*v) + & < h(u) + 26 = C + 2¢.
Apparently, C = h(u*Xx).
Now, by a combination of the Eberlein-Smulian and the Banach-

Grothendieck theorem [cf. (2.11) of [11]] we find that

h(p*v) = Jh(pak)—c) dv(x) forall veM(S)y, heL®(S,B)*.

Lruc(S,B) is norm-closed and hence weakly closed. Therefore, since

{n* vlveL(S)y} € Lruc(S,B) [by (3.3)], it easily follows now that
H € Lryc(S,B).

The proofs of the other assertions in the theorem are left to the reader.

O

3.5. Note. — In [15], we proved that a pe M(S) belongs to L(S) as
soon as x — [ % x(f) from S into C is continuous at 1 for all
f em(S). In view of this result one could hope that a p e L*(S,B) belongs
to Lgyc(S,B) as soonas x — p % x(f) from S into C is continuous at 1
for all fem(S), for which |f|} < 1. However, on R with Lebesgue
measure A, the function x — sin x? induces a measure in L®(R,A) that

does not belong to Lyyc(R,A) but for which x — jsin (x+y)>*f(y) dy is

continuous for all feL'(R\).

For measures p € Lyyc(S,B) we can approximate ||p||5, with the aid of
the B-uniformly continuous measures in B™*.

3.6. ProposITION. — There is an o >0 such that for each
1 € Lryc(S,B)

lnll% < inf{ceR||p| < cm for some me Lyyc(S,B) n B*} < ofu|[Z.

[If Liuyc(S,B) is a Riesz space one obviously can take o to be 1.]
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Proof. — For each p e Lgyc(S,B), put

InllS := inf {c e R| Ju| < cm for some m € Lgyc(S,B) nB*}.

Obviously, we have that ||u||% < ||n/IY.

Let pe Lgyc(S,B). By (3.3), there are a v € Lyyc(S,B) and a pe L(S)*
such that p = v % dp. Note that

[Vl % 8p € Lgyc(S,B) and [nl < vl * &p.
Therefore ||p||% < .

It is not hard to prove that Lg(S,B) is also a Banach space under
II'IIS. The proposition follows now as a corollary of the open mapping
theorem. O

The following example shows that o may happen to be unequal to 1.
3.7. Example. — Let S := {(x,y)e[0,00) x R|y =1 or x€[0,1] and
x =y} be endowed with the restriction topology. The multiplication is

given by

(x+p,y+q if (x+p,y+q)eS

Cen)pq) = {(x+p, 1) otherwise.

Let A be the Lebesgue measure on [0,00) x {1} and let A" be the
Lebesgue measure on S\[0,00) x {1}, normalized such that

AML01] x {1}) =1 = [IV]].
For a peL(S), = {f(A+L)|f e L' (SA+L),} put
Ikl := inf {c € R||u| < c(h+N)}.
Let f: S— R be given by
x if y=1 and x<1
fley):= 9-x if y#1 and x<1
0 if x>1.

Consider p:= f(A+A’). Note that pe Lgyc(S,B), but |u| ¢ Lzyc(S,B).
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In this case we have that
e =1,  while [u||Y = 2.

Clearly, o > 2. However, one can show that o = 2.

4. The case where L. (S,B), is a Riesz ideal.

Consider a linear subspace L of L®(S,B). If V is a downward
directed subset of L with infimum O in L [ie if peL such that
O<pu<v forall veV then p=0], we put V]|O(L).

We say that || ||2 is absolutely continuous on L if for each countable
subset V of L for which V|O(L) we have that

(1) inf {MI3Ive V} = 0.

In case (1) holds for all subsets V of L for which V |O(L) we say that
Il I8 is order continuous on L.

Note that we do not require L to be a Riesz subspace of L®(S,B) [see
(3.6) and (3.7)]. Furthermore, we have that || ||% is order continuous on L
whenever || ||% is absolutely continuouson L and L < L®(S,B), ; to see
the correctness of this statement it is sufficient to note that L*(S,B), is a
subspace of M(S) and that for each pe My(S)*, {veM(S)|v << p} is
super Dedekind complete [see also (5.13)].

In this section, we obtain characterizations for the case where

Lzuc(S,B),, is a Riesz ideal of L®(S,B) in terms of the order continuity of
Il II® on certain subspaces of L*(S,B) [see (4.14)].

Note that Lgyc(S,B),, is a Riesz ideal of L®(S,B) as soon as Lgyc(S,B)
is one. However, the converse need not be true [Lyyc(S,B),, can be a Riesz
ideal while L;y(S,B) is not] as the following example (4.1) shows. The
results concerning L;y(S,B) depend on those for Lyyc(S,B),, . Therefore
we study the situation for Lgyc(S,B), firstly.

4.1. Example. — Let S be the additive group of the real numbers, A
denotes the Lebesgue measure on S. For an feL!(S,\),., define

IMIE = inf {|lAll; + llgllolhg € L' (SM e, f=h+g}.
Then L*(S,B) := {fA € L(S),d I/M|% < oo} is a pseudo L*-space; the so-
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called Gould space [cf. [10]]. It is not hard to check that
L>(S,B),, =~ L*(S,\) and, consequently, that || ||5 is order continuous on
L>(S,B),,. However, || ||% is not order continuous on L®(S,B). We have
that Lgyc(S,B), = L'(S,\) is a Riesz ideal of L*(S,B), while Lyyc(S,B)

is not: A€Lgyc(SB), but Y &u.iimA ¢ Lruc(S,B).

n=1

4.2. ProposiTION. — Let L*®(S,B) be such that Lgyc(S,B), is a Riesz
ideal. Then || ||% is order continuous on Lgyc(S,B), .

The proof of the proposition is based on the following three lemmas. In
these lemmas Lgyc(S,B),, is supposed to be a Riesz ideal of L®(S,B).

43, LemMA A.— If peLguc(S.B)* and (F,),.n is a decreasing
sequence of compact subsets of S such that with F := () {F,lneN},

F ' F is not a neighbourhood of 1 [F is emaciated in the terminology of
[16]], then

lim [Julg, I = 0.

44. LeMMA B.— If peLliyc(S,B)y and (F,),.n is a decreasing
sequence of compact subsets of S such that (){F,lneN} is L(S)-
negligible,- then

lim lInlg )l = 0.

4.5. LemMa C. — If pe Lgyc(S,B)y and O is an open subset of S,
then

inf {”u|0\F”Eo|F e ,Fc O} =0.

In order to prove lemma B we need lemma A. A combination of
lemma B and lemma C leads to the order continuity of || ||2; we shall

first prove this last implication.

4.6. Proof of (4.2). — It is left to the reader to verify that the order
continuity of || |2 follows from the following property (%).

For each p e Lyyc(S,B)y and each decreasing sequence (U,),.n Of
(%) open subsets of S for which () {U,|neN} is L(S)-negligible we
have that lim [|juy JI% = 0.
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In order to prove (%), suppose that for some p e Lgyc(S,B)* and for
some decreasing sequence (O,),.n Of open sets whose intersection is L(S)-
negligible we have that

: B
lim [lulo,I% = a > 0.
n— o

In view of lemma C for each n € N we can find a compact subset F, of O,
such that

B -
lItlop llo < 527"

Put K, := ) F;. Then (K,),.n is a decreasing sequence of compact sets

i=1
for which ) {K,|neN} is L(S)-negligible, while

il 1% = Rl J13 — llitlo,u I

" 1
> lIulo Iz = X lIuloyeflic > S for all n.

i=1
Clearly this violates the result in lemma B.

Apparently || |5 has property (%) and consequently is order
continuous. O

4.7. Proof of Lemma A. — Suppose there are a pe Lyyc(S,B)y and
a decreasing sequence (F,),.n Of compact subsets of S such that with
F:= N {F,neN}, F'F is not a neighbourhood of 1 while

Hm [jplg [I% = & > 0.
Put M := supp(n). Note that M e K.
Without loss of generality we may assume that
F,.y €int(F) for all neN.

Let (V,)..~n be a decreasing sequence of relatively compact open
neighbourhoods of 1 such that {1} = (N {V,|neN}.

By induction we construct sequences (x,),cn> Vnen I S and (K,),cn
of compact subsets as follows.
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For neN, assume that x,,...,x,, y;,...,y,€S and compact sets
K,,...,K, are such that for all i=1,...,n,

x;, €V, K;=F; for a certain j,
K,sK,., s cKy,

MnKx'sK,.;,, Kxi'nK,=¢g forallj, j<i.

i
MnAy, nKx['= ¢, where A;:=K;x;' u... UKx; !,
and

Ky, nKx7' = &.
Then choose y,,,€V,,, such that

Anyn+lnF=®’ Fyn-f—lmF:Q’

which is possible since 1¢int(F"'!FnV,,,) and by assumption
A, nF<c A, nK,= . Next choose an x,,,€V,,; such that

Xps1 EAYer1) 'F U(Fy, ) 'F,
(%) Fxn-i-ll nMcK,, Fxn_+ll NnF=¢g,
Fxy ! )yner 0Fx )y M = .

Finally, take K,,,€{F,|meN} such that K,,, £ K, and the
properties (%) hold with K,,, instead of F.

Put A=M n|J{K,x,'IneN}. Then we have that
MnKx, ! nAy,=@ forall neN;
since K,x,' nA,y, nM = and for all meN, m>n
MnKx ! nKx,! oMy, €K x;! nK,y,=d.

Apparently,
Ml < [Mla — la% Y, | for all neN.

Since (y),.n convergesto 1 and p belongs to the Riesz ideal Lg(S,B),,
we have that

0 < lim [Iplg,. A% < lim [lula — ko % 3% = 0.

Therefore, we can find a subsequence (C,),.n of (K,),.n such that, with
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z, := x; whenever C, = K|,
B 1 -
lulc, -l < 52 " foral neN.

Put D:= J{C,z, '|neN}. Note that,
Hle,p < IMlp* z, — Wl + plc, — m*Zz,|c| for all neN,

whence

Iklc,oll% < lIkip % Z, — Kol + Ik — p % Z,/1%.

Since p|p € Lgyc(S,B), we see that
}Lnolo “u'IC"\D“?o = 0.

Now, note that by our choice of the x,,

C,nDs U C,z.!

m=n+1

and we find that

B B
lulc 1% < ke ollo + [ltlc, ~plle
n n n

[ o]
< ”Mcn\l)”g: + Z ”Plcmz;‘”?o < “HIC,,\D”go + 27"

m=n+1

We have to conclude that lim ||u|c||% = 0 which, however, violates the
n—- o n

fact that [|pgl% > o >0 for all keN [recall that for each neN,
C, e {F,|keN}]. O

4.8. Proof of lemma B. — Let peLgyc(S,B)% and let (F,),.n be a
decreasing sequence of compact sets such that F := ({F,|ne N} is L(S)-
negligible. Take an x€$. For each feC_(S), put

p(f) = lim sup |l ful, 1%

Then p is a seminorm on C_(S),

p(1) = lim Mg -1z, and  p(f) < IIf oIkl
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According to the Hahn-Banach theorem, there exists a measure v e M(S)
such that

v =p1) and V(NI <p(f) forall feC_(S).

Obviously, p(f) = 0 whenever feC_(S) and f =0 on Fx~!.

1

Apparently, supp(v) € Fx™*.
Let K € " such that K™ !K is not a neighbourhood of 1. Take an
€ > 0. Then, by lemma A there exists an f e C_(S) such that

0<é<f<1 and |fpls <e.

This shows that v(K) = 0.
By theorem (3.4) of [16], we now have that v % x e L(S).

Since supp (v¥Xx) S (Fx !)x € F is L(S)-negligible, we find that
v % x = 0. Therefore,

0= v # X(S) = v(S) = p(1) = lim [,

To complete the proof, note that

|“|Fn_“*-x_:ll-‘n“§0+ lInlg, -1 % X%

Il JI2 < |
< ln—p X% + Al -2

The facts that p e L;,(S,B) and A is bounded on a neighbourhood of 1
show that

lim [l 12 = 0. O

Before we proceed to the proof of lemma C we separate two steps in the
proof in the form of the following lemmas (4.9) and (4.10).

4.9. LEMMA. — Assume there are a p€ Ly,c(S,B)y, an o, eeR* and
a sequence (E,),.n of Borel measurable subsets such that

ONUE, =g

m n>m

(ii) (g lz > @ + & for all neN.

Let V be an open subset of S.
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Then for each me N there are an x€V and an ne N, n > m such
that

lItle g -l > o

Proof. — Let veL(S) nB such that v(V) = |jv|| = 1. Take an
meN. Consider an fem(S), |ff<o, an neN and
E:=E, nsupp(y). Then

_[Iulgnsx—l(f)ldv(x) < Jlfulsl * x(E) dv(x)

= ff % V(E) d| fiulg|(y) < sup y * V(E)||fplell

yeE

< sup y * V(E)(fN) < supy * V(E)|fI7lInll5-
yE€ yeE

" Since E € supp(We A and veL(S), we can find an neN, n>m
such that

sup y * V(E) < ellulle) !

yeE

Therefore, for each fem(S) with |f|? < 1 we have that
JlulEn\Enx—lU)ldv(x) = j"lhs"(f)—l‘«lE"nE,,x—l(f”dV(x)

> jIMIEnU)IdV(x) - Jlulsnnsnx—l(f )| dv(x)

> lule, (Nl — €/2.
Since |[plg|I% > @ + €, there is some fem(S) with |f|f < 1 such that

g, ()] > o + /2 [see (2.7.b)].
Apparently, we have that

.[“ulﬁn\li,,x‘lllgo dv(x) = flllls,,\ﬁ,,x-l(fﬂd"(x) > Q.

The existence of an x €V with the required property follows. Od

In the proof of lemma C, we will have to choose compact sets F with
an additional property : viz.Fxx™! = F for some xe$. Unlike the
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group case, for semigroups, this is not a trivial property. The following
lemma overcomes this problem. The proof of this lemma may be based on
an observation as in the last few sentences of the proof of lemma B ; we omit
the details.

4.10. LEMMA. — Assume there are a p € Lyyc(S,B)%, a BeR* and an
open subset O of S such that

lnlogll% =B forall Fext  for which F c 0.
Then there exists an xo€S and an ae(0,8) such that

Mlosg \elle > & for all  Fex  for which F <Oxg'.0O

[Note that, whenever Fe ¥, F S Ox,' and F := Fxyx,! N supp(p)
we have that FFeX', F € Ox;', FE F, Fxoxo! nsupp(u) = F.]

4.11. Proof of lemma C. — Suppose there exist a p e Lyyc(S,B)5 and an
open set O of S such that for some x,e $, o, eeR* we have that

IMlosg el > @ + &  forall Fexd', F<Ox';

if we can deduce a contradiction then, in view of the above lemma, we may
conclude that lemma C holds. Put M := supp(p). Without loss of
generality, we may assume that there exists a sequence (G,),.n of compact
subsets of Ssuch that

=G, =G, Sint(G,)) €G,Sint(Gy) s ...... €0
and
O = U{G,|neN}.

Let (n(k)),.n be a sequence in N such that for all keN
1) n(k) > n(k—1) + 2 [where n(0) = 0].

Put K, := G, xg' "M, U, := (int G,4,+,)x; ' and for each keN,
k>1 put

2) K, := (GupyXo ! nM)\(int Gug-1)+2)%0 !
and

U, := (int Gn(k)+1)x(;l\Gn(k—1)+1x(;1 .
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Note that
3) K, is compact, U, is open (ke N)
4 K, €U, cO0x,', U, nU, =T (keN,neN,n#k)

%) (Kixo)xg! "M =K, (keN).
By induction, we shall show that, in addition to (1), the seauence (n(k)),.n
can be chosen such that for any keN xg !

(6) [l Jlo > o + €.

By the Fatou-Levi property of || ||2, we can find an n(1) e N such that (6)
holds with k = 1.

Now consider a pe N and suppose that n(1), ..., n(p) have been
choosen such that (1) and (6) hold for k < p. Since

B
Hp|0x5‘\Gn(p)+21x;x”co >a+ e
and

o)

(O\Gn(p)+2)x(;1 s U (Gmx(;l\Gu(szx(;l)’

m=n(p)+2

again by the Fatou-Levi property, we can find an n(p+1)e N such that
n(p+1) > n(p) + 2 and (6) holds with k =p + 1.

For each meN, put
K.:= UK, andnotethat NK,=¢g.

There exists a sequence (V,),.n Of open relatively compact
neighbourhoods of 1 such that

(7 xos—lgvlgvzg---, nv,={1
n=1
and
8) KV)V, ! nMecU, forall neN;

since M is compact and (4), (5) hold.
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Let (y(n)),.n and (A(n)),.n be sequencesin N such that for all ne N,
n>1,

©) AMn+1) = y(n) > An) > y(1) = A(1) = 1.

Let (x,)..~ be a sequence in S such that x,eV,, forall neN. For
each neN, n>1, put

Fn L= Kl(n) and Cn L= Fn\(ann_-ll UKY(H)X"— 1)’
Then

(10) (x,),en converges to 1.
In order to prove that

(11) C;,nCiyx7'=g forall ijeN,
we distinguish three cases.

If j<i then

-1 -1
iji NCiixi - € Ky Vi NK i+ )X

C;,nCiyxit s
€ (Uyy NKyiv 1))xi—l = & [by (7) and (4)].

(
(
If j>i+ 1 then

C; nCiyxi 'S Ky NCiyrxi ' € Ky(j—l) N Cippxi !
S Ry 0 Civyxit = & [by (9)].
If j=i+1 then C;nCpyyx7' =Ciyy nCiyixi' = &.
Hence (11) holds.

Finally we shall show that the sequences (y(n)), (A(n)) and (x,) can be
chosen such that, in addition to (10) and (11), for all ne N, n > 1, also

(12) e 1% > a.

By lemma (4.9), we can find an x; €V, and a A(2)e N, A(2) > 1 such
that A

B
”uIFZ\Fle_l”oo > a.

NOW, note that (FZ\(Fle_lUKmxl))meNTFZ\Fle—l [here (An)neNTA
means A, S A, < -+ and A= U,A,]; since, by (5) and (7),

K.y 'nM=K, foral meN, yex,S™!
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we have

NF, nK,x; = (Fxi' nNK)x, = .
Since || || has the Fatou-Levi property, there exists a y(2)eN,
7(2) > M(2) such that [ju|cl% > a.
Now, consider a peN and suppose that vy(1),...,v(p),
A(),...,AMp) in N and x;,...,x,_, in S are as required.

By (4.9) there are a A(p+1)eN and an x,eV,, such that

Mp+1) = v(p)  and (e, . o > o

As above, by the Fatou-Levi property, there is a y(p + 1) e N such that
y(p+1) > AMp+1) and (12) holds with n =p + 1.

Finally, put A := |J C;,,x;'. Then, by (11),

j=1
CinA=¢g for all jeN.

Since
|l»l|cj\A| < |P|éj - P*}j-ﬂcj + P|A*;j—1"P|A| for all jeN

and by (12), we find that

@ < IHlgls = Iyl < Ikl — 1%, IS + lInlak X, —lall:
< I—p* % I + Ik Xy —miall% for all jeN.

This inequality cannot hold ; because (x;_,);cn converges to 1 [see (10)],
while both p and p|,- belong to Liyc(S,B). ]

It is not hard to see how the case where Lg,c(S,B),, is a Riesz ideal is
related to the order continuity of || |5 on Lgyc(S,B),. However, we
can also link this situation to the order continuity of || ||% on a subspace of
L*(S,B),, that does not explicitely depend on Lgyc(S,B),, [cf. (4.14)], and
even on a subspace of L(S) of which the definition is intrinsically based on
S itself and has nothing to do with || || [cf (4.15.2)]. In (4.12), we
introduce these spaces and in the subsequent proposition we show that
these spaces [as Riesz ideals of L®(S,B)] are natural objects.

4.12. Notation. — Let U be a compact neighbourhood of 1. The
Riesz ideal of L®(S,B) consisting of all peL®(S,B) for which the



MEASURES WITH CONTINUOUS TRANSLATION 91

collection {|p|* x|x € U} has an upper bound in L*(S,B) is denoted by
Ly(S,B). Luy(S) denotes the space of all peL(S) for which
{lu/%*x|x e L(S)} has an upper bound in L(S) [L{(S) = Ly(S,B) if
L*@S,B) = L(S), | ll= =111

If A is a subspace of M(S) then we put

Ac:= {pxxeM(S)|peAxeSl)
and
Supp (A) := clo |J {supp(p)|p € A}.

4.13. PrOPOSITION. — Let U and V be compact neighbourhoods of 1.
Then :

1) u(8,B)y = LY(S.B)% [ := (Lv(S,B)x)°];
2)If pelL®@S,B) and peLy(S)y then p % peLy(S,B);
(3) u(S,B)y = Ly(S) [see also (4.15.2)]. O

One can prove (1) by adapting the arguments in (2.7) of [18]. The proof
of (2) and (3) is easy.

4.14. THEOREM. — Let U be a compact neighbourhood of 1. Consider the
following properties :

(1) Lgyc(S,B), is a Riesz ideal of L*(S,B) ;

(2 || I8 is order continuous on Lgyc(S,B), ;

(3) || U5 is order continuous on LY(S,B)S,.

Then, (1) and (2) are equivalent and both imply (3).
If, in addition, S = Supp L%(S)) then all the properties (1), (2) and (3)
are equivalent [see also (4.15.1) and (4.15.2)].

Proof. — «(1) = (2)» is the content of (4.2).

Before we prove «(2) = (1) », we make some observations concerning
the order denseness of Lgyc(S,B),, in Lgyc:= {ve L®(S,B)||v| < |u| for
some p € Lyyc(S,B),}. A linear subspace L' [not necessarily a Riesz
subspace] of a Riesz space L is said to be order dense, if for each pelL
there are nets (v,),c, in L' and (,),., in L such that |u—v,| < p, for
all AeA, while (u,)]O(L).

Note that

(4) for each me M(S)™, Cyo(S) is order dense in L*(S,m) [cf. [14],
ch.IIl,ex. 13;here f <g if f<g m-a.e. and any function in C(S) is
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identified with its equivalence class]. In particular, by (3.4) and (3.6) we have
that

(5) Lguc(S,B),, is order dense in Lyyc.

Suppose that (2) holds. In case, in addition, Lgy(S,B),, is a Riesz
subspace of L*(S,B) we may apply theorem 5.10 of [14] in order to see
that Lgyc(S,B), is Dedekind o-complete. Then (5) implies that
Lruc(S,;B), = Lgyc. Unfortunately, Lgyc(S,B),, need not be a Riesz
subspace [see (3.7)]. However, we can adapt the proof of 5.10 of [14] as
follows.

Let D & Lgyc(S,B),, such that D | and p > 0(pn e D). Consider the
subcollections A of Lgc(S,B): for which

(6) ZE < p for all peD and for every finite subset E of A.

By Zorn’s lemma, there exists a subset A, of Lgyc(S,B): that is
maximal with property (6). Then

{n—ZE|pe D,ESA,,E finite} | 0 (Lyyc(S,B).).

And now the order continuity of || ||% on Lgyc(S,B),, shows that D isa
Cauchy net. Consequently, D has an infimum in Lgy(S,B), and,
moreover, this infimum is precisely the infimum of D in L%(S,B).
Therefore, by (4) and the fact that {fim|f € Cy((S)} is a Riesz space, we
have that {fm|f e L*(S,m)y} S Lgyc(S;B),, for all me Lyyc(S,B)*. By
(3.6) and the norm closedness of Lgyc(S,B),, Wwe obtain that
Lryc(8,B),, = t’RUC'

«(1) = (3)». Suppose that Lgyc(S,B),, is a Riesz ideal. We shall
show that L{(S,B)y S Lgyc(S,B), ; then, since Ly(S,B)S is a Riesz ideal,
(3) follows from (2).

Let peLy(S,B)}- Take a veL(S)* for which 1esupp(v)e X and
|Ivll = 1. There is a p”e L*(S,B)} such that

p¥x<p® forall xeU.

Note that p” % v € Lgyc(S,B)y. Furthermore, for any x, € $ Aint (U),
with d:=v(U 'x,) we have that d > 0 and

P’ * v(f) = Jp" * y(f) dv(y) > J P’ * y(f) dv(y)

U‘lxo

> j P * Xo(f)dv(y) = dp % Xxo(f) for all feC_(S)*.
U_lxo
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Hence B
0<dp % x,<p’”*%v.

Consequently, p % X, € Lyyc(S,B)y, which shows that
U(8,B)% < Leyc(S,B), -

«(3) = (1)». Assume that S = Supp L{(S) and that || |5 is order
continuous on Ly(S,B)y. Let peLgyc(S,B), and let f be a Borel
measurable function from S into {zeC| |zl < 1}. Put v:= fu. In
order to show that veLgy(S,B),, let &>0. Then
W:= {xeS| |luxx—p|%<e} is a neighbourhood of 1. There is a
p e Ly(S)% such that p(W) = ||p|| = 1. Then

p * peLy(S,B)y N Lruc(S,B)y

The order continuity of || ||2 on LS(S,B)‘;, and the order denseness of the
subcollection {g(u*p)|g € Cyo(S)} of Lgyc(S,B), in {h(u*p)|hem(S),
llhll, < 1} imply that

S (1% p) € Lpyc(S,B) -
Finally, the inequalities

Ivex—vHy|[% < |Ivikx—f(p*p)*x|5
+ lf (r*p)kx—f(u*p)* Y% + [If (R*kp)*Yy—V* Y%
< e(AX)+AQ) + [If (w*p)*x— f (¥ p)* Y5

clear that ve Lyyc(S,B), - O

4.15. Remarks. — Let U be a compact neighbourhood of 1.

(1) In [18], we gave sufficient topological conditions on S [e.g. S isa
G;-subset of S] under which S = Supp L{(S). However, it is still an
unsolved problem whether S = Supp L{(S) for all [foundation] stips S.

(2) Let A be the collection of all measures in L(S) of the form
Xx%pxy, where x,yeS and peL(S)y such that
{lnl%*z|z e U} U {z*|ul|ze U} has an upper bound in L(S). [As a linear
space A does not depend on the choice of the compact neighbourhood U
of 1.] Suppose that S = Supp A = Supp L*(S,B). Then Ly(S,B)S = A.
Therefore, concerning this case, we may state that L{(S,B)S does not
depend on B. [One can show, by techniques as used in the proofs in § 3 of
[15], that Supp(A) = Supp Li(S).]
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(3) In case S is a group with right Haar measure m, we obviously
have that S = Supp (A) = Supp L*(S,B) [unless L*(S,B)={0}], whence

USB)y = A = {fm|f e L*(S;m)} .

(4) The following example shows that in (4.14.3) one may not replace
Lu(S,B)y by Lu(S,B)x.

4.16. Example. — Let S be the additive subsemigroup [0,00) of the
real numbers. A is the Lebesgue measure on S.

For each feL!(S,\), we define
1 (e ©
IfM% := sup {;I [f @)l dt + j [f@Olde e > 0}
0 €

L®(S,B) := {fA|f € L' (S My IIfMIo<o0}. Then || |5 is order
continuous on Ly(S,B)S, while for each n, p,:= Aly,, belongs to
U(SB)y, ()L0, but |3 =1 for all neN.

4.17. COROLLARY. — Lgyc(S,B), = L®(S,B),, if and only if || |5 is
order continuous on L*(S,B), .

Proof. — Assume that || || is order continuous on L*®(S,B),. Then,
since Lpyc(S,B),, is a norm closed Riesz ideal, Lyyc(S,B),, is a band in
L*(S,B), . Therefore, in order to show that Lgc(S,B), = L*(S,B),,, we
only have to prove that

for each peL>®(S,B)y there is an m e Lyyc(S,B),,
1)
such that p << m.

Let peL>®(S,B)Y. Take a veL(S)y for which 1esupp(v). Then

K * v E Lpyc(S,B)g
and, moreover,

B<< P *V;
because, if FeK and p % v(F) =0 then
leclo{xeS|p % x(F) = 0},
whence p(F) = 0. Od

Maybe needless to note that Lg(S,B),, can be a Riesz-ideal while
Il 15 is not order continuous on L*(S,B),, [see the following example].
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4.18. Example. — Let S := {ze C||z|=1}, endowed with the usual
topology and multiplication. A denotes the Lebesgue measure on S. For
each feL'(S\),. = L'(S,\) define

ILfMIZ = sup {é r |f(exp (it +is)|\/s ds|  t,ee (0,27t]}~
0

Then L*(S,B):= {fA|feL!(SM)[IfMl%<oo}.

Now, L{(S,B) = {fA|feL®@S,\)}. In order to show that || ||% is
order continuous on L{(S,B), let (f,),.n be a decreasing sequence such
that 1 > (f),n!0.

Suppose that inf ||[fA||2 = « > 0.

Then for each ne N there are some ¢ > 0 and some t € (0,2n] such that

a/2 < %Jelﬁ(exp(it + is))l\/gds < %js\/s—ds = 2\/5
0 0

Clearly € > g, := (30/4)*> and

@2 < EJ \fu(exp (it +is)| /s ds
0

2n

2n o 2n
< — | Ifulexp (it +is)l ds = — || filly
€ )

0 JO

which is impossible by the Fatou lemma. However, with

fi(exp(is)) := s p Eoum(s) for all se[0.2m),

we have a sequence (f,),.n for which

W10,  fiAeL*®(S,B)
and
IfAME =1 for all neN.

5. The case where L;;(S,B) is a Riesz ideal.

In view of the results in the previous section one might hope that
(%) Lgyc(S,B) is a Riesz ideal if and only if || |5 is order continuous
on Liyc(S,B).
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A short reflection with [*(Z) in mind clears that this hope is vain.
However, in case S is a group, I®(Z) is essentially the only counter
example : if S is discrete then L*(S,B) = L;,c(S,B) and otherwise the
above conjecture (%) is correct [cf. (5.10) and (5.11.2)]. In general, the
situation is more complicated. We have to split the semigroup into two
disjoint sets, one of which consists of the elements ¢ that have a kind of
« fix-point property » [l eint {xeS|tx = t}].

In (5.1)-(5.3), we introduce and discuss the mentioned partition of S.
Next, in (5.4)-(5.5) we obtain results on the « non-disastrously collapsing »
part of S. The complementary part is discussed in (5.6)-(5.9). Finally, the
main result can be found in (5.10).

5.1. LeMMA. — For each teS, put H(t) := {xeS|tx=t}.

Then H(t) is a closed subsemigroup of S and
leH@)"*H(@) € H(t) (teS).
For each teS, H(t) is either meagre or open.

Proof. — The proof of the first claim is left to the reader.
Suppose that int [H(t)] # &. Then 1eint [H(t)"* H(r)], by (2.2),

yeint [H()"* H(t)y] € H(t) for all yeH().
Therefore H(t) is open. O

5.2. Notation. — Let Z be the left ideal {te S|H(t) is open}.

5.3. Remarks. — (a) Since Z is an ideal by (2.4), we have that
2\Ze N

(b) If S is connected then Z is the collection of the left zeros of S.

(0 If Z=S then {1} = MN{H()|H(*) open and closed} [because

x=1 if tx=1t for all teS] and, consequently, S has a zero
dimensional topology.

(d) If {1} is open [or, equivalently, if S discrete] then Z = S.
(e) In case S is a group, we have that either Z = S [if S is discrete]
or Z= @ [if S is not discrete].

5.4. LEMMA. — Let V be an open subset of S and let F e A be such
that
FnZ=¢g.
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There exists an x €V [even x €8] such that tx # t for all te F. Then

N Fx"=@.

© 2j
Put I(F,x):= U <A2j+l\U A,.>, where A, := (F\Fx !)x (ie N) and
j=0 i=0

A, = F\Fx~!. Then
NFEx)x ! AIFX) =
and
FnFx ! < OEFEx)x"! uI(F,x).
Proof. — Take an re$ such that rF nZ = .

For each teF, S™!rt is a neighbourhood of t. Therefore, there are
ty, ..., t,€F such that

FeStryu...uSr,.

Since H(rt;) is meagre (i=1,...,m), there is an x e V\{J H(rz). One
easily checks that tx # ¢t for all teF. i=1

Suppose that te (| Fx™". Then T := [)clo{tx"|n>m} is a non-
n=1 m

empty compact subset of F for which Tx-S T. Hence there is a « fix-
point» g in T; ie. gx = q. But this violates our choice of x.

The proof of the last claim is straightforward : we omit this. [J

5.5. PROPOSITION. — Assume that Lgyc(S,B) is a Riesz ideal. Then

{1 € Lryc(S,B) | Iz € Lryc(S:B) o} S Lryc(S:B), -

Proof. — Let peLgyc(S,B)" such that p|, = 0.

Let V, be a compact neighbourhood of 1 and peR such that
p > 1Ay .-
Firstly, we shall show that for any Ke X

(1) Leint {x €S| [Iulk ~ ke % > lI1ikll%/P}
and for any Ke X and any countable subset A of § with 1€A

(2 leclo{xeA| |pgxllx<e} foral &>0.



98 GERARD L. G. SLEDJPEN

Next, with the aid of (1) and (2), we shall show that

1 _
(B =0, where B:=inf{lplsllZFeX, FnZ=g}.

The proposition follows easily from (3).
Property (1) follows from the observation that p|x € LyydS,B) and

Ikl < Nkl * xlklle + Il * Xl — plkll%
< Al ~xeille + Nl * X — plklls.

In order to prove (2), consider a subset A’ of § with 1eclo A’. By
induction, one can construct sequences (U,),.n and (V,),.n of open
subsets of S and (x,),.n Of elements of A’ such that

Ule‘xf’ {1}=nvm K=nUn’
%1€V, €V, ax, VY, U, ,V,s: €U, for all neN.

Put E, : = U,x, !\U,. Note that E,,, S E, forall neN. Since U, is

compact, by (4.2), it is sufficient to show that
o 11’ (e %
: =—lim pa
2 Hlg,

a=0, where

By exploiting the Fatou-Levi property and the fact that all the sets E, are
closed, one can show by induction that there exist sequences (a(n)),.n,

(B(n),»o of natural numbers and (F,),.n of compact sets such that

a(m+1) > B(n) > a(n) for all neN

BO) = a(l) =1,
FnVB(n) n Ea(n) = g

Fn s Eﬂ(n— l)\Eu(n) ’

and lIkle Jl% > o.
Put y, := xp,-1,(n € N). Note that F,y, S U, forall m,neN, m > n,
because
FoVn € Egm-1yVn € (Ua(m—l)xa_(:n—l))xp(n—l) cU;.
Put A:= |J F,. Then
n=1

Ay\Ui €Fy,u... UF,_ 1y, SF Vg, u ... UF,_Vgu_y),

whence
A\Ay, 2 F, for all neN.
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Apparently,

@ < g le < [I#la * yo—plalle,  for all  neN.
Since p|, € Lgyc(S,B) we have that a = 0.

To prove (3), note that S\Z is the union of the open relatively compact
subsets U of S for which U nZ = J. Therefore, in view of the Fatou-
Levi property, there is a sequence (U,),., of open relatively compact
subsets of S such that

U,nZ=¢, Fg=U,c0,<cU,,, for all neN

and
Itly,, polle =B forall  n>0.

Via an inductive construction, based again on the Fatou-Levi property and,
furthermore on (1), (2) and lemma (5.4), one can find sequences (F,),.n Of
compact subsets of S and (x,),.n in $ such that (x,),.n convergeto 1,

tx, #t for all teF, for all neN,

Fn v anm s Un\Un—l

i for all n, meN, m>n
F"l n F”x'l ! = Q
and

1
e, ey Ml > 5 B/p for all  neN.

[Actually,

n—1
“uIan:'\F"”EO <272 B and F, s Un\(Un—l Y U ijj_l>']
j=1

Put C,:=I(F,x,) nF, and C,:=II(F,x,)x,' nF,; the notation
here is as in (5.4). Then, by (5.4),

F,nFx;'eC,uC, ad C,nC,=¢.

Hence, we have that

-

. 1 1
@ Il Iz > 2P or () lImle i > 2 Pre-
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Now, take A, to be C, in case (i) or else A, = C,. Note that
Ax, "A, =g

lf m>n, AmmAnxn—lganann_l=®’
if m<n, A x,nA,€F,x,nF,cU,nF,=¢.

Put A:= |J A,. Then A, € A\Ax, for all neN, which leads to

n=1

1 -
2 B/p < ““IAJIEO < lmla % x, —Wlall%-

Since p|, € Lryc(S,B), this shows that f = 0. O

By a combination of (4.14) and (5.6) we obtain a description of the case
where {p € Lyyc(S,B)lulz=0} is a Riesz ideal [see (5.10)].

We now consider the measures that vanish outside Z. If the identity
element has a connected neighbourhood V, then there are no problems :
because in this case tV =t for all te€Z, whence p|;*v=p|, for every
veV and pel*®(S,B). Consequently, here p|; € Liyc(S,B) for every
peL>(S,B).

In general, however, the situation is more complicated as the following
example may show.

5.6. Example. — Let G be the product space {—1,+1}N.
N, :=N u {00} isendowed with the discrete topology. S is the subspace

{(nf)eN, x Glt(m) = 1 for al  m > n}
of the topological product N x G. The multiplication on S is given by
(nB)(m.s) := (min (nmts),
where

— ._{1 if i > min (n,m)
PO =0s0) it i< minm) (@), m5) €9).

Then S is a foundation stip. Put S_ := {0} x G and for each neN
S, = {(nt)|where teG such that (nt)eS}. Then Z = S\S_.

For each neN_ let m, be the Haar measure on the subgroups S,
normalized such that |n,):=2"" if neN and |rn | =1. Put
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Ty + Mo - For a HGL(S)loc,
1

3
I
M s

I3, := inf {c € R*| || <cm}.

Then me Lgyc(S,B), while m|, ¢ Lyyc(S,B) where

A:={nt)eS|neN, if t =(t,) then t,=1}.

In order to describe the case where {p € Lyyc(S,B){plz=p} is a Riesz
ideal, we use the sets Z(x) := {te Z|tx=t} (x € S) [see (5.9)]. In the proof
of (5.9), we need a partition of the sets Z\Z(x). This partition is introduced
in (5.7). Its measurability properties are discussed in (5.8).

5.7. LeMMA. — Let xe€S. Put Z(x):= {teZ|tx=t} and
Q(x) := Z\Z(x). There exists a set Q(x) S Q(x) such that
Q)x N Q(x) = Q)x* N Qx)x = &,
Q) = Q)x U Q(x) LU Q)x~*.
Proof. — Consider the following sets.

A := {teZ|tx"e Z(x) for some ne N},

B := {teZ|tx™ =t for some meN, m>2},

C :={teZ|tx"eB for some n =0,1,2,...} [where x°:=1] and
D := {teZ|tx" # tx™ for all n, meN, n # m}.

Note that all these sets are fixed under multiplication by x [ie.
Ax S A, etc].

Put A':= {teA|tx*"eZ(x) and tx*""! ¢ Z(x) for some neN}.
Then A'x nA'=Ax2 nA'x =, Ax UA = A\Z(x).
With the aid of Zorn’s lemma, one can find a subset B’ of B such that
Bx nB =g, Bx? nBx =
and
B<SBx uB uBx™!.
Put B,:=B'x and B,:= B u (B\B'x). Now, let

C := {teC|there are an n>1, beB, for which tx*"=b, while
tx*"1 ¢ B} u {teC|for certain n >0, beB,, tx*"*'=b, while
tx*"¢ B} UB'.
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Then Cx nC' =g, Cx*nCx=g, Cx uC uCx~! =C.

Choose a subset E of D such that for each teD the set
E n {seDJ|sx" = tx™ for some n,me N} contains exactly one element.

Put D’ := J{(x*"x"?"|teE, n, me N}.
Then Dx nD' =, Dx2< D’ and D'x uD’ = D.
Now, the set Q(x) := A’ U C’ U D’ fulfills the required conditions.
a
5.8. LeMMA. — For each U S S, put Z(U):= {te Z|tU=t}.

Let U be a neighbourhood of 1. Then Z(U) is a closed, discrete subset
of S; since on Z(U) the neighbourhood (tU)U~! of t e Z(U) coincides
with {t}. In particular, we have that each subset of Z(U) is a Borel set. If
xeUSVES then Z(V) & Z(U) SZ(x). If (V,),en is a sequence of
neighbourhoods of 1 such that n V,= {1} then Z = U Zv,). O

n=1 n=1

5.9. ProposITION. — {p € Lc(S,B)|plz=n} is a Riesz ideal if and only
if
1eint {x € S|||Mlpzullo<€}  for each &> 0,
H € Lgyc(S,B) with Mz = n.

Proof. — Suppose there is a peLgyc(S,B) with pl; =p and an
o >0 such that with W:= {xeS|||u|z\Z(x)||‘§o>a} we have that
leclo(W). We shall show that wunder this assumption
{veL*(S,B)|0<|v|<pu} & Lgyc(S,B); then the «only if»part
of the proposition follows.

- 1 .
Let V,:= {x eS||p*x—plE< Za}' Then V, is a neighbourhood
of 1 and for each xeVy, n W we have that
”P’IZ\Z(X)*'ﬂlEO = ”p',Z\Z(x)”EO—II,J'IZ\Z(X)*;—ph\Z(x)“?o
- 3
> o = [luxx—plz > o;
because iz % X =z

Using the Fatou-Levi property, by induction, we can find sequences
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(V).en of neighbourhoods of 1 and (x,),.n in S such that

x, €V,_4 for all n,

n—1 ©
V. N [xi—l(vi_l(vixi)) NVl nV,, {}=NV,
i=1 n=1

and with X, := Z(V,)\Z(x,) we have that

for all neN

i, % 1% > 2 o

[take x,€V,_; "W and find a V, with the required properties]. Note

that
if m<n then X, €Z(V,) € Z(V,-,) € Z(x,),
if m>n then X,x, < Z(V,)x, < Z(x,); because x,x, €V, (V,x,).

Hence
X, "X, X N\Z(x,) = & for all m, neN, m#n.

For each neN, choose Y, to be either

oo Qx)nX, or QWx)x, nX,

Q(xn)xn—l N Xn’

such that
- 1
llly, % X,llw > —~o [use the lemmas (5.7) and (5.8)].

Put Y:= |J Y,. Then Y is measurable and

n=1
[y % "Zn —uyl = |P|Y\z(x,,)* fn - ulY\Z(xn)I
2 My \z(e) % Xn— Hly,x, Azl = 1y, %X,
So we find that
for all neN.

~ 1B = B
o < ply, * Xl < llly*x, — Hlylle

|-

Since (x,),.n converges to 1, this shows that ply ¢ Lyyc(S,B).
easily from the observation that if

The «if» part follows
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v,peLl®(S,B), v/ <|ul and pl, = p then

- B _
[Iv¥*x—V|o = HVIZ\Z(x)*x_V|Z\Z(x)”?o
—B B
< “PIZ\Z(x)'*x”ao'f'||l~l|2\2(x)”oo < II“'Z\Z(x)IIgD(1+A(x))' O

Tying the results of the propositions (5.5) and (5.9) together, we come to
the following theorem.

5.10. THEOREM. — Let U be a compact neighbourhood of 1. Consider
the following properties :

(1) Lgyc(S,B) is a Riesz ideal of L*(S,B).
? {(a) I llf,"ois order continuous on {plsn € Lgyc(S,B)}
(b) 1 eint {x € S||Inlpzxlle<e} for all € > 0, peLgyc(S,B).
3 {(a) I ||f,"o is order continuous on {plszp € L\(S,B)°} and
(b) 1 eint {x € S||lplpzxlle<e} for all € >0, peLy(S,B).
(4)  {mlsizlt € Lryc(S:B)l S Lryc(S,B) -

Then (1) and (2) are equivalent and they both imply (3) and (4). If, in addition,
S = Supp LU(S), then (1), (2) and (3) are equivalent.

Proof. — «(4) <= (1) = (2)» is a combination of (5.6), (5.9) and (4.2).
Now, suppose that (2) holds. We shall show that (2a) implies (4); then (1)
follows from (2), (4.2) and (5.9).

Let peLgyc(S,B). Let
V= {feC(X)|&<f<1and 1—feCyl(S)}.

Then V|E&; and fp — plz = fulsz. Since fpeLgyc(SB) (f€V) and
Lruc(S;B) is norm closed, (24) implies that p|; € Lgyc(S,B).
In particular, we have that (1— f)plsz € Lryc(S,B),, (f€V) and since

Mlsz — (1 = fNlsiz = frls:z (feV)
we see that plg; € Lgyc(S,B),, -

By an adaptation of the arguments in the proof of « (1) = (3)» and
«{3) = (1)» of (4.14), one can complete the proof of this theorem. [J

5.11. Remarks. — (1) If 1 has a connected neighbourhood V [for
instance if {1} is open] then Z\Z(x) = for all xeV; because
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V < H() for all teZ and hence for all teZ. Therefore, in this
situation both the conditions (b) in (2) and (3) are redundant.

(2) This is also the case if S is a group [if {1} is not open then
Z =]

(3) Example (5.6) shows that, in general, these conditions (b) are
meaningful.

5.12. CoOROLLARY. — Lguc(S,B) = L*(@S,B) if and only if
(@]l 1% is order continuous on  {plgzlp € Lryc(S,B)}  and
(b) 1eint {x €S| |[plnzwll%<e} for all € >0, peL=(S,B).

Proof. — For a peL®(S,B), note that

_ B _
[l1elz % x — plll o ”P|2\Z(x)*x_u|2\2(x)“20
|

2zl (A (X) +1).

Now, by making some observations simular to those in the proof of (4.17),
the corollary follows. O

NN

We conclude this section with the following observation (5.13). In this
one, we prove that under certain restrictions on the size of S [discrete
subsets have to be of measurable cardinality] || ||% is order continuous on
Lgruc(S,B)lsz as soon as || || is absolutely continuous on this space
Lruyc(S,B)lsiz- As a consequence, under the mentioned restriction, in (2)
and (3) of (5.10), one may replace « order continuous » by « absolutely
continuous » [in order to see the correctness of this statement as far as (3)
concerns one may for instance inspect the arguments in the proof of
«(3)=(1)» in (4.14)].

In the proof of this observation (5.13), we use a result from [17]. A
discussion of this restriction of the size and references concerning the notion
of measurable cardinality and the other notion [c-smooth, t-smooth] used
in the proof of (5.13) can also be found in [17].

5.13. PrOPOSITION. — Let S be such that

(i) each discrete subset [i.e. discrete if endowed with the restriction
topology] is of measurable cardinality,

(ii) for each F € A there is a neighbourhood V of 1 such that V™' F
is o©-compact.

Let gem(S) besuchthat 0 < g <1 and || ||% is absolutely continuous
on M : = {gp|u € Lyyc(S,B)} .
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Then M < L*(S,B), and, in particular, || |2 is order continuous
on M.

Proof. — For an heC(S) and a peL(S), put
poh(t):=p % t(h)(teS).

Note that p oh is uniformly continuous and that p o(h) = (p o h),.
Furthermore, in view of (ii), for each h e Cy,(S) we can find a pe L(S)*
such that ||p|| = 1 and p o h vanishes outside a o-compact subset of S.

Let peLgyc(S,B). Take an xe$ and put
V:={feCE)|0< <1, 1-feCy(S)}.
Then V]O.
Let p: C(S) - [0, ) be defined by
p(h) := inf {llg((p o hfW)*X)l[zlf € V,p e L(S)*,llpll=1} (ke C(S)).
Then p is a seminorm on C(S) for which
p(h) < |lhllolnlle AX)  (heC(S)).

Consider an heCyo(S). There is a peL(S)*, |lpll =1 for which
p o h(u*x) € My(S). Moreover, f(p oh)(u%x)€ Lgyc(S,B) [see (3.4)].

Since L!(S,v) is super Dedekind complete for any v e M(S), we have
that

(1) p(hy) = inf {ligp o h)*ZIf € V.,p e L(S)*, |ipll=1}=0
for all h e Cyo(S).
According to the Hahn-Banach theorem there is a ¢ € C(S)* such that

¢(1) = p(1) and [9() < p(h) < ||hll,|Ili% A(x) for all heC(S).

Since p ohf, is uniformly continuous we have that (p ohf)(u%*x)
belongs to Lgyc(S,B) and therefore, by assumption, we see that ¢ is o-
smooth. Consequently, by (5.4) of [17], ¢ * x: h — ¢(h,) (he C(S)) is a
t-smooth functional on C(S). However, by (1), ¢ * x(h) = 0 for all
he Cyy(S) and the t-smoothness implies that

0 =0 * x(1) = ¢(1) = p(1).
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Apparently,

inf {|lgf(* )|zl € V} = 0.
Consider

Ifg(u*x)ll% + Il fg(n%x)— faull%

Ifgnlle < |
< g *0l% + [k X — il

Recall that p e Lgyc(S,B) in order to see that

inf {||fgullzlf € V} = 0.
Since 1 — f€Cyo(S) (f€eV), this shows that
guecloL®(S,B), < L*(S,B),. O

6. The case where Lgy(S,B) is a Riesz subspace.

In case S is a group, we have that
u*x| = |/ * x forall peL®@S,B), xeS

and, since || |u|—|u*Xx||l% < |lu—p*Xx|[5, we see that |ujeL*(S,B)
whenever peL®(S,B). However, example (3.7) shows that, in general,
Lyuc(S,B) need not to be a Riesz subspace..

6.1. Notation. — Let U be a compact neighbourhood of 1. L{(S,B) is
a pseudo L%-space under the norm || ||y given by

lnlly : = inf {c e R*|sup {|u| * Xx|x €e U} < cm for some meB™*}
for each peLy(S,B) [see also §7 of [19]].

The collection of all peLy(S,B) for which r, is continuous with
respect to || || is denoted by Liyc(S,B).

Note that L®(S,B) % Ly(S)x % L(S)y S L%yc(SB) S Lyyc(S.B).

By exercising with some triangle inequalities, theorem (3.4), and
techniques as presented in the proof of (4.14), one can prove the following
result : we omit the details.

6.2. THEOREM. — Let U be a compact neighbourhood of 1. Consider
the following properties :

(1) Lryc(S,B) is a Riesz subspace of L*(S,B).
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(2) For each peLgyc(SB), € >0, xe8, XeX with xeint(X)
leint {xeS||||u*xy|*z—|u*xx|||%> <&, for some yeX nxz '}.

(3) For each peL:,.(SB), ¢ >0, xe$, XeH with xeint(X),
leint {xeS|||lu*xyl*z—|u*xx|||% <&, for some yeX nxz™'}.

Then (1) and (2) are equivalent and both imply (3). If, in addition,
S = Supp (LU(S)) then all the properties (1), (2) and (3) are equivalent.

A similar statement holds if one replaces
Lruc(S,B) by Lruc(5,B)
and simultaneously L3,c(S,B) by Liuc(S,B)%. O

6.3. Remark. — (1) In view of (4.12) and (6.1), it will be clear what we
mean by L;,.(S).

One can show that Liyc(S,B)x = Liuc(S) if S = Supp Ly(S) and if,
in addition, S = Supp L®(S,B) then we even have that

ruc(S,;B)% = A N Lruc(S)x-
In case S is a group,

Liuc(S:B)x = Liuc(S,B)y = {fm|f € Coo(S)},

where m is a right Haar measure.

(2) The property in (6.2.2-3) can be viewed as a weak kind of order
continuity. To be more precise : let p € L*(S,B).

If xe$§, Xeo', xeint(X) and (z)),.,is a netin S that converges to 1
such that z, €Sz, for all A, yeA with A <y then

0 < {luky| *z,—lu*xx|AeA}]0,

where y, € X such that y,z, = x.

Now, we have that
0 =inf {|| [kylkz,—lu*xx| [ | AeA}

for all these x, X and (z,),., if and only if a property as in (6.2.2) holds.
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(3) If Liuc(S,B) is a Riesz subspace of L*(S,B) then so is Lgyc(S,B).
The converse, however, need not be true [consider once more the
semigroup from example (3.7) where the « pseudo L®-norm » now is given
by

A +gMi% i = lIfllo + ligll,]-

6.4. COROLLARY. — Assume that S has a zero-dimensional topology.
Then Lgiyc(S,B) is a Riesz subspace.

Proof. — Take an xe$§ with compact neighbourhood X of x.

Let V be an open relatively compact neighbourhood of 1 such that
Vx cint(X). Since xeclo($8~!x) there are x,, x,€$ such that
X = Xx,X;, X,€V, Vx;, € X. Then [cf. (2.2)],

1eint [x71(VnS) "1 x)] < (Vx,) ! x.

Hence, as in (4.5) of [18], there is an open compact subsemigroup H of S
such that
1eH < (Vx,) 'x n§1x,.

Take an idempotent e in the kernel of H. Then ee$ [cf. (4.5) of [18]]
and eHe is a group. Furthermore x,e = x, and xe = x.

Consider a peL*(S,B). If zeH then yz = x for some ye Vx,.

Since
supp (u*y|*z) S cloSyzScloSx =Se and ye=y,

we have that [u%y|%z = [u%j|%eze. Finally, the fact that eze belongs to
the group eHe, while supp (ju*y|) < Se, implies that

L% J] % eze = |p%y*eze| = jp*x|.
Apparently, for each ze H, there is a yeX nxz~! such that

lukyl*z — [uxx| =0. m|
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