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ON THE SPACE
OF MAPS INDUCING ISOMORPHIC CONNECTIONS

by T.R. RAMADAS

1. Introduction.
In this paper we prove the following

THEOREM. — Let M be a smooth compact manifold, P a prin-
cipal bundle on M with the unitary group U(k) as structure group,
A a smooth connection on P, and Aut A the group of gauge
transformations [i.e., automorphisms of P which act trivially on
M] which leave A invariant. Let B be the Grassmanian of k-planes
in a separable Hilbert space 3€, E the Stiefel bundle of orthonormal
k frames in 3¢, and w the canonical universal connection on E.
Denote by Z(A) the space of maps p : M —> B such that the
pull-back bundle p*(E), with the connection p*w, is isomorphic
to (P,A).

Then the space X (A), with the C topology, has the homo-
topy type of Bayiay Where B, Ay is the base-space of a universal
bundle for Aut A.

The connectedness of X (A) is shown in [6]. We use some
ideas from this paper.

To motivate this result, consider the case when P is a prin-
cipal G-bundle with G a compact Lie group. Let AutP denote
the group of gauge transformations of P. Denote by € the space
of C® connections on P. The group AutP acts on @, though
not freely in general. Denote by € the quotient.
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By [4] there exists a finite dimensional principal G-bundle
E(G,M) — B(G,M) with connection such that the following
diagram commutes, and the map ¢ isonto:

Morg (P, EG,M)) —2— ¢

Aut P

Mor, (M, B(G, M)) ——— €

~

Here Morg (P, E(G,M)) is the space of G-morphisms of P into E
and Mor, (M, B(G,M)) is the component of C*(M, B(G,M)) which
induces pull-back bundles isomorphic to P. @ is the map given by
pulling back the universal connection on E(G, M).

We wish to investigate the fibres of the map ¢. It is possible to
do so when we consider instead of E(G,M) a universal bundle Eg
with connection such that E; is contractible. Suppose then, that
in the above diagram we replace E(G,M) by E; and B(G,M) by
B; . Let A€ @ and A itsclassin C. We argue heuristically :

The spaces @ and Morg (P, Eg) are both contractible. This
would imply that ¢~!(A) is contractible (all the mappings being
assumed to be good fibrations). The group Aut A acts on ¢ }(A)
to give g“(é). If all goes well this implies

a) o~ 1(A) — ﬁ"(ﬁ) is a universal Aut A bundle. The fibre
over A of the map ¢ has the same homotopy type as B,y -

b) If G has trivial centre and all connections are generic (i.e.
Aut P acts freely on @) @ has a section.

The quotient space ¢ is relevant in studies of Yang-Mills
theories, at present very popular in Physics. It has been pointed out
[1] that the Universal Connection Theorem could possibly provide
connections between YangMills theories and so-<called o¢-models
which concern themselves with the space Mor(M, B). Also in the
cases when ¢ has a section, it could give an alternative to “gauge-
fixing”’ which has been shown to be impossible in general [3, 7, 5].

The paper is organized as follows. In § 2 we imbed E and B
as closed submanifolds of Hilbert spaces. In § 3 we describe a one
parameter family of isometries A,: % — ¥¢, and also give the
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C” topology to be used on the function spaces Mory, (P, E) and
Mor,(M,B). In § 4 we prove that ¢~!(A) is contractible [Propo-
sition 4.1] using the isometries A,. Then we prove [Proposition 4.3]
that ¢~ !(A) — g‘l(é) is a locally trivial principal fibre space
with Aut A as structure group. This involves, among other things,
proving that the above projection is closed [Lemma 4.4], which is
done by studying a certain differential equation. The completeness
of the C™ topology is crucial, and the imbeddings obtained in § 2
simplify proofs throughout.

I would like to thank M.S. Narasimhan for several suggestions
and much encouragement. I also thank M.S. Raghunathan, S. Ramanan
and V. Sunder for their help.

2. The bundle of orthonormal k-frames in a Hilbert space .

Fix an integer kK > 0. Let 3€ be an infinite dimensional sepa-
rable Hilbert space over the complex numbers. Denote by E the space
of orthonormal k-frames in € . The group U(k) acts on E on the
right and the quotient is the Grassmannian B of k-dimensional sub-
spaces of ¥ . In fact E is a universal principal bundle for U(k).
It also carries a natural connection, which is a universal connection
for U(k).

It will be useful, in the following, to have characterizations of
E and B as closed submanifolds of Hilbert spaces.

We shall identify a point p in B with the orthogonal pro-
jector onto the corresponding subspace, denoted by H(p). Thus
H(p) = {x€¥e| px = x}. For p, €B, define

%, = {p €B|H(py) Nkerp = {0}}.
Then we have a bijection L,:®, — £(H(p,), kerp,) such that
for p € itsimage L = L,(p) has H(p) asgraph.
LemMA 2.1 [2]. — The charts {(%,,L,)} give B the structure
ofa C™ Hilbert manifold.

Let ¥, denote the Hilbert space of Hilbert-Schmidt operators
on 3.
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ProrOSITION 2.2. — Let  denote the injection B — Y,
given by associating to each k-dimensional subspace its orthogonal
projector. Then ¢ is a C” immersion, and a homeomorphism onto
its image.

Proof. — Follows from Lemmas 2.3 and 2 .4.

Remark., — This shows that B, with the manifold structure
given in Lemma 2.1 is a submanifold of J, .

LEMMA 2.3. — On a chart (%,,Ly) ¢ is given by (1 — 3).
Itisa C* immersion.

Proof. — Let L€ £(H(p,), ker p,) and let p = yL;'(L).
Write

p=A+LA ¢))
where A: 8¢ —> H(p,). Then we claim that A satisfies
A=p,+L"(1 —p,) — L'LA )
which can be solved to give
1
= —_—— + LY — .
A TF 'L (o + L7 — py)) (3)

To see that p given by (2.1)-(2.3) is indeed equal to YLg L),
we verify :

a) Image of p = {x + Lx |x €H(p,)}. The map is clearly into
this set. In fact it is onto since A is invertible on H(p,).

b) p? = p. This follows since Ap = p, which in turn is clear
because Ap satisfies the same equationas p.

Ap=pyp + L*(1 —p,) p —L*LAp = A+ L*LA — L*LAp
=p, + L*(1 —p,) —L*LAp.
¢) p is an orthogonal projector, for
kerp={y —L'y|y€kerp,}
which is the orthogonal subspaceto Imp.

(i) ¢ is C™ : To see this split { into the steps:
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L£He,H(py)) — £(9e,5¢)
{po + L+(1 “po)} {po + L+(1 "'po)}

£(H(p,), ker py) £, 5)
{L}
Positive, hermitian
operators on H(p,)

£°"(H(p,) , H(p,)) — £(H(p,), H(po)) — £(8€, 50)

. s_l__g _1
L (T+L°L) (Po|T+LL|Po

¥ isin fact real-analytic.

(ii) It is enough to check the differential at L = 0. Here
8p = 8L"(1 — p,) + po 6L which is clearly injective. Also the image,
being defined by p,dpp, = (1 — p,) dp(1 — p,) = 0 and &p* = 8p,
is closed, and hence admits a supplement.

LEMMA 2.4. — The inverse Y~ isgiven by (4) and is continuous.

Proof. — Consider a chart (®,,L,). Let pE®, and let
Q= (p, IH(p))“. Then for x€H(p), Qx = x + (1 —p,) pQx.
This gives,for L= (1 —py)Q, L= (1 —py)p(1 + L).

This can be solved to give p '-w_—‘—) L such that

1
1 =0 —py)p
The continuity of ¢ ~! follows easily.

Lx = (1 —p,) x,x €EH(p,). 4)

We turn now to E. This can be identified with a closed subset
of £(C*,5): E={U:CF—> 5| U*U = 1}. Standard arguments
show:

LEMMA 2.5. — E is a closed submanifold of R(C¥,3e). It is
a principal U(k) bundle on B. The u(k)-valued one-form U*dU
is a connectionon E.
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LEMMA 2.6. — E is contractible and hence a universal U(k)
bundle. The connection is a universal U(k) connection.

Proof. — Both statements are wellknown. The first follows
also from the remarks after Lemma 4.2. The second is a conse-
quence of the Universal Connection Theorem.

3. Some preliminary remarks and definitions.

(i) A one-parameter-family of isometries on 5€.

Following [6], we introduce, on ¥¢, a one-parameter family
of isometries which we will use later. Define, for t+ € [0, 1] an iso-
metry A,:3 —> J€ as follows. Fix an orthonormal basis, so that
J¢ ~ {square-summable sequences in C}. Then let A, = Identity

Aay,a,,a,,...)=(ay,a, ...a,_,,a,_, cosf,(t),a,_,sinf,(t)
a, cos0,(t),a, sinb,(t) a,,, cosb,(t),a,,, sind,(1)...)

1 1 m
" t p where 6,(¢) 2 nl(n+ 1)t -1]

for

The A, are continuous in ¢ w.r. to the strong operator topo-
logy. Note that

1
A(E) (aoi,al,-'-)=(aoyoaalo"")egeeven
A(l) (ay,a,,...) =(0,a,,0,a,...)E8,44
where J€

ven and € 44 denote obvious subspaces of F€ .

(ii) The topology of the function spaces MorU(k)(P, E)
Mor(M, B).

We topologize MorU(k) (P, E) asa (closed) subset of
C=(P, £(C*,3)),

and Mor(M, B) as a (closed) subset of C*(M,J,). The C* topo-
logy is described below :

Let X be a compact manifold and J a Hilbert space. Let
X,,...»X, be a set of vector fields on X which together span the
tangent space at each point of X. For a multiindex a = (a,,..., a,)
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set D* = XT‘ .. .,XZ" . We make C” (X,9) a Frechet space wir.
to the seminorms || f]|l, = sup ID* f|| where the heavy bars | ||
denote the Hilbert space norm. The topology is clearly independent
of the choice of X,,...,X,. If NC 9 is a closed submanifold then
C”(X,N) is a closed subset of C*(X,%J) and we give it the relative
topology, which makes it a complete metric space.

We choose now, once and for all, a set of vector fields X, ,..., Xp
spanning the tangent space of M at each point. Let X,,...X, be
their lifts to P w.r. to some connection, and let Yl,...,Yk2 be

vertical vector fields on P, the images of a fixed basis Y,,..., Yk2

in u(k) by the group action. We will use these to determine the

seminorms. Note that [X,,Y,]=0 VX, and Y,. We will let

let o =(,..., akz) and o= (o;,..., o), and write the semi-

norms as ||fll, o = sup DD . :
L x€EP

When there is no need to distinguish between the vertical and
horizontal vectors we simply denote (o , @) by 7.

LemMMA 3.1. — Moru(k)(P,E) and Mor(M, B) are closed sub-
sets of C=(P,L(C*,30)) and C (M, J,) respectively. The map
Mory 4, (P, E) — Mor(M, B) is continuous.

Proof. — For g€ U(k) the map C*(P,E) — C~(P, E) given
by fr5—> f%, f8(x) = f(xg)g™! (x €P), is continuous. This follows
since

IFf = F§llay o = sup IDF DI(f, (x) g™ — Folxg) g™

sup ID," D2(f,(xg) — £, (xg))
= sup IDL D2 (f,(xe) — £, (xe))I
"fl - f2

”[Otz,g],ot
where D[a“'gl denotes the differential operator
leg .8] 1o 1Y
D = (g7 Y, ) ... (871 Y ,8) .

P . . S
Here g='Y,g is the image of the Lie algebra element g7 'Y,;g. This
proves the first statement. To prove the second statement, let
fa — f in Mory,(P,E) and let p, = f, f,. Then
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sup |D*(p, —p)ll (where D* =Xj'... X;")

”pn -D ”oz = figes 4
= sup ID*(p, —p)lI (where D* = XT’. . X:")
xE
o
=sup || X () (D*#f,DFfF — D fDPf*)|
x€EP g<a ﬁ
Sal X Wyl Uy = Fllamg + Wfllaeg 1f — Fllg -

p<a

This proves p, — p in Mor(M, B).

4. The topology of the fibres.

We will be interested in the fibres of the map 9. Consider first
a fibre of ¢.

ProPOSITION 4.1. — Let AE Q. Then ¢~ '(A) is contractible.
In other words th space of morphisms P —> E which induce a
fixed connection on P is contractible.
Proof. — The proof proceeds in two steps.
(i) Define a map
£: 97 (A)x[0, 1/2] — ¢7H(A)
fe9(A)

E(f) (x)=A,°of(x) { xEP
t€[0,1/2].

by

The map is into ¢~(A) since,
a) £.(f) (xg) = A, ° f(xg) @EU(K)) = A, 0 f(x)o g
=£(f) (x) o gU
b) £ ()" dE(f)=frdf = A.
By lemma 4.2 below § is continuous.

(ii) There exists a f, € o~ '(A) s.t. Vx€EP, f,(x) maps C¥
into ¥€ 4, [Apply A, toany fE€ ¢ !(A) togetsuchan f,]. Define
for t€[1/2,1]) amap n: ¢ '(A)x[1/2,1] — ¢ 1(A) by

n,(f) (x)v = (sin tm) A,/2 f(x)v —costmfy(x)v.
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Again the map is into ¢~'(A). Note that A,,f mapsinto 3., .
This means that V (x, ¢), n,f(x) defines an isometry of C* into
¥e , for, given v, v'€CF,
(n f(x)v, m f(x)v") = sin*tm (A, f(x)v, Ay f(X) V")

+ (cos?tm) (fy(X)v, fo(x)v") = (v,v")
where (,) denotes the inner product.

The points a), b) above can be checked easily. Lemma 4.2 gives
continuity.

(iii) Compose ¢ and n to get the contraction

Yo 1 (A)x[0,1] — ¢~ 1(A). (See diagram)

Identity
F———\L

/‘p

1 fo

¢! (A) “tA)

o

LEMMA 4.2. — The maps §&,n constructed in the proof of Pro-
position 4.1 are continuous (in the product topology ).

Proof. — Consider the map &. Let (f,,t?,) be a sequence
in ¢~1(A)x [0, 1/2]. Then

&, (F2) = &(O, = sup lA,, © DV f, — A, ° DSl

sup [|A,, © D7 (f, = f) + (A, —A) e DSl

S e = flly A, — AN, -
This shows continuity of &. The continuity of n follows similarly.

Remark. — The proof of Proposition 4.1 can be extended to
prove contractivility of MorU(k)(P,E). In particular, taking P = U(k),
we see that E itself is contractible.
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We turn now to the fibres of the map 9. Note that if A€ C
and AE€C is its class, then ¢~ !(A) projects onto ¢ 1(A). Also
if Aut A is the subgroup of Aut that leaves A fixed Aut(A) acts
freely on ¢~ '(A), the quotient being in bijection with ¢~'(A).

Aut A is the space of maps g: P — U(k) such that

(i) g(xh) =h~'g(x)h x€P, h€U(k)

(i) A=gt'Ag +gtdg.

Since g€ Aut A is determined by its value at a fixed point in
P, we shall, fixing y,E€P (projecting onto x,€EM) identify
Aut A D¢~ g(y,) €U(K).

Thus Aut A is a closed subgroup of U(k) [This is seen either

from the equation (ii) above, or noting the fact that under the above

identification Aut A is the centralizer of the holonomy group at
¥o] and hence a Lie subgroup.

From now on we assume that the vector fields Xl . )Zp have
been lifted to P w.r. to A. Note that then X;(g) = 0 for g€ Aut A.

ProPOSITION 4.3. — ¢~ }(A) — z“(é) is a locally trivial
principal fibre space with Aut A as structure group.

Proof. — The proof proceeds in four steps.

a) Aut (A) acts continuously on ¢ !(A). For suppose
(fr,8,)E¢ "(A)x AutA and (f,,8,)— (f,8). Then for
any o , o

1fy o &y = Fo Bllag o < N —1)° Eullay o + 15 (Gn = Dllay
sup [ID*L((D*(f, — )1 €)1l + sup ID"L(D*f1 (&, — &I
i (since D% = 0)

47 —B -
sup| X (g DEDA(S, — £)Dg,
x BL<ap L

(¢4 - - -
+sp| T @™ DD, -2
x BL<er L

o

Soll X 0f—Fllay g0 Uallg, + 1fllay g, 0 1En—&llg, -

BL<ap
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Now, for any ?,. ,8E€ Aut A

¥, @) = lim gxexptY;) — g(x)

lim t = [6(), Y,].

Also, if g,,g, are in AutA, d(Tr(g, —g&,)" (&, —§&,)) =0, so
that 12g,(x) — 2, ()l = 18,(y) — &, (o)l

So, we have

Ifoo 8a—Fo&llag,a<or! 2 Ify—Fllag_p o &l
Br<ap

+ 1 fllay —p, .o Cp, 18n(Po) = £ @)
where Cg is a constant depending on the multiindex B, .

b) Denote by G the graph of the equivalence relation defined
by Aut A on ¢ !(A). Then the map G —> Aut A is continuous.
This follows since the map is given by (f,,£,) V> £i'(0,) , (o)
which is clearly continuous.

c) The projection ¢ Y(A)— g‘l(é) is continuous and
closed. Continuity follows from lemma 3.1 and lemma 4.4 shows
that it is closed. Thus cp“(é) has the quotient topology w.r. to
the projection. -

d) Thus we have shown that ¢ !(A) — ¢ '(A) is a prin-
cipal fibre space. Now note that there isa Aut A-morphism

¢ l(A)— E

| |

¢ 1(A) — E/Aut A

given by fFH— f(y,). Since E — E/AutA is locally trivial,
the proof is complete.

LemMMA 4.4. — The map ¢~ '(A) — £“(é) is closed,

Proof. — Let f,€¢~'(A) st. p,=f,f, — p in ¢~ '(A).

It is enough to prove that {f,} contains a convergent sub-
sequence. Since p,(x,) — p(x,) and E has compact fibres one
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can assume f,(y,) — g, €E without loss of generality. Note
that the f, satisfy

df,=f,A+dp,f,. )
We now prove that the f, are Cauchy in the C° norm so that 3

a C° function f such that f, — f. Put D=f, —f, . Then
from (5) we have

d(DD*) = DD*dp,, + dp,DD* + d(p, — p,,) 1,,D* + Df,; d(p, — Pm)-

Evaluating on a vector field X,, taking the trace and then absolute
value of both sides we get

| X, Tr(DD*)| < |Tr(DD*X,p,)| + ITr(X,(p,) DD*)|
+ ITrX Py = Pm) Fn DO + | Tr (DS X, (P, — D))

< 2{IIDI* IX,p,ll + DI IX,(p, — P ) I}
or,

IX, IDIPI <2 {IDIP X, p, Il + 11X, (2, — P} 6)

Consider now the set {X;,Y,} which we collectively denote
by {Z;}. They give a map from P x RN (where N =k?+ p) to
the tangent bundle TP which is onto:

G, (1o ) > (2, X 6Zi(x)).

Take the obvious metric on the vector bundle P x R". This induces
a splitting of the above map as well as a Riemannian metric on P.
Then we have the following obvious result: if X is a vector field
on P of norm <1 and we express X = Z q,Z; with respect to
the above splitting then |g;| <1 Vi.

Now let y€P and let I'(y) be a minimal geodesic joining
Yo to y [such a geodesic exists for P compact] parametrized
with respect to arc-length. Then the length of I'(y) < T for some
constant T independent of y. Now let X, be the tangent vector
field to I' (which is necessarily of norm one). This gives

IX; @, = p)l = Z 12, = Ppll; where lipll, = sup IZ,p|
i
= X 120~ Pulla

laj=1
Thus we have, from (6)

IX, IDI*| =2 {alIDI* + & IDI}
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with a= Y lpl,+c,c>0
lal=1
and b= ZZ. lpn — Pl -
Consider the ordinary differential equation
Zt;: = 2(au? + bu)
u(0) = D(y,).

The solution is clearly:

t
u(t) = D(y,) e* + (iaa_—l) b.
Consider the set K = {# = 0| ||ID(#)|l > u(#)}. K is open, and hence
a union of disjoint open intervals. Let ¢, be its least boundary point.
Clearly D(t,) = u(t,). From the polygonal approximations to
ID(¢o)II> and wu?(¢) it is clear that in an interval (¢,,t, + €) we
have ||D(#)]l < u(t). Thus K = @ . We have finally,
(eaT _ 1)
IDOHII < D(y,) e + ——— b

which clearly shows that {f,} are Cauchy in the C° norm.

Let f be the C° limit. We now turn back to (5) and ‘bootstrap’
the above result to show that f is C* and f, — f in the C”
topology. Assume, therefore, that f is C*¥ and f, — f in Ck.
For any multi-index +y(]y|=1) define v and X [here X
is one of the vector fields Z;] by D = D” X so that D" is
of order |y|— 1. Let |[y| =k + 1. Then

Df, = D' X’(v)(fn) = D'r’(fn A(X(”’)) + x(v)(pn)fn)
= X () [DY-?£,DF AXD) + DY 5 X0 (p,) DPf,].

§<y'
Then ,
IDf, — ¥ (3 ) [DY'~0f DPAXM) + DY =3 XD (p) D*f]]|
§<y’'
<y 2 Mfa— Flly—s BAKD)lg + 12,11, oy 1= £lls
8<7I ’

+1pw = PIL,_, wory 15l

= Y-8 w() .
where [Ifll ,_; o =sup IDY°X fll
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This shows D7f, tends uniformly to a C° function, and hence
f is CF*!', By induction f is C* and f, — f in C*(P,E).
The proof also shows df = fA + pf.

Since Mory, (P, E) is closed, f€Mory,(P,E) and p = ff*
by continuity of the projection Mory, (P, E) — Morp(M,B).
(One can now easily show that f*df = A, thus showing that the
fibre ¢~ !'(A) is closed. This is because we have nowhere in the
proof used the fact that pEy” '(A)).

The Theorem stated in the Introduction now follows.
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