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WHITNEY REGULARITY
AND GENERIC WINGS

by V. NAVARRO AZNAR and D. J. A TROTMAN

Introduction.

In his Arcata lectures, «Introduction to equisingularity problems »
[10], B. Teissier points out that one of the desirable properties for a
condition of equisingularity of a stratification along a linear stratum Y is
that it be preserved after intersection with generic linear spaces (wings)
containing Y. He defined in [10] an equisingularity condition (c), for
families of complex hypersurfaces with isolated singularities, which has the
required property. Moreover it is a generic condition (and implies Whitney
regularity). Proofs of these results, now published in the proceedings of the
1976 symposium on singularities at Oslo (§ 2 of [20]), circulated privately
in 1974 in handwritten notes which supplemented [10]. Inspired by these
proofs, J. Brian^on and J.-P. Speder [2] proved, again for families of
complex hypersurfaces with isolated singularities, that Whitney regularity
also has the required property of stability after intersection with generic
linear wings. As a consequence they deduce that Whitney regularity is
actually equivalent to Teissier's condition (c) in this special case.

In [8] V. Navarro Aznar showed that Whitney regularity is preserved
after intersection with generic wings when the strata have analytic closures
(of arbitrary codimefision) and the base stratum is 1-dimensional. Several
consequences of this result are described in [8]. Using a quite different
method B. Teissier has recently removed the hypothesis that the base
stratum be 1-dimensional in the complex analytic case (see [11]).

Theorem 3.14 of this paper covers the general case of subanalytic
incident strata of arbitrary dimensions for two equisingularity conditions :
Kuo's ratio test [6], and Verdier's condition (w) [16]. Because the ratio test
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is equivalent to the Whitney conditions when the base stratum is 1-
dimensional it now makes good sense to talk of the level of Whitney
regularity of a subanalytic stratum X along a 1-dimensional stratum Y at
a point y in Y : this is the smallest integer k such that for an open dense
subset of the codimension fc wings W containing Y, the pair (XnW.Y)
is Whitney regular at y . For Y of dimension two or higher the method is
no longer valid without further hypotheses on the pair (X,Y); we give a
semialgebraic counterexample (3.20).

Now Whitney regularity decomposes into two independent conditions,
(^-regularity and (b^-regularity, where n is a retraction onto the base
stratum [18]. Each condition says that certain limits of secant vectors are
contained in corresponding limits of tangent spaces to X. When X is
subanalytic the set A" of « bad » limits of secant vectors for (fc") (i.e. those
not contained in the corresponding limiting tangent space) is also
subanalytic, and hence has a well-defined dimension, namely the maximal
dimension of strata of a stratification of A" into smooth submanifolds.
Theorem 3.17 says that the dimension of A" is precisely one less than the
level of (b^-regularity for the pair (X,Y).

For smooth stratified sets, where the strata are not necessarily
subanalytic, the method of proof of [8], which uses the curve selection
lemma, breaks down. However when an extra hypothesis on the Hausdorff
dimension of the space of limits of tangent spaces to X at 0 is satisfied, a
general position argument is enough to imply that Whitney regularity is
preserved after intersection with generic wings. We give examples showing
that this extra hypothesis cannot be dropped.

1. Definitions.

Let X, Y be disjoint C1 submanifolds of R\ We carry out a local
study which will apply equally well to the case of submanifolds of a
manifold. Let O e Y n X , and let K be a C1 retraction onto Y induced
by a C1 tubular neighbourhood of Y.

The regularity conditions introduced by H. Whitney 15 years ago in
[18] and [19] are as follows. Suppose we are given sequences {xj in X

and {yi} in Y tending to 0 such that {T^X} tends to a limit T, ^^cl}/1-^
U^U

tends to a limit X ^ , and ^—l—L-^ tends to a limit X,, each in the
(J î(^)lJ
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appropriate grassmannians. If T()Y c T for all such sequences we say that
the pair (X,Y) is (^-regular at 0. Similarly if always ^e r we say (X,Y)
is (fc)-regular at 0, and if merely every ^ e T we shall say (X,Y) is (fc")-
regular at 0. The conditions (a) and (fc") were those in the first paper [18]
of Whitney; (b) was defined in [19]. A simple argument, given in [17] and
[15], shows that (b) is equivalent to the combination of (a) and (fc"). An
equally simple argument, which we have not seen before, shows that if (fc")
is satisfied for all linear retractions n then (a) and hence (b) follow. For
if v is any unit vector in T()Y , then any sequence {xj defines some limit
vector ^ associated to a given linear retraction 71 as above, and we can
choose another linear retraction n' so that if ^ is the associated limit
vector, then the vector subspace containing ^2 and ^ contains v. If (fc")
and (fc") hold we have that

lim T .̂X => <^> ©<^2>^-

Repeating the argument for each unit vector in T()Y we deduce (a)-
regujarity. We take this implication as justification for concentrating on
(fc") in this paper. Notice that if Y is 1-dimensional it is enough that (fc")
be satisfied for precisely n distinct linear retractions whose fibres have unit
normal vectors corresponding to a basis of R".

We call a C1 submanifold W of R" of codimension k with Y c: W,
a mng of codimension k attached to Y (extending the terminology of
Whitney in [19]). We say that a pair (X,Y) is (EcodjJ-regular if, for an open
dense subset of the space of wings of codimension k attached to Y (in the
topology induced by that on G^.^, where m = n — dimY, by taking
tangent spaces at 0), the pair (X nW,Y) is an E-regular pair at 0, where
E is some equisingularity condition. An important problem (see the
introduction) is to determine when (fc)-regularity implies (b^,)-regu\Siniy.
Our answers to this problem hinge on the following elementary fact
(compare Thorn [12]) :

LEMMA 1.1. — Let {Hj and {Tj} be sequences in G^ and G"p
respectively. If lirn H, and lirn T, are transverse as vector subspaces of

i-»oo j'-»oo

R", then (lim H,) n (lim T.) = lim (H,oT,).
i-^oo j'-^oo i-+oo

COROLLARY 1.2. - Let X , Y be disjoint C1 submanifolds of R", O e Y ,
such that

(i) (X,Y) is (b)-regular at 0.
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.(ft) W fs a mng attached to Y transverse at 0 to all elements of

{T e G^|3 {x,} e X nW, so x, -. 0, T,X -. T}.

Then (X nW,Y) is (b)-regular at 0.

Proof. - Follows immediately from lemma 1.1 and the definitions.

We shall prove in section 3 that for subanalytic (X,Y) if we suppose
either that the dimension of Y is one, or that (X,Y) satisfies Kuo's ratio
test at 0, then the hypothesis (ii) of corollary 1.2 is satisfied for an open
dense set of wings of codimension k. It follows that for 1-dimensional Y,
(b) implies (b^k). (a) implies (a^i), and (fc") implies (fc^).

In section 4 we show that if the space x(X,0) of limits of tangent spaces
to X at 0 has dimension at most (dim X-dim Y-fe), then generic wings
of codimension k are transverse at 0 to all limits of tangent spaces to X,
so that again hypothesis (ii) of corollary 1.2 is verified.

Call min {k\{b^k) holds for (X,Y)} the level of (fc^-regularity of the pair
(X,Y) at 0, similarly for other regularity conditions. Note that if Y is 1-
dimensional and (X,Y) is (a)-regular, the level of (^-regularity and the
level of (^-regularity are the same.

Let A"(X,Y) = {?i|3x, e X such that ?i = lim xin(xi) '^ lim T,X}, the
|X,7T(X,)| '

bad limit set for (fo^-regularity. This is subanalytic if X is subanalytic (see
the proof of theorem 2.1), but may be highly pathological in general. In
section 3 we derive the following characterization.

MAIN THEOREM (3.17). - Let X be a subanalytic C1 submanifold of
Rw x R such that Y = O x R c = X - X . Then dim A"(X,Y) fs precisely
one less than the level of (b^-regularity for the pair (X,Y).

Acknowledgements. — Early versions of some of the material in sections
2 and 4 appeared in the second author's thesis [14]. He is grateful to
B. Teissier and C. T. C. Wall for advice and encouragement. The second
author also wishes to thank the Universidad Politecnica of Barcelona for
their hospitality in July 1979 when many of these results were formulated.

The geometers of the Ecole Polytechnique have provided helpful
comments and feedback, especially Jean-Pierre Henry and Michel Merle.
Their contributions to section 3 are noted in the text. See also [21].
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2. The dimension of the bad limit set is less than
the level of regularity.

In this section we prove the first of the two results which imply the Main
theorem (3.17).

THEOREM 2.1. - Let Y = CT x R"""" <= R" and let X be a subanalytic C1

submanifold of R", disjoint from Y, mth 0 e X. Suppose that (X,Y) is
WadkYregular at 0. Then dim A"(X,Y) < k.

Proof. — Let G denote the (subanalytic) graph in R" x G^* x G^ of the

map x i—> (———» T^X ) where d = dim X. Let p i , p^ denote projec-
\\xn(x)\ )

tion from R" x Q[ x G; onto R" and G^ respectively.

Let B = {<0,?i,T)|^ ̂  T}, and let E = p^(0) n G. Write A for
A^X^) as defined in section 1. Then A = p^(E nB) and is a subanalytic
subset of G^ because p^Pi1^) is proper.

Choose Whitney stratifications ^ of G and ^ of A so that E is a
union of strata of ^ and p^ maps strata of ^ submersively onto strata of
X (^ and ^ exist by [5], for example). Each linear wing W of
codimension k attached to Y defines a smooth submanifold
Lw = {X e G^ e W} which is of codimension k in G^ (Lw is a copy of
pm-i-k in P " 1 ' 1 = G^). Suppose that the conclusion of the theorem is
invalid and that dim A ^ k. Let .̂o e A be a point of a stratum A() of
^f of dimension ^ fe, and let Wo be a linear wing of codimension k
such that Lw meets A() transversely at XQ. Then there is an open
neighbourhood U of Wo such that for every linear wing W of
codimension k in U, Lw meets Ao transversely near Xo.

Choose now ZQ = ((Uo»To) e E n B. Such a point exists by definition
of A. Let ZQ denote the stratum of ^ containing ZQ , then by our choice
of ^, p^ : ZQ -> Ao is a submersion. Because E n B is open in E, we
can find a smaller neighbourhood U^ c: U of Wo such that for every
linear wing W e U^ , p^O-^w) meets Zo transversely in at least one point
z^ in E n B. We assert that for such W, p^ 1 (Lw) contains a sequence
of points {zj in G tending to Zw, i.e. that z^e^^Lw) °G- This is
because ^ is a Whitney stratification and Zo <= G (see 10.4 of Mather's
Harvard notes on topological stability (1970)). .Write x^ = pi(z^), then
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{xj is a sequence of points in X n W tending to 0 with the property

that lim—1——-^limT^X (since ZW^B), and hence (b") fails for the
l̂ (̂ i)l

pair (X nW,Y) for all linear W in the open set U ^ . It follows at once that
Wodk) is not satisfied. This completes the proof of theorem 2.1.

Remark 2.2. — It seems plausible that theorem 2.1 remains valid if we
remove the hypothesis that X be subanalytic, at least when X is locally
connected at 0, however we have no complete proof as yet.

3. The dimension of the bad limit set is greater
than or equal to the level of regularity minus one.

LEMMA 3.1. —Let Z be a subanalytic C1 submanifold of R" and let A be
a linear subspace of R", A c: Z — Z. Then there exists an open dense set U
of A such that for each a e U, there is a constant Cy < oo, and a
neighbourhood V^ of a in R" such that

l^z(01 ^c,
\Z-K^(z)\\t\

for all r eT^A - {0}, and z e Z nV^ .

Proof. — By theorem 2.2 of [16] there is a stratification of Z, u X,,
compatible with A, which verifies the (w)-regularity condition of Verdier.
Let {X,}^B be the strata contained in A of dimension strictly less than A,

and let U = A — (J X,, then U is open and dense in A. Let a e U
aeB

and let X ^ , . . . , Xy be the strata of Z containing a in their closure.
Because the pairs (XpA) are (w)-regular at a there exist constants C^ and
neighbourhoods V^ of a in R" such that

l̂ l ^<oo\z-^(z)m
for all nonzero t e T^A and all z e X; n V\ (i = 1,.. .,r). As we have that
I^N^zCOl ^ I^N^OI f01" a^ ^^A and zeX, , it suffices to take

r

C^ = inf{C,|f = 1,.. .,r} and V^ = n ^ This proves lemma 3.1.
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Notation. — In this section we frequently study an analytic arc
a(t) = (p^q^e^ x R\ We shall write

a = inf {v(pi(t))\i = l, . . . ,m}
|}=inf{y(^(r)) | i= 1,...,5}

where v( ) denotes the usual valuation on real analytic functions.

LEMMA 3.2. — Let X be a subanalytic C1 submanifold of R^* x R5,
such that Y = 0 x R5 <—^ X - X. For each k, 0 ^ k ^ m, r^r^ ^CLS^S
a^i open dense subset LJ^) o/ the grassmannian of (m + s — k)-planes
containing Y such that if H e U^ anrf a(r) = (p(r),^(r)) e Rw x R5 anrf
H(r)eU^ ar^ real analytic curves with a(Q) = 0, H(0) = H,
a(t)eX n H(t) if t ^ 0 an^ a ^ P, r/i^n H is transverse to limT^X.

Proof. — ,We can testrict our attention to the open set of planes of
codimension k containing Y defined by sets of equations,

^i == S a^Xi, . . ., Xfc = ^ a^x,.
i = f c + l i = k + l

Because X is subanalytic, if we define

/ : R^ x R5 x R^-^ -> Rm x R5

by

/(x^i,.. .,x^i,.. .,^A+i,i,.. .,̂

( W M

= E ^i^..., E a^x^^...,x^y^...,y,)
i=k+l i = k + l

then Z ^^(X) is subanalytic by [5, 3.8]. Also Z is a C1 submanifold
since / is a submersion at (x,y,a) whenever

x = (^+i,--^m) + (0,...,0),

as is easily checked. Because A = 0 x 0 x R^"*"^ is contained in Z — Z
we can now apply lemma 3.1'. Thus there exists an open dense subset U^
of A such that for each a e U^ there is a constant C^ < oo and a
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neighbourhood V^ of a in R^ x R5 x R^-^ such that

I^N 7(b—a}\' ^^ / 1 < c n Tt
i / \i IL i ^ a V^-^
|z-7tA(z)||fc-fl|

for all b e A - {a} and z e (Z - A) n V^.

We shall show that U^ satisfies the conclusion of the theorem in an
equivalent form : let H be the (w+5—fe)-plane corresponding to a point
a e U^ and let h be a unit normal vector to H, and let n(t) be a field of
unit normal vectors to X along the real analytic curve a(t), then
lim |</Mi(0>| < 1.
r-»0

For simplicity of notation let a = 0 e U^, so that h = (h^.. .,^,0)
and if n(t) == (n^(t),.. .,n^+s(^)) we must show that

inf{y(^.(r))|l^i^} ^ inf{i;(nf(r))[^-hl^f^m+5}.

Consider the analytic curve

a(t) = (p^i(0,.. .,^(t),^i(0,.. .,^)A-n,i(^. • '^(t))

on Z, where the {^i/^)} define H(r), and the field of nonzero normal
vectors n(t) = (n^^t),.. .,n^+ s(0.nk+ i,i(0» • • •^(O) at 2(0 which is the

lift of n(t) by /,i.e.

Jlc

^ = »f + E ^-A- ( fe+l^f^m) (3.4)
j = i

n^ = n ^ ( m + l ^ f ^ m + s )

^j = P^j (^ +1 ̂  i ̂  m, 1 ^7 ̂  ^c).

By (3.3) we have for k + 1 ̂  i ^ m, and 1 ^7 ^ ^c, that

^ __________Pi(t)n,(t)\________
tm Mt\q(t))\ \(n^M'' -An+s(0,- • -,Pm(0^(0)l 00

and hence that
^ ____piWt)\____ ^ ^
t-0 Mt\q(t))\ |(n^i(0,...,^^0))|
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By hypothesis a = inf {u(p,)} ^ P = inf {v(q^}, so that

,. wlim -=————-—^——— < oo,
f-o |^i(0,...An+.(01

and hence

inf{y(^.)|l</^fe} ^ inf{u(n,) |^+l^f^m-+-5}
^ inf {v(ni)\k +1 < i ̂  m + 5} by (3.4).

This completes the proof of lemma 3.2.

LEMMA 3.5. — Let X be a subanalytic C1 submanifold of Rw x R5 SMC/I
r/iar Y = O x R S ( = X - X . Z^ H be an (m + 5 - k)-plane containing Y,
^ a(t) = (p(t\q(t)) in R^ x R5 an^ H(r) fn G^^_^ analytic curves
with a(0) = 0, H(0) = H, Y c: H(Q, and a(t)eX n H(r) /or t ^ 0. J/

(^-regularity fails for (X,\) along a(t), then H is transverse to limT^X.

Proo/ - With notation as in lemma 3.3, if (^-regularity fails for (X,Y)
along a(t), then

mfM^^-)|1^^5} ^ inf{r(n,)|l^^m}
^mf{v(n,)\l^j^k}

so that the required transversality follows.

Let K : W1 x R5 -̂  R5 be projection. If {b") fails for (X,Y) along
a(t)eX nH(r) , then

Z Pi(t)Ui{t)

lim ———l^1———————— 9^ 0.
^°lp(01.1(^(0,...^^(0)l

Assuming (a)-regularity we find that

/ m \

^ Z P -̂ ^ ^(P) + inf {v(n,)\l ̂ i^m], (3.6)
\ i=i /

where we write v(p) for inf{i;(p^)|l^f^m} by abuse of notation.

Now we may assume that H is given by x^ = . . . = Xj, = 0. Then for
m

1 ^ i ^ fe, we can write p,(r) = ^ ^(0^(0 where a^(0) = 0, since
J'=k+l
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H(0) = H and a(t)e H(t). Hence

m m k

Z P^i = E Pj(rij + S W-)- (3.7)
i= l j=k+l i = l

Write

and

Then

v(n^) =mf{v(ni)\l^i^k],

v(n^) = inf{i;(n^c+l^^w}.

/ m \
u(p) + v(n^) ̂  v[ ^ p^

\i=l /
by (3.6)

/ k M
^ mf({i;(p^) + v[nj + ^ ^n, fe + 1 ^7 ^ m})

\ 1=1 /I
by (3.7),

^ v(p) -h inf (u(nj, inf [v(a^\k 4-1 </ ̂  m, 1 ̂  f ̂  ̂ c}).

Thus either v(n^) ^ u(nj, which is what we wish to prove, or if not,

v(n^) > {mfv(rii)\l^i^k} = v(n^),

which is patently absurd. This finishes the proof of lemma 3.5.

LEMMA 3.8. - Let X be a subanalytic C1 submanifold ofW x R5 such
that Y = 0 x R5 c X - X. For each k, 1 ̂  k ^ m and for each odd
positive integer r there exists an open dense subset Uj; of the grassmannian
of (m-^s-k)-planes containing Y such that if H e V11, and a(t) = (p(t\q(t))
in ^ x R5 and H(t) in U^ are analytic curves mth a(0) = 0,
H(0) = H, a{t) e X n H(r) if t ^ 0, and P < a < P + r, and so that
the Kuo ratio test is satisfied by the curve a(t) for the pair (X,Y) at 0, then
H is transverse to lim T^)X .

Proof. — We begin as in lemma 3.2 but taking

/(Xfc+i, . . .,x^i,.. .J^A+I.I- • -AJ

( m m \
= ^ a^,..., ^ a.̂ ,/i,...,̂ ).

i » l k + l i = t + l /
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The statement of lemma 3.8 discusses only curves tangent to Y so we may
ignore the fact that df may drop in rank when y = 0.

Applying lemma 3.1 again we find an open dense subset U^ of
A = 0 x 0 x R^-^ such that if a e U^ there is a constant C^ < + oo
and a neighbourhood V^ of a in R^*^ x R5 x R^-^ such that (3.3)
holds.

As in lemma 3.2 we shall show that

inf {i;(^(t))|l^f^fe} ^ inf {u(n,(0) |fe+l^f^m-hs} (3.9).

Consider the continuous path

a(t) = (p^M-. .̂ M )̂,.. .^(0,^1,1(0,.. .,̂ (0)

on Z, where the {a^t)} define H(Q, and the field of nonzero normal
vectors along this path,

n(t) = (Ufc+i,. . .An+^k+1,1'- • •^mk)»

where

r-l k r-l

^(0 = ^-(0) r ^(t) +r ^ (p,) r a,,n, ( f c+ l^ f^w)
j= i

r-l

^i(t) = r{q,(t})^~ n^i(t) (l^i^s)
^(t) = Pi(t)rij(t). (k +1 ̂  i ̂  w, 1 ^7 ̂  s)

By (3.3) we have for k + 1 ̂  i ^ yn, 1 ̂  7 ^ fe, that

"SKrft.,....̂ ..,...,;...)!"'0 ("(1)•

Suppose that

and that

P = ^Oh) ^ ^(^)
a = u(pj < ^(p»)

v(n^ ^ u(nf)

(2^'^5),

( fe+l^f^w-1) ,

(2^^k).
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Then,

^ 1(P^. . .^^K^f^^. . .,(̂ )̂1
^o |p^nJ

r-l

lim l^l-l(^l^.,(^l) r ^J| .= nm ———————-——————————, since P < a,
^° IZVhl

< lim ^ll-l^m-H^-^m-JI . , , , -
tm———————^1——————— smce v(ql)^v(q^2^^

,. |a(r)|<u.n> .- ^
^ lm |p(̂ )| with u=(o-••Al/v/5,..,l/^5)eToY,

5 terms

assuming that y2(r) is a unit vector and that (3.9) is not satisfied,

= 0, by Kuo's ratio test [6], assumed to hold along a(t).

Hence we obtain from (3.10) that

,__ IPmHilnm —-——^————,;— < oo.
^I^I.K+i,...^)!

Iw I
Choose 7, k + 1 < j ^ w, such that lim -̂ - < oo for

/c + 1 ̂  f ^ m. ^° l^-l

Then lim , m ^ , < oo, in other words,<-o 1^^1.1^.1

^ 1 1 \ 1 - IPm^ll(3.11) lim————————————^————————— < oo.
t-+otei/rl.l(p,)(r-l)/rn,+ E (p^-1^^!1 = 1

/ fc \
Suppose first that v(rij) > u( ^ ^AJ. Then (3.11) implies

\i = i /

^(Pj + v(n,) ̂  v(ql) + ̂ ^ r(p,) + i;f i: a,̂ ,)
r r \i=l /

^tel) ^ - 1)
^ - ^ - + — — — ^ — — ^ J + ^ l ) + l ,

and so v(p^) - v(q^) ^ r, i.e. a - P ^ r, contradicting the hypothesis of
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/ k \
the lemma. We are left with the possibility that v(n^ ^ v[ ̂  a^ j. Then

\i=l /
(3.11) implies that

v(Pm) + ^l) ^ -^(^l) + —————^Pj) + ^j)

1 (r-1)
^ - ̂ tel) ^ ————— ^Pm) + ^l) + 1 .r r

if (3.9) fails to hold. Again this implies a contradiction to the hypothesis of
the lemma. We deduce that our assumption that (3.9) does not hold was
false. This completes the proof of lemma 3.8.

Combining lemmas 3.2,3.5 and 3.8 we obtain for 1 ̂  k ^ m a residual
subset of the (m -I- s — fe)-planes H containing Y consisting of H
transverse to lim T^X for all curves a(t) in X « tangent » to H at 0
provided a(t) 13 not of the following type : tangent to Y, (fc)-regular, not
satisfying Kuo's ratio test. Tzee-Char Kuo showed in [6] that such curves do
not exist when the dimension of Y is one. This provides our next result.

THEOREM 3.12. — Let X be a subanalytic C1 submanifold of R™ x R
such that Y = O x R c X — X . For each k, 1 ̂  k ^ m, there is an open
dense subset U* ofthe grassmannianof (m-^s—k)-planes containing Y such that
if H e L^ and if a(t) e R"* x R and H(t) in L^ are analytic curves mth
a(0) = 0, H(0) = H, and a(t)eX n H(t) when t + 0, then H is transverse
to limT^X.

t-^O "

Proof. - Let r f = d i m X . Define P = {(x,T^X,H)[x e X nH} in
j^m+i ^ Qy+i ^ G^-fc, where G^_^ denotes the (m+s- ̂ -planes
containing Y. Let E^^ = P n {(0,T,H)|T+H ^ R^1}. Then ^ is a
compact subset of the compact manifold {0} x G^+l x G^_^. Let 713
denote projection from Rm+l x G^"^1 x G^-^ onto G^-k» and define
the open subset of G^_^, U^ = G^_^ - 713 (E^).

We need only show that U* contains a dense subset of G^_^ since it is
easily verified that every H e U^ has the required property. We shall show

/ 00 \

that U* contains the residual subset of G^_^, U^ n ( F| U^_^ j , where
\i=i /

U^ is given by lemma 3.2 and U^_ i by lemma 3.8. This is enough since a
residual subset of a manifold is dense.
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/ oo \

Let HeU^o n n U^.-i . If H^U\ then Hen^) and there
\i = 1 /

exists T e G^1 such that (0,T,H) e E^ By curve selection there will be
an analytic curve in r, (fl(t),T^X,H(0) with a(t)eX n H(r), a(0) == 0,
H(0) = H, limT^X = T and T 4- H ^ IT1-'1. Write a(t) as (p(0,^(0)
in R^* x R. By lemma 3.2, since H e U^ we have that
v(q) < in{{v{pi)\l^i^m}. By lemma 3.5, (^-regularity must hold for
(X,Y) along a(t) (since H and T are not transverse). In this case
theorem! of [6] implies that Kuo's ratio test holds. Let now r be a
positive odd integer such that v(q) < inf {v(pi)} < v(q) + r. Then
lemma 3.8 shows that H ^ U;. We have thus shown that

u^ n ( Ft ^1-1 ) c U\ which completes the proof of theorem 3.12.
i= i

COROLLARY 3.13. — Let X be a subanalytic C1 submanifold of R"1 x R
such that Y = O x R c X - X . // (X,Y) is (b)-regular at 0, then (X,Y) is
(fccodjJ-^1^ at 0 for all fe, 1 ̂  k ^ m.

Proof. — Use theorem 3.12 and corollary 1.2.

Note I. - Jean-Pierre Henry and Michel Merle found a shorter proof of
lemma 3.8 in the case of s = 1, also removing the restriction to curves on
which Kuo's ratio test holds. Theorem 3.12 follows as before without citing
lemma 3.5 or the equivalence of (b) and the ratio test.

Follow the proof of 3.8 (with s = 1) up until (3.10). Suppose again that
a = v(Pm) ^ v(Pi) if k - ^ - l ^ i ^ m — 1 , and that v(n^) ^ v(n^ if
2 ^ i ^ k. Now the hypothesis a < P + r implies that

vw^^r^^ > ̂ A-) -1-
and

v(\(p]/r,ql/%\q(F~l)/rnrn^\)=v(qn^,).

Thus (3.10) implies that

v(Pm^i) ̂  int (m[ {^(PA^^m+i)) (*)•

Now since a(t) is an analytic curve in X, a\t) and n(t) are orthogonal,



WHITNEY REGULARITY AND GENERIC WINGS 101

m

so that £ p'jrij 4- q'^m+i = 0- Hence
j= i

/ m \

^(^m+i) = ^ £ P^j) ^ inf{i;(p^.)},
\j=i / J^

and so

^(^m+i) ^ inf{^(W/)}-
;^m

From (*) we obtain in every case that

^(Pm) + ^i) ^ inf {v(pjrij)},'̂
j^m/<m

and we may conclude as in the end of the proof of lemma 3.5 that
v(n^) ^ r(nj.

In this way one deduces theorem 3.12 without treating separately the
cases when (^-regularity holds or fails. Of course the condition

m

£ P'^j + ^»m+l = 0
J=l

used above is instrumental in proving that (b) is equivalent to the ratio test
when dim Y = 1 (cf. [6]).

Note 2. — In February 1980 we had not found how to obtain an open
dense set of planes for which the conclusion of 3.12 was valid, but had only

/ 0) \

the residual set U^ n ( Q U^_i j, and the statements of lemmas 3.2 and
\i=i /

3.8 had a(t) in X n H for nonzero t. The second author asked J. Giraud
if one could prove by successive blowing-ups that all limits of tangent

planes of the form lim T^)X where a(t) e X n H could be obtained from

curves a(t) such that (a — P) < CH for some large constant CH. Giraud
provided a detailed reply which made a positive answer seem promising,
using in particular the constructibility of the set U* in theorem 3.12.
However the hypothesis that a(t) belong to X n H with H fixed causes
problems. Shortly afterwards, M. Merle and, independently, the first author
of this paper, observed that lemmas 3.2 and 3.8 worked in their present
form so that obtaining an open dense set of planes as in 3.12 becomes easy.
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Now we can prove that both Kuo's ratio test and Verdier's condition
(w) are preserved after intersection with generic wings. Since the ratio test
and ((^-regularity are equivalent for (X,Y) when dim Y = 1 we obtain
also that (b) implies (bcodjJ m ^is case (once more).

THEOREM 3.14. — Let X be a subanalytic C1 submanifold of W x R5

such that Y = O x R S ( = X — X. Suppose that (X,Y) satisfies Kuo's ratio test
(resp. Verdicts condition (\v)) at 0. Then, for each k, 1 ̂  k < w, there is
an open dense subset L^ of the grassmannian of (m 4- s — k)-planes containing Y
such that if W is a \ving of codimension k attached to Y, mth ToWeL^,
then (X nW,Y) satisfies Kuo's ratio test (resp. Verdier's condition (w))
at 0.

Proof. — Define the open set L^ exactly as in theorem 3.12, and apply
lemmas 3.2 and 3.8 to show that L^ is open and dense, noting that
Verdier's condition (w) implies Kuo's ratio test [16].

Let now W be a wing of codimension k attached to Y with
TgW e U^ We must show that (X nW,Y) satisfies Kuo's ratio test (resp.
Verdier's condition (w)) at 0. Take the ratio test first. We shall work with
sequences so as to allow for wings which are not subanalytic. Suppose first
that W is linear, say W = tf x R^ x R5 c Rw x R5 . Let
{xj e X n W be a sequence tending to 0 with x^ = (p\q1) e R"1 x R5,
and take unit vectors n1 in T^.W n N^.(X nW) with lim n1 = h.

1 1 l-^OO

Now for each i, N^.W ® (n1) and N^.X intersect in a 1-dimensional
space since each lies in N^.(XnW) which has dimension n — (d—k)
(with n=w+s , r f=d imX) ' and dim (N^.W®^1)^ k 4- 1 and
dim N^.X = n — d . Thus there is a unique unit vector n ' eN^X of the

form n1 = (n\,.. .,^,n1). Since ToWeU^ ToW and limn1 are not
i-*'v)

u i i\j

orthogonal, so that —1!—. is bounded as ( tends to oo. But the
|n1!

ratio test for (X,Y) says that —j-—W±J- tends to 0 (1^/^s) as ; tends
\pi\'W
j j j I j

to'oo, and so we deduce that —!-—m^1- tends to 0(1^/^5) as i tends
\Pi\'W

to oo, and this is precisely what is needed to show that (X nW,Y) verifies the
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ratio test. A similar argument works for Verdier's condition (w) : the
In1 I \n1 I

boundedness of lim —m±2- implies that of lim —"ll-.
i-^ |^|.|n1! i-»oo |pf|.|n1!

The proof for nonlinear W is similar save that the unit vectors n1 have
(small) nonzero components in the direction of N()W . Since these vanish
at 0 they do not affect the result.

This completes the proof of theorem 3.14.

Note. — To obtain (fccodfc) m ^e previous theorem, from the hypothesis
that (X,Y) satisfy Kuo's ratio test, the argument is slightly easier. Take any
wing W of codimension k attached to Y with the tangent space to W at
0 in L^.. Let {xj be a sequence of points in X n W tending to 0 with
T = lim T^.X. Choose (w-hs-^)-planes H. containing Y so that the

i-»oo '

maximal distance of a unit vector in H^ to its projection on T()W is given
by the vector Ox,/|OXf|.< Because W is of class C1 and {xj in W tends
to 0, it follows that H, tends to T()W. Then {(x^T^.X.H,)} tends to
(0,T,ToW) in F n ({0} xG^xG;;-,) and since T()W e U' it follows
that T + T()W = R^5, and hence that W satisfies condition (ii) of
corollary 1.2. Condition (i) of corollary 1.2 is also satisfied if we assume that
(X,Y) verifies the ratio test at 0, by theorem 1 of [6]. Corollary 1.2 now
says that (XnW,Y) is (fc)-regular at 0.

Now we come to the result promised in the title of this section. First,
another lemma.

LEMMA 3.15.- — Let A be a subset of G^(R) which is the union of
countably many C1 submanifolds of dimension ^ h, and let Q, denote
{H e G;"(R)|VL e A,L^H}. If h < p(m-r), then 0 is a residual subset
of G^R).

Proof. - Consider in G^ x G^ the subset F = {(L,H)|LcH and
L e A}. If 7i is projection onto G", then 0 is the complement of n(V).

Let LQ e A and let Uo be a compact neighbourhood of L() in the C1

submanifold containing Lo in A . Then the set
FO = {(L,H)|Lc:H,L€Uo} is a C1 submanifold of dimension at most
(r—p)(m—r) + h, because it is fibred over Uo, which has dimension at
most h, with fibres of dimension (r—p)(m—r), each isomorphic
withG^.7.
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Because h < p(m—r) we obtain that dim Fo < dim G", so that the
complement of n^o) in G" is open and dense. Covering A by
countably many neighbourhoods {Uj,gi we find that the complement Q
of 7i(r) in G^ is residual, proving the lemma.

THEOREM 3.16. —Let X be a subanalytic C1 submanifold ofW x R such
that Y = 0 x R c: X - X and dim A"(X,Y) = h, where n : R" x R -^ R
denotes projection. Then for each fe, h < k ^ m, the pair (X,Y) 15 (b^odk)-
regular at 0.

(See section 1 for the definitions of A"(X,Y) and (fc?o<u).)

Proof. — We apply lemma 3.15 with p = 1 to A = A^X^) which is a
compact subanalytic subset of G^ and has a finite stratification into C1

submanifolds of dimension at most h. It follows that the set 0 of planes
of codimension k containing Y which contain no elements of A is not
only dense, because residual (by lemma 3.15), but also open, since A is
closed.

Consider U = Q n L^ where \f is defined in the proof of theorem 3.12.
Let W be a wing attached to Y with T()W e U, and let {xj e X n W be

a sequence of points tending to 0. Because T()W e L?, lim T^.X and
»-»oo '

TnW are transverse at 0. Also lim —!—!— e ToW since x. and
i-oc \XiK(Xi)\

n(Xi) belong to W for each f , and so {xj is a (fc^-regular sequence since
ToWeQ. Now apply corollary 1.2 to show that {xj is a (fc^-regular
sequence for (XnW,Y) at 0. Since {xj was arbitrary (XnW,Y) is (&")-
regular at 0, and since this is true for each W with T()W in the open
dense subset U of G^-^ we have completed the proof of theorem 3.16.

Theorem 3.16 may be summed up by saying that « dim A < k implies
Wodk) it dim Y = 1 », answering a question in {14}. In section 2 we
showed that «(fc^od k) implies dim A < k ». Combining these results gives,

THEOREM 3.17. - Let X be a subanalytic C1 submanifold of Rw x R
such that Y = O x R c X - X . Then

dim A"(X,Y) = inf{fe|(X,Y) is (b^)-regular at 0} - 1.

Proof. — Combine theorems 2.1 and 3.16.

This result has interesting corollaries for a family of complex
hypersurfaces with isolated singularities.
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COROLLARY 3/18. - Let F : (C""'1 x C, 0 x C) -^ (C, 0) be a complex
analytic function such that for each t, F^O) has an isolated singularity at
0 x t, where F,(z) = F(z,r). Suppose that the Milnor number of F, at 0
is constant for t in a neighbourhood of 0 in C. Then
dim A^F-^O) - (0 x C), 0 x C) ^ 0.

Proof. - Write A" = A^F-^O) - (Ox C), 0 x C). Suppose that
H(F,) is constant and dim A" = 0. By theorem 3.16, (b^dk) holds for all
k ^ 1. Now \JL constant implies (^-regularity (see [9] or [7]), and
theorem 3.12 and corollary 1.2 imply that {a^ holds for all fe,. Thus
(^codfc) holds for k ^ 1. Applying the Thom-Mather isotopy lemma and
the topological invariance of the Milnor number (n times) we deduce that
|i1, . . . , H" are constant, so that ^* is constant. (See [9] for the definition
of the n1.) By [9] this implies (^-regularity which in turn implies that
A" = 0, so in particular the dimension is not zero ! This completes the
proof.

Example 3.19. — The only known examples of n constant families
which are not (fc)-regular are due to Brian^on and Speder [1]. The simplest
example, F(x,^,z,t) = x3 -h txy3 + y^z -h z9, has u(F,) = 56. One can
verify [14] that dim A" ^ 1 for this example by direct calculation. That
dim A" = 1 follows since F( is equimultiple at 0 (with multiplicity 3), so
that (fccod2) holds, and this implies that dim A" ^ 1 by theorem 2.1.

In the proof of corollary 3.18 we used Teissier's theorem « |A* constant
implies (fc)-regularity ». It is amusing to note that this is a consequence of
corollary 3.18. For, given that (p,1,.. .^n+l) = H* is constant, we can
assume by induction that (fccodi) holds since n1,...,^ are constant.
Theorem 2.1 now gives that dim A" < 1. But corollary 3.18 tells us that
dim A" 7^0 , so that A" must be empty and (b") holds. Since (a)-
regularity follows from the constancy of ^n+l as noted above, we have (fc)-
regularity.

We are now tempted to speculate on a possible direct proof of
corollary 3.18, perhaps using the nice characterization of [i constant given
by Le Dung Trang and K. Saito [7] : the normals to level surfaces of F
tend to be orthogonal to the parameter space near 0.

Example 3.20. — Michel Merle found the following example showing
that theorem 3.12 does not generalize to 2-dimensional Y. Let /: R4 -̂  R
be defined by f(x,y,u,v) == x2 4- y2 -h ux + vy. Let Y = {x = y = 0} in
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R4, and X = f ~ l ( 0 ) - Y . Then for every hyperplane H of R4

containing Y, X n H contains a curve a(t) such lim T^)X = H.

Now let Xi = X ^{(x,y,u,v)\x2+y2<(u2-^v2)2}. All curves in X^
passing through 0 are tangent to Y at 0. We claim (^-regularity holds.
Firstly (^-regularity holds since grad/= (2x -+- u,2y + v,x,y) which tends to
be orthogonal to Y along curves tangent to Y at 0. Secondly

x(8f/8x) + y(8f/8y) x2 + y2

on Xi ,
1(^)1. \(8f/8x, 8f/8y)\ \(x,y)\. \(2x + u,2y +1;)|

and this ratio clearly tends to 0 on curves tangent to Y ; thus (b") holds,
giving (b). Kuo's ratio test fails for the vector (1,1) e ToY along the curve
(r2,!2,^) since

\(x,yw}\.\(x,y)\ ^ (2^+2^ _ /. .
|(xj0|. \{2x + u,2y + v)\ (8^4 _^ 3^3 _^ ̂ i -> v 7<L

Worse, (fccodi) fails. Intersect Y u X^ with H = {Xx-h^=0} giving

{(x,^,y)|5ix+^=0, ^—^-y - ̂ -u + u = 0,
A- A.

x2 ^ y2 < (ir î;2)2},

i.e. Y with (part of) a 2-plane, so (b) fails for (X^ nH,Y) at 0 for
dimensional reasons (X^ nH ought to be empty for (b) to hold).

Thus we cannot generalize theorem 3.16 to Y of dimension 2 or more.

Question 3.21. — Is there an example of a semialgebraic (fc)-regular (r)-
fault (X,Y) for which (fc^di) fails, as in example 3.20, and in addition
X u Y is locally closed at 0 ?

Note that in previous examples of semialgebraic (fc)-regular (r)-faults
(X,Y) given in [13], and [4] (where they are real algebraic), X u Y is
locally closed, and in fact is a C1 submanifold so that generic wings
attached to Y miss X and (fccodi) ls vacuously satisfied.

4. A sufficient condition for regularity to imply regularity at level k.

In this section we give a condition sufficient to imply that generic wings
are transverse to all limits of tangent planes, not merely those given by
sequences contained in the wing, or «tangent» to it.
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THEOREM 4.1. - Let F c= G^ be a subset of Hausdorff dimension less
than p - k + 1. Let Y = R4 x O"-4 <= R". F^n

Q = {H e G^ |Y c= H and H /h T, VT e F}

is the complement of a set of measure zero in {H e G;;_JY <= H}, and is thus
dense.

Proof. - Write Y1 = O4 x R"-« and let

r, = {T e r| dim^T nY1) = p + i ] .

Then F = Fo u r\ u . . . u r^, where r = inf(^,n-p-^), and

r

0 = n {HeG;_JY c: H and H / | \ T , V T e r j .
1=0

Note that dim 1̂  ^ dim F < p - k + 1 so that we can assume F = r^.

If H nY1 and T nY1 are transverse in Y1 it follows that H and
T are transverse in R", and thus it will suffice to prove the theorem in the
case of q = 0. Also because

dim r, < p - k -h 1 < (p+f) - k + 1 (f^l) ,

proving the result when F = VQ implies the result for r = r^ ( f^ l ) .

We are left with the following lemma to prove.

LEMMA 4.2. — Let TQ c G^ have Hausdorff dimension less than
p - k + 1. Then Qo = {H 6 G;_JH /|\ T,VT e Fo} is the complement of a set of
measure zero in G^_^.

Proof of lemma 4.2. — Set

A, = {(H,T) e G^-fc x G;| dim^H nT) = p - k + j and T e Fo}
(l^j^n-p).

Then if 711 : G;-^ x G; -> G^ denotes projection onto the first factor,
/n-P \\oo = o;_, - (TC,( n A, .
\j=l //

It will suffice to show that dimn A .̂ < k(n-k) = dim G^.^ for each j,
1 ^7 ^ n - p, where dimn denotes Hausdorff dimension. For then
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/"-P \ /n-p \

dim^i [ (J ^ j < k(n-k) so that Tii (J Aj has zero measure in
\/=i / \j=i /

G;-..

Now Aj fibres over Fo by projection (H,T) h-^T, with fibre

A,,T = {H e G^,|dim^(H nT) = p - k + 7}.

Hence dinin A .̂ = dim A^ + diniH Fo. Also A^ fibres over G^^+j by
intersection H h—^ H n T with fibre isomorphic with G;;:^"7. Thus

dim A^r = dim G^-k^j + dim Gn^p^Yj

= (k-j)(p-k-}-j) + k(n-p-j)
=k(n-k)-j(p-k-^-j).

Since dimn Fo < p - fc + 1 we obtain

dimnA^. < fc(yz-fc) - (/-!)(? -^+7),
for 1 < j ̂  n — p, and hence dunnA, < k(n—k) as required. This completes
the proof of lemma 4.2 and hence of theorem 4.1.

Recall the notation ofWhitney [19] : for X a C1 submanifold of R",
0 e X, the space of limits of tangent spaces to X at 0 is

T(X,O) = {T e G^ \3{x,} e X, x,^ 0, T,X -. T}.

COROLLARY 4.3. - Let X, Y be C1 submanifolds of R", mth
O e Y n ( X - X ) . Let r(X,0) have Hausdorff dimension
^ dim X — dim Y - k. Then in the space of planes of codimension k
containing T()Y those planes transverse to every element of r(X,0) form an
open dense subset.

Proof. — Apply theorem 4.1 to obtain a dense subset. Since r(X,0) is
closed the required openness follows easily.

COROLLARY 4.4. - Let X, Y be C1 submanifolds of R" with
0 G Y c (X-X). If dim r(X,0) ^ dim X - dim Y - k and (X,Y) 15 (fc)-
regular at 0, then (X,Y) is (b^-^gular.

Proof. - Apply corollary 1.2 and corollary 4.3.

Next we give examples showing that the restriction on the dimension of
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r(X,0) in corollary 4.4 cannot be dropped in general, or even when X is
semialgebraic. Teissier has recently shown [11] that the restriction on
dim r(X,0) is unnecessary in the complex analytic case, by proving that (b)-
regularity implies dim r(X,0) ^ dim X - dim Y - 1.

Example 4.5. - (Goresky Whirlpool). - A picture like the one below
was drawn by Mark Goresky during a seminar at I.H.E.S. in June 1979, as
an example (in his terms) of a Whitney object without a Whitney
triangulation.

Figure : A portion of the Goresky Whirlpool.

The figure is of a surface S in R3 (based on a rapid spiral around 0 in
the plane and a curve of the type z = r sin (1/r) in each vertical slice)
which is smooth everywhere except at the origin, and so that the pair
(S~{0},{0}) is (fo)-regular, but not (b^i)-^^^' Moreover the space of
limits of tangents at 0 has dimension 2. This shows that in general (b)-
regularity for a pair of strata (X,Y) does not imply that
dim T(X,O) < dim X - dim Y - 1

Here is an explicit representation of such a surface. Write

C(n,9) = {l/2)(e-^+^2 4- ^-((n+l)n+9)2^

and
w(n,9) = (l/l^e-^^ - e^^^\

Then in cylindrical coordinates (r,9,z),

(J {w(n,9)z = (w(M,9) - ((r-c^))2^^)))2, e-^^2 ̂  r ^ ^?-(("-n)W}
,H6N )

defines a surface of class C1 containing 0 in its closure, which has the
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required properties. Note that S intersects the horizontal plane {z==0} in
the two rapid spirals {(r,9)|r = e-12^ = t(mod In)} and
{(r,9)|r = e-^Q = n + t (mod In)}. Each rapid spiral has the property that
the angle between the radial vector Ox defined by a point x on the spiral
and the tangent to the spiral at x tends to zero as x approaches 0.
Intersecting S with the cones {z/r = constant} again gives 2 rapid spirals
with the same property. It follows that (fc^-regularity holds, where n is the
canonical retraction along lines through 0, and hence (b) holds since (a)
is trivially satisfied.

Fixing 9 and letting r tend to zero we find a 1-dimensional set of unit
vectors which are limits of unit normals to S, all contained in the plane
9 = constant. Varying 9 we obtain dim T (S - {0},0) = 2. To see that
(^codi) fails take a sequence of points defined by 9 = constant and

r = c(n,9) + (w(n,9)/^3)

(compare [13], [14]).

Note 4.6. - The previous example is not subanalytic (at 0). Example
3.20 is semialgebraic and may also be used. We have already seen that (b)
holds and (b^i) tails for the pair (X^.Y) of example 3.20. One finds easily
that

dim T(X^,0) == 1 = dim Xi - dim Y

Thus (^-regularity for a pair (X,Y) does not imply that
dim T(X,O) ^ dim X — dim Y — 1 for semi-algebraic strata. However this
example is unsatisfactory in that X^ u Y is not closed. See question 3.2.1.

After B. Teissier's recent result [11] in the complex analytic case there
remains the question of what happens in the real algebraic/analytic case.
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