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ON GROUP REPRESENTATIONS
WHOSE C*-ALGEBRA

IS AN IDEAL IN ITS VON NEUMANN ALGEBRA

by Edmond E. GRANIRER

Introduction. — Let T be a unitary continuous representation of the
locally compact group G on the Hilbert space H^ and denote by
L(H,)[LC(H^)] the algebra of all bounded [compact] linear operators on
H^. T can be lifted in the usual way to a *-representation of L^G). Denote
by C*(G) = C* the norm closure of rEL^G)] in L(H,) (with operator
norm) and by VN,(G) = VN, the W*-algebra generated by ^L^G)] in
L(H,). Let

M,(C*) = { ( p e V N , ; (pC* + C*(p c: C*}

i.e. the two sided multipliers of C* in VN, (not in the bidual (C*)" of C*).

The representation T is said to be CCR if C* c: LC(H^). Furthermore,
supp T will denote the closed subset of G of all n in G which are weakly
contained (a la Fell) in T (see the notations that follow).

One of the main results in this paper (in slightly shortened fashion) is :

THEOREM 1. — Let G be o-compact and T a unitary continuous
representation of G such that M^(C*) = VN^. Then supp T is a (closed)
discrete subset of G and each n in supp T is CCR (i.e. C* = LC(H^).

A result of I. Kaplanski will hence imply that moreover C* is a dual C*-
algebra (see [6] (10.10.6)).

Our main application of this theorem is to induced representations and in
particular to the quasiregular representation n^ on L^G/H), for some
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closed subgroup H, as detailed in what follows :

THEOREM 2 (1). — Let H be a subgroup of the o'-compact group G and
v = vx the representation of G induced by the representation ^ of H. // IG
is weakly contained in v and M^(C*) = VN^, then H has finite covolume in
G, supp v is discrete and any n in sup v 15 CCR.

Note that Io is the unit representation of G -on C.

We improve somewhat theorem 2 for the case that v = K^ is the
quasiregular representation of G on L^G/H) in

THEOREM 6. — Let G be a-compact, H a closed subgroup and v = n^.
If Tin weakly contains a nonzero finite dimensional representation and
M- (C* ) = VN^ then H has finite covolume in G, sup Tin is discrete and

H H H

any n in supp Tin is CCR.

It seems to be in the folklore that if G is arbitrary and H is a closed
subgroup such that G/H is a compact coset space then M^(C^) = VN^
(see proposition 4).

It seems to us that the fact that H has finite covolume in G and sup ̂
is discrete should imply, at least for a-compact G that G/H is compact.

This would generalize a result of L. Baggett [20], A. H. Shtern and S. P.
Wang [17] who have proved it for the regular representation (i.e. H = {e}) of
a cr-compact group G. We pose the above as an open question.

The assumptions of theorem 6 still imply that G/H is compact at least in
the following cases (1) H is compact. (2) H is a semidirect summand. (3) H
is open in G. (4) G is connected and H = Zo(A) for some set A of
automorphisms of G. (5) G is a connected Lie group and H is a connected
subgroup. (6) G is a solvable Lie group and H is any subgroup (both (5) and
(6) using some deep theorems of G.D. Mostow). (7) G is any Lie group and
H = Zo(A) (A as above) etc... See corollaries 1, 2, 3 after theorem 6.

In case n^ does not weakly contain any finite dimensional nonzero
representation we still have the

THEOREM 5. — Let G be (^-compact H a closed subgroup. If
M^ (C^ ) == VN^ then supp n^ is discrete and any n e supp n^ is CCR.

(1) For second countable G thm.8.2ofMackeyin[22]p. 120 implies that IQ can
be replaced by any finite dimensional representation. Thanks are due to L. Baggett for
an inspiring conversation connected with this fact.
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It seems to us that the fact that supp n^ is discrete, each n in supp K^ is
CCR and G is a-compact should imply that G/H is compact.

A proof for this statement would provide an answer to the above open
question. We commission hereby a proof of this statement from people in the
know. It would imply, together with our theorem 5 the following statement :

« Let G be a-compact H a closed subgroup. Then M^ (C^ ) = VN^
if and only if G/H is a compact coset space. »

In case H = e we have a slightly better result than the above, namely :

THEOREM 3. — Let G be any locally compact group and p the left regular
representation. If Mp(C^) = VNp then G is compact (and conversely).

This result improves a result of oursin [10] where it was assumed in
addition that G is amenable. M. A. Barnes has informed us that the has also
obtained this improvement of our result in [10] using different methods.

Notations. — Most of the notations in this paper are consistent with
Dixmier [6] and Eymard [7] and [8].

Let A be a C*-algebra. Let A" be the bidual (or the enveloping) C*-
algebra of A as in [6] 12.1.4. Denote by M(A) = {(p e A'^cpA+cpAcA}
the multipliers of A in A" (or the idealizer of A in A"). If H is a Hilbert
space, L(H) [LC(H)] will denote the algebra of all [compact] bounded
linear operators on H.

G will always stand for a locally compact group with a given left Haar
measure. We say that 71 is a representation of G if n is a unitary continuous
representation of G as in [6] 13.1.1. H^ will denote a Hilbert space on which
the operators {7 i (x) ;xeG} act. n can be lifted as usual to a *-
representation of L^G) [in fact of M(G)] in the usual way. We denote by
C^(G) or C^, when G is obvious, the C*-algebra which is the operator
norm closure of ^[L^G)] in L(HJ.VN^G) == VN, will denote the W*-
algebra generated by ^[L^G)] in L(H^).

The following notation is important : if n is a representation of G on H^
then

M,(Q) = M,(C,*(G)) = {(p e VN^; (pQ+Qcp c= C,*}

i.e. the idealizer of Q in VN^. Note that M^(Q) does not usually coincide
with M(C^) which is the idealizer of Q in its bidual (Q)". Proposition
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12.1.15 of [6] is important in this respect and it shows that the bidual of C^ is
universal in a certain sense not shared usually by VN^.

p will denote the left regular representation of G on L2(G) and VN
will denote VNp. C*(G) will denote the full C*-algebra of G as in [6] 13.9.
The set P(G) of all positive definite continuous functions on G is identified
with the positive linear functionals on C*(G). P^(G) = P^ will be the set of
those u in P(G) which are weakly associated with n (this set is canonically
identified with the positive linear functionals on C^). BJG) = B^[B(G)]
will be the complex linear span of P^[P(G)] and is identified canonically
with the dual of Q[C*(G)] see Eymard [7], pp. 189-191.

B(G) is equipped with the dual norm on C*(G) and BJG) c: B(G) with
the subspace norm. A^(G) = A^ will denote the norm closure in B^ of the
set of all coefficient functions of the representation n i.e. of
{<7r(x)^, T|> ^, T|eH^}. AJG) is canonically identified with the predual of the
W*-algebra VN^. Many results on A^(G) are contained in G. Arsac's
elegant thesis [3] which unfortunately was never published. We were unable
to find them in such an elegant and suitable form anywhere else and will quote
hence reference [3].

If 7i is a representation of G, it will be identified with its unitary
equivalence class. G will as usual denote the set (of equivalence classes) of
irreducible representations of G with the usual weak containment topology
of Fell, i.e. that one transported from the hull-kernel topology of C^G)" as
in Dixmier [6] 18.1, p. 314. Let 71^, n^ be representations of G. We say that
Tii is weakly contained (a la Fell) in 712 if B^ c B^ (see [7], p. 189).

We denote the support of n, supp n as the set of T in G which are
weakly contained in K (a la Fell) see [6] 18.1. supp K is a closed subset of G.
IG will denote the unit representation of G on C (the complex numbers) i.e.
<Io(x) a, P> = ap for each x in G and a, P in C.

A representation n of G is CCR if C^ c: LC(H^).

Let H be a closed subgroup of G. G/H == { x = x H ; e G } is the space of
left cosets of G with the quotient topology. G/H admits a quasi invariant
measure (see S. Gaal [9], V.3). If AG(AH) are the modular functions of G(H)
and if Ac = AH on H then G/H admits a (not necessarily finite) invariant
measure [9] V. 3, p. 266. G/H may be compact and G/H need not admit an
invariant measure. It happens in numerous important cases that G/H
admits a finite invariant measure (in other terminology that H has finite
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covolumein G) and still G/H is not compact (see for ex G. D.Mostow[ll]
[12]).

LEMMA 0. — Let a be a continuous unitary representation of the locally
compact group G such that My(C^) = VN^. If v ^ e A y n Py(G) is a
sequence such that v^ -^ VQ uniformly on compacta then VQ e Ay n Py(G) and
vn -> vo weakly in the Banach space Ay (i.e. in w(Ay, VNJ).

Proof. — Clearly ||yj| == v^(e) is bounded and by the w* compactness of
closed bounded balls in the dual By of C^ a subnet of v^ will converge w*
(hence in w(By, L1)) and also uniformly on compacta to some UoeBy.
Hence Mo(x) = Vo(x) for each x e G i.e. 1:0 e P y . By Akeman and Walter's
proposition 2 of [2], p. 458 it follows that (^v^y -> <<I>,Uo>" for each
0 e M(C?) where < >" « » will stand for the <(C?)", B,> «VN,, A,»
duality. Let i : C^ -> VN^ be the identity embedding then i can be
extended uniquely to a faithful representation also denoted by i to all of
M(C?) and f(M(Q)) is the idealiser of f(C?) in its weak closure i.e. in VN^,
by a result of Akeman Pedersen and Tomiyama [I], p. 280, Prop. 2.4 (and
independently obtained by M.C. Flanders in his thesis at Tulane Univ. 1968).
If K : C^ -^ (C^)" is the canonical embedding then by Dixmier [6] (12.1.5)
there exist a unique ultraweakly continuous representation 7 of (C^)" to
VN^ such that nc((p) = f(<p) for each (peC^. As remarked in the proof of
[I], p. 280, prop. 2.4 7 restricted to M(C^) is just i. Since we assume that
M^(Q) = VN^ it follows that T(M(C?)) = VN<,.

Claim 1. - If <D e (C?)" and y e Ay c B<, the predual of VN^ then
<<Dt;>" = <T<D,y>. In fact let f^ e L^G) be such that

<KCT(/J, M>" -> <<DM>"

for each ueBy (i.e. ultraweakly in (C^)", see Dixmier [6] 12.1). Then
nca(/J -»• 70 ultraweakly in VN^ by the u.w. continuity of 7. But
TK(J(/J = ICT(/J and since v e Ay one has

<TKa(/J,r> = <faa» = ]/,(x)i;(x)dx = (KO^),^" ̂  <<D,i;>"

by Dixmier [6] 12.13 (ii). But the left hand side converges to <7<I>,i;> which
proves the present claim.

Claim 2. - v^ is a weak (i.e. w(Ag,VNJ) Cauchy sequence in Ay. Intact
by the Akeman Pedersen Tomiyama result quoted above each element of
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VN^ can be expressed as T<X> for some 0 e M(C^). Hence

<7(D,i;,> = (O^y -> <0,uo>"

by the Akeman Walter prop. 2.4 of [2], p. 458, which proves claim 2.

Now A^ is weakly sequentially complete as any predual of any W*
algebra by Sakai [13]. Hence there is some v ' e A^ such that v^ -> v ' in

r rw(A^,VNJ and in particular f(x)v^(x) dx -> f(x)v(x) dx for each
J J

f
/ e L (G). But the left hand side converges to \ f(x)uo(x) d x . Thus UQ = v '

J
almost everywhere and since UQ and v ' are continuous Uo(x) = v(x) for
each x . Thus UQ e Ay n Po(G) and v^ —> UQ weakly as claimed.

COROLLARY. — If G is a-compact and a is a representation of G such
that MJC;)=VN, then A, = B,.

Proof. — For any VQ e Py there exists a sequence ^ e A^ n P^ such that
i^ -^ FQ uniformly on compacta. Thus VQ e Ay, Hence P^ c A^ and
A.=B, .

THEOREM 1. — Let G ^ an^ ^-compact loc. cpt. group and a a unitary
continuous representation of G such that M^(C^) = VN^.

Then supp a is a discrete (closed) subset of G, and A^ = B^ /or ^c/i
representation v weakly contained a. /M addition :

a) for some cardinal c, ca ^ c{Z © TI ;TT e supp a}, (^ stands for equi-
valence of representations and Z © /or direct Hilbert sum),

(b) By = A^ = {Z ® A^; n e supp a} (^ /1 direct sum, see Arsac [3], p.
27 ̂  39) and

(c) C^(G) = LC(HJ /or each n e supp a.
By a theorem of Kaplanski, as stated in Dixmier [6] (10.10.6) C^ is

moreover, a dual C*-algebra (see also [6] (4.7.20) and [1] prop. 2.4 and thm.
2.8).

Remark. - If for some K e G, Q = LC(HJ then clearly
M^(C;) = VN, = L(HJ.

Proo/. — Let v be a representation weakly contained in a. Let
VQ e P^ c= P^ and v^ e P^ n A^ c: P^ = P^ n Ag (by the above corollary)
be such that v^ -^ i;o uniformly on compacta. We apply lemma 0 to the
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sequence y ,eA^, i ;o^B^. It implies that VQ e A^ and ^-^o in
w(A^,VNJ. Thus a net of convex combinations of the v'^s will converge in
the norm of A^ to VQ . Since ^ e \ and A^ is norm closed it follows that
VocA^ i.e. \ = B^.

Let TCo e supp a. We show that {no} is open in supp a. Let

V = {Z © 7C ; 7C e SUpp CT, 71 ^ 7lo}.

If Tto is not open in supp a then KQ E supp v. Thus A^ = B^ c: B^ = A
by above. Thus KQ ls quasi-equivalent to a subrepresentation VQ of v by
Arsac[3]Cor.3.14,p.40.Thus VQ is equivalent to kno tor some cardinal k
(see Dixmier [6], p. 105 (iii) => (iv)). But then KQ which is irreducible, is a
subrepresentation of VQ and hence of v, which cannot be, by the definition
of v. Thus {Tio} is open in supp a which has hence, to be discrete.

Let now T = {Z © n; n e supp a}. Then, by Arsac [3], p. 39, Cor. 1, A, is
the I1 direct sum of all A^ = B^ c: B^ = A^ with K e supp a. Hence
A, c: A^ and by Arsac [3], p. 43, thm. 3.18 A^ = A, © A,, where T' is the
linear span of the coefficients of the representations v of G contained in a
and disjoint from T (see also Dixmier [6], 5.2. p. 101).

Let Tii e supp T' c: supp o. Then 7^ ^ T. Thus A^ c A, n A,, = {0}
by Arsac [3], p. 37, (3.12). This shows that A^ = A, which implies that for
some cardinal c, co ^ CT (see Dixmier [6], p. 105).

Now A, = A,, = A,, = A, by Arsac [3], p. 29 and
A, = {E © A^;7c e supp a} (the /i direct sum) by [3], p. 39, Cor. 1. To
complete the proof one still has to show that C^(G) = LC(H^) for each
Tie supper. Fix now such a n. It is enough to show that C^(G) is a norm
separable C*-algebra, since then using the fact that A^ = B^ we get by Arsac
[3], p. 47 that C^(G) = LC(H,). (This result is stated in [3] only for
separable groups G. However, only the separability of C^G) is used in the
proof). Let a e H^, a ^ 0. Then {7i(x)a; x e G} spans a dense linear subspace
of H^. If K c: G is compact then {n(x)a; xeK} is a norm compact hence
separable subset of H^. Since G is o-compact, it follows that {n(x)a;xeG}
is separable hence so is H^. Thus C?(G) is a C*-algebra acting on the
separable H^, whose dual is the singleton {71} (if n' is irreducible and
weakly contained in n then, since K is closed in 6,71' is equivalent to 71).
We apply now lemma 1.5 of S. P. Wang [17], p. 21 and get that C^(G) is
separable. This finishes the proof.

Remark. — If A^ = By for some representation CT , it does not follow
thatM^(C^) = Vis^, even if G is abelian. In fact let G be locally compact
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abelianand {yj? = S be such that y^ -> y^ uniformly on compact subsets
of G. (Each y^ is a continuous character on G). Then S is a compact
subset of G.

Let K be the counting measure on S and a the representation of G on
L^K) = P(S) given by (o(x)/)(y) = <y,;c>/(y) for y e S , xeG and
fel2(S). If ne M(G) then for /i, /^ e ̂ (S) one has

<<Wi,/2> = f f yM^W/i(yV2(y)^
•'S ^G

== fA(y)/i(y)y2(y)^=<^,/2>
•^s

i.e. <J(H)/i(y) = A(y)/i(y) (pointwise multiplication of functions) and the
operator norm of a(p) on l^(S) is just sup {|n(y)|; yeS}. Thus C^ = {sup
norm closure of L^G)" restricted to S} = C(S) the continuous complex
functions on S. Furthermore VN^ = /°°(S) hence

M,(C?) = {/ e f°°(S); fg e C(S) for each g e C(S)} = C(S) ^ /°°(S) = VN,

since
C(S)={/e /°° (S) ; lim/(y^)=/(yo)}.

n~^ oo

(Note that multiplication of operators in VN(, is just pointwise multiplica-
tion of functions.) However Ag = By since B,, (the dual of C(S)) is just
M(S) = ^(S), since S is countable and the predual Ay of ^(S) is just
^(S). In fact if yo e S and ^eL^G) then

<8^> = <8;̂ > = ]5^(x)A(x)rfx = %(yo).

Thus A, = B, but MJC?) 9^ VN,.

Denote by IG the trivial unit representation of G on H = C. For
definitions related to induced representations we follow S. Gaal [9]. Ap-
plying the previous theorem to induced representations we get.

THEOREM 2. — Let H be a closed subgroup of the (j-compact group G and
v = vx the representation induced on G by the representation % of H. If IG
is weakly contained in v and M^(C*) = VN^ then H has finite covolume in
G (i.e. G/H admits a finite invariant measure) and supp v is discrete. Thus
([19] Gaal, p. 407), ^(IG^) = ^(IH,^). Any n in supp v is CCR.
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Remark. - In particular, if H is open in G i.e. G/H is discrete, then
G/H is finite. See also footnote (1) in introduction.

Proof. - IQ is weakly contained in v which by our theorem 1
necessarily contains IG as a direct summand. Hence, by proposition 3 in S.
Gaal [9], p. 406, G/H admits a finite invariant measure. The result on the
multiplicities n of IG(IH) m v^) follows from Gaal [9], p. 407.

We use next our main theorem to the regular representation p of any
locally compact group. VNp(G) is denoted by VN(G) in Eymard [7].

THEOREM 3. — Let G be any locally group such that
Mp(C^(G)) = VNp(G), \vhere p denotes the left regular representation.
Then G is compact.

Proof. - Let G^ beany open o-compact subgroup of G. If u e Bp (G^)
(pi is the left regular representation of G^) let u extend u to all of G by
u(x) = 0 if x e G - GI . Then u e Bp(G) (see Eymard [7], 2.31, p. 205).
Also, Pp(G)|^ = {u\^; uePp(G)} = Pp^(G,). ([7], 2.31, p. 205).

We claim that (Gi)p^ the reduced dual, of G^ is discrete. It is enough to
prove that Mp^(Gi)) = VN(Gi). By [7], (3.21)2°, p. 215, the map
v -> V\G^ from A(G) onto A(G^) has as its transpose a map T -> T from
VN(G^) to VN(G) which is an isomorphism of W*-algebras onto VNo
(the w*-subalgebra of VN(G) generated by {p(y),yeG^}) which maps
Cp^(Gi) into C^G). Let TeVN(Gi) , (DeC^(Gi). Then
(TO)°=t6eC^(G) by the assumption of our theorem. Note that T-^t
is one to one since U->U\Q^ is onto. We show that TOeC*(Gi). If
AeVN(G) let A|^eVN(Gi) be defined for i;eA(Gi) by
<A|^i;> = <A,i;>, asin[7]3.21,l°.Ifv|/eVN(Gi) then vJ/|^ = v(/. Since
if ueA(Gi ) then

<^loi^> = <t^> = <^loi> = <vM>.

It follows that TO = [(TO)°]|G^ where (TO)0 e Cp(G). But by [7], 3.21,
1° (T(D)°|^ e C^(Gi). Thus TO e C^(Gi) for each T e VN(Gi).

Hence VN(Gi) ==Mp^(C^(Gi)). Our previous theorem implies that
supp pi is discrete. We use now thm. 7.6, p. 33 of S. P. Wang [17] and get
that GI is compact.

Since any a-compact subgroup G^ of G is compact it follows that G is
compact.
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Applications to the quasiregular representation.

Notations. — H will always be a closed subgroup of the locally compact
group G. We denote by Tin the quasiregular representation of G on
L^G/H,^) where 'k is a quasi invariant measure on G/H (for definition
see Eymard [8], p. 27) and G/H = {x = xH;xeG}.

PROPOSITION 4. — Let H be a closed subgroup of G such that the coset
space G/H is compact. Then M^ (C^ ) = VN^ (In fact C^ is even an ideal
in its second dual).

Proof. — As known [8], p. 27, n^ is the representation of G induced by
IH the trivial one dimensional representation of H on C (which is certainly
CCR). Hence, if G is second countable, then n^ is CCR by I
Schochetman [14] thm.4.1,p. 482.i.e. n^(f) is compact for all / in L^G).
Schochetman's result has been generalized to arbitrary G by J.M.G. Fell in
[21], p. 57. Consequently C^ contains only compact operators for arbitrary
G.

Let A = Cf . Then by Berglund thm. 5.5, p. 25, A is an ideal in its
second dual A". Let KQ be the identity representation of A, n^a) = a for
all a e A where a is an operator on L2(G/H). Then KQ is faithful and
hence lifts to a faithful representation again denoted by KQ of

A' = M(A) = [b e A"; bA + Afc c= A}

into VNj^ (see Ackeman Pedersen Tomiyama [1] prop. 2.4, attributed
there to M. C. Flanders in his Tulane Univ. 1968 thesis) and furthermore
TI()M(A) is the idealiserof A in VN^ i.e. exactly our M^(C^). Note also
that by the same prop. 2.4, KQ lifted to M(A) is just the restriction of the
normal extension from A to A" as in Dixmier [6] 12.1.5. Hence
TloA" = VN^ i.e.

M^(C^)= TToM(A) = 7To(A") = VN^

which finishes the proof.

Remark. — The following know fact has been shown above : If T is a
representation of the dual C*-algebra A (i.e. A is an ideal in A") on the
Hilbert space H, and VN, is the W*-algebra generated by r(A) then
M,[T(A)] =VN, .
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Our main goal in what follows is to get some converse to the above
proposition.

Our main theorem yields immediately the following.

THEOREM 5. - Let G be a-compact, H c: G a closed subgroup and n^
the quasiregular representation. If Mj^(C^) = VN^ then (1) supp n^ is a
discrete closed subset of G (and A^ = B^ for any v weakly contained in n^)
(2) for some cardinal c, cn^ is equivalent to c[L © K ; 71 e supp a} and (3)
any v e supp Tin is CCR.

Remarks. - We hoped to find in the literature a result stating the
following :

(*) Let G be o-compact Hc=G a closed subgroup. If supp Tin is
discrete then the coset space G/H is compact.

(*) Would generalize the well known result of L. Baggett [20],
A. I. Shtern and S. P. Wang [17], p. 33, that if G is-a-compact H = {e}
(thus Tin = P is the regular representation) and supp p is discrete then G
is compact. We could neither find such a result in the literature, nor prove it
ourselves. Clearly, our main theorem together with (*) would imply that if H
is a closed subgroup of the o-compact G and M^ (C^ ) = VN^ then G/H
is compact.

We still will be able to prove this assertion in many cases.

G/H is said to be an amenable coset space, if the identity representation
IG is weakly contained in the quasiregular representation n^. We follow
Eymard [8] in notations and results regarding n^. Many equivalent
conditions as well as many examples of amenable coset spaces G/H are given
in Eymard [8]. In particular, if G is an amenable group then G/H is a
amenable coset space for any H. In quite a few interesting cases, G and
H c: G are not amenable while G/H is an amenable coset space. For
example if G = SL(2R), H = SL(2,Z) then G/H is an amenable coset
space even though none of G or H are amenable groups. Furthermore, if
G/H is compact then it is not necessarily an amenable coset space.

THEOREM 6. — Let G be o-compact and H c= G a closed subgroup such
that the quasiregular representation \veakly contains a finite dimensional
nonzero representation.

If M^(C^) = VN^ then G/H admits a finite invariant measure and the
support of TCH is discrete. In addition any K in supp n^ is CCR.
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Proof. — Assume that a is a non zero representation of G on the Hilbert
space H^ with dim H^ == n, 0 < n < co. Let v(x) == <a(x)^, T| > ^,
T| e H^ be such that v(xo) ^ 0 at some X Q . Then r(x) is a bounded
continuous almost periodic function on G (AP(G)) and M(|i;|) > 0 whet"e
M is the unique invariant mean on the continuous weakly almost periodic
functions on G (denoted WAP(G). Note that \v\ is defined by
\v\(x) = |y(x)| for all x). This is due to the direct sum decomposition
WAP(G) = AP(G) C Wo(G) where Wo(G) = {/ e WAP(G); M(|/|) = 0}
see Burckel [5], pp. 29-30. Clearly v e B^ c B^ = A^ (by our theo-
rem 1). Apply now the majorisation principle of Hertz as given in
Arsac [3], p. 54 (take co = In). Then there is some u e A^ such that
\\u\\ ^ |H| (in B(G) norm) but \v(x)\ ^ u(x) for each x in" G. Hence
M(u) = d -^ 0 and by Dixmier [6], 13.11.6, p. 274 the constant d = M(u)
function belongs to the uniform closure of Co{l^u',xeG} where
(^OCv) = ̂ .V) ^d Co denotes convex hull. Clearly, by M. Walter [15],
p. 33, l^ueB^ . Also, for any w e Co{l^u;x e G} ||w|| ^ \\v\\ see [7], p. 186.
Let Wp e Co{l^u',x e G} be a net such that Wn(x) —> d > 0 uniformly in
xeG. Then a subnet Wp will converge w* andafortiori a(Bj, , L^G)) to
some WQ e B^ (which is the dual of C^ ). If /eCoo(G) then
r 7* r H

Wp^ f dx -> Wof d x . Thus (wo — d)f dx = 0 for each /eCoo(G).
J J J
This shows that \VQ = d a.e. (G is cr-compact). Since \VQ is continuous
W Q = ^ > O everywhere. Thus 1 e B^ and IQ is weakly contained in Tin-
Apply now theorem 2 and the fact that K^ is in fact IH induced to G. Thus
H has finite covolume in G and supp n^ is discrete.

COROLLARY 1. — Let G be o-compact H a closed subgroup be such that
Tin weakly contains a finite dimensional -^ 0 representation. If
M^ (C^ ) = VNj^ . Then G/H is compact and admits a finite invariant
measure at least in the following cases :

1. H is compact.

2. H is a semidirect summand.

3. H is open in G (i.e. G/H is discrete) (2). In particular if G is discrete.

4. G is connected and H == Zo(A) = {x e G;ax=x for all Qi 6 A} vv/zer^
A fs OM^ 5^? of continuous automorphisms of G.

(2) Any n in supp n^ is CCR and since G is discrete n is finite dimensional.
The requirement that n^ weakly contains a finite dimensional rep. is superHous.
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4'. I t is enough in 4 that G is only G-compact H = Zo(A) and F(G/Go)
is open in G/GQ (where GQ is the connected component of e and
F(K) = {x e K; x has relatively compact conjuacy class in K}.

Proof. — 1. A^ = B^ by our theorem 1 and 1 e Bj^ by theorem 6.
Thus 1 e A^ . However A^ <= A(G) by Arsac [3], p. 83, proposition. Since
1 e A(G) c: Co(G) it follows that G is compact.

2. G = HN and H x N -> HN defined by (h, n) -> hn is a homeomor-
phism. Also H n N = [e] and N is normal in G. Thus
N = N/N n H -> G/H and H = H/N n N -> G/N (canonical maps) are
homeomorphisms. By prop. 4.4 of S. P. Wang [18], p. 413, H has finite
invariant covolume in G (which holds by our theorem 6 above)
iff [e] = N n H has finite covolume in N. This just means that the Haar
measure ^ on the group N satisfies ^(N) < oo. Thus N has to be a
compact group (as well known) and since N and G/H are homeomorphic,
G/H is compact.

3. G/H is discrete and admits a finite invariant measure by our theorem.
Thus G/H is finite.

4 and 4'. Our theorem 6 implies that H = Zc(A) has finite invariant
covolume in G. We apply now Corollary 5.7, p. 416 ofS. P. Wang [18] and
get that G/H is compact. Note that a slightly better result than 4 can be
obtained, by using thm. 5.6., p. 416 of S. P. Wang [18].

COROLLARY 2. — Let G be (j-compact H a closed subgroup be such that
Tin weakly contains a -^ 0 finite dimensional representation. If
M^ (C* ) = VN^ , then G/H is compact and admits a finite invariant measure

H H H
at least in the following cases :

1. G is a connected Lie group and H is a connected subgroup.

2. G is a solvable Lie group and H any closed subgroup.

3. G (5 any Lie group and H = Zo(A) where A is any set of continuous
automorphisms of G.

4. G is a Lie group all whose connected semisimple subgroups are compact
and H any closed subgroup.

Proof. — In any case H has finite covolume in G by our theorem 6. We
use now some deep results of G. D. Mostow which state that if G is a
connected [or solvable] Lie group and H is any connected [arbitrary] closed
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subgroup such that H has finite covolume in G then G/H is compact (see
[19], p. 317 and [16], p. 392 or Mostow [11]). To prove (3) use S. P. Wang's
thm. 3.6 on p. 319 of [19] which states that H = Zc(A) has finite covolume
in G if and only if G/H is compact.

To prove 4 note that by theorem 2.1 of S. P. Wang[19],p. 315 any closed
subgroup H of such G for which G/H has finite invariant volume
necessarily satisfies that G/H is compact.

COROLLARY 3. — Let G be (j-compact H a closed subgroup be such that
Tin weakly contains a 7^ 0 finite dimensional representation and
M, (C? )=VN^ .n^\ n^ TC^

// G is a Lie group H any closed subgroup then G/H ^ is compact and has
a finite invariant measure, where H^ = ZG(ZG(H)).

Note. - Zo(K) = {xeG,xk=kx for all k in K}.

Proof. — Our theorem 6 implies that G/H has a finite invariant measure
Thus by Wang [19] Cor. 3.7 G/H^ is compact. But H c= H ^ . Thus by
Mostow [11] lemma 2.5 G/H^ admits a finite invariant measure.

The reader will notice that in all above corollaries 1, 2 and 3, G and H
were so chosen that the assertion G/H admits a finite invariant measure (i.e.
IG is an isolated point of supp Tin) implied that G/H is in fact compact.

Our theorem 6 implies however more that this fact, namely it implies that
supp T^H is discrete and G/H admits a finite invariant measure, and any n in
supp Tin is CCR.

We expect in fact that the following statement (weaker than the statement
(*) after theorem 5) to be true :

(**) Let G be a-compact, H a closed subgroup be such that G/H
admits a finite invariant measure. If supp Tin ls discrete then G/H is
compact. The truth of (**) would imply an improved version of theorem 6
namely.

Assertion 6'. - Let G be a-compact H a closed subgroup such that n^
weakly contains a finite dimensional nonzero representation.

If M^ (C^ ) = VN^ then G/H is compact and admits a finite invariant
measure. (Theorem 6 only asserts that supp Tin is discrete and G/H admits a
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finite invariant measure). One notes that Assertion 6' would make corollaries
1, 2, 3 superfluous.

We pose hereby, statements (*) or at least (**) as open questions.
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