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HARMONIC INTERPOLATING SEQUENCES,
L^ AND BMO

by John B. GARNETT

Let (^) be a sequence in the upper half plane. If 1 < p ^ oo
and if y^f^) = a^ , v = 1 , 2 , ... has solution /'(2;) in the
class of Poisson integrals of Lp functions for any sequence
[a^) e ^p, then we show that (^) is an interpolating sequence
for H00 . If f(z^) = = a ^ , v = = l , 2 , . . . has solution in the class
of Poisson integrals of BMO functions whenever (aj e f00,
then (z^) is again an interpolating sequence for H°°. A some-
what more general theorem is also proved and a counterexample
for the case p ^ 1 is described.

1. Let ^ = x^ -4- ^/v ? y^ > 0 be a sequence in the upper
half plane U , and let

P ( t \ = 1 ^
w ^ (t-x^+y^

be the Poisson kernel for z^ . When

ff(t){i + t2)-1 dt < oo

we write f{z^) = j f(t)P^t) dt and when 1 ^ p ^ oo we write

V(.) = y^f^} .

The operator Tp maps L1' into the space I30 of bounded
sequences, because ||Pv||g < ^y71/p? q = p / { p — 1) . If for
every (p sequence {a^) the interpolation

(1.1) yl.lpf{z.)=a^ v = 1 , 2 , . . .
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has solution within the class of harmonic functions f{z) on U
representable as Poisson integrals of LP functions, then for
brevity we write Tp(L^) ^ IP, Similarly, T^(FP) ^ IP means
that (1.1) has solution f(z) e HP. By a theorem of Carleson [3],
[7], Tp{W) = ̂  if and only if the points ^ satisfy

(1.2) inf n
V PL,(IT£V

^V —— ZL

= 8 > 0

Consequently a sequence satisfying (1.2) is called an interpo-
lating sequence.

In [9] it was proved that {zj is an interpolating sequence
if and only if T^(L°°) = Z°°, and this result was refined in [4]
and [13]. Here we extend the work of those papers to obtain
(1.2) when Tp(L^) ^ IP, 1 < p , or when T^(BMO) => I00.

Condition (1.2) holds if and only if the following two geome-
tric conditions both hold

(S) |̂  — z^\ ^ ̂  , ^ ^ ^ ,
(C) S y.^ B;(Q) ,

2\€Q

for all squares Q = = { a < ; r < a + Z(Q), 0 < y < <I(Q)} . See
[10] or [9] for a proof of this well-known equivalence. Because
of generalizations mentioned below we state our two theorems
in terms of (S) and (C) .

THEOREM 1. — If 1 < p < oo and if

(1.3) T,{LP) =3 I P ,

or if p = oo and if

(1.4) T,(BMO) => I-
then (S) and (C) hold.

COROLLARY. — The sequence (zj is an interpolating sequence
if and only if (1.3) or (1.4) holds.

The other theorem draws the same conclusion from a weaker
hypothesis, which is a version of (1.2) for harmonic functions
from LP or BMO .
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THEOREM 2. — If i < p < oo and ^/* (Aere are f^ e 17,
v = 1 , 2 , . . . such that ||/*J|p ^ 1 and

(1.5) T/^)^0, ( i ^v
infT^(v)=8 > 0 ,

v

then (S) and (C) Ao(d. If there are /*,/ e BMO , v = 1 , 2 , . . .
such that H /v l lBMo ^ 1 ^d

(1.6) T^(ti) ^ 0, ^ v
inf TJ,(v) - 8 > 0

v

then (S) and (C) Aold.
Conditions (S) and (C) have analogues in the upper half

space R^1, [4], and the two theorems stated here are true
in R^1 even when P^ is replaced by

K^^-K^——^)yv \ y^ /
where K ^ 0 , K e L1 n L00, | VK(()| ^ C(l + M)^, and
f K A = 1 . It is very likely that the proofs are valid in
certain spaces of homogeneous type ([5], [6]), such as the unit
ball of C" with Tp defined using the Poisson-Szego kernel
([10], [11]). See [I], in which a converse of Theorem 1 is
proved in that generality. For n > 1 it is not known if (S)
and (C) imply interpolation of I00 by bounded harmonic
functions on R^1, and we do not claim that the corollary to
Theorem 1 generalizes to R" or C". To keep things simple
we only prove the theorems for Poisson kernels on R1.

The methods here are all real analysis; the principle tool
is the lemma from § 4 of [4].

In Section 2 we obtain the inequality needed to prove
Theorem 1, we show that Theorem 1 is a corollary of Theorem 2,
and we verify condition (S). We also include a proof, due to
Varopoulos, of Theorem 1 for p > 2 .

Theorem 2 is proved in Section 3. In Section 4 we show by
example that (C) can fail when Ti(L1) == l^ or when

Tp(Re H^) = Re l^ 1/2 < p < 1 ,

'for p < 1, Tp must be defined by (1.1) with /*== Re F
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F e H ^ ) . I suspect that Ti(Re H1) = Re I1 implies (C) but I
have no proof.

I thank Eric Amar and Nicholas Varopoulos for useful
correspondence and conversation.

The letters c and C stand for universal undetermined
constants, the same letter denoting several constants.

2. In Theorem 1 it is not assumed that Tp is a bounded
operator from L^ to ^p, or even that Tp^) c: IF (which
is the same by the closed graph theorem). Indeed, if Tp were
bounded then condition (C) would follow by the theorem on
Carleson measures ([7] p. 193). Then, as noted in [9], Tp(L^)==^
would trivially imply (S) and (C). However, there is an
adequate substitute for boundedness.

LEMMA 2.1. — If 1 ^ p < oo and if (1.3) holds, then there
is a constant M such that whenever ^[a^ ^ 1 , the interpo-
lation Tpf(v) = a, has solution with ||/1|p ^ M . If (1.4) holds,
there is a constant M such that whenever (a^) e Z00, the inter-
polation T^/*(v) == a^ has solution with H/UBMO ^ MsupjaJ.

Proof. — For 1 ̂  p < oo , the set

E^=l? n Tp({/*: ||/'||p < N})

is closed in lp. With (1.3) category shows that some EN has
interior in !?, so that some EN then contains the unit ball
of I P .

For p = oo , we use the fact that BMO is the dual of the
real Banach space Re H1 [8], although a more elementary
argument can be given in a few more words. Since

the set
P, -- PI e Re H1,

EN - {(a,) e I00: f(z,) - f(z^) = a, - a^ ,
v = 1 , 2 , . . . H/IBMO ^ N}

is closed in Z°°. Since constant functions have zero BMO
norm, (1.4) and category as above show interpolation is
possible with H/UBMO ^ MsupJaJ.

Because of the lemma, Theorem 2 clearly implies Theorem 1.
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In Theorem 2 (or Theorem 1), condition (S) is easy to
verify. For p < oo there is j fe lA \\f\\p ^ 1 such fhat
A^u.) ^ 0 , f{z^) ^ Sy^1^. The harmonic function /*(z) satisfies
IV^z)] ^ q/-<l+l^||/>||p ^ cy-^P\ so that

if

Hence

s^ ^ 1/^v) - A^)l ^ oy^1'^ - ^1

l^v — |̂ < 2/v/2 .

l^v — ^1 ^ / 1 8 \-l-v——^-1- ^ Max ( -^ , — },y. \2 c y
and we have verified (S). When p = oo there is f e B M O ,
II/II BMO ^ 1 such that f{z^) ^ 0 , f{z^) ^ 8 . The elementary
estimate y|Vf(z)| ^ c\\f^Mo 9 then yields (S) just as in the
case p < oo above.

N. Varopoulos has a simple proof of Theorem 1 for p > 2
which we now present. By the lemma, (1.3) has the dual
formulation

(2.1) S|X^ ^ MUSX^PJI^

for all finite sequences (X^) , where q = p l ( p — 1). To
prove (C), fix a square Q with base I and let I be the
interval concentric with I having length |T| ==3|I| . Let
z! ? ^2 ? . . . , ^N be finitely many points from our sequence
lying in Q . Let X, = ± y^, v =1 , 2 , . . . , N with
random ± sign. Taking expectations in (2.1) gives

S t / v ^ M f\^yW2 dt = M f^ + M J^.

Since g/2 < 1 , Holder's inequality gives
q

f^yW2 dt ^ |l|1"2 (J^P?| dt)"2

i_3 i-i/1^ Y/2^ 3 ^|i | ^ ( s y v ) •
\ i /

Fixing XQ e I , we have P^(() ^ cy^l(t —rro) 9 if ^ e Q and
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ti I , so that
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R\I I 1

!<7/2 ^' N \ ^ / 2 /^sy?) r. i / t/ci5 dt ^ c
(R^l^-^ol^

/N \g /2 /'"//o

^(Sy.) • I I I 3 ^ 2 . f ^
\ 1 / Jm S2"

Hence

?/21 _ 2 / N ^

< C,|I| ^Sl/v
\ 1 ^

/N \1"^ 1-2^y.) < C| i| 2
and condition (C) holds.

Varopoulos' argument can be modified to give the BMO
case of Theorem 1 in this way. It is enough to verify (C) for
a square Q whose upper half contains a point ZQ from the
sequence. Let ^ , . . . , zy be finitely many other points from
the sequence and in Q . By the lemma and by duality
(1.4) gives

S 1 |̂ ^ Msup ^ X/(z^)
y=i ./=!

IBMO < 1 , /"(Zo) =0<

< cM 2 x/P^ - Po)
H<

N / 1
=cM 2 x,(——-

l^i 'V-^ f-WllL
We again set ^ = ± ^ and take the expectation, getting

Now

s ^ < ^ r S s ^ 1 ^ -
1 ^R ( t — Z, (

1 |2U/2

Zo
d t .

i | 2 ) 1 / 2

( — Zj t Zo
d(

<3"2"llt2/,^^^^^*j
< 3-1 ii-̂  s ̂ ^^ ,̂,+ 2^/mp

i ^T
N \1/2

^CIII1^^^2-
V i /

1 / 2
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For t^\,

so that

r ( N

J . S ^
^RKl ^ 1'RYI

^ — Zj t — ZQ

1 |2U/2

{t - ^O)4

t — Zj t — ZQ
dt

( N \1 /2 ^

^ S^) IIP^J
^ cm^ (s^)i^.

i i |
(( - x^

dt

Hence (S^)^2 < Cjl l^ 2 and (C) holds.
This reasoning does not apply to the case p ^ 2 nor to the

situation in Theorem 2.
3. In proving Theorem 2 we can now assume the points

satisfy (S)
hv — ^1 > ay^ , (A ^= v .

We prove (C) by contradiction. The idea is that if (C) fails
with a large constant B then there are relations among the
kernels P^ which are inconsistent with (1.5) or (1.6). Our
main tool is this lemma from [4].

LEMMA 3.1. — For £ > 0 there is a constant B(e,a) such
that if

(3.1) ^ y^ B(e,a);(Q)
2\eQ

for some square Q ^ = { a < x < a - { - ((Q), 0 < y < ^(Q)}, then
there is a point z^ in the sequence and there are weights X«
such that

(3.2)
(3.3)
(3.4)

X;, > 0 , SX,, = 1
^=0

||P,- SX;,.PjJ|i < e

(3.5) S \. < ^(Q)IIPvlL < for all Q .KO),
^v

Except for (3.5) the lemma is proved in Section 4 (and
Section 2) of [4], and (3.5) is implicit in that proof because the
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functions constructed there are non-negative. We refer to [4]
for the details.

Suppose 1 < p < oo , let s > 0 be determined later,
and assume (3.1) holds. Write G == P^ — SX^P^ , where the
Ay. are given by Lemma 3.1.

LEMMA 3.2. -- |[G||BMO ^ cfy^ .

Proof, — Fix an interval I with center <o ^d ^t
Q , = { z : y < 211), \x-t,\ < 2'-W.

For Zu. e Qi we have trivially

irF^Tif
while for Zn e Qn\Qn-i , n > 2 , we have

wf^-^^^f.w1^^/1
<—c—" 22"! I|'

Letting a == S,, ^q, XnP«((o), we then have

- FIG - a\ d t ^ ||PJ|, + S ]^-+ 5 S 2^
I1! Jl z^Q, I1! n=2z^Q^Q^^ | 1|

< ^/2/v
by (3.5), and the lemma is proved.

Now define G^{x) = s u p 1 f iG — Gij dt, where Gi
xei ] 1| Jl

denotes the mean of G over I . By Lemma 3.2, flG^H^, ^ c/?/^,
and by the Hardy-Littlewood maximal theorem and (3.4),
G^ has small weak L1 norm

m(X) =\{x:G^(x) > X}| ^ ^-.
A

Consequently for q = p l { p — 1),

11G^ = q^^ mW d-k ^ Cqe f^\^ d\
and

\\G%^ C^y711^
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From Theorem 5 of [8] we conclude that \\G\\q ^ Cq^y^ .
But then if C,s1^ < 8 , (1.5) and (3.2) give this contradic-
tion :

8y^ ^ fGf.dt ^ C'^'y^

( ^.q \
We conclude that (C) holds with constant B —? a ) .

(4 /
Now suppose p == oo . Again if (C) fails we have a point

z, and weights X^ such that (3.2), (3.3) and (3.4) hold for
some e > 0 to be determined. By (1.6) there is j feBMO
such that ||/1| BMO ^ M = 1/8 , and

(3.6) /•(^) == 0 , f(z^) > 1 , (x ^ v .

If f(z) were bounded, say \\f\\^ ^ M , (3.6) and (3.4) would
be in contradiction as soon as Ms > 1 . As we only have
B/II BMO ^ M , more properties of the weights X« must be
used. From Section 4 of [4] it also follows that Xy == 0 except
when y^ < y^ and \x^ — x^\ < cy^/e2. Let

J= {t:\t-x,\ < 3q/,/s2},

an interval containing all x^ with X« > 0 in its middle
third. For t i J , we then have

(3.7) |G(()| = |P^) - 2X^(()| ^ CP,(() .

By (3.6) and the John-Nirenberg Theorem,

f | f{t)\ ̂ (t)dt ^ CM4.

Hence by Holder's inequality

^ f^\fW.Wdt^ CMe3/4,

while trivially

(3.9) f,\f(trdt^ CM4/^.

By (3.7) and (3.8), f \fG\ dt < CMe3/4. By (3.9), Holder's
»/R\J

inequality, and our estimate on ||G[4/3 , we also have
JJ/*G| dt ^ CMs3/4-1/2. Since [ f fG dt ^ 1 by (3.6), there
is a contradiction if CMe^4 < 1 .
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This proof for p = oo , due to Peter Jones, is much simpler
than my original proof.

4. We give an example of a sequence {^} for which (C)
fails but for which Ti(L1) =3 ^ . At the same time we show
that (C) can fail for a sequence for which

TpA^) = yW^ =a^ v = 1, 2 , . ..

has solution fe Re HP whenever Sja^ < oo , provided
1/2 < p < 1 . Here Re HP is the space of real parts of HP
functions with the quasinorm ||Re F\\^p == \\F\\^p, F e HP.

LEMMA 4.1. — Let 0 < p ^ 1 , and let ^ < 1/2 . Suppose
there are /, e H^ (/, e L1 w/^n p == 1) such that

(4-!) 11/vl^M ./• p < l
or

11/vlli ^ M i/* p = 1 ,
(4.2) IV.M-ll < ^ ,
(4-3) S WW < ^M^^v

/or v = 1 , 2 , ... r/«?n T.,(Re HP) ^ IP if p < i and
Ti(L1) = ;, if p == 1 .

Proof. — If SjaJ/- < oo , let F = So/, . Then by (4.1)
||F||̂  < MW> if p < 1 , and [|F||i < MSjaJ if p = 1 .
And by (4.2) and (4.3),

^ |TPF(V) - a^r < 2y)"S|a^.
v=l

The lemma now follows by iteration.
For Zo = a;o + 11/0 , and for 0 < e < yy , let

/^(^) = ̂ - ̂ """(Xl t-^| <£ - XK-^+^I <e) ,

where %s is the characteristic function of S . Then

I^/U^I < 1 and i/^/^zo) -^1 (e ̂  0).
A}so \\fw\\i < 47t when p = 1 .
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LEMMA 4.2. - For 1/2 < p < 1, I/, J^, < Mp .

Proof. — We have

(4.4) 11/̂ h ^ C -̂1'"
and

(4.5) ff^{t) dt = 0 .

Also /^g has support in { | ^ — ^ o | < 2yo} . This means
that /^g is a (p, 1) atom in the sense of [6], and the lemma
follows from Theorem A of that paper. A well-known elemen-
tary argument can also be given for special case at hand.
Recall the non-tangential maximal function /** from § 3.
We use the theorem that f (z) e Re H^ if and only if f * e 1̂  ,
and that ||/'||HP - ||/"lt||p . See [2] or [8].

When | ( — X Q \ < 4z/o , (4.4) and the Hardy-Li ttlewood
theorem give us, for f == f^ g ,

\{t:\t^x,\ < 4yo, \r{t)\P > X}1 ^ Min^o,^^).

Hence
/» /»c/7o /^^ P,,1—1/P
f IfW^ < 8yo f dX + f -^-rfX = M .
J\t-^<^ JQ Jcly, A / p

If \t — XQ\ > 4yo and if z e r((), then

^ p / N C C

^ l zw ^ j z -^o l 2 |t-^,|2

on the support of /"^( . Then (4.5) gives

IWI < ̂ -"'̂ T'
and so

I-^J^w^ ̂ r1/;^-2^" ^ c,
when p > 1/2 .

j[
Fix T] with -^ < 1/2 . Let z^ = — + 18 where 8 = S(T])

^5
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is to be determined, and let $1 be so small that

|^(Zl) - 1) < 7) .

Write /i == /^ ^ . From Ii == [0,1] delete the two intervals
11 — 1/2) < 2si , |^ — 8 — 1/2| < 2ei containing the support
of /i , and partition the remainder of Ii into dyadic intervals
la , Ig , . . . , !„,, of length 2""*. (We suppose £1 is a negative
power of 2). Let x^ be the center of 1^, 2 ^ v ^ m^ and let
^ = 82""*. The points ^ == x^ + ^2/v 5 2 ^ v ^ m2 , join Zi
in our sequence. Choose £2 anc! P^ /v = fz^ , 2 ^ v ^ m^ .
When ng ]s fixed, £2 can be chosen so that (4.2) holds for
2 ^ v ^ m^ . We claim that n^ and £2 can he chosen so
that (4.3) holds for the finite sequence z^ , . . . , z^ . When
v == 1 the left side of (4.3) is

m^ oo / s>o—ng \p

^-^JW\' < C2-̂ ,̂(̂ ,_.:̂ .,_...)
Wa oo / s>0—ng \p

^IA( '̂<C2-^,(^2^.^,)

^ C81-^P2-/ll<l-^(£l2ft2)l-2p

9—n»P
=C8^^,

which is small if ^3 > 7^2(£l)• F01* ^ > 1 ? one term in the
left side of (4.3) is

|TpA(i)i^ ^ Ct/r^Pi^) - Pi(^ + yv)!11
5^p p

^ C8p-12-nl<2p-l) sup —1 ,
i, ^s

and since p > 1/2 this is small if 2~^2 is small. For ^ > 1
we also have the sum

W» Wi

S IV,(tx)|/- < C(82-".)/' s IP^v) - P^ + y^"
(A==2 ' (1=2
PL^V ^V

< Cf82-'n^2p V _____~_____
k'i (^2-2^2 + 822~2ft^

< C8^ < 7)/2
if 8 is chosen correctly.

From each 1^, 2 ^ v < Wg , delete the two intervals of
length 4£2 whose middle halves support /^ . The remaining
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w»

parts of L J Iy partition into dyadic intervals L ,
2

Wg + 1 < (JL < m3 ,

of length 2-^3 and with centers Xn . Let z» == rpp. 4" ^82~"3,
and let /p. = fz^ , mg + 1 ̂  (A ^ m3 . Taking n^ large
and £3 small, we can use the above reasoning to obtain (4.2)
and (4.3) for 1 ̂  v ^ mg . This process can be continued
to get an infinite sequence of points for which by Lemma 4.1,
Tp(Re HP) ^ IP if p < 1 and Ti(L1) ^ I1 if p = 1 .

The sequence lies in the unit square so that (C) will fail if
Sy^ == oo . However

-^-Sy, = S|IJ = 1 + (1 - 8e,) + (1 - 8^)(1 - 8s,) + ...

and this sum diverges if Se^ < oo .
By using functions f^ with several vanishing moments,

one can obtain similar examples for 0 < p ^ 1/2 .

Added in Proof. — Peter Jones has proved Ti(Re H1) = Re I1

implies (C) by refining the proof of Lemma 3.1.
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