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HARMONIC INTERPOLATING SEQUENCES,
L AND BMO '

by John B. GARNETT

Let (z,) be asequence in the upper half plane. If 1 < p <
and if y¥%f(z,) =a,,v=1,2, .. has solution f(z) in the
class of Poisson integrals of L functions for any sequence
(a,) € I, then we show that (z,) 1s an interpolating sequence
for H*. If f(z) =a,,v=1,2,... hassolution in the class
of Poisson integrals of BMO functions whenever (a,) € [,
then (z,) is again an interpolating sequence for H*. A some-
what more general theorem is also proved and a counterexample
for the case p < 1 1is described.

1. Let 2z, =2, + 1y,, ¥y, > 0 be a sequence in the upper
half plane U, and let

1 Yy
PO = =2y it

be the Poisson kernel for z,. When

ff )tdt < ©

we write f(z,) f f(t)P,(2) dt and when 1 < p < © we write

T,f(v) = 91 (z) -

The operator T, maps L into the space [* of bounded
sequences, because [P, < cyi¥, ¢g=p/(p —1). If for
every [P sequence (a,) the interpolation

(1.1) yi*f(z,) = a, , v=1,2,
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has solution within the class of harmonic functions f(z) on U
representable as Poisson integrals of L* functions, then for
brevity we write T,(L?) > I°. Similarly, T,(H?) > I? means
that (1.1) has solution f(z) € H?. By a theorem of Carleson [3],
[7], T,(Hr) = Ir if and only if the points z, satisfy

(1.2) inf [

N

Z, — 3

=8 >0.

Z, — 2y

Consequently a sequence satisfying (1.2) is called an tnterpo-
lating sequence.

In [9] it was proved that {z,} is an interpolating sequence
if and only if T_(L*) =1*, and this result was refined in [4]
and [13]. Here we extend the work of those papers to obtain
(1.2) when T, L*) 2 I?,1 < p, or when T_(BMO) > [~.

Condition (1.2) holds if and only if the following two geome-
tric conditions both hold

(S) lzv_"zp.l Z oYy, mFEY,
(C) Y y < BlQ),

2,€EQ

for all squares Q ={a <z <a+1(Q),0 <y < (Q)}. See
[10] or [9] for a proof of this well-known equivalence. Because
of generalizations mentioned below we state our two theorems

in terms of (S) and (C).
Taeorem 1. — If 1 < p < o andif
(L3 T, (L) > I,
orif p= © andif
(1.4) T.(BMO) = I*
then (S) and (C) hold.
CororLLary. — The sequence (z,) is an interpolating sequence
if and only if (1.3) or (1.4) holds.
The other theorem draws the same conclusion from a weaker

hypothesis, which is a version of (1.2) for harmonic functions
from L» or BMO.
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Tueorem 2. — If 1 < p < and if there are f, € Lr,
v=1,2, ... suchthat |f, Hp < and
(1.5) Tf(w) <0, w#v

inf Tpfv(v) =35>0,

then (S) and (C) hold. If thereare f,e BMO,v=1,2,
such that |fuwo < 1 and

(1.6) T.fw) <0, p#v
mf T f(v) =8 >0
then (S) and (C) hold.
Conditions (S) and (C) have analogues in the upper half
space R%*"1 [4], and the two theorems stated here are true
in R**1 even when P, is replaced by

K. (f) = i K(“’__—_t>
v Y,

where K >0, Kel! nL® |VK()| < CG(1 4 |¢)***, and
f Kdt=1. It is very likely that the proofs are valid in
certain spaces of homogeneous type ( [5], [6]), such as the unit
ball of C* with T, defined using the Pmsson -Szego kernel
([10], [11]). See [1 ], in which a converse of Theorem 1 is
proved in that generality. For n > 1 it is not known if (S)
and (C) 1mply interpolation of [* by bounded harmonic
functions on R%*!, and we do not claim that the corollary to
Theorem 1 generalizes to R" or C". To keep things simple
we only prove the theorems for Poisson kernels on R,

The methods here are all real analysis; the principle tool
is the lemma from § 4 of [4].

In Section 2 we obtain the inequality needed to prove
Theorem 1, we show that Theorem 1 is a corollary of Theorem 2,
and we verify condition (S). We also include a proof, due to
Varopoulos, of Theorem 1 for p > 2.

Theorem 2 1s proved in Section 3. In Section 4 we show by
example that (C) can fail when T;(L!) =1, or when

T,(Re H?) = Re I, 12 <p <1,
“for p <1, T, must be defined by (1.1) with f= ReF
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F e H?). I suspect that T,(Re H') = Re I* implies (C) but I
have no proof.

I' thank Eric Amar and Nicholas Varopoulos for useful
correspondence and conversation.

The letters ¢ and C stand for universal undetermined
constants, the same letter denoting several constants.

2. In Theorem 1 it is not assumed that T, is a bounded
operator from L? to [?, or even that T,(L?) < I (which
1s the same by the closed graph theorem). Indeed, if T, were
bounded then condition (C) would follow by the theorem on
Carleson measures ([7] p. 193). Then, as noted in [9], T,(L*)=Ir
would trivially imply (S) and (C). However, there is an
adequate substitute for boundedness.

Lemma 21. — If 1 < p < o and if (1.3) holds, then there
is a constant M such that whenever Z|a,|? < 1, the interpo-
lation T, f(v) = a, has solution with |f|5 < M. If (1.4) holds,
there is a constant M such that whenever (a,) €l®, the inter-
polation T_f(v) = a, has solution with |f|smo < M sup|a,|.

Proof. — For 1 < p < oo, the set
Ex =10" n T,({f: Ifl, < N})

is closed in . With (1.3) category shows that some Ey has
interior in [?, so that some Ey then contains the unit ball
of Ir.

For p = o, we use the fact that BMO 1s the dual of the
real Banach space Re H! [8], although a more elementary
argument can be given in a few more words. Since

P, — P, e Re H},
the set
Ex = {(av)Elw:f(zv) —f(zl) =a, — 01,
V=1727 "f"BMO < N}

is closed in [I*. Since constant functions have zero BMO
norm, (1.4) and category as above show interpolation is
possible with [flemo < M sup, |a,|.

Because of the lemma, Theorem 2 clearly implies Theorem 1.
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In Theorem 2 (or Theorem 1), condition (S) 1s easy to
verify. For p < oo there is felLr, |fl, <1 such that
f(z) < 0,f(z) = 3yy¥*. The harmonic function f(z) satisfies
|Vf(2) < ey-0+m|f], < ey-C+p, so that

Syy? < |f(=z) — f(zu)] < eyy @+ VPz, — 7|
if
|2, — 7| < y/2.
Hence
MLI > Max i ) i 5
Y, 2 ¢

and we have verified (S5). When p = oo thereis fe BMO,
Iflemo < 1 such that f(z,) < 0, f(z,) > 8. The elementary
estimate y|Vf(z) < c[flemo, then yields (S) just as in the
case p < «© above.

N. Varopoulos has a simple proof of Theorem 1 for p > 2
which we now present. By the lemma, (1.3) has the dual
formulation

(2.1) ZIn1 < MIZAyPP |7

for all finite sequences (1,), where ¢ = p/(p —1). To
prove (C), fix a square Q with base I and let I be the

interval concentric with I having length || = 3|I]. Let
Zy, %, ..., 2y be finitely many points from our sequence
lying in Q. Let A, =+ y¥, v=1, 2, ..., N with
random + sign. Taking expectations in (2.1) gives

N
2P2le/2 Jf —
% Y, < Mf|2vav|‘1 dt Mfi—}— Mfk\i.
Since ¢/2 < 1, Holder’s inequality gives
[ 1zyPyoe de < [T f |Zy3PY de)"™

3731} "5@ yv)m-

Fixing 2, eI, we have P3(t) < cy?[(t — x,)? if z,€Q and



t¢1, sothat
f N q/zd <
t < c¢ —
8 Nt (R\f)lt — x|
q/2 °°d3
<e(Su)" e (70
1 (x $

Y ¥iP3
1
1-4 I2
< ClT| 2(2 yv> .

N 1= 1
(2 yv) <qnte
1

and condition (C) holds.

Varopoulos’ argument can be modified to give the BMO
case of Theorem 1 in this way. It is enough to verify (C) for
a square Q whose upper half contains a point z, from the
sequence. Let z,, ..., zy be finitely many other points from

the sequence and in Q. By the lemma and by duality,
(1.4) gives

N
51 < Msup }
Jj=1

N
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q/2 dt
)" J.

2~z

Hence

25}

124 ljﬂzj) fllemo < 1, f(z) =0
(P, — Py)
Hms

1 1\
jt_zj t_EOiL‘

We again set A; = * y; and take the expectation, getting

N 1 2)1/2
Zyjschgzyg g dt.
1 R

t—3 t—3

Now
1 1

N . 21/2d
- — t
L;E?bt_zj t_zog

1/2
31/2|1|1/2322f|t dt—l—ZZ flt s g
1/2] J|1/2 Y
<3/|1|/32§y,f1(t_ bl + 2%y /[I|€

x)? + y
N 1/2
LRGN
. 1
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For t¢1,
(R T < c|1]?
t— 3% t— 1z (t— 2
so that
N 1 1 2%1/2
2 — — ~ dt
fl;\‘i3§yjt—zl t_ZO

N
< | 1’%[ — 0 dt
(%%) l R t_xo

< QT[22 (Zynre.

Hence (Zly, )1/2 C|Ij*/2 and (C) holds.
This reasomng does not apply to the case p < 2 nor to the
situation in Theorem 2.

3. In proving Theorem 2 we can now assume the points
satisfy (S)
lzv_zy|>“yva y'#v°

We prove (C) by contradiction. The idea is that if (C) fails
with a large constant B then there are relations among the
kernels P, which are inconsistent with (1.5) or (1.6). Our
main tool is this lemma from [4].

Lemma 3.1. — For ¢ > 0 there is a constant B(e,a) such
that if
(3.1) quv > B(e,a)l(Q)
z,€

for some square Q = {a < z < a4+ 1(Q),0 <y < I(Q)}, then
there is a point z, in the sequence and there are weights M,
such that

(3.2) A, >0, I, =1

(3.3) A, =0

(34) " Pv - zng,Panl <e

(3.5) a < UQIP. <4, foral Q.
7,,,EQ ! nyv

Except for (3.5) the lemma is proved in Section 4 (and
Section 2) of [4], and (3.5) 1s implicit in that proof because the
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functions constructed there are non-negative. We refer to [4]
for the details.

Suppose 1 < p < o, let ¢ >0 be determined later,
and assume (3.1) holds. Write G = P, — ZA,P,, where the
A, are given by Lemma 3.1.

Lemma 3.2. — |Glemo < ¢fy, -

Proof. — Fix an interval I with center ¢, and let
Qu={z:y < 21|, | — &, < 2"1|}.

For z, € Q; we have trivially

1 1
— | P, dt < ’
[ ﬁ ¢ Al

while for z, € Q\Q,_;, n > 2, we have

P (to)] dt < f |t — & dt
i Ji1Pe = Puts) )i = 32

22n| Il

Letting a = X, ¢q, AuPu(ty), we then have

1 cA
— |G —a|ldt < |Py),+ ¥ —*‘—+ e
i J16—ald <P 211 £w$%%w

< c¢ly,
by (3.5), and the lemma is proved.

Now define G*(z) — sup I_ill_ f |G — Gi| dt, where G
z€l I

denotes the mean of G over I. By Lemma 3.2, |G¥|,, < c/y,,
and by the Hardy-Littlewood maximal theorem and (3.4),
G* has small weak L! norm

m(\) = |{z: G¥(z) > 1} <=
Consequently for ¢ = p/(p — 1),

H G#"g = qﬁw A?-1 m()\) dr < qu j;cl.‘h A9-2 2

“ G#“q < qullqu—llp .

and
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From Theorem 5 of [8] we conclude that |G|, < Cietlry; 2P
But then if Cie'” < &, (1.5) and (3.2) give this contradic-
tion :

syrn < | [ Gf. de| < Cigtayy .

We conclude that (C) holds with constant B %, «)-

Now suppose p = o . Agamnif (C) fails we };Iave a point
z, and weights 2, such that (3.2), (3.3) and (3.4) hold for
some ¢ > 0 to be determined. By (1.6) there is fe BMO
such that “fn BMO S M= 1/8 s and

(3.6) fz)=0, f(z) > 1, BFE V.
If f(z) were bounded, say |f|. < M, (3.6) and (3.4) would

be 1in contradiction as soon as Me > 1. As we only have
Iflemo < M, more properties of the weights A, must be
used. From Section 4 of [4] it also follows that A, = 0 except
when y, <y, and |z, — x| < cy,[e*. Let

J={t:|t — x| < 3ey,[¢*},

an interval containing all x, with Ay > 0 1in its middle
third. For t¢J, we then have

(3.7 1G] = |P,(t) — EaPy(0)] < CP,(1).
By (3.6) and the John-Nirenberg Theorem,
[IF@O14P(1) de < CM*.
Hence by Hélder’s inequality

(3.8) [ M@IP(8) de < CMes,
while trivially
(3.9) [LIf@1e de < CMtJy,er.

By (3.7) and (3.8), j,;\,,lfGl dt < CMe34, By (3.9), Hoélder’s
inequality, and our estimate on |[Gl,s, we also have

[,1fGl dt < CMe¥s-2. Since | [ fGde| > 1 by (3.6), there

1s a contradiction if CMe4 < 1.
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This proof for p = o0, due to Peter Jones, is much simpler
than my original proof.

4. We give an example of a sequence {z,} for which (C)
fails but for which T,(L!) o [, . At the same time we show
that (C) can fail for a sequence for which

T,f(v) = 9i*f(z) = a,, v=1,2,..

has solution fe Re H? whenever ZX|a,|? < o, provided
1/2 < p < 1. Here Re H? is the space of real parts of H?
functions with the quasinorm |Re F|g» = |F|gr, F € Hx.

Lemma 41. — Let 0 < p <1, andlet v* < 1/2. Suppose
there are f,e HP (f,e L* when p = 1) such that

(4.1) IAE, <M of  p<1
or
(4.2) ITA(v) — 1] < m,
(4.3) S AT AP < o
Y
for v=1,2, ... Then T(ReHr) > IF if p<1 and

T,(L) >l if p=1.

Proof. — If Zla,|f < ©, let F = Za,f,. Then by (4.1)
IF|?, < MZ|a,|? if p <1, and |F|; < MZ[a| if p=1.
And by (4.2) and (4.3),

3 | TPF(v) — a? < 2975 ay?.

v=1

The lemma now follows by iteration.
For zy =2y + 1yo, and for 0 < e < y,, let

€ 4
fz,,s(t) = 7?/}) 1"’(X|z—:,|<e — X|:—(zo+y,)|<s) ’

where ys 1s the characteristic function of S. Then
|y fre(z0)l <1 and  y#f, (z) >1 (e —0).
Also Ifels < 4n when p=1.
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Lemma 4.2. — For 1/2 <p <1, |f,.?

<M,
Proof. — We have
(4.4) Ifoels < Cyg?”

and

(4.5) [Foct)de=0.

225

Also f, . has support in {|t — x| < 2y,} . This means
that f, . isa (p, 1) atom in the sense of [6], and the lemma
follows from Theorem A of that paper. A well-known elemen-
tary argument can also be given for special case at hand.
Recall the non-tangential maximal function f* from § 3.
We use the theorem that f(z) € Re H? if and onlyif f* e L~

and that [f]u ~ [f*,. See [2] or [8]

When |t — 2| < 4y, (4.4) and the Hardy-Littlewood

theorem give us, for f=f, .,

0>

1461t — @ < 4yo, IF*(0I7 > 2)| < Min (8% 9?—’9‘—)

Al/p

Hence

1—1/p

clYo
f |f*(t)|Pdt<8y.,fyd7\+ T — M.
[t—zd <476 ) AlP

If [t — x| > 4y, and if z e I'(¢), then

0 c c
‘b_s P,(s)‘ < <

|z — xy|2 [t — 2|2

on the support of f, .. Then (4.5) gives

< cyl~lP Yo ,

and so
f~%|>4y°|f*( Ip dt < csz 1‘/;"7o u=2? du < Cp

when p > 1/2.

Fix n with 9 < 1/2. Let z, = 5

1 + 15 where 3 = (%)
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i1s to be determined, and let ¢; be so small that

|fee(zn) =1 < m.

Write f, =, .. From I, = [0,1] delete the two intervals
[t —1/2] < 2¢;, |t — 8 — 1/2] < 2¢; containing the support
of f;, and partition the remainder of I, into dyadic intervals
IL,Ig, ..., I, of length 2-™. (We suppose ¢; 1s a negative
power of 2). Let =z, be the centerof I,,2 < v < m, and let
y, = 827", The points z, =2, + 1y,,2 < v < my, join z
in our sequence. Choose ¢, and put f,=f, ., 2 <v < m,.
When n, is fixed, e, can be chosen so that (4.2) holds for
2 <v<my. We claim that n, and e, can be chosen so
that (4.3) holds for the finite sequence z,, ..., z, . When
v =1 the left side of (4.3) 1s

n ms o o 82—"! p
32— ’uézlfl(zp')lp < C2-n _22", <k22—zn, + 322-2:.,)

k=g,

< C31+p2—n;(1-p)(512n=)1—2p

2_
Al

which is small if n, > ny(e;). For v > 1, one term in the

left side of (4.3) 1s
IT A7 < Cyi7 Py(a) — Pa(ay + 9o

< (C3p—12-m2r-1) sup 3B,
I, S

>

and since p > 1/2 this is small if 2-™ is small. For v > 1
we also have the sum

z IT A ()P < C(32) 3 |Py(m,) — Pya, + y)”
= ) 1
< C(82—n,)2p k§1 (k22—2n, + 822—2!:,);7

< C3% < /2

if & 1s chosen correctly.
From each I,, 2 < v < m,, delete the two intervals of
length 4e, whose middle halves support f,. The remaining
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me
parts of l , I, partition into dyadic intervals I,
2
my,+1<p<m,,

of length 2- and with centers z,. Let z, =, 4 182",
and let f,={fz,., mi+ 1< p < my. Taking n, large
and e; small, we can use the above reasoning to obtain (4.2)
and (4.3) for 1 < v < mg. This process can be continued
to get an infinite sequence of points for which by Lemma 4.1,
T(ReHr) o> IP if p<1 and T (LY) > 1 if p=1.

The sequence lies in the unit square so that (C) will fail if
2y, = o . However

%Zyv=2|lv| — 14 (1 —8e) 4 (1 — 8ey)(1 — 8ep) + -

and this sum diverges if Z¢; < .
By using functions f, with several vanishing moments,
one can obtain similar examples for 0 < p < 1/2.

Added in Proof. — Peter Jones has proved T,;(Re H!) = Re !
implies (C) by refining the proof of Lemma 3.1.
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