Annales de l'institut Fourier

John B. Garnett

Harmonic interpolating sequences, L^{p} and BMO

Annales de l'institut Fourier, tome 28, no 4 (1978), p. 215-228
http://www.numdam.org/item?id=AIF_1978__28_4_215_0
© Annales de l'institut Fourier, 1978, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

HARMONIC INTERPOLATING SEQUENCES, L^{p} AND BMO
 by John B. GARNETT

Let $\left(z_{v}\right)$ be a sequence in the upper half plane. If $1<p \leqslant \infty$ and if $y_{v}^{1 / p} f\left(z_{v}\right)=a_{v}, v=1,2, \ldots$ has solution $f(z)$ in the class of Poisson integrals of L^{p} functions for any sequence $\left(a_{v}\right) \in l^{p}$, then we show that $\left(z_{v}\right)$ is an interpolating sequence for H^{∞}. If $f\left(z_{v}\right)=a_{\nu}, \nu=1,2, \ldots$ has solution in the class of Poisson integrals of BMO functions whenever $\left(a_{v}\right) \in l^{\infty}$, then $\left(z_{v}\right)$ is again an interpolating sequence for H^{∞}. A somewhat more general theorem is also proved and a counterexample for the case $p \leqslant 1$ is described.

1. Let $z_{v}=x_{v}+i y_{v}, y_{v}>0$ be a sequence in the upper half plane U, and let

$$
\mathrm{P}_{v}(t)=\frac{1}{\pi} \frac{y_{v}}{\left(t-x_{v}\right)^{2}+y_{v}^{2}}
$$

be the Poisson kernel for z_{v}. When

$$
\int f(t)\left(1+t^{2}\right)^{-1} d t<\infty
$$

we write $f\left(z_{v}\right)=\int f(t) \mathrm{P}_{v}(t) d t$ and when $1 \leqslant p \leqslant \infty$ we write

$$
\mathrm{T}_{p} f(\nu)=y_{v}^{1 / p} f\left(z_{v}\right) .
$$

The operator T_{p} maps L^{p} into the space l^{∞} of bounded sequences, because $\left\|\mathrm{P}_{v}\right\|_{q} \leqslant c y_{v}^{-1 / p}, q=p /(p-1)$. If for every l^{p} sequence (a_{v}) the interpolation

$$
\begin{equation*}
y_{v}^{1 / p} f\left(z_{v}\right)=a_{v}, \quad v=1,2, \ldots \tag{1.1}
\end{equation*}
$$

has solution within the class of harmonic functions $f(z)$ on U representable as Poisson integrals of L^{p} functions, then for brevity we write $\mathrm{T}_{p}\left(\mathrm{~L}^{p}\right) \supset l^{p}$. Similarly, $\mathrm{T}_{p}\left(\mathrm{H}^{p}\right) \supset l^{p}$ means that (1.1) has solution $f(z) \in \mathrm{H}^{p}$. By a theorem of Carleson [3], [7], $\mathrm{T}_{p}\left(\mathrm{H}^{p}\right)=l^{p}$ if and only if the points z_{\imath} satisfy

$$
\begin{equation*}
\inf _{\nu} \prod_{\mu, \mu \neq \nu}\left|\frac{z_{v}-z_{\mu}}{z_{v}-\bar{z}_{\mu}}\right|=\delta>0 . \tag{1.2}
\end{equation*}
$$

Consequently a sequence satisfying (1.2) is called an interpolating sequence.

In [9] it was proved that $\left\{z_{v}\right\}$ is an interpolating sequence if and only if $\mathrm{T}_{\infty}\left(\mathrm{L}^{\infty}\right)=l^{\infty}$, and this result was refined in [4] and [13]. Here we extend the work of those papers to obtain (1.2) when $\mathrm{T}_{p}\left(\mathrm{~L}^{p}\right) \supset l^{p}, 1<p$, or when $\mathrm{T}_{\infty}(\mathrm{BMO}) \supset l^{\infty}$.

Condition (1.2) holds if and only if the following two geometric conditions both hold

$$
\begin{align*}
& \left|z_{v}-z_{\mu}\right| \geqslant \alpha y_{v}, \quad \mu \neq \nu, \tag{S}\\
& \sum_{z_{v} \in \mathbb{Q}} y_{v} \leqslant \mathrm{Bl}(\mathrm{Q}), \tag{C}
\end{align*}
$$

for all squares $\mathrm{Q}=\{a<x<a+l(\mathrm{Q}), 0<y<l(\mathrm{Q})\}$. See [10] or [9] for a proof of this well-known equivalence. Because of generalizations mentioned below we state our two theorems in terms of (S) and (C).

Theorem 1. - If $1<p<\infty$ and if

$$
\begin{equation*}
\mathrm{T}_{p}\left(\mathrm{~L}^{p}\right) \supset l^{p}, \tag{1.3}
\end{equation*}
$$

or if $p=\infty$ and if

$$
\begin{equation*}
\mathrm{T}_{\infty}(\mathrm{BMO}) \supset l^{\infty} \tag{1.4}
\end{equation*}
$$

then (S) and (C) hold.
Corollary. - The sequence (z_{v}) is an interpolating sequence if and only if (1.3) or (1.4) holds.

The other theorem draws the same conclusion from a weaker hypothesis, which is a version of (1.2) for harmonic functions from L^{p} or BMO.

Theorem 2. - If $1<p<\infty$ and if there are $f_{v} \in \mathrm{~L}^{p}$, $v=1,2, \ldots$ such that $\left\|f_{v}\right\|_{p} \leqslant 1$ and

$$
\begin{gather*}
\mathrm{T}_{p} f_{v}(\mu) \leqslant 0, \quad \mu \neq \nu \tag{1.5}\\
\inf _{v} \mathrm{~T}_{p} f_{v}(\nu)=\delta>0,
\end{gather*}
$$

then (S) and (C) hold. If there are $f_{v} \in \mathrm{BMO}, \nu=1,2, \ldots$ such that $\left\|f_{\boldsymbol{v}}\right\|_{\text {вмо }} \leqslant 1$ and

$$
\begin{gather*}
\mathrm{T}_{\infty} f_{v}(\mu) \leqslant 0, \quad \mu \neq v \tag{1.6}\\
\inf _{\nu} \mathrm{T}_{\infty} f_{v}(\nu)=\delta>0
\end{gather*}
$$

then (S) and (C) hold.
Conditions (S) and (C) have analogues in the upper half space \mathbf{R}_{+}^{n+1}, [4], and the two theorems stated here are true in \mathbf{R}_{+}^{n+1} even when P_{v} is replaced by

$$
\mathrm{K}_{v}(t)=\frac{1}{y_{v}^{n}} \mathrm{~K}\left(\frac{x_{v}-t}{y_{v}}\right)
$$

where $\mathrm{K} \geqslant 0, \mathrm{~K} \in \mathrm{~L}^{1} \cap \mathrm{~L}^{\infty},|\nabla \mathrm{K}(t)| \leqslant \mathrm{C}(1+|t|)^{n+1}$, and $\int \mathrm{K} d t=1$. It is very likely that the proofs are valid in certain spaces of homogeneous type ([5], [6]), such as the unit ball of \mathbf{C}^{n} with T_{p} defined using the Poisson-Szegö kernel ([10], [11]). See [1], in which a converse of Theorem 1 is proved in that generality. For $n>1$ it is not known if (S) and (C) imply interpolation of l^{∞} by bounded harmonic functions on \mathbf{R}_{+}^{n+1}, and we do not claim that the corollary to Theorem 1 generalizes to \mathbf{R}^{n} or \mathbf{C}^{n}. To keep things simple we only prove the theorems for Poisson kernels on \mathbf{R}^{1}.

The methods here are all real analysis; the principle tool is the lemma from § 4 of [4].

In Section 2 we obtain the inequality needed to prove Theorem 1, we show that Theorem 1 is a corollary of Theorem 2, and we verify condition (S). We also include a proof, due to Varopoulos, of Theorem 1 for $p>2$.

Theorem 2 is proved in Section 3. In Section 4 we show by example that (C) can fail when $\mathrm{T}_{1}\left(\mathrm{~L}^{1}\right)=l_{1}$ or when

$$
\mathrm{T}_{p}\left(\operatorname{Re} \mathrm{H}^{p}\right)=\operatorname{Re} l^{p}, \quad 1 / 2<p<1
$$

'for $p<1, \mathrm{~T}_{p}$ must be defined by (1.1) with $f=\operatorname{Re} \mathrm{F}$
$\mathrm{F} \in \mathrm{H}^{p}$). I suspect that $\mathrm{T}_{1}\left(\operatorname{Re} \mathrm{H}^{1}\right)=\operatorname{Re} l^{1}$ implies (C) but I have no proof.

I thank Eric Amar and Nicholas Varopoulos for useful correspondence and conversation.

The letters c and C stand for universal undetermined constants, the same letter denoting several constants.
2. In Theorem 1 it is not assumed that T_{p} is a bounded operator from L^{p} to l^{p}, or even that $\mathrm{T}_{p}\left(\mathrm{~L}^{p}\right) \subset l^{p}$ (which is the same by the closed graph theorem). Indeed, if T_{p} were bounded then condition (C) would follow by the theorem on Carleson measures ([7] p. 193). Then, as noted in [9], $\mathrm{T}_{p}\left(\mathrm{~L}^{p}\right)=l^{p}$ would trivially imply (S) and (C). However, there is an adequate substitute for boundedness.

Lemma 2.1. - If $1 \leqslant p<\infty$ and if (1.3) holds, then there is a constant M such that whenever $\Sigma\left|a_{v}\right|^{p} \leqslant 1$, the interpolation $\mathrm{T}_{p} f(\nu)=a_{\nu}$ has solution with $\|f\|_{p}^{p} \leqslant \mathrm{M}$. If (1.4) holds, there is a constant M such that whenever $\left(a_{v}\right) \in l^{\infty}$, the interpolation $\mathrm{T}_{\infty} f(\nu)=a_{\nu}$ has solution with $\|f\|_{\text {вмо }} \leqslant \mathrm{M} \sup \left|a_{\nu}\right|$.

Proof. - For $1 \leqslant p<\infty$, the set

$$
\mathrm{E}_{\mathbf{N}}=l^{p} \cap \mathrm{~T}_{p}\left(\left\{f:\|f\|_{p} \leqslant \mathrm{~N}\right\}\right)
$$

is closed in l^{p}. With (1.3) category shows that some E_{N} has interior in l^{p}, so that some E_{N} then contains the unit ball of l^{p}.

For $p=\infty$, we use the fact that BMO is the dual of the real Banach space $R e H^{1}$ [8], although a more elementary argument can be given in a few more words. Since

$$
\mathrm{P}_{v}-\mathrm{P}_{1} \in \operatorname{Re} \mathrm{H}^{1},
$$

the set

$$
\begin{aligned}
\mathrm{E}_{\mathrm{N}}= & \left\{\left(a_{v}\right) \in l^{\infty}: f\left(z_{v}\right)-f\left(z_{1}\right)=a_{v}-a_{1},\right. \\
& \left.\nu=1,2, \ldots\|f\|_{\text {вмо }} \leqslant \mathrm{N}\right\}
\end{aligned}
$$

is closed in l^{∞}. Since constant functions have zero BMO norm, (1.4) and category as above show interpolation is possible with $\|f\|_{\text {вмо }} \leqslant \mathrm{M} \sup _{v}\left|a_{v}\right|$.

Because of the lemma, Theorem 2 clearly implies Theorem 1.

In Theorem 2 (or Theorem 1), condition (S) is easy to verify. For $p<\infty$ there is $f \in \mathrm{~L}^{p},\|f\|_{p} \leqslant 1$ such that $f\left(z_{\mu}\right) \leqslant 0, f\left(z_{v}\right) \geqslant \delta y_{v}^{-1 / p}$. The harmonic function $f(z)$ satisfies $|\nabla f(z)| \leqslant c y^{-(1+1 / p)}\|f\|_{p} \leqslant c y^{-(1+1 / p)}$, so that

$$
\delta y_{v}^{-1 / p} \leqslant\left|f\left(z_{v}\right)-f\left(z_{\mu}\right)\right| \leqslant c y_{v}^{-(1+1 / p)}\left|z_{v}-z_{\mu}\right|
$$

if

$$
\left|z_{v}-z_{\mu}\right|<y_{v} / 2
$$

Hence

$$
\frac{\left|z_{v}-z_{\mu}\right|}{y_{v}} \geqslant \operatorname{Max}\left(\frac{1}{2}, \frac{\delta}{c}\right)
$$

and we have verified (S). When $p=\infty$ there is $f \in \mathrm{BMO}$, $\|f\|_{\text {вмо }} \leqslant 1$ such that $f\left(z_{\mu}\right) \leqslant 0, f\left(z_{v}\right) \geqslant \delta$. The elementary estimate $y|\nabla f(z)| \leqslant c\|f\|_{\text {вмо }}$, then yields (S) just as in the case $p<\infty$ above.
N. Varopoulos has a simple proof of Theorem 1 for $p>2$ which we now present. By the lemma, (1.3) has the dual formulation

$$
\begin{equation*}
\Sigma\left|\lambda_{v}\right|^{q} \leqslant \mathbf{M}\left\|\Sigma \lambda_{v} y_{v}^{1 / P} \mathbf{P}_{v}\right\|_{q}^{q} \tag{2.1}
\end{equation*}
$$

for all finite sequences $\left(\lambda_{v}\right)$, where $q=p /(p-1)$. To prove (C), fix a square Q with base I and let \tilde{I} be the interval concentric with I having length $|\tilde{\mathrm{I}}|=3|\mathrm{I}|$. Let $z_{1}, z_{2}, \ldots, z_{\mathrm{x}}$ be finitely many points from our sequence lying in Q. Let $\lambda_{v}= \pm y_{v}^{1 / q}, \nu=1,2, \ldots, N$ with random \pm sign. Taking expectations in (2.1) gives

$$
\sum_{1}^{\mathrm{N}} y_{v} \leqslant \mathrm{M} \int\left|\Sigma y_{v}^{2} \mathrm{P}_{2}\right|^{q / 2} d t=\mathrm{M} \int_{\tilde{\mathbf{I}}}+\mathrm{M} \int_{\mathbf{R} \tilde{\mathbf{I}}} .
$$

Since $q / 2<1$, Hölder's inequality gives

$$
\begin{aligned}
\int_{\tilde{\mathrm{I}}}\left|\Sigma y_{v}^{2} \mathrm{P}_{v}^{2}\right|^{q / 2} d t & \leqslant|\tilde{\mathrm{I}}|^{1-\frac{q}{2}}\left(\int_{\tilde{\mathrm{I}}}\left|\Sigma y_{v}^{2} \mathrm{P}_{v}^{2}\right| d t\right)^{q / 2} \\
& \leqslant 3^{1-\frac{q}{2}}|\mathrm{I}|^{1-\frac{q}{2}}\left(\sum_{1}^{\mathrm{N}} y_{v}\right)^{q / 2}
\end{aligned}
$$

Fixing $x_{0} \in \mathrm{I}$, we have $\mathrm{P}_{\nu}^{2}(t) \leqslant c y_{v}^{2} /\left(t-x_{0}\right)^{q}$ if $z_{v} \in \mathrm{Q}$ and
$t \notin \tilde{I}$, so that

$$
\begin{aligned}
\int_{\mathbf{R} \backslash \tilde{\mathbf{I}}}\left|\sum_{1}^{\mathrm{N}} y_{v}^{2} \mathrm{P}_{v}^{2}\right|^{q / 2} d t & \leqslant c\left(\sum_{1}^{\mathrm{N}} y_{v}^{q}\right)^{q / 2} \int_{(\mathbf{R}, \tilde{\mathrm{I}})} \frac{d t}{\left|t-x_{0}\right|^{2 q}} \\
& \leqslant c\left(\sum_{1}^{\mathrm{N}} y_{v}\right)^{q / 2} \cdot|\mathrm{I}|^{3 q / 2} \cdot \int_{|\mathrm{I}|}^{\infty} \frac{d s}{2^{2 q}} \\
& \leqslant \mathrm{C}_{q} \left\lvert\, \mathrm{I}^{1-\frac{q}{2}}\left(\sum_{1}^{\mathrm{N}} y_{v}\right)^{q / 2} .\right.
\end{aligned}
$$

Hence

$$
\left(\sum_{1}^{\mathrm{N}} y_{v}\right)^{1-\frac{q}{2}} \leqslant \mathrm{C}|\mathrm{I}|^{1-\frac{q}{2}}
$$

and condition (C) holds.
Varopoulos' argument can be modified to give the BMO case of Theorem 1 in this way. It is enough to verify (C) for a square Q whose upper half contains a point z_{0} from the sequence. Let $z_{1}, \ldots, z_{\mathbb{N}}$ be finitely many other points from the sequence and in Q . By the lemma and by duality, (1.4) gives

$$
\begin{aligned}
\sum_{j=1}^{\mathrm{N}}\left|\lambda_{j}\right| & \leqslant \mathrm{M} \sup \left\{\left|\sum_{j=1}^{\mathrm{N}} \lambda_{j} f\left(z_{j}\right)\right|:\|f\|_{\text {BM }} \leqslant 1, f\left(z_{0}\right)=0\right\} \\
& \leqslant c \mathrm{M}\left\|\sum_{j=1}^{\mathrm{N}} \lambda_{j}\left(\mathrm{P}_{j}-\mathrm{P}_{0}\right)\right\|_{\mathbf{H}^{\prime}} \\
& =c \mathrm{M}\left\|\sum_{j=1}^{\mathrm{N}} \lambda_{j}\left(\frac{1}{t-\bar{z}_{j}}-\frac{1}{t-\bar{z}_{0}}\right)\right\|_{\mathbf{L}^{+}} .
\end{aligned}
$$

We again set $\lambda_{j}= \pm y_{j}$ and take the expectation, getting

$$
\sum_{1}^{N} y_{j} \leqslant c \mathrm{M} \int_{\mathbf{R}}\left\{\Sigma y_{j}^{2}\left|\frac{1}{t-\bar{z}_{j}}-\frac{1}{t-\bar{z}_{0}}\right|^{2}\right\}^{1 / 2} d t .
$$

Now

$$
\begin{aligned}
\int_{\tilde{\mathrm{I}}} & \left\{\sum_{1}^{\mathrm{N}} y_{j}^{2}\left|\frac{1}{t-\bar{z}_{j}}-\frac{1}{t-\bar{z}_{0}}\right|^{2}\right\}^{1 / 2} d t \\
& \leqslant 3^{1 / 2}|\mathrm{I}|^{1 / 2}\left\{2 \sum_{\left.\substack{\mathrm{N}} \int_{\tilde{\mathrm{I}}} \frac{y_{j}^{2}}{\left|t-\bar{z}_{j}\right|^{2}} d t+2 \sum_{1}^{\mathrm{N}} y_{j}^{2} \int_{\tilde{I}} \frac{d t}{\left|t-\bar{z}_{0}\right|^{2}} d t\right\}^{1 / 2}}\right. \\
& \leqslant 3^{1 / 2}|\mathrm{I}|^{1 / 2}\left\{2 \sum_{1}^{\mathrm{N}} y_{j} \int_{\tilde{\mathrm{I}}} \frac{y_{j}}{\left(t-x_{j}\right)^{2}+y_{j}^{2}} d t+2 c \Sigma y_{j}^{2}|/ \tilde{\mathrm{I}}|\right\}^{1 / 2} \\
& \leqslant \mathrm{C}|\mathrm{I}|^{1 / 2}\left(\sum_{1}^{\mathrm{N}} y_{j}\right)^{1 / 2} .
\end{aligned}
$$

For $t \notin \tilde{I}$,

$$
\left|\frac{1}{t-\bar{z}_{j}}-\frac{1}{t-\bar{z}_{0}}\right|^{2} \leqslant \frac{c|\mathrm{I}|^{2}}{\left(t-x_{0}\right)^{4}},
$$

so that

$$
\begin{aligned}
\int_{\mathbf{R} \backslash \tilde{\mathrm{I}}}\left\{\sum_{1}^{\mathrm{N}} y_{j}^{2}\left|\frac{1}{t-\bar{z}_{j}}-\frac{1}{t-\bar{z}_{0}}\right|^{2}\right. & \}^{1 / 2} d t \\
& \leqslant\left(\sum_{1}^{\mathrm{N}} y_{j}\right)^{1 / 2}|\mathrm{I}|^{1 / 2} c \int_{\mathbf{R} \backslash \tilde{\mathrm{I}}} \frac{|\mathrm{I}|}{\left(t-x_{0}\right)^{2}} d t \\
& \leqslant\left.\mathrm{C}| |\right|^{1 / 2}\left(\Sigma y_{j}\right)^{1 / 2} .
\end{aligned}
$$

Hence $\left(\Sigma_{1}^{\mathrm{N}} y_{j}\right)^{1 / 2} \leqslant \mathrm{C}|\mathrm{I}|^{1 / 2}$ and (C) holds.
This reasoning does not apply to the case $p \leqslant 2$ nor to the situation in Theorem 2.
3. In proving Theorem 2 we can now assume the points satisfy (S)

$$
\left|z_{v}-z_{\mu}\right| \geqslant \alpha y_{v}, \quad \mu \neq \nu .
$$

We prove (C) by contradiction. The idea is that if (C) fails with a large constant B then there are relations among the kernels P_{v} which are inconsistent with (1.5) or (1.6). Our main tool is this lemma from [4].

Lemma 3.1. - For $\varepsilon>0$ there is a constant $\mathrm{B}(\varepsilon, \alpha)$ such that if

$$
\begin{equation*}
\sum_{z_{v} \in \mathbb{Q}} y_{v} \geqslant \mathrm{~B}(\varepsilon, \alpha) l(\mathrm{Q}) \tag{3.1}
\end{equation*}
$$

for some square $\mathrm{Q}=\{a<x<a+l(\mathrm{Q}), 0<y<l(\mathrm{Q})\}$, then there is a point $z_{,}$, in the sequence and there are seights λ_{μ} such that
(3.5) $\sum_{z_{\mu} \in \mathrm{Q}} \lambda_{\mu_{\mu}} \leqslant l(\mathrm{Q})\left\|\mathrm{P}_{\nu}\right\|_{\infty} \leqslant \frac{l(\mathrm{Q})}{\pi y_{v}}$, for all Q .

Except for (3.5) the lemma is proved in Section 4 (and Section 2) of [4], and (3.5) is implicit in that proof because the
functions constructed there are non-negative. We refer to [4] for the details.

Suppose $1<p<\infty$, let $\varepsilon>0$ be determined later, and assume (3.1) holds. Write $\mathrm{G}=\mathrm{P}_{\nu}-\Sigma \lambda_{\mu} \mathrm{P}_{\mu}$, where the λ_{μ} are given by Lemma 3.1.

Lemma 3.2. - $\|\mathrm{G}\|_{\text {bmo }} \leqslant c / y_{v}$.
Proof. - Fix an interval I with center t_{0} and let

$$
\mathrm{Q}_{n}=\left\{z: y<2^{k}|\mathrm{I}|,\left|x-t_{0}\right|<2^{n-1}|\mathrm{I}|\right\} .
$$

For $z_{\mu} \in \mathrm{Q}_{1}$ we have trivially

$$
\frac{1}{|\mathrm{I}|} \int_{\mathbf{I}} \mathrm{P}_{\mu} d t \leqslant \frac{1}{|\mathrm{I}|}
$$

while for $z_{\mu} \in \mathrm{Q}_{n} \backslash \mathrm{Q}_{n-1}, n \geqslant 2$, we have

$$
\begin{aligned}
\frac{1}{|\mathrm{I}|} \int_{\mathrm{I}}\left|\mathrm{P}_{\mu}-\mathrm{P}_{\mu}\left(t_{0}\right)\right| d t & \leqslant \frac{c}{|\mathrm{I}|} \int_{\mathrm{I}} \frac{\left|t-t_{0}\right|}{\left(x_{\mu}-t_{0}\right)^{2}+y_{\mu}^{2}} d t \\
& \leqslant \frac{c}{2^{2 n}|\mathrm{I}|}
\end{aligned}
$$

Letting $a=\Sigma_{z_{\mu} \not{ }_{2} q_{1}} \lambda_{\mu} P_{\mu}\left(t_{0}\right)$, we then have

$$
\begin{aligned}
\frac{1}{|\mathrm{I}|} \int_{\mathrm{I}}|\mathrm{G}-a| d t & \leqslant\left\|\mathrm{P}_{v}\right\|_{\infty}+\sum_{z_{\mu} \notin \mathrm{Q}_{1}} \frac{\lambda_{\mu}}{|\mathrm{I}|}+\sum_{n=2}^{\infty} \underset{z_{\mu} \notin \mathrm{Q}_{n} \backslash \mathrm{Q}_{n-1}}{ } \frac{c \lambda_{\mu}}{2^{2 n}|\mathrm{I}|} \\
& \leqslant c / y_{v}
\end{aligned}
$$

by (3.5), and the lemma is proved.
Now define $\mathrm{G}^{\#}(x)=\sup _{x \in \mathrm{I}} \frac{1}{|\mathrm{I}|} \int_{\mathrm{I}}\left|\mathrm{G}-\mathrm{G}_{\mathrm{I}}\right| d t$, where G_{I} denotes the mean of G over I. By Lemma 3.2, $\left\|\mathrm{G}^{\#}\right\|_{\infty} \leqslant c / y_{v}$, and by the Hardy-Littlewood maximal theorem and (3.4), $\mathrm{G}^{\#}$ has small weak L^{1} norm

$$
m(\lambda)=\left|\left\{x: \mathrm{G}^{\#}(x)>\lambda\right\}\right| \leqslant \frac{c \varepsilon}{\lambda} .
$$

Consequently for $q=p /(p-1)$,

$$
\left\|\mathrm{G}^{\#}\right\|_{q}^{q}=q \int_{0}^{\infty} \lambda^{q-1} m(\lambda) d \lambda \leqslant \mathrm{C} q \varepsilon \int_{0}^{c / / \bar{y}} \lambda^{q-2} d \lambda
$$

and

$$
\left\|\mathrm{G}^{\# \#}\right\|_{q} \leqslant \mathrm{C}_{q} \varepsilon^{1 / q} y_{v}{ }^{-1 / p} .
$$

From Theorem 5 of [8] we conclude that $\|\mathrm{G}\|_{q} \leqslant \mathrm{C}_{q}^{\prime} \varepsilon^{1 / q} y_{v}^{-1 / p}$. But then if $\mathrm{C}_{q}^{\prime} \mathrm{\varepsilon}^{1 / q}<\delta$, (1.5) and (3.2) give this contradiction:

$$
\delta y_{v}^{-1 / q} \leqslant\left|\int \mathrm{G} f_{v} d t\right| \leqslant \mathrm{C}_{q}^{\prime} \varepsilon^{1 / q} y_{v}^{-1 / p}
$$

We conclude that (C) holds with constant $\mathrm{B}\left(\frac{\delta^{q}}{\mathrm{C}_{q}^{q}}, \alpha\right)$.
Now suppose $p=\infty$. Again if (C) fails we have a point z_{ν} and weights λ_{μ} such that (3.2), (3.3) and (3.4) hold for some $\varepsilon>0$ to be determined. By (1.6) there is $f \in \mathrm{BMO}$ such that $\|f\|_{\text {вмо }} \leqslant \mathrm{M}=1 / \delta$, and

$$
\begin{equation*}
f\left(z_{v}\right)=0, \quad f\left(z_{\mu}\right)>1, \quad \mu \neq v . \tag{3.6}
\end{equation*}
$$

If $f(z)$ were bounded, say $\|f\|_{\infty} \leqslant M,(3.6)$ and (3.4) would be in contradiction as soon as $\mathrm{M} \varepsilon>1$. As we only have $\|f\|_{\text {вмо }} \leqslant \mathrm{M}$, more properties of the weights λ_{μ} must be used. From Section 4 of [4] it also follows that $\lambda_{\mu}=0$ except when $y_{\mu}<y_{v}$ and $\left|x_{\mu}-x_{v}\right|<c y_{v} / \varepsilon^{2}$. Let

$$
\mathrm{J}=\left\{t:\left|t-x_{v}\right|<3 c y_{v} / \varepsilon^{2}\right\}
$$

an interval containing all x_{μ} with $\lambda_{\mu}>0$ in its middle third. For $t \notin \mathrm{~J}$, we then have

$$
\begin{equation*}
|\mathrm{G}(t)|=\left|\mathrm{P}_{v}(t)-\Sigma \lambda_{\mu} \mathrm{P}_{\mu}(t)\right| \leqslant \mathrm{CP}_{v}(t) \tag{3.7}
\end{equation*}
$$

By (3.6) and the John-Nirenberg Theorem,

$$
\int|f(t)|^{4} \mathrm{P}_{\mathrm{v}}(t) d t \leqslant \mathrm{CM}^{4}
$$

Hence by Hölder's inequality

$$
\begin{equation*}
\int_{\mathbf{R} \backslash \mathrm{J}}|f(t)| \mathrm{P}_{\mathrm{v}}(t) d t \leqslant \mathrm{CM}^{3 / 4} \tag{3.8}
\end{equation*}
$$

while trivially

$$
\begin{equation*}
\int_{\mathrm{J}}|f(t)|^{4} d t \leqslant \mathrm{CM}^{4} / y_{\mathrm{v}} \varepsilon^{2} \tag{3.9}
\end{equation*}
$$

By (3.7) and (3.8), $\int_{\mathbf{R} \backslash \mathrm{J}}|f \mathrm{G}| d t \leqslant \mathrm{CM} \mathrm{\varepsilon}^{3 / 4}$. By (3.9), Hölder's inequality, and our estimate on $\|G\|_{4 / 3}$, we also have $\int_{\mathrm{J}}|f \mathrm{G}| d t \leqslant \mathrm{CM} \mathrm{\varepsilon}^{3 / 4-1 / 2}$. Since $\left|\int f \mathrm{G} d t\right| \geqslant 1$ by (3.6), there is a contradiction if $\mathrm{CM} \mathrm{\varepsilon}^{1 / 4}<1$.

This proof for $p=\infty$, due to Peter Jones, is much simpler than my original proof.
4. We give an example of a sequence $\left\{z_{v}\right\}$ for which (C) fails but for which $\mathrm{T}_{1}\left(\mathrm{~L}^{1}\right) \supset l_{1}$. At the same time we show that (C) can fail for a sequence for which

$$
\mathrm{T}_{p} f(v)=y_{v}^{1 / p} f\left(z_{v}\right)=a_{v}, \quad v=1,2, \ldots
$$

has solution $f \in \operatorname{Re} \mathrm{H}^{p}$ whenever $\Sigma\left|a_{v}\right|^{p}<\infty$, provided $1 / 2<p<1$. Here $\operatorname{Re} \mathrm{H}^{p}$ is the space of real parts of H^{p} functions with the quasinorm $\|R e F\|_{\mathbf{H}^{p}}=\|\mathrm{F}\|_{\mathbf{H}^{p}}, \mathrm{~F} \in \mathrm{H}^{p}$.

Lemma 4.1. - Let $0<p \leqslant 1$, and let $\eta^{p}<1 / 2$. Suppose there are $f_{v} \in \mathrm{H}^{p}\left(f_{v} \in \mathrm{~L}^{1}\right.$ when $\left.p=1\right)$ such that

$$
\begin{equation*}
\left\|f_{v}\right\|_{\mathbf{H}^{p}}^{p} \leqslant \mathbf{M} \quad \text { if } \quad p<1 \tag{4.1}
\end{equation*}
$$

or

$$
\begin{gather*}
\left\|f_{v}\right\|_{1} \leqslant \mathrm{M} \quad \text { if } \quad p=1, \\
\left|\mathrm{~T}_{p} f_{v}(\nu)-1\right|<\eta, \tag{4.2}\\
\sum_{\mu, \mu \neq v}\left|\mathrm{~T}_{p} f_{v}(\mu)\right|^{p}<\eta^{p} \tag{4.3}
\end{gather*}
$$

for $\nu=1,2, \ldots$ Then $\mathrm{T}_{p}\left(\operatorname{ReH}^{p}\right) \supset l^{p}$ if $p<1$ and $\mathrm{T}_{1}\left(\mathrm{~L}^{1}\right) \supset l_{1}$ if $p=1$.

Proof. - If $\Sigma\left|a_{v}\right|^{p}<\infty$, let $\mathrm{F}=\Sigma a_{v} f_{v}$. Then by (4.1) $\|\mathrm{F}\|_{\mathrm{H}^{p}}^{p} \leqslant \mathrm{M} \Sigma\left|a_{v}\right|^{p}$ if $p<1$, and $\|\mathrm{F}\|_{1} \leqslant \mathrm{M} \Sigma\left|a_{v}\right|$ if $p=1$. And by (4.2) and (4.3),

$$
\sum_{v=1}^{\infty}\left|\mathbf{T}^{p} \mathrm{~F}(v)-a_{v}\right|^{p} \leqslant 2 \eta^{p} \Sigma\left|a_{v}\right|^{p} .
$$

The lemma now follows by iteration.
For $z_{0}=x_{0}+i y_{0}$, and for $0<\varepsilon<y_{0}$, let

$$
f_{z_{0}, \varepsilon}(t)=\frac{\varepsilon}{\pi} y_{0}^{1-1 / p}\left(\chi_{\left|t-x_{0}\right|<\varepsilon}-\chi_{\mid t-\left(x_{0}+y_{0} \mid<\varepsilon\right.}\right),
$$

where χ_{s} is the characteristic function of S. Then

$$
\left|y^{1 / p} f_{z_{0}, \varepsilon}\left(z_{0}\right)\right|<1 \quad \text { and } \quad y^{1 / p} f_{z_{0}, \varepsilon}\left(z_{0}\right) \rightarrow 1 \quad(\varepsilon \rightarrow 0) .
$$

Also $\left\|f_{z_{0}, \varepsilon}\right\|_{1} \leqslant 4 \pi$ when $p=1$.

Lemma 4.2. - For $1 / 2<p<1,\left\|f_{z_{0}, \varepsilon}\right\|_{\mathbf{H}^{p}}^{p} \leqslant \mathrm{M}_{p}$.
Proof. - We have

$$
\begin{equation*}
\left\|f_{z_{0}, \varepsilon}\right\|_{1} \leqslant \mathrm{C} y_{0}^{1-1 / p} \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\int f_{z_{0}, \varepsilon}(t) d t=0 . \tag{4.5}
\end{equation*}
$$

Also $f_{z_{2,0}}$ has support in $\left\{\left|t-x_{0}\right|<2 y_{0}\right\}$. This means that $f_{z_{0}, \varepsilon}$ is a $(p, 1)$ atom in the sense of [6], and the lemma follows from Theorem A of that paper. A well-known elementary argument can also be given for special case at hand. Recall the non-tangential maximal function f^{*} from § 3 . We use the theorem that $f(z) \in \operatorname{Re} \mathrm{H}^{p}$ if and only if $f^{*} \in \mathrm{~L}^{p}$, and that $\|f\|_{\mathbf{H}^{p}} \sim\left\|f^{*}\right\|_{p}$. See [2] or [8].

When $\left|t-x_{0}\right|<4 y_{0}$, (4.4) and the Hardy-Littlewood theorem give us, for $f=f_{z_{0}, \varepsilon}$,

$$
\left|\left\{t:\left|t-x_{0}\right|<4 y_{0},\left|f^{*}(t)\right|^{p}>\lambda\right\}\right| \leqslant \operatorname{Min}\left(8 y_{0}, \frac{\mathrm{C} y_{0}^{1-1 / p}}{\lambda^{1 / p}}\right) .
$$

Hence

$$
\int_{\mid t-x_{d}<4 y_{0}}\left|f^{*}(t)\right|^{p} d t \leqslant 8 y_{0} \int_{0}^{c / y_{0}} d \lambda+\int_{c / y_{0}}^{\infty} \frac{\mathrm{C} y_{0}^{1-1 / p}}{\lambda^{1 / p}} d \lambda=\mathrm{M} .
$$

If $\left|t-x_{0}\right|>4 y_{0}$ and if $z \in \Gamma(t)$, then

$$
\left|\frac{\partial}{\partial s} P_{z}(s)\right| \leqslant \frac{c}{\left|z-x_{0}\right|^{2}} \leqslant \frac{c}{\left|t-x_{0}\right|^{2}}
$$

on the support of $f_{z_{0}, \varepsilon}$. Then (4.5) gives

$$
|f(z)| \leqslant c y_{0}^{1-1 / p} \frac{y_{0}}{\left|t-x_{0}\right|^{2}},
$$

and so

$$
\int_{\left|t-x_{0}\right|>4 y_{0}}\left|f^{*}(t)\right|^{p} d t \leqslant c y_{0}^{2 p-1} \int_{4 y_{0}}^{\infty} u^{-2 p} d u \leqslant \mathrm{C}_{p}
$$

when $p>1 / 2$.
Fix η with $\eta^{p}<1 / 2$. Let $z_{1}=\frac{1}{2}+i \delta$ where $\delta=\delta(\eta)$
is to be determined, and let ε_{1} be so small that

$$
\left|f_{z_{1}, \varepsilon_{1}}\left(z_{1}\right)-1\right|<\eta .
$$

Write $f_{1}=f_{z_{1}, \varepsilon_{1}}$. From $I_{1}=[0,1]$ delete the two intervals $|t-1 / 2|<2 \varepsilon_{1},|t-\delta-1 / 2|<2 \varepsilon_{1}$ containing the support of f_{1}, and partition the remainder of I_{1} into dyadic intervals $\mathrm{I}_{2}, \mathrm{I}_{3}, \ldots, \mathrm{I}_{m_{3}}$ of length $2^{-n_{2}}$. (We suppose ε_{1} is a negative power of 2). Let x_{v} be the center of $\mathrm{I}_{\mathrm{v}}, 2 \leqslant \nu \leqslant m_{2}$ and let $y_{v}=\delta 2^{-n_{v}}$. The points $z_{v}=x_{v}+i y_{v}, 2 \leqslant v \leqslant m_{2}$, join z_{1} in our sequence. Choose ε_{2} and put $f_{v}=f_{z_{0}, \varepsilon_{2}}, 2 \leqslant \nu \leqslant m_{2}$. When n_{2} is fixed, ε_{2} can be chosen so that (4.2) holds for $2 \leqslant \nu \leqslant m_{2}$. We claim that n_{2} and ε_{2} can be chosen so that (4.3) holds for the finite sequence $z_{1}, \ldots, z_{m_{2}}$. When $v=1$ the left side of (4.3) is

$$
\begin{aligned}
\delta 2^{-n_{s}} \sum_{\mu=2}^{m_{2}}\left|f_{1}\left(z_{\mu}\right)\right|^{p} & \leqslant \mathrm{C} 2^{-n_{2}} \sum_{k=\varepsilon_{2} 2^{n^{2}}}^{\infty}\left(\frac{\delta 2^{-n_{s}}}{k^{2} 2^{-2 n_{2}}+\delta^{2} 2^{-2 n_{2}}}\right)^{p} \\
& \leqslant \mathrm{C} \delta^{1+p 2^{-n_{s}(1-p)}\left(\varepsilon_{1} 2^{n_{8}}\right)^{1-2 p}} \\
& =\mathrm{C} \delta^{1+p} \frac{2^{-n_{2} p}}{\varepsilon_{1}^{2 p-1}},
\end{aligned}
$$

which is small if $n_{2}>n_{2}\left(\varepsilon_{1}\right)$. For $v>1$, one term in the left side of (4.3) is

$$
\begin{aligned}
\left|\mathrm{T}_{p} f_{v}(1)\right|^{p} & \leqslant \mathrm{C} y_{v}^{p-1}\left|\mathrm{P}_{1}\left(x_{v}\right)-\mathrm{P}_{1}\left(x_{v}+y_{v}\right)\right|^{\mathrm{P}} \\
& \leqslant \mathrm{C} \delta^{p-12^{-n_{v}(2 p-1)}} \sup _{\mathrm{r}_{v}}\left|\frac{\partial \mathrm{P}_{1}}{\partial s}\right|^{p},
\end{aligned}
$$

and since $p>1 / 2$ this is small if $2^{-n,}$ is small. For $v>1$ we also have the sum

$$
\begin{aligned}
& \sum_{\substack{\mu=2 \\
\mu \neq \nu}}^{m_{2}}\left|\mathrm{~T}_{p} f_{v}(\mu)\right|^{p} \leqslant \mathrm{C}\left(\delta 2^{-n_{2}}\right)^{p} \sum_{\substack{\mu=2 \\
\mu \neq \nu}}^{m_{2}}\left|\mathrm{P}_{\mu}\left(x_{\nu}\right)-\mathrm{P}_{\mu}\left(x_{\nu}+y_{v}\right)\right|^{p} \\
& \leqslant \mathrm{C}\left(\delta 2^{-n_{2}}\right)^{2 p} \sum_{k=1}^{\infty} \frac{1}{\left(k^{2} 2^{-2 n_{s}}+\delta^{2} 2^{-2 n_{2}}\right)^{p}} \\
& \leqslant \mathrm{C} \delta^{2 p}<\eta / 2
\end{aligned}
$$

if δ is chosen correctly.
From each $\mathrm{I}_{v}, 2 \leqslant \nu \leqslant m_{2}$, delete the two intervals of length $4 \varepsilon_{2}$ whose middle halves support f_{v}. The remaining
parts of $\bigcup_{2}^{m_{s}} I_{v}$ partition into dyadic intervals I_{μ},

$$
m_{2}+1 \leqslant \mu \leqslant m_{3},
$$

of length $2^{-n_{3}}$ and with centers x_{μ}. Let $z_{\mu}=x_{\mu}+i \delta 2^{-n_{3}}$, and let $f_{\mu}=f z_{\mu_{4} \varepsilon_{3}}, m_{2}+1 \leqslant \mu \leqslant m_{3}$. Taking n_{3} large and ε_{3} small, we can use the above reasoning to obtain (4.2) and (4.3) for $1 \leqslant v \leqslant m_{3}$. This process can be continued to get an infinite sequence of points for which by Lemma 4.1, $\mathrm{T}_{p}\left(\operatorname{Re} \mathrm{H}^{p}\right) \supset l^{p}$ if $p<1$ and $\mathrm{T}_{1}\left(\mathrm{~L}^{1}\right) \supset l^{1}$ if $p=1$.

The sequence lies in the unit square so that (C) will fail if $\Sigma y_{v}=\infty$. However
$\frac{1}{\delta} \Sigma y_{v}=\Sigma\left|\mathrm{I}_{v}\right|=1+\left(1-8 \varepsilon_{1}\right)+\left(1-8 \varepsilon_{1}\right)\left(1-8 \varepsilon_{2}\right)+\cdots$
and this sum diverges if $\Sigma \varepsilon_{j}<\infty$.
By using functions f_{v} with several vanishing moments, one can obtain similar examples for $0<p \leqslant 1 / 2$.

Added in Proof. - Peter Jones has proved $\mathrm{T}_{1}\left(\operatorname{Re} \mathrm{H}^{1}\right)=\operatorname{Re} l^{1}$ implies (C) by refining the proof of Lemma 3.1.

BIBLIOGRAPHY

[1] Eric Amar, Interpolation L^{p}, to appear.
[2] D. Burkholder, R. Gundy and M. Silverstein, A maximal function characterization of the class H^{p}, Trans. A.M.S., 157 (1971), 137-157.
[3] L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math., 80 (1958), 921-930.
[4] L. Carleson and J. Garnett, Interpolating sequences and separation properties, Jour. d'Analyse Math., 28 (1975), 273-299.
[5] R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math., 103 (1976), 611-635.
[6] R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. A.M.S., 83 (1977), 569-645.
[7] P. R. Duren, Theory of H^{p} Spaces, Academic Press, New York, 1970.
[8] C. Fefferman and E. Stein, H^{p} spaces of several variables, Acta Math., 129 (1972), 137-193.
[9] J. Garnett, Interpolating sequences for bounded harmonic functions, Indiana U. Math. J., 21 (1971), 187-192.
[10] L. Hörmander, L^{p} estimates for (pluri-) subharmonic functions, Math. Scand., 20 (1967), 65-78.
[11] E. M. Stein, Boundary Behavior of Holomorphic Functions of Several Complex Variables, Princeton University Press, Princeton, 1972.
[12] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970.
[13] N. Varopoulos, Sur un problème d'interpolation, C.R. Acad. Sci. Paris, Ser. A, 274 (1972), 1539-1542.

Manuscrit reçu le 26 octobre 1977
Proposé par J. P. Kahane.
John B. Garnett, U.C.L.A.

Department of Mathematics
Los Angelès, CA. 90024 (USA).

