Annales de l'institut Fourier

Hugh L. Montgomery A note on rearrangements of Fourier coefficients

Annales de l'institut Fourier, tome 26, nº 2 (1976), p. 29-34

http://www.numdam.org/item?id=AIF_1976__26_2_29_0
© Annales de l'institut Fourier, 1976, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

A NOTE ON REARRANGEMENTS OF FOURIER COEFFICIENTS

by Hugh L. MONTGOMERY

Let $\left\{\varphi_{k}\right\}$ be a sequence of functions on $\mathbf{T}=\mathbf{R} / \mathbf{Z}$, with the property that they are uniformly bounded,

$$
\begin{equation*}
\left\|\varphi_{k}\right\|_{\infty} \leqslant \mathrm{M}, \tag{1}
\end{equation*}
$$

and satisfy a Bessels inequality

$$
\begin{equation*}
\sum_{k}\left|\int_{0}^{1} f \varphi_{k}\right|^{2} \leqslant \mathrm{M}^{2} \int_{0}^{1}|f|^{2} . \tag{2}
\end{equation*}
$$

For the sake of simplicity we suppose that M has the same value in (1) and (2); this does not occasion any loss of generality. Suppose that $\sum_{k}\left|a_{k}\right|^{2}<\infty$. Then

$$
\begin{equation*}
f(x)=\sum_{k} a_{k} \varphi_{k}(x) \tag{3}
\end{equation*}
$$

is a member of $L^{2}(\mathbf{T})$, since the dual of (2) asserts that

$$
\begin{equation*}
\int_{0}^{1}\left|\sum_{k} a_{k} \varphi_{k}\right|^{2} \leqslant \mathrm{M}^{2} \sum_{k}\left|a_{k}\right|^{2} . \tag{4}
\end{equation*}
$$

In this note we obtain bounds for $\int_{\mathrm{E}}|f|^{2}$ in terms of the measure of the set E and the numbers $\left|a_{k}\right|$. Following Hardy and Littlewood, we let the numbers $a_{0}^{*}, a_{1}^{*}, \ldots$ be the numbers $\left|a_{k}\right|$, permuted so that $a_{n}^{*} \searrow$. Then we set

$$
\begin{equation*}
f^{*}(x)=\sum_{n=0}^{\infty} a_{n}^{*} \cos 2 \pi n x . \tag{5}
\end{equation*}
$$

Theorem 1. - Let $\left\{\varphi_{k}\right\}$ be a sequence of functions satisfying (1) and (2), let f and f^{*} be defined by (3) and (5). Then
for any measurable set $\mathrm{E} \subseteq \mathrm{T}$, with measure $|\mathrm{E}|=2 \theta$, se have

$$
\begin{equation*}
\int_{\mathrm{E}}|f|^{2} \leqslant 20 \mathrm{M}^{2} \int_{-\theta}^{\theta}\left|f^{*}\right|^{2} . \tag{6}
\end{equation*}
$$

If $\mathrm{C} \in \mathrm{L}^{2}(\mathbf{T}), \mathrm{C}(x) \sim \sum_{n=0}^{\infty} \mathrm{C}_{n} \cos 2 \pi n x$, and if $\mathrm{C}_{n} \searrow$, then $\mathrm{C}=\mathrm{C}^{*}$, so (6) implies that

$$
\int_{\mathrm{E}}|\mathrm{C}|^{2} \leqslant 20 \int_{-0}^{0}|\mathrm{C}|^{2},
$$

where $\mathrm{E} \subseteq \mathrm{T},|\mathrm{E}|=2 \theta$. Thus, although it is not necessarily true that $\mathrm{C}(x)$ is decreasing on $\left[0, \frac{1}{2}\right)$, in a certain sense it is still the case that C is largest near 0 .

Using a simple inequality of. A. Baernstein [2], we shall derive from Theorem 1 the following.

Theorem 2. - Let ψ be a convex increasing function from $[0, \infty)$ to \mathbf{R}. Then, in the above notation,

$$
\int_{E} \psi\left(|f|^{2}\right) \leqslant \int_{-0}^{0} \psi\left(20 \mathrm{M}^{2}\left|f^{*}\right|^{2}\right) .
$$

Taking $\psi(t)=t^{q / 2}$, we see from the above that

$$
\begin{equation*}
\|f\|_{q} \leqslant 5 \mathrm{M}\left\|f^{*}\right\|_{q} \quad(q \geqslant 2) . \tag{7}
\end{equation*}
$$

Inequalities of this type have a long history. Hardy and Littlewood [3, 4] proved that

$$
\begin{equation*}
\|f\|_{q} \leqslant c_{q}\left\|f^{*}\right\|_{q} \quad(q \geqslant 2) \tag{8}
\end{equation*}
$$

in the case $\varphi_{k}(x)=e^{2 \pi i k x},-\infty<k<+\infty$. Littlewood [6] has shown that c_{q} is bounded in this case, and F. R. Keogh [5] has shown that $c_{p} \rightarrow 1$ as $q \rightarrow \infty$. In the opposite direction, Littlewood [7] showed that $c_{q}>1$ except when q is an even integer. Consequently, the constant 20 in Theorems 1 and 2 can not be replaced by 1. R. E. A. C. Paley [9] extended (8) to the case of arbitrary uniformly bounded orthonormal φ_{k} (see Zygmund [11, XII §5] for a simple proof). Theorem 2 does not seem to follow from the special case (7), since in general a convex increasing function $\psi(t)$ is not comparable to a sum $\sum_{r} c_{r} t^{a_{r}}, c_{r} \geqslant 0, a_{r} \geqslant 1$.

If one were to consider, in place of f^{*}, a function

$$
f^{-}(x)=\sum_{n=0}^{\infty} a_{n} * \varphi_{n}(x),
$$

then one does not in general expect the inequality

$$
\|f\|_{q} \leqslant c_{q}\left\|f^{-}\right\|_{q} \quad(q \geqslant 2)
$$

to be valid, even when the φ_{n} are given in some natural order. (See G. A. Bachelis [1], and H. S. Shapiro [10]). However, in the special case of ordinary Dirichlet series, there are good reasons to believe that something positive may be said. For example, we can formulate a

Conjecture. - Let $\varepsilon>0$, and $2 \leqslant q \leqslant 4$. Then for $\mathrm{T} \geqslant 2$, $\mathrm{N}>\mathrm{N}_{\mathbf{0}}(\varepsilon, q)$, we have

$$
\int_{-\mathrm{T}}^{\mathrm{T}}\left|\sum_{n=1}^{\mathrm{N}} a_{n} n^{-i t}\right|^{\mathrm{q}} d t \leqslant\left(\mathrm{~T}+\mathrm{N}^{q / 2}\right) \mathrm{N}^{q / 2+\varepsilon},
$$

for arbitrary coefficients a_{n} satisfying $\left|a_{n}\right| \leqslant 1$.
The above is known to be true when $q=2, q=4$; thus by Hölder's inequality it suffices to consider the case $\mathrm{T}=\mathrm{N}^{q / 2}$. The Conjecture is of special interest in multiplicative number theory, since from it one can deduce (see Montgomery [8, Theorem 12.6]) that the interval $\left(x, x+x^{\frac{1}{2}+\varepsilon}\right)$ contains a prime number, for all $x>x_{0}(\varepsilon)$.

We now prove Theorem 1. We have only countably many functions φ_{k}, so without loss of generality we may suppose that $0 \leqslant k<\infty$. Let π be the permutation such that $a_{n}^{*}=\left|a_{\pi(n)}\right|$. Put $\mathrm{N}=\left[(2 \theta)^{-1}\right]$, and set

$$
\mathscr{N}=\{\pi(n): 0 \leqslant n \leqslant \mathrm{~N}\} .
$$

Thus \mathcal{N} is the set of indices of the $\mathrm{N}+1$ coefficients of largest absolute value. Break the sum (3) into two parts,

$$
f=\sum_{n \in थ \in b}+\sum_{n \notin \mathscr{T} 6}=f_{1}+f_{2}
$$

say. On one hand,

$$
\int_{\mathrm{K}}\left|f_{1}\right|^{2} \leqslant\left\|f_{1}\right\|_{\infty}^{2} \int_{\mathrm{B}} 1 \leqslant 2 \theta\left(\mathrm{M} \sum_{n=0}^{\mathrm{N}} a_{n}^{*}\right)^{2},
$$

in view of (1). On the other hand, from (4) we see that

$$
\int_{\mathrm{E}}\left|f_{2}\right|^{2} \leqslant \int_{0}^{1}\left|f_{2}\right|^{2} \leqslant \mathrm{M}^{2} \sum_{n>\mathrm{N}} a_{n}^{*_{2}} .
$$

For each $x,|f|^{2} \leqslant 2\left|f_{1}\right|^{2}+2\left|f_{2}\right|^{2}$, so on combining the above we find that

$$
\begin{equation*}
\int_{\mathrm{E}}|f|^{2} \leqslant 4 \theta\left(\mathrm{M} \sum_{n=0}^{\mathrm{N}} a_{n}^{*}\right)^{2}+2 \mathrm{M}^{2} \sum_{n>\mathrm{N}} a_{n}^{*_{2}^{2}} . \tag{9}
\end{equation*}
$$

It now remains to relate the right hand side above to $\int_{-0}^{0}\left|f^{*}\right|^{2}$. Let $\mathrm{K}(x)=\max \left(0,1-|x| \theta^{-1}\right)$ for $|x| \leqslant \frac{1}{2}$. Then
$\int_{-9}^{0}\left|f^{*}\right|^{2} \geqslant \int_{-\frac{1}{2}}^{\frac{1}{2}} \mathrm{~K}\left|f^{*}\right|^{2}=\frac{1}{2} \sum_{m, n=0}^{\infty} a_{m}^{*} a_{n}^{*}(\hat{\mathrm{~K}}(m+n)+\hat{\mathrm{K}}(m-n))$.
Now $\hat{\mathbf{K}}(m)=\theta\left(\frac{\sin \pi m \theta}{\pi m \theta}\right)^{2} \geqslant 0$, so

$$
\begin{equation*}
\frac{1}{2} \sum_{m, n=0}^{\infty} a_{m}^{*} a_{n}^{*} \hat{\mathrm{~K}}(m-n) \leqslant \int_{-1}^{0}\left|f^{*}\right|^{2} \tag{10}
\end{equation*}
$$

If $|m-n| \leqslant \mathrm{N}$ then
(11) $\hat{\mathrm{K}}(m-n) \geqslant \theta\left(\frac{\sin \pi \mathrm{N} \theta}{\pi \mathrm{N} \theta}\right)^{2} \geqslant \theta\left(\frac{\sin \frac{1}{2} \pi}{\frac{1}{2} \pi}\right)^{2}=4 \pi^{-2} \theta$,
since $\mathrm{N} \leqslant(2 \theta)^{-1}$. But $a_{n}^{*} \geqslant 0$, so
(12) $\quad \theta\left(\sum_{0 \leqslant n \leqslant \mathrm{~N}} a_{n}^{*}\right)^{2} \leqslant \frac{1}{4} \pi^{2} \sum_{0 \leqslant m, n \leqslant \mathrm{~N}} \hat{\mathrm{~K}}(m-n) a_{m}^{*} a_{n}^{*}$.

If $0<n-\mathrm{N} \leqslant m \leqslant n$ then $a_{m}^{*} \geqslant a_{n}^{*}$, so from (11) we find that

$$
\sum_{n-\mathrm{N} \leqslant m \leqslant n} a_{m}^{*} \hat{\mathrm{~K}}(m-n) \geqslant 4 \pi^{-2} \theta(\mathrm{~N}+1) a_{n}^{*} \geqslant 2 \pi^{-2} a_{n}^{*},
$$

since $N+1>(2 \theta)^{-1}$. Hence

$$
\begin{equation*}
\sum_{n>\mathrm{N}} a_{n}^{*_{2}} \leqslant \frac{1}{2} \pi^{2} \sum_{\substack{n>\mathrm{N} \\ n-\mathrm{N} \leqslant m \leqslant n}} \hat{\mathbf{K}}(m-n) a_{m}^{*} a_{n}^{*} . \tag{13}
\end{equation*}
$$

Combining (9) with (12), (13), we find that

$$
\int_{\mathrm{B}}|f|^{2} \leqslant \pi^{2} \theta \mathrm{M}^{2} \sum_{m, n=0}^{\infty} a_{m}^{*} a_{n}^{*} \hat{\mathrm{~K}}(m-n) .
$$

But $2 \pi^{2}<20$, so by (10) our proof is complete.
We note that once (9) is established, the remainder of the proof can be effected in several ways. In proving (8), Hardy and Littlewood [3] established that

$$
\int_{0}^{1}\left|f^{*}\right|^{q} \approx_{q} \sum_{n=0}^{\infty} a_{n}^{* q}(n+1)^{q-2} .
$$

One can modify their proof of this (see also Keogh [5]) to show that

$$
\sum_{n>\theta^{-1}} n^{-2}\left(\sum_{0 \leqslant m \leqslant n} a_{m}^{*}\right)^{2}<c \int_{-0}^{0}\left|f^{*}\right|^{2} .
$$

Theorem 1 follows easily from the above and (9), apart from the values of constants.

To prove Theorem 2 we require the following result of A. Baernstein [2].

Lemma. - For $f \in \mathrm{~L}^{1}(\mathbf{T}), 0 \leqslant \theta \leqslant \frac{1}{2}$, let $f^{+}(\theta)=\sup _{\mathbf{E}} \int_{\mathrm{E}}|f|$, where the supremum is taken over all measurable sets $\mathrm{E} \subseteq 0,1$) such that $|\mathrm{E}|=20$. For t wo functions $r, s \in \mathrm{~L}^{1}(\mathbf{T})$, the following are equisalent:
(a) For all $\theta \in\left[0, \frac{1}{2}\right), r^{+}(\theta) \leqslant s^{+}(\theta)$;
(b) For any $\psi(t)$, convex and increasing on $[0, \infty)$, we have

$$
\int_{0}^{1} \psi(|r|) \leqslant \int_{0}^{1} \psi(|s|) .
$$

In the language of this lemma, we find from Theorem 1 that $\left(|f|^{2}\right)^{+}(\theta) \leqslant\left(20 \mathrm{M}\left|f^{*}\right|^{2}\right)^{+}(\theta)$. Hence

$$
\left\|\psi\left(|f|^{2}\right)\right\|_{1} \leqslant\left\|\psi\left(20 \mathrm{M}\left|f^{*}\right|^{2}\right)\right\|_{1} .
$$

However, with a little more care we obtain the full strength of Theorem 2. Let $\mathrm{E} \subseteq[0,1)$ be a set with $|\mathrm{E}|=20$. Put $r=|f|^{2} \chi_{\mathrm{E}}, s=20 \mathrm{M}^{2}\left|f^{*}\right|^{2} \chi_{(-\theta, \theta)}$. Then by Theorem $1, r^{+} \leqslant s^{+}$,
so by the Lemma above, $\|\psi(r)\|_{1} \leqslant\|\psi(s)\|_{1}$. If $\psi(0)=0$, then this asserts that

$$
\int_{\mathbf{E}} \psi\left(|f|^{2}\right) \leqslant \int_{-\theta}^{0} \psi\left(20 \mathrm{M}^{2}\left|f^{*}\right|^{2}\right) .
$$

To obtain this for general ψ we have only to add a constant to both sides of the inequality. This completes the proof of Theorem 2 .

BIBLIOGRAPHY

[1] G. A. Bachelis, On the upper and lower majorant properties of $L^{p}(\mathrm{G})$, Quart. J. Math. (Oxford), (2), 24 (1973), 119-128.
[2] A. Baernstein, II, Integral means, univalent functions and circular symmetrizations, Acta Math., 133 (1974), 139-169.
[3] G. H. Hardy and J. E. Littelwood, Notes on the theory of series (XIII) : Some new properties of Fourier constants, J. London Math. Soc., 6 (1931), 3-9.
[4] G. H. Hardy and J. E. Littelwood, A new proof of a theorem on rearrangements, J. London math. Soc., 23 (1949), 163-168.
[5] F. R. Keogh, Some inequalities of Littlewood and a problem on rearrangements, J. London Math. Soc., 36 (1961), 362-376.
[6] J. E. Littlewood, On a theorem of Paley, J. London Math. Soc., 29 (1954), 387-395.
[7] J. E. Littlewood, On inequalities between f and f^{\star}, J. London Math. Soc., 35 (1960), 352-365.
[8] H. L. Montgomery, Topics in multiplicative number theory, Lecture Notes in Mathematics, Springer-Verlag, Vol. 227, (1971), 187 pp.
[9] R. E. A. C. Paley, Some theorems on orthogonal functions, Studia Math., 3 (1931), 226-238.
[10] H. S. Shapiro, Majorant problems for Fourier coefficients, to appear.
[11] A. Zygmund, Trigonometric series, Second Edition, Cambridge University Press, 1968.

Manuscrit reçu le 17 avril 1975
Proposé par J. P. Kahane.
Hugh L. Montgomery, University of Michigan Ann Arbor, Mich. (USA).

