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A FREE BOUNDARY VALUE PROBLEM
IN POTENTIAL THEORY

by David KINDERLEHRER (*) and Guido STAMPACCHIA

Dedie a Monsieur M. Brelot a V occasion
de son 70e anniversaire.

1. Introduction.

In this paper we shall describe the formulation and solution
of a free boundary value problem in the framework of varia-
tional inequalities. For simplicity, we confine our attention
to a problem in the plane which consists in finding a domain D
and a function u defined in 0. satisfying there a given diffe-
rential equation together with both assigned Dirichlet and
Neumann data on the boundary r of ;Q. Under appropriate
hypotheses about the given data we prove that there is a
unique solution pair ti, u which resolves this problem and
that r is a smooth curve.

Let z= x^ -\- ix^ = pe19, 0 ^ 6 < 2n, denote a point in
the z-plane. Let us suppose, for the moment, that F(z) is
a function in C^R2) which satisfies the conditions

p-2?^) e C2(R2)
inf p-2?^) > 0
R2K*

(1.1) Fp(z) ^ 0 z 6 R2

F(0) = Fp(0) = 0.

(*) The first author was partially supported by C.N.R. and ASOFR 71-2098.
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These conditions will be weakened. Our object is to solve, in
some manner, this

Problem 7. — To find a bounded 0. and a function u such
that

(1.2) - Au = p-1?, in il
u=0

(1.3) ^u ̂  _ pdQ on i

^v ds
(1.4) u(0) = y

where F = 60, v 15 ̂  outward directed normal sector and s
the arc length on F, F satisfies (1.1), and y ^ gi^en.

Supposing Q, u to be a solution to Problem 2, the maximum
principle for superharmonics implies that u > 0 in 0, since
— Au ^ 0 in Q. We assume, consequently, that y > 0
and that u e C(R2) with £1 = {z: u{z) > O}/ Further, if il
is a domain with smooth boundary F and u satisfies (1.2)
in Q and (1.3) on F then

bu (z) < 0 for ^ e r
c)v

in view of Hopfs well known maximum principle. Therefore

d9 , ^ 1 <)u, . /. - _
^———F^^0 for Z 6 r '

or the central angle 6 is a strictly increasing function of the
arc length parameter on F. Interpreting this situation geo-
metrically, we conclude if F is smooth and u satisfies (1.2)
in n and (1.3) on F, then Q. is starshaped with respect to
z=0.

We shall solve Problem 1 by means of a variational inequa-
lity suggested by the properties of a function g(z) which
satisfies

(1-5) gp = - p-^

The idea of introducing a new unknown related to the original
one through differentiation is due to C. Baiocchi [1] who
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studied a filtration problem. It has subsequently been
employed by H. Brezis and G. Stampacchia [5], V. Benci [2],
Duvaut [6], and also in [12].

A characteristic of the present work is the logarithmic
nature of a function g defined by (1.5) at z = 0. This
difficulty will be overcome by considering an unbounded
obstacle.

In the following section we transform our problem to one
concerning a variational inequality. In § 3 we solve the varia-
tional inequality. With the aid of [4] we are able to show in
§ 5 that r is a Jordan curve represented by a continuous
function of the central angle 6. In § 6 we use a result of [8]
to conclude the smoothness of F a,nd the existence of a classi-
cal solution to Problem 7.

2.

In this section we introduce a variational inequality and
determine its relationship to Problem 1. We begin with some
notations. Set B^ •===- { z : \z\ < r}, r > 0, and (1)

K^ = {v e H^B^) : ^ ^ log p in B^ and v = log r on ^B^}.

Define the bilinear form

c r { i )a(^, ?:) = I ^^, dx = < j^p + —i ̂ [ P ^P dQ,
J B,. J B^ ( P )

^ ^ ^ H^(B,).

We always depress the dependence of a(^, ^) on r > 0.
Let

fe Lfoo(R2) for some p > 2.

Problem (*). — To find a pair r > 1 and w e Kp such
that

(2.1) w e K^: a{w, ^ — w) ^ jg f(^ — w} dx v e K^

(1) Usual notation is employed for function spaces.
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and the function w[z) defined by

(2-2) ^= Kli ^; is in C1(R')
The existence and other properties of a solution to Pro-

blem (*) will be investigated in the next paragraph. We note
here that the restriction of w to BR for R > r will be a
solution of (2.1) in BR. Since this means that (2.2) will be
automatically satisfied, so that R, w\^ e KR is also a solution
to Problem (*), we shall not distinguish between w and w
in the sequel.

THEOREM 1. — Let ii, u be a solution of Problem 1 where F
satisfies (1.1) and y > 0. Suppose that F is a smooth curve.
Then there exists a solution r, w e K-r of Problem (*) for

w = - ̂  w
such that

(2.3) Q, = {z: w{z) > log p} and u(z) = y(l — pWp(z)).

The theorem is based on the lemma below which also explains
the role of the normal derivative condition in (1.3).

LEMMA 2.1. — Let Q. be a simply connected domain contai-
ning the origin and F7 c ^Q, a smooth arc. Let F e C^R2)
satisfy (1.1). Suppose that u satisfies

— Au == p^Fp in Q.
u==0 „,,/. on rbu __ _ r^dQ
bv ds

Let g e C1^ — {0}) denote any function with the property

gp= — P-1^ in Q. — {0} and Ag G C(iS — {0}).

Let ^ e Co°(R2) vanish in a neighborhood of ^Q, — ^! and
z= 0. Then

^ ̂ Ag d6 = ̂  ̂ F rf6 - f^ ge(^p ^P + ?:e d9)
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Proof. — First we compute Ag in Q. For this, observe
that

— Fp = (pup)p + p^uee
== — (p(pgp)p)p — gpee
== — ^- {p(pgp)p + gee}

=-^Ag).

Hence

(2.4) ^ ( p 2 A g ) = F p in 0.

Let ?: e Co°(B,), where Q, c: B,, satisfy ^ = 0 in a neigh-
borhood of c)^ — P and z = 0. Then observing that

— F dQ == — ds = pUo dQ — — UQ do.
^v l p

-f^dQ
r / 1 \

= \ ^ ( pu. dQ — — UQ dp )
^r \ P /
r / l \ r [ l \= I u (pup)p + — UQQ ) dp d6 + ( ( pup^p + — ue^o) dp d6

^Q \ P / JQ, \ P /
= - Jo ^P ^P rf6 - Jo <P(Pgp)p^p + ^e^e} ̂  dQ=~•L ̂ rfp de - L ̂ p2^ - ^8)^:p + ̂ M ^dQ

=~ L W + P2A^P} dp d9 + /Q {^e^:P - ̂ P^^ ̂  rfe-
We evaluate the first integral by (2.4). Hence

r {F^ + p^,} dp dQ = f ^- (^Ag) dp
^0, t ^0°?

d6

=^?:p2Agd6.

Turning to the second integral, we compute that

JL ^^P ~ g^^ d9 dQ = Jo ^e^e — (^e^e)?} ^p ^6
= f^ (ge^p ^P + ge^e ^9).

Finally, we obtain that

^ F^ d6 = f^ p^AgS d6 + Jr, ge^p ^P + ?:9 ^9). Q.E.D.
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LEMMA 2.2. — Let 0., u be a solution to Problem 1 and
suppose that F =^0. is smooth. Set u = 0 in R 2 — Q . Let r be
large enough that £1 <= B^ amU choose

(2.5) g(z) = ̂ r r^((, 6) dt, \z\ = p, 0 ̂  e B,

r/ien
geC^ (Q- {0 } ) , A g e C ( Q - { 0 } ) ,

anrf
^= {z: g{z) > 0}

OMC? moreover
£1= {z: g{z) > 0}

(p-^F m Q ~ { 0 }
0 0 in B,-<a.

Proof. — As we remarked in the introduction, smoothness
of r implies that Q is starshaped with respect to z = 0.
Hence if g{z) = 0 for z = pe10, then the non-negative
continuous integrand in (2.5) vanishes for te^y t > p, so that
g(^10) ==0, ( > p. Therefore, since u > 0 in £2, we see
that g{z) > 0 in 0. — {0} and g(z) =0 in B, — Q. => F.
Because u is smooth in Q it is easy to derive that
g e (^(B,. — {0}). On the other hand g attains its minimum
on B,. — Q whence

(2.6) gp = 0 = go on B, - 0

Since gp == — p"1^ in £2, by (2.4),

(2.7) ^(p2Ag)=Fp in 0

We may integrate (2.7) in £1 since 0 is starshaped to obtain

p^Ag(z) = F(z) + ^(6), z = pe'6 6 Q,

where ^ is a function of the central angle 6 only. Now by
Lemma 2.1

Jr ^F(z) ^6 + jp ^(9)^ dQ = jp F^9 - JF ge(^p ^P + ^9 dQ)

for ?: e C^(B, — {0}). Since ge = 0 on F <= B, — Q
(cf. 2.6),

^(6)^9 ==0 !:eCo"(B,-{0})
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or
^(6) =0, 0 ^ 6 < 27c. Q.E.D.

Proof of Theorem 1. — As we have observed, 0. is star-
shaped with respect to z == 0 so the function g{z) defined
by (2.5) satisfies the conclusions of Lemma 2.2. Let r be so
large that Q. <= B,. and define

^) = -1- g(^) + log p 0 ^ z e B,

== Jl r r1^, 6) -- y)^ + log r
Y Jp

where y == ^(0) > 0. We shall show that r, w* e K^ is a
solution to. Problem (*). Clearly w* is bounded in B^ and
satisfies

/o o\ A * (f in Q — {0}2.8 — Aw* = ^ . l / a.e.
(0 in Bp — Q

by Lemma 2.2 where f{z) = — \ F(z). Since /'eC^R2),

cf. (1.1), it follows from Riemann's Theorem on removable
singularities that w* is smooth in £2. We observe that

w*{z) ^ log p since g{z) ^ 0

and i1 = {z: w*(z) > log p}. Further, Q c= B^ implies that,
for \z\ = r,

w*(z) •== log r
w^{z) = 1/r and w^(z) = 0

Therefore, w* e K^ and the function

-*/ \ ^*(z) z e^^'''(z) === ^ v / r
v / ( l ogp z^B ,

is a C^R2) function. Hence (2.2) holds.
It is easy to verify (2.1). Let v e K^. Then

a(w*, ^ — w*) == ^ f(o — w*} dx
«/ &2

by (2.8) and an integration by parts, valid since w* e C1^).
Indeed, w* e C^R2), as noted above. Hence

a(^, (. - ̂ *) - J^ ̂ ^ - ̂ *) ̂  == -- J^^^ /•(^ - ̂ ) ̂ .
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Since f ̂  0 in B^ and v e Kp implies

0 ^ ^ — log p === ^ — w* in B^ — n,

the last integral is non-negative so that

a^*, ^ - w*) ^ ̂  /^ — w*) ̂  ^ e K, Q.E.D.

3.

This paragraph is devoted to the solution of the variational
inequality Problem (*). According to a well known theorem [II],
there is a solution to (2.1) for each r > 0. To establish its
smoothness in B^, we shall prove that it is bounded. For
once this is known, the obstacle log p may be replaced by a
smooth obstacle ^ which equals log p when

log p > —— |Hi»(B,)

and (2.1) may be solved in the convex K^ of H^Bp) func-
tions which exceed ^ in B^ and satisfy the boundary condi-
tion v[z) = log r, |z| == r. The solution to this latter problem
is known to be suitable smooth (cf. [10]) and is easily shown
to be the solution of (2.1).

LEMMA 3.1. — Let fe L^Br) for some p > 2 and satisfy

f ^ 0 in B,.

Then the solution w of (2.1) for f satisfies

logr — cll/Hi^B,) ^ w(z) ^ logr in B,,

where c = c(r, p) > 0.

Proof. -— Let WQ denote the solution to the Dirichlet
problem

-- A^o === f in B/
WQ = 0 on bB^.

We know that ^ e H2'^,) and

(3<1) ||̂ olli-(B,) ^ c\\f\\w, c == c(r, p) > 0.



A FREE BOUNDARY VALUE PROBLEM 331

Consequently, for any ^ e H^(B^,

a(w — Wo, ^) == a(w, ?:) — ^X, dx.

We define ^ == max (w, WQ + log r) e K^ so by (2.1)

a(w — Wo, ^ — w) ^ 0

Further, computing explicitly, we find

a{w — Wo, v — w) = f^ (w — WoVp — w)^ dx

= — f^^ (^ — Wo)S, dx ^ 0.

Hence meas {^ > w} = 0 or log r + ^o ^ w a.e. This
proves the lower bound in view of (3.1). The same argument
may be employed to prove the upper bound, with

v = min (w, log r),

using that f ̂  0 in B^. Q.E.D.
For general jf, we observe that an upper bound for the

solution of (2.1) is

log r + c(r, p) [[max (0, /^II^B,).

COROLLARY 3.2. — Let /*£ L^B,.) for some p > 2, f ̂  0
w B^, and fc( w denote the solution to (2.1) /or /*. T/ieyi
weH2 '^). J/1 /•eC^B,), then w e H?oc°(B,).

Proof. — This is clear from the remarks preceding the
proof of the lemma. In particular, that w e Hpo^B,.) follows
by a result of Frehse [7] (cf. also [4]).

LEMMA 3.3. — Let g e H^B,.) satisfy

g ^ log p in B^
and

a^ ^ - JB.A dx ^ 0 for 0 ^ ^ e Ho^B,).

Let w denote the solution of Problem (*) for f e L^Br), /'or 6?om^
p > 2. TTien w < g in B^.

Proof. — This is a familiar property of supersolutions.
cf. [10], [11].
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THEOREM 2. — Let yeLfo^R2) for a p > 2 satisfy

sup f < 0.
R2

Then there exists a solution r, w e K,. (o Problem (*). JM
addition, w e H2'^).

Proof. — We shall construct a supersolution g(z) == /i(p)
to the form

a^ ^) - S^dx,

for some r > 1, which satisfies

(3.2) h e K,

(3.3) ^p(r) - -^.

Indeed, suppose that

0 < p ^ — sup f and j3 < 2e-1,
R2

and define

A ( p ) = a + ^ - P p 2 .

Then

- Mi= - ]- (pAp)p = - p ^ sup /*

Assume for the moment that (3.2) and (3.3) are fulfilled.
Then

w ^ h in B^

by the previous lemma. Moreover, since log p < w ^ h
we conclude from (3.3) that

Wp(z) = — for |z| = r

and, since w === log r on \z\ = r,

we(z) ===0 for |z| == r.

Therefore w defined by (2.2) is in C^R2).
It remains to find a and r from the conditions (3.2),
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(3.3). One discovers that

and
-or-1

i 1 1 /i 2 ,\ .a = log r - — = — log — - 1 > 0.
1 1 \ p /

To verify that h e Kp, i.e., to verify that /^(p) > log p
knowing that h{r) = log r, note that /i(p) — log p is strictly
convex and attains its (unique) minimum at the p where

Ap = -1- = 0. This p = r. Q.E.D.

We wish to point out here that ideas similar to those in the
proof of Theorem 2 were also studies by H. Brezis [3].

COROLLARY 3.4. — Let /*eLfoc(R2) for a p > 2 satisfy
sup f < 0. Let r, w e Ky. denote the solution to Problem (*)

R2

for f. Then for R > r, the pair R, w e KR, where w is
defined by (2.2) i5 a solution to Problem (*).

In view of this Corollary, we shall not distinguish between w
and w in the sequel. Furthermore, we recall that w e H?o^°(R2)
whenever f e C^R2).

Proof. — We need only verify (2.1) in BK. Let ^ e Co^Bn).
Then

^5 ^) == ^ ^A.6b + f r- ̂ g P^- ̂^(w? ^) == f ^^. ̂  + f — log p^,
JB^ ^B^-B^ O^i

- JB, Aw^ ̂  + Jn=r ^P^ rf6 + JB,-B, A ^g P^ ̂

f ^-^rdQ
J\2\=r r

since ^ has support in BR. Now w e C^Ba) implies, in
1particular, that Wo(z) === — for |z| = r and the two integrals

over |^| == r cancel. Hence

a(w, ^) == — jp Aw^ Jrr
= JL, ̂  ̂  ^ = ̂ : ̂ (z)> ^s p}-



334 DAVID KINDERLEHRER AND GUIDO STAMPACCHIA

Now given p e KR,

a(w, P - w) — ̂  />^ —w}dx=— f^_^ f^ — w) dx > 0

where the last integral is non-negative because w = log p
in BK - ̂  and f < 0. This verifies (2.1). Q.E.D.

4.

Here we show that the set where the solution to Problem (*)
exceeds log p is starshaped under an assumption about /*.
First we prove a lemma which is useful also in the succeeding
sections. It is a form of converse to Lemma 2.1 with an ana-
logous proof.

LEMMA 4.1. — Let / 'eLfoc(R2) for some p > 2 satisfy
sup f < 0. Let r, w e Ky. denote the solution to Problem (*)

R2

for f and define

u(z) = 1 — p^p(z) z e B^
and

0. = {z E B^: w(z) > log p }.

i) Then u e H^B,).
ii) Le( co <= By. be open and suppose that — Aw = f in co.

Then

(4.1) - Au = - p-V/^ m co

iii) Suppose that fe C^Br) and that F7 15 a smooth {open)
arc in <)Q. Then

/ /• c\\ ^u o pdQ T,,(4.2) — = p2 /— on r'v / ^v / (fo

where v denotes the outward directed normal sector on F7 .

Proo/". — Since feL^R2), p > 2, w e H^B,), so
u == 1 — S^w^, 6 I-P^B,.). The statement (4.1) will be under-
stood in the sense of distributions.
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Let (:eC^((o). Then

r r ( i \( u^, dx = ( ( pUp^p + — UQ^Q ) Jp dQ
J w »7(o \ P /

= f Sp(l - p^p + -1 (1 - pwp)e^ dp dQ
t/t0 ( P )

= — X ^(P^P^P + ^pe^e} <^P do.
We integrate by parts in the last term, first with respect to p
and then with respect to 6, to obtain

f^ u^, dx = — f^ {p(pwp)p?:p + wee^p} dp dQ

=- f^ p^^p dp dQ

=f^p^dpdQ

since — Aw = f in M by hypothesis. Hence

f u^, dx = - f A- (p2^)^p dp dQ.
^co ^ / c o P

We turn now to the proof of iii). Suppose that F' has
a Holder continuous tangent vector as a function of the arc-
length parameter. In Q, that w(z) > log p implies

- A^ = f,
whence

- Au = - i- (p^), in 0

j[
Moreover, Wp(z) = — for z e bO. so u == 0 on f <= bQ.

From this and the fact /'eC^Br) we may conclude that
ueC1 '^ U F') for some X > 0. Let ^ e Co°(B,) with
supp ^ n {bQ. — r) = 0. Then

r r ( i \(4.3) f u^ ds === ^ ^ ( pup d6 — — ue rfp )
Jr ^r' \ P /

r ( i \ c ( i \== ( ^ ( (p^c)o + — UQO ) ^p ^9 + 1 ( p?:pMp + — ue^e) ^p ^8
JQ, \ P / ^Q \ P /

= /Q ^P2/*)? ̂  d9

— f^ {p(pwp)p?;p + weo^p — wee^p + Wce^o} ^P dQ

= fa (^P^P - P2^?) ^P d9 + JQ WP - ̂ ^) ^P rfe-



336 DAVID KINDERLEHRER AND GUIDO STAMPACCHIA

Since — Aw = f in jQ, we evaluate the first integral to
yield

(4.4) ^ ((p^ - p^A^p) dp d6 = ̂  ̂ 2^6.

On the other hand, WQ = 0 on P c B,, — £1, therefore

J^ (^ee^p — w^o) ^p ^9 = f^ {Wp)e — We)?} ^p ^9
== - Jr' ̂ p ^P + ?:e rf9) - 0.

Finally, from (4.3) and (4.4) we obtain that

J^ u^ ds = f^. ̂  ds, ^ e Co°(B,), supp ?: n (^Q - F1) = 0.

THEOREM 3. — Let /*eLfoc(R2) satisfy sup f < 0 and
R2

p~ l(p2/')p ^ 0. Le^ r, w e K^ denote the solution of Problem (*)
for f and set

Q. = {z: w{z) > log p }

Then Q. is starshaped with respect to -3=0.

Proof. — Consider, as in the preceding proposition,

u{z) == 1 — p^p(z), z e B,,

o.i--2-
and note that u e C p (By.) and u = 0 on F <= B^ — Q,
r == ^)Q. By the hypothesis on f and (4.1),

f^ u^ dx = - f^ rW)^ dx ^ 0 for 0 ^ ^ e C^).

The maximum principle may now be applied to conclude that

u{z) ^ min u == 0 for z e 0,.
r

Hence the function

g(z) = - log p + w{z), 0 ^ z e B,

is decreasing on each ray pe19, 0 < p < r, because it has
derivative

gp(z) == - ̂  (1 - p^p(z)) = - A- u{z) ^0, ^ e B,, z ^ 0.
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Therefore, given z = p^16 with w[z) > log p, then

w(^19) > log t for ( ^ p.

This proves that 0. is starshaped. Q.E.D.

5.

In this paragraph we initiate the study of the free boundary
determined by a solution to Problem (*). To begin, we fix
an f e (^(R2) which satisfies

(5.1) s u p / * < 0 and (p2/^ ^ 0 in R2

R2

and let r, w e Kp denote the solution to Problem (*) for /*.
As before, set

Q. ==: {z: w{z) > log p}
and let

E = B, — 0

Observe that, by Theorem 3, E is starshaped with respect
to the point at oo in the sense that

z e E, ( ^ 1 and \tz\ ^ r implies tz e E.

Define

(5.2) (Ji(6) = inf { p : z == p^19 e E}, 0 < 6 < 2n,

Note that ^(6) is lower semicontinuous since E is closed.
For given ^ == p^18", p^ = (J.(ej, and z^-> z == pe16, we
conclude that z e E and hence p ^ ^(S)- In addition

(5.3) E = {z = pe16: (1(6) ^ p ^ r}

by the starshaped quality of E and D. In the next lemma,
we utilize that the characteristic function of E, 9^ is of
bounded variation in R2 which follows from [4]
(Corollary 2.1).

LEMMA 5.1. — Let f satisfy (5.1). Then [ji(6) defined by
(5.2) is a lower semi-continuous function of bounded variation.
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Proof. — The characteristic function of E, (RE e BV(R2)
as we have noted. This means that

\L^dx ^ Csup l? : ] , ^eHr(R 2 )
'v tt2R2

for i == 1, 2 and some C > 0. Hence by Fubini's Theorem
and (5.3)

jo" /KO) ̂  ̂ rfe = jo" r ̂ -p ̂ de
= JL ^E^.P ^P ^9
< CKIIî ) for ?:eHr(R2).

In particular, we choose ^ == ^(6) e C1(0,27T;), periodic of
period 2n, and 7](p) a function vanishing identically in a
neighborhood of 0 in Q, identically one in a neighborhood
of E, and vanishing outside, say, ^^r- ^Pply^g the above
to the product ^(6)7](p) we see that

r*2r. r*r f \ \ py.
\ \ ( — ^ ' } p d p d Q = - !:'(6)(r - ^(6)) d6

Jo Jy-W \ P / Jo
=f^V.{Q^'{Q)d9

and hence, by the foregoing,

P" (x(e)^(6) dQ < C sup \^\, ^eC^O^).
l/ O^Q^2TC

We may invoke the Riesz Representation Theorem to the
functional

^-^f^^W^WdQ

defined and uniformly bounded on the dense subset (^(O^TC)
of C°(0,2TC) to infer the existence of

g(6) e BV(0,27t)
with the properties

f^ ^'(QW) dQ == - y w dgw = f^ ?:/(e)g(6) dQ.
In particular, (1(6) — g(6) = const. a.e., which we may take
to be zero, so that

(5.4) (x(6) == g(6) a.e. in [0,2^].
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We proceed to show that (1(6) == g(6) everywhere. We may
assume that g is lower semicontinuous. Let us agree to
further modify g so that

(5.5) g(6) = lim inf g(()
t->Q

It follows that pi(6) ^ g(6). For suppose that g(6) < ^(6)
and select 6^ -> 6 such that g(6) == lim g(6/c). Since (A

<;>"»
is lower semi-continuous given s > 0, there is a 8 > 0
such that

(i(6) — s < ^(t) for [ ^ — 6[ < 8.

Hence for /c so large that

|g(e.)-g(e)| < £

we may find a neighborhood 1^ == (Q,, — 8^, 6^ + Sfc)?

1̂  n 1̂  == 0 for h ^ k,

of 6^ with the property

Var g ^ max g — min g
i^ IA i/c

^ ^(^ — (g(6) - £) for any ( e I,
^ ^(^ — (^(Q) — £) f011 almost all ( e 1̂

by (5.4). Hence, by our choice of s,

Var g ^ pi(6) — g(6) — 2e > 0
^

Consequently, Var g == 4- oo, a contradiction. Therefore
once (5.5) is assumed, (i(6) ^ g(6) in [0,27r). Observe that g
satisfying (5.5) has no inessential discontinuities.

Consider the set

F == {z: pe19: g(6) ^ p ^ r} <= E since [L ^ g.

Since the points 6 in [0,2Tc] for which g ^ p. have measure
zero,

N = E — F = {z= pe16: pi(6) ^ p < g(8)}

satisfies meas N == 0. Furthermore F is closed by lower
semi-continuity of g so Br — F is open, 0 <= B^ — F,
and

B, — F = £1 u N.



340 DAVID KINDERLEHRER AND GUIDO STAMPACCHIA

Recall here that weH^B,) since fe C^B,) by Corollary
3.2. Inasmuch as — Aw = f in 0.^ we see that — Aw == f
a.e. in 0. U N. Since Q U N is open, we may deduce that

— Aw == Y in Q U N
and

w e 0^(0 U N ) for 0 < X < 1.

Now consider u{z) = i — pWp(z), ^ e B^, which satisfies

F u^,, ̂  = - f -1- (p2/«) ^ ̂  ^ e Q(Q u N)
J Q U N J Q U N P

by Lemma 4.2 (ii). Hence u e C^Q u N) and

/NUQ u^ dx ^ ° when ° ^ ^ e Q(" u N)

so that by the strong maximum principle

u(z) > min u == 0
5(QUN)

/(
because ^(Q u N) <= B^ — Q where Wo = — and WQ == 0.

P
In particular, u{z) = 0 for z e ^(Q. u N). However, if
Z E N ^

Wp(z) == — and we(^) ===0

so that
u{z) = 1 - pwp(z) = 0,

a contradiction. Therefore N = 0, and

pt(6) = g(6), 0 ^ 6 ^ 2n. Q.E.D.

THEOREM 4. — Let f e C^R2) satisfy (5.1) a^d ̂  r, w e K^
denote the solution to Problem (*) /or /*. Le(

Q == {z: w(z) > log p}.

Then the boundary F of ti Aa5 (/ie representation

F : p == (ji(6), 0 ^ 6 ^ 27c

where [L is a continuous function of bounded variation.
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Proof. — Let ^(6) be defined by (5.2) so that the conclusion
of Lemma 5.1 holds. Suppose that 6 == 0 is a discontinuity
of (JL. Then 6 = 0 is a jump discontinuity so that

lim (Ji(6) = L > lim pi(6) = {ji(0)
6->0- 9->04-

without any loss in generality. For e > 0 sufficiently small,
there is a 8 > 0 so that the segments

{z = p e 1 9 : 0 ^ p ^ L — s} <= Q for — 5 < 6 < 0
and

{z = pe10: pi(0) + s ^ p ^ r} c= E.
^

Hence we may find a disc B^o), ZQ = — (L + ^(0)), such
that 2

B^o) n ^ == {z e B^o) : Im z < 0}

Let ff == {z: Im z == 0, ZQ — T] < Re z < ZQ + T] } and set

^ == 1 — pWp.

It follows that u e Cl((y U 0. n B^(^o)) and u attains
its minimum value zero at each point of a by Hopf's maxi-
mum principle and Lemma 4.1 (ii). Therefore

— (z) < 0 for z e (T.
ov v /

But according to Lemma 4.1. (iii) with F == <y

ou / v <,/./ N d6 / v „ p
^ (^) - P'A^) ̂  (z) == 0 for z e CT

since 6 = 0 on (T. This is a contradiction. Q.E.D.

6.

In this paragraph we show that F has a smooth paramete-
rization and that a solution to Problem 1 exists in the classical
sense. For this, we employ the results of [8]. In the case where
f is real analytic, these questions may be treated by the results
of H. Lewy [9].
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THEOREM 5. — Let ^eC^R2) satisfy sup f < 0 and
(P2/*)? ^ 0 in R2. Le( r, w e K^ denote the solution to Pro-
blem (*) for f and F the boundary of 0 = {z: w(z) > log p}.
Then F fta5 a C1^ parameterization^ 0 < T < 1.

Proof. — From Theorem 4 it is known that F is a Jordan
curve. We now apply [8] (Theorem 1). Let ZQ e F and set
<o = Bg(zo) n 0, e < |zo|, and consider

g{z) = - -4- + 1 (^(Z) - .<(.)) Z E £2 - {0}.
z z

From the known regularity of w, geH1 '00^). Furthermore

1 1^(z) == -4-A^) = — ^- A2). ^ e 0)

g(z) == 0 z e r n co

Since — — f(z) > 0 in Bg(zo), we may conclude that a

conformal mapping 9 of G == {|( | < 1, Im ( > 0} onto co
which maps — 1 < ( < 1 onto F n o> has boundary values
in C1'^ for every T, 0 < T < 1.

THEOREM 6. — Let F e C^R2) satisfy p^F 6 C^R2)
and

inf p-^F > 0
Fp ^ 0

F(0) = Fp(0) - 0.
Then there exists a domain 0. and a function u e H^°(R2)
such that

(6.1) — Au = p-^Fp in Q
(6.2) u = 0
/£* 0\ T? ^^ 07Z ^(b.o) Uy == — r — a.e.

ds
(6.4) u(0) = Y

where v 15 (/^ outward directed normal sector and s is the
arclength of F and y > 0 i5 given.

^
Proof. — Given F, define f(z) = — —- F(z) and observe
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that sup f < 0 and (p2/*)? ^ 0 in R2. Denote by r, w e K^
the solution to Problem (*) for f and define

u{z) = Y(I - p^(z)) z e R2.

Then, in view of Corollary 3.2, u e Hfc^R2) and satisfies
(6.1) (by Lemma 4.1), (6.2), and (6.4). Moreover,

£1 = {z: u{z) > 0}.

According to Theorem 5, T has a C1^ parameterization
t —> 9(^)5 ^ real, where we may assume that

9 : { ( : Im( > 0} -> ^

is a conformal mapping. It is known that ^ ' ( t ) + 0 a.e.,
— oo < t < oo. In a neighborhood of any (o f01* which
^(to) ^ 0, the tangent angle to F is of class C0'^ From
this one checks that Uy is continuous in a neighborhood of
<p(^o) in £i, e.g., by use of conformal mapping. Now Lemma
4.1 (iii) may by applied to verify (7.3) on this neighborhood
of cp(<o) in F.
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