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STRONG LAWS OF LARGE NUMBERS
IN CERTAIN LINEAR SPACES

by Wojbor A. Woyczynski.

1. Introduction.

In the present paper we are concerned with the norm
almost sure convergence of series of random vectors taking
values in some linear metric spaces and strong laws of large
numbers (SLLN) for sequences of such random vectors. All
linear metric spaces appearing below are assumed to be
complete, separable and real, and without any loss of gene-
rality we shall assume that the metric is generated by a
(nonhomogeneous in general) F-norm (cf. [10]). Even in
the case of sums of real random variables the research is
still vigorously going on and the best account of up-to-date
investigations we can recommend to the reader is V. V. Petrov's
book [7] which also features the very complete bibliography.
To be sure there is no such reference in the general case we
are going to deal with. The exposition of some topics in the
Banach space case can be found in J.-P. Kahane's book [6]
and much is done in recent mimeographed notes by
J. Hoffmann-J^rgensen [5] (cf. also references in [11]). We
begin with a section on Banach-space-valued random vectors
where we shall also give a survey of our earlier results. The
second section is devoted to random vectors taking values
in certain nonnecessarily locally convex spaces and the
third one treats identically distributed random vectors. Some
of our results seem to be new even when restricted to the
real valued random variables.
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2. Random vectors in Banach spaces.

In 1947 Kai-Lai Chung has proven that if 9 : R-^- -^ R^^
is a nondecreasing function such that <p(<)/( a.nd ^/<p(<)
are nondecreasing and if X^, Xg, . . . is a sequence of
independent real random variables with EX^ == 0 and
S(Ecp|X^|/<p(n)) < oo then the series S(Xjyi) converges a.s.
Now, Kronecker's Lemma yields the convergence of
(Xi 4- ... 4- XJ/n to zero a.s. The Kolmogorov's SLLN
(<p(() == (2) and « classical » SLLN saying that if X^, Xg, . . .
are independent, EX^ == 0, and EX^ ^ M < oo then
(X^ + • • • + XJ/n -> 0 a.s. were obvious corollaries to
Chung's theorem. It turned out that the analogues of the
above mentioned SLLNs no longer hold in all Banach spaces.
Roughly speaking this is due to the fact that the three series
theorem is not available in this case. The validity of these
SLLNs depends on some geometric properties of the unit
sphere of the Banach space in question, as will be shown
below.

Now, let QC be a Banach space with the unit sphere denoted
by S^- and the dual ^*. A strongly measurable mapping
X from a probability space <ti, ^r, P> into S is said to
be a random ^-variable. If E||X|| < oo then the expecta-
tion EX is well defined by the Pettis or Bochner integral.

A. Beck [1] has given a complete characterization of all
those Banach spaces in which the « classical » SLLN holds
i.e. in which (Xi + • • • + Xn)/n -> 0 a.s. in norm for
every sequence Xi, Xg, ... of independent random ^-varia-
bles with EX, == 0 and E||XJ2 ^ M < oo. His theorem
says that they are exactly the Banach spaces in which there
are k > 0, e > 0 such that for all /c-tuples Oi, . . ., a^ e S^-,
II ± ^i ± • • - ± ^k|| < A*(l — s) for some combination of
the + and — signs. The class of Banach spaces described
above is now known as B — convex Banach spaces and
includes, for instance, all uniformly convex spaces, and, in
particular, Lp spaces with 1 < p < oo. As we mentioned
above the Chung's theorem does not carry over even to
all B — convex Banach spaces and in [11] we were able
to show in every 3C == ^p, 1 < p < a ^ 2, a sequence
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Xi, Xg, . . . of independent random ^-variables such that
EX^O^EIIXJ^) < oo and still (X^ + ... + XJ/n
diverges a.s. Recently A. Beck and D. P. Giesy showed in [2]
that for an arbitrary Banach space °K the convergence
of S^EIIXJ2/^2) guarantees SLLN for a sequence X^ Xg, . . .
of independent random ^-variables if additionally
(N/EjXill2 + ... + ^ElfXJ2)/^ -> 0 and that this result is
strongest possible in the sense that if the mentioned above
restrictions on EflXJ2 are weakened the resulting statement
is no longer true for all Banach spaces.

In [11] we have shown, among others, that an analogue
of Chung's SLLN is valid in Banach spaces satisfying the
following ^a"condition.

DEFINITION. — The Banach space X is said to satisfy
the condition ^a for some 0 < a ^ 1 if there exists a map
G: 9E -> ̂  such that {^G(x)\\ = W, {^}G(x)x = [{x^^
and W)\\G{x) — G(y)\\ < A\\x — y\\^ for all x, y e ^ and
some positive A.

The condition ^i was introduced by R. Fortet and
E. Mourier in [4]. The importance of ^a stems from the
inequality

(1) E|)X, + • • • + XJi^ ^ A SEIIX,!^

which holds true for each integer n and for each n-tuple
of independent random ^-variables Xi, . . . , X ^ with ^e ^a?
EX^ == 0, and EIIXJ1^01 < oo, / = 1, . . . , n (cf. [11]). It
is not difficult to see that if the norm of °K is Gateaux
differentiable and g: S^. —> S^» — the gradient of the norm
is Lipschitzian with exponent a then G{x} ^= IM^g^/H^B)
satisfies {^\) — (^m). So Lp, lp, p ^ 2 are in all
^a, 0 < a ^ 1, and L^, P4-01 e ^p, 0 < P ^ a ^ 1 but
L14-01, l^^ ^ ^p if P > a [11]. It would be interesting to
check what other familiar Banach spaces are in ^a (^g*
spaces of functions with finite p-variation, Orlicz spaces,
spaces A^ of Lipschitz continuous functions and so on).

THEOREM 1 [11]. — Let Xi, Xg, . . . , be a sequence of
independent random ^-variables with EXn ==0, ^ being
a Banach space satisfying the condition ^y, for some 0 < a ^ 1.
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Then the convergence of SE<po|XJ, where ^o{t) = mm

(^ t1^), t ^ 0, implies the strong a.s. convergence of SXy».

THEOREM 2 [11]. — Let Xi, Xg, ..., fee a sequence of
independent random ^-variables with EX^ ===0, SC being
a Banach space satisfying the condition ^a /or some 0 < a ^ 1.
J/* <pn : R"1" -> R4', n = 1, 2, . . ., are continuous and such
that <pn(^)/^ and ^'^Apn^) ar^ nondecreasing then for each
sequence ti, <^? • • • °f positive numbers the convergence of
2;(E<pJXJ/9^J) implies the a.5. convergence in norm of
S(X^).

It is also possible to give a rather precise description of
the rate of growth of partial sums of independent random
vectors which is a corollary to the Theorem 2 and Kronecker's
Lemma and, in a sense, is best possible.

THEOREM 3 [11]. — Let X^, Xg, . . . , and (?„ = <p be as
n

in Theorem 2. If Ecp||XJ < oo and A^ = S E(p||XJ| f oo
then fc==l

l[Xi+ • • • + XJ == o (^(A^A,)))

0.5. /or eacA function ^ e Y,..
Remind that <p'~1 denotes the function inverse to <p and

Tc is the class of all functions ^ : R4' -> R4" that do not
decrease for t > to fo11 some <o := ^o(^) an(i f01* which
Sl/(n^(n)) converges. As a particular case of Theorem 3
and as a corollary to the example mentioned a.t the beginning
of this section we get.

COROLLARY 1 (SLLN). — If 9 : R"1' -> R+ is continuous
and such that <p(t)/^ and ^"^/(p^) are nondecreasing and if
Xi, X^, . . . are independent random °K-variables^ °K e ^a?
with EXn ^ 0 then the convergence of S(E<p||XJ/<p(7z))
implies that (Xi + • • • 4~ XJ/M -> 0 a. 5. in norm.

COROLLARY 2. — In lp, 1 < p < oo, ^e convergence of
SE||XJl+fl7nl+a, 0 < a ^ 1 implies the SLLN for independent
Xi, Xg, . . . wit/I EX^ = = = 0 iff p ^ 1 -^- (x. or in other
words iff Ist e ^^

The Corollary 2 would suggest the following.
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Conjecture: Does the existence in \S of an equivalent
(to 11.11) norm satisfying 9^ characterize those Banach
spaces (^, | | .[[) in which the convergence of SEIIXJ^/n1"1"01

implies the SLLN for a sequence X^, Xa, ... of independent
random ^-variables with EX^ == 0 ?

In his recent mimeographed notes [5] J. Hoffmann-
J^rgensen introduces the notion of p-type of a Banach space.
Namely, a Banach space X is said to be of type p, 1 < p ^ 2
iff for each sequence (Xy) in X with SIXyIp < oo, the
series Se^X^, where (^) is the Bernoulli (Rademacher)
sequence of real random variables, converges a.s. in norm.
Of course, thanks to Theorem 2, we know that if SK e ^a then
it is of type 1 + a and it is an open question whether the
fact that 3C is of type 1 + a implies the condition ^a
for S'. This, as we feel, is intimately related to our Conjecture
quoted above. To support this statement we cite more results
from [5] on Banach spaces of type p. First, it is not difficult
to see that ^*e (type p) iff the following implication holds :
for each sequence (XJ of independent random ^-variables
of the form X^ = ^n^nj where x^ e X and Sn ^re identically
distributed bounded real random variables with E^n = 0,
the convergence of SEIXJp implies that SX» converges
a.s. in norm. Moreover, one can prove that S is of type p
iff V (or 3) 0 < r < oo 3K, < oo Vn

/ » \l/r / » M/P[Eus^r) ^ ^(sjî iip)
where Xj e X and Si? ^2? • • • are independent real r.v's
with common distribution which is supposed to be symmetric,
rapidly decreasing (for definition consult [5]) and nondegene-
rated. In particular, we see that for bounded nondegenerated
and symmetric r.v's Sn? ^d independent X^ == Sn^n we

have the implication SEIIX^^ < 00==^ SX^ converges a.s.
in norm iff 3K Vn

E[|X,+ • • • +x^r < K|Eux;r .^—x
and that inequality is clearly akin to (1),

Thus far we were concerned with the situation where
some moments of Xn$ were finite. Without these restrictions

12
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we are able to prove a theorem which even on the real line
seems to be new in this generality (cf. [7], Ch. 9 for some
special cases on R).

THEOREM 4. — Let Xi, Xg, . . . be independent random
^'variables, 9; e <Sy, and <?„ be convex and such that <pn(()/(
and t^^l^n^t) do not decrease. If 0 < tn f oo then the conver-
gence of the series

/0\ y F Pnll XJ

/ / n^ PjXj+V^n)
implies that

(3) 1 S (X, - EZ,) ̂  0
"n fc==i

a.s. in norm, wAere Z^ ^= X^)c[UX^[| < ^].

Proof: Because of the inequalities

/4V ^nllZJ . 1 p,,.y ., . F 9nl|X,||
v / Q^ /^ \ • "0" ^(.U^nU ^ tn) ^ rL ——,IY „ ._———/TV^n^J ^ yjxj + 9^tj

M == 1, 2, . . . , . . . , we get that

(5) 1 P(X, ^ Z,) < oo,
n=l

and

(6) S "̂  < ".
n=l 9n(y

Let yo(() ^= mi11 (^ tl+<x)? < > 0. One can check that

(7) 9o(t + ^) < K(9o(t) + 9o(^)), <, ^ > 0, •

for some constant K which may, of course, depend on a.
Indeed, if ( + ^ ^ 1 then (7) follows from the boundedness
of the function (1 + ^/(l + (a) on the real half-line, if
( + s > 1 and (, s < 1 then (7) follows from the fact that
(( + s)l{t1^ + 51+a) < 2/((l+a + (1 — t)l+a) < 2, and if t + s > 1
and (say) ( > 1, s < 1 then (7) follows from the inequality
(^^V^^) < (<+1)/« 2.

In view of (7), convexity of <pn and the fact that
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9n(V)/<Pn(<») > Vo(0, t > 0 we get that

E,.Z.JS ^(Eĵ +JElZJ^
'n \ \ ^ / \ ^ //

^ aK159^
<Pn(<n)

so that (6) implies the convergence of SE<poll(Zn — EZ^)/^||.
Clearly Z^ — EZ^ are independent, zero mean and Theorem 1
yields that. S(Z^ — EZJ/^ converges a.s. in norm. Now,
Kronecker's Lemma (cf. next section for Kronecker's Lemma

n
in linear spaces) implies that ^ (Z^ -— EZ^)/^ -> 0 a.s. in

k=i
norm as n -> oo. However, because of (5) and Borel-Cantelli
Lemma P(Zfc ^ X^ infinitely often) =0 so that also

S (X/, — EZfc)/^ -> 0 a.s. in norm. Q.E.D.
fc==i

3. Random vectors in F-spaces.

We begin with the account of Toeplitz9 and Kronecker's
Lemmas which as we have seen earlier are essential in deriving
laws of large numbers from theorems on the convergence of
random series. Besides they are of independent interest and
may be useful in possible further research. In the non-locally
convex case their formulations involve very serious restric-
tions. However, fortunately enough, in numerous instances
we shall be able to get around them and deduce theorems from
theorems dealing with real-valued random variables.

In this section SC is always an F-space i.e. a complete metric
linear space equipped with the non-necessarily homogeneous
F-norm |[. [[. In some places more stringent conditions will
have to be imposed on S'.

As it can be easily guessed, the Toeplitz9 Lemma, which
in the simplest instance asserts that the consecutive arithmetic
means of a sequence tend to zero whenever the sequence
itself tends to zero, does not hold in non-locally convex spaces
since if ^ is not locally convex then

3a > 0 Vn3X;, . . . , X^e^T

such that ||X?|| < 1/2" ( ;==!, 2, . . . , JcJ and still
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||(X;+ • • • + X^)//cJ > a. Here are two simple-minded
counterexamples in two cases of spaces that will be of our
interest in the sequel.

Example 1. — Let ^ == W-space of all Lebesgue measu-
rable real functions on the unit interval and let

X^=2kx[^2-^ (^+l)2- f c]
K = 0, 1, 2, ..., 1= 0, . . . , 2kl. Obviously X^ -^ 0 in the
Lebesgue measure and still (Xi + • • • + X^.i)^^ — 1) == 1
for all k ^ 1 so that (Xi + . • . + X^n -^ 0.

Example 2. — Let ^ = IP, 0 < p < 1 with the usual
F-norm ||X1| = SIX^, X = (X1), let 0 < a < (1/p) - 1
and X^ == n-^W where e^ is the standard basis in IF.
Of course ||XJ| == n-^ — ^ 0 as n -> oo and at the same time

n

||(Xi + ... + X,)/n|| = n-P S /c-^ > n-Fn.n-^ -> oo.
fc=!=l

We are having the similar situation as far as Kronecker's
Lemma (2(Xjyi) < oo ==^ (Xi + • • • + X^)/n -> 0) is con-
cerned because each counter-example to the Toeplitz Lemma
yields a counter-example to Kronecker's Lemma as follows :
let S 9 yj -> 0 and (t/o + • • • + !/n-i)/^ -̂  0. Choose Xj

n

so that i/n == S (X;//). Clearly S(Xy//) is convergent but

(Xi + .. • + X,)/n = (1/n) ̂  (y, ~ y^)lj

= Vn — (2/0 + • • • + yn-l)l^ -̂  0.

However, for some non-locally convex spaces we are able to
prove (best possible) analogues of Toeplitz' and Kronecker's
Lemmas.

Remind that a linear metric space S€ is said to be locally
p-convex for some 0 < p ^ 1 if there is a sequence (U . H i )
of p-homogeneous F-pseudonorms (i.e. such that

||tXB,=|^l|X||,, <eR , X e a O

determining a topology equivalent to the original one. Here
are some criteria for local p-convexity:

a) it in ^ there is a basis of neighbourhoods of zero (U^)
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with the modulus of concavity c{(Vin) < 21/p then SC is
locally p-convex. Here the modulus of concavity of a starlike
((A <= A, V( e [0, 1]) set A <= ^ is defined by c(A) = inf
{s > 0: A + A c sA.);

b) all locally bounded spaces are locally p-convex. Moreover,
in this case, for a certain p, 0 < p ^ 1, there is a single
p-homogeneous F-norm in ^ which is equivalent to the
original one. Recall that °K is said to be locally bounded if it
contains a bounded neighbourhood of zero and that A c ^
is bounded if V neighbourhood ^ e 0 3a e R such that
A <= a^. If po == log c(^)/log 2, where c(^) = inf (c(^) :
^ => ^<, ^-open, bounded and balanced) is the modulus of
concavity of the space 3C then for each p, 0 < p < po,
there is p-homogeneous F-norm equivalent to the original one
(for proofs of the above stated facts and a variety of concrete
examples of locally p-convex spaces consult [10], Ch. III).

ToEpLiTz5 LEMMA. — Let 3C be a locally p-convex space,
0 < p ^ 1, and let ((^) be a double sequence of positive
numbers for which

(8)

(8')

lim S ̂  = 1,
">QO fc==i

00

sup S %e == M < oo

for some integer /CQ, and

(9) lim („ = 0, k == 1, 2, ...
n>oo

Further, let x^ x^ ... be a sequence of elements of °K such
that x^ -> x e S. Then

Vn == S ^^->^.(10)

Conversely, if (10) /io?d5 /or o^ry sequence x^-> x then for
the double sequence (t^) (8) and (9) hold.

Proof. — We have the inequality

5 ^A — ^i i fc=i S U^fc — ^) | + ^ S ^nfc — ^
l lfc=l fc=l
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for each F-pseudonorm [ [ . H i . Because x^ -> re, Vi Ve > 0
3^o V/c > /Co ||̂  — rc[|i < s/M. Hence

11^ - i tnAii. ^ iî  S ink - ^11. + s a^c - ̂ Lfc==i fc=i k=i
+ M 2 ^c?

lvl fc=fco-H

and for TI large enough we get \\x — ^ <nA|| ^ 3e. Now,
II k II

we prove the (partial) converse statement. To get (8) apply (10)
to x^ == x ^ 0 and to get (9) put x^ = x S^ , a; 7^ 0.
Then re == lim y^ == lim / ^ ^ — ^nfco^ so ̂ at

n n V k I

lim ( S ̂  - ^nfc,) = 1
n \ k /

what, in view of (8), gives (9).

Remarks 1. — If p == 1 then, of course, ^ is locally
convex, (8') is implied by (8) and we get the usual Toeplitz9

Lemma as stated in [11].
2. If 9; = P (or

^ === IW = (x = {x1) : \\x\\ == S|^p1 < oo))

then we may also show that, not only (8) and (9) but also (8')
is indispensable in the formulation of Toeplitz9 Lemma.
Indeed, take x^ = P^^. Then for each P^ -> 0, x^ -> 0 so
that

(11) 1 t^e^ = 1 W -^ 0
fc==l fc=l

as n -> oo. Clearly then S ̂  < °° ^or eacll 7l- To prove
k

that sup ^ ^ == M < oo it is sufficient to make an observa-
n k

tion to the effect that (t^ t^ . . . ) e Zi, n == 1, 2, .. ., is a
sequence in Z1 which is Co-weakly convergent, so that it must
be strongly bounded in I1 (cf. [3], IV. 13.4) Q.E.D.

KRONECKER'S LEMMA. — Let x^ x^ ... e ^,— where SK is
locally p-cowex and let 0 < ^ f oo he such that

(12) sup fs (^4-1 - ̂ V^ < (x)
ra \fc=o //
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Then the convergence of ^ (^k/^c) implies that
k

(̂ 1 + • • • + ̂ c)/^ -" 0.

n

Proof. — Having denoted y^ == S (^fc/^) we have that
fc==i

(^ + • • • + ^)/<n = (S A - yk-lH/tn
\fc==l //

/n-l \ /

= yn - ( S y^+i - in) )/tn -> 0
\fc==o //

because of assumptions on ^ and above Toeplitz9 Lemma
Q.E.D.

Problem. — Let A(^) be the set of all real sequences (X^)
such that tor any neighbourhood of zero W <= ^ there is a
neighbourhood of zero V such that

^iV + ̂ V + • • • c ^

Does the above Toeplitz9 and thus Kronecker's Lemma hold
true for all spaces 9£ with A(^) => IP, 0 < p < 1 (cf. [10],
Ch. III)?

We are well aware that the above formulation of the Kro-
necker's Lemma may make it rather difficult to check its
validity for a concrete sequence (tj.

The direct computation shows that if p < 1 then („ == n
is no good. One can also check that for any p > 1, ^ == n?
does not satisfy (12) either, if only p < 1. On the other hand
^ == g^ q > 1^ is just fine for all 0 < p ^ 1 because

\ »—i rjpn _ \
— V (a^ — a^ == (a — 1^ q

np ̂  \9 9 I ^ -L^ ^p _ ^qnp

n == 1, 2, ..., is a bounded sequence. More generally one can
00

check that if ^ f oo is such that ^ (l/^f) == 0(l/tJ and
m fc==m

tm+iltm < M < oo then also S ^ == O(^) ^d (12) is satis-
fc=i

fied. Also all lacunary sequences would do here. Indeed

^ "V1 (t f }P — A. "V1 ((^fc+i/^) ̂  1)^ //p __ /p\ < 1-.p- 2j ^/c+i ~ t^ —~7pL (. if \p A [h+i h) ^ 1

^ fc==i ^n A=i [h+llh)' ~ 1
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whenever ^+i/^ > const > 1, because the function

(t - iyi{tp - i)
is bounded on [const, oo). Because

lim (( — iyi{tP — 1) = + oo

as (-> 1 + this also shows that the sequences with
^k+i/^c "> 1 are not likely to satisfy (12).

Now, we turn to the investigation of random series in
F-spaces. In comparison with the results of the previous
section the theorems given below have the advantage of
being valid without stochastic independence of summands X^,
and without the assumption that EX^ == 0 (EflXJ need not
be even finite). It may be in order to mention here the fact
that for functions with values in a non-locally convex space one
can hardly define correct Lebesgue-type integral because
always there are sequences of simple ^-valued functions
tending to zero uniformly with the integrals that do not
converge.

The next theorem could be also easily deduced from its
special case when °£ = R if only it existed in literature.
In [7], however, we find it with the additional assumption that
X^5 are independent and ^C == R. So we give here an inde-
pendent proof of it.

THEOREM 5. — Let Xi, Xg, ... be a sequence of random
3,'-variables, where X is an F-space. If 9,: R4' -> R4",
n = 1, 2, ..., <pn(t) > 0 for ( > 0, are continuous, nondecrea-
sing and such that t/<pn(t) are nondecreasing then the convergence
of £(E<pJXJ /<pn(l)) implies the strong {absolute) a.s. convergence
of SX,

Proof. — Let <po(^) ^= min (i, t), ( ^ 0. Because

<p^)/<pn(l) > 9o(<) ^ ^0

it is sufficient to show that the convergence of SE(pol|XJ
implies that SQXJ < oo a.s Indeed, for arbitrary integers
N, M

E<po 2 11 XJ < S E<pol|XJ
n=N n=sN
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because of subadditivity of 90- Now, the Cauchy argument
M . . . . . . :

shows that Ecpo S || XJ tends to zero as N, M-> oo. Because
n==N

L<po = (/': /*: a -> R, Ecpol/1 < oo) with metric
d{f,g)=E^\f-g\

is complete we have that S||XJ is convergent in L^ and so
2||XJ < oo a.s. by Fatou Lemma. The completeness of X
yields also the a.s. convergence of SX^. Q.E.D.

Remarks 3. — Theorem 5 remains also valid (with the same
proof) for complete separable metric group 3E and
||. [| = d{e, X) where e is the unit element of 9C and d is
(say) left invariant metric.

4. It is clear from the proof that as far as restrictions on 9^
are concerned it whould suffice to assume that <p^ ^ C^cpo
to get similar theorem.

COROLLARY 3. — Let Xi, Xg, . . . be a sequence of random
S-variables, where ^ is a locally bounded space equipped with
a p-homogeneous norm ||.||, 0 < p < 1. If cpn are as in
Theorem 5 then for each sequence ((J of positive numbers the
convergence of S(E<pJXJ/<p^)) implies the strong [absolute}
a.s. convergence of S(XJ(J.

Proof. — In view of Theorem 5 it is sufficient to show that
S(E9j(,XJ/(p^)) < oo implies that 2E<pol|XJ < oo and
this is certainly true because <pn(^)/9n(^) ^ 9o(^)? t e ^-+*

Theorem 3 and Corollary 3 give us an immediate

COROLLARY 4. — (SLLN). If X is a Banach space satisfying
the condition ^a fo^ some 0 < a ^ 1 then for each P,
0 < (B ^ 1 + a the convergence of SE||XjP/nP for indepen-
dent and zero mean (these two restrictions are superfluous if
P ^ 1) random ^-variables imply that (Xi + • • * 4~ XJ/n -> 0
a.s. in norm.

We may ask whether in non-locally convex spaces the
convergence of SEjIXJI01 for some a > 1 does imply the a.s.
convergence of SX^. However, to this question we are able
to supply the negative answer even in the presence of inde-
pendence and centering assumptions.
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Example 3. — Let 3£ = IP, 0 < p < 1, and let X, be a
sequence of independent ^-valued r.v's taking, with equal
probabilities, the values ± n^e^. Then

SEIIXJ^Snl^ < oo

it P < — l/(ap). On the other hand ||SXJ == Sn^ == oo if
only p ^ — 1/p and one can obviously find p such that
— l/(ap) > P > -- 1/p because a > 1. In a like fashion one
can get a counter-example to SLLN. Indeed, take again 3C == IP,
0 < p < 1, as before and X^s as before. We have
SEIIXJ^^ 2n(P-D^ < oo if p < 1 - l/(ap) and, on the
other hand

|| (X, + ... + XJ/nl| = n-P S ^p > -?- ̂ p f-?Y —— 0
i=i L \L )

if only p ^ 1 -- 1/p and it is certainly possible to find p
such that 1 — 1/p ^ p < 1 — l/(ap) because a > 1.

Next we shall give a description of the rate of growth of
partial sums of random ^-variables. Fortunately, we are able
to reduce the problem to real valued random variables and
thus escape the use of Kronecker's Lemma as stated in this
section. This fact also shows that the theorem is much less deep
than Theorem 3 (cf. [8] for the case when ^ == R and o(t) = t9'
0 < a < 1).

THEOREM 6. — Let S and <?„ = <p be as in Theorem 5,
and let additionally <p increases strictly to infinity. If

n

E9J|XJ < oo, A^ == S Ecp||XJ f oo then

||Xi+... +XJ = o(9^(A-^(AJ))
a.5. for each ^ e T^.

Proof. — See Theorem 3 for definition of '¥^ Denote
bn == (p'^A/^AJ). Because for each sequence (aj of positive

n

numbers with A^ == S ̂  t °o the series SaJ(A^(AJ) is
k=l

convergent whenever ^ e Y^ (cf. Lemma 15, [7], Ch. IX)
we get that SE<p||XJ/(A^(AJ) < oo what in view of
Theorem 5 implies that S(HXJ/6J converges a.s. Now, the



STRONG LAWS OF LARGE NUMBERS IN CERTAIN LINEAR SPACES 219

(real) Kronecker's Lemma ( & n f o o ) and the triangle ine-
quality yield the desired result.

In the case when the moments are infinite we have the
following analogue of Theorem 4.

THEOREM 7. — Let ^\ X^, 9^ be as in Theorem 5. Then the
convergence of

/ 4 0 \ y p 9nl|XJ|
( ) ^ ^|X,||+^)

where t^ f oo, implies that

||Xi+ • • • +XJ/^->0
a.5. in norm.

Proof. - Put Z,==Xjc[l|XJ < ^]. Because of (13) and
the inequality (4) we see that

(14) S P(X, ^ ZJ < oo
71=1

(15) S E9^ < oo.
u==l Pn^n)

In view of (15), Corollary 3 (applied to the real sequence
|| ZJ), (real) Kronecker's Lemma and the triangle inequality
|| Zi + • • • + ZJ/( -> 0 a.s. and^so does j|Xi + ... + XJ|/^
in view of (14) and Borel-Cantelli Lemma (independence is not
needed here) Q.E.D.

4. Identically distributed random vectors.

In this section we restrict our attention to the case of
identically distributed random ^-variables. Some of the
theorems given below are valid only for symmetric vectors
and we recall that a random ^-variable X is called symmetric
if there is a measure-preserving mapping T : Q —>- £1 such that
X(r(<o)) == — X(co) for almost all co e Q. First, we deal
with random vectors in Banach spaces.

THEOREM 8. — Let Xi, Xa, . . . he symmetric^ independent
and identically distributed random S^-^ariables, where ^ 6 ^a
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for some 0 < a ^ 1, let 9 he convex and such that <p(t)/(
and ^^/^(t) do not decrease^ and let 0 < ^ f oo fee a sequence
such that

(16) S (l/y(<.)) == 0(n/<p(,)).
fc=n

Then the condition

(17) 5 P(||XJ ^,) < oo
n==l

is necessary and sufficient in order that

(Xi+ . . . +XJ/^->0
a.s. in norm.

Proof. — Sufficiency. Let Z^ == X^[||XJ < („] as in
Theorem 4. Put <o = 0. Then, in view of (16) we have that

00 Fen II 7 II °° 1 n

2 ~^V = ̂  ̂  S E9(||XJx[^-i < l|X,| < <J)
n=l r^n) n=l y^n/ fc=i

= 1 E9(||XJ|x[(.-i < l|Xi|| < ^]) S -A^
fc=l n=k ^W

^c^ i -^-Ecpaixjx^-i ^ nxiii < (j)
fc=l ?^k;

^ const S kP{t^ < ||Xi|| < ^) = const 1 P(||Xi|| ^ ^).
/C=l fc==0

This, together with the proof of Theorem 4 implies that
/ n \ I
{ 5 (Xfc — EZ^) ) /<n -^ 0 a.s. in norm what completes the proof
\fc==i //
because EZ^ == 0 in view of symmetry of X^.

Necessity. — It follows from the fact that
x. = X.+-+X. _ t^ X,+ t t t + X ^ ̂  ̂
^ <n ^ tn-1

a.s. in norm, so that were the series 2P([[Xi|| ^ Q divergent,
by Borel-Cantelli Lemma, P(||Xi|| ^ ^ infinitely often)
would be 1 what would contradict (17). Q.E.D.

Remark 5. — It is easy to check that (16) is fulfilled whenever
lim inf 9(^)Ap(^) > 2, what gives a handy criterion for a
sequence (^) to satisfy (16). For instance we see that if
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^ e ^a, 0 < a < 1, <p(() = (1+?, 0 < (3 ^ a then ^ = k
fulfills (16) and if p == 0 then it does not.

In the case of nonsymmetric random vectors we need more
restrictions on (t^).

THEOREM 9. — Let Xi, Xg, . . . be independent and identi-
cally distributed random °€-variables and let 3C', <p, ((„) be as in
Theorem 8. If additionally EXi == 0 and

(18) (̂  ^ Ckin
k ^ n, (Aen (17) implies that

(Xi+ • • • +X,)/t^O
a.5. in norm.

Proof. — The proof goes along the lines of the proof of
Theorem 8 but to complete it making use of Theorem 4 we have

to show that ( ^ EZ/( )/^ —^ 0, because here, in contrast with
</c=i

Theorem 8, EZ^ need not be zero. We shall do that, adapting
the « real » idea of V. V. Petrov (Theorems 8 and 9 tor ^ = R
and 9(() = t2 may be found in [7], Ch. IX) and utilizing (18)
and EXi = 0 as follows :

S EZ, S E(X, - Z,)
n llk=l •n ||fc=i

<——SE| |X , -ZJ
^n k=l

^^-H E(||XJx[t,< ||Xi|| < (^])
^n fc==i m=fc

=A-(s s + i i)E(iixiiix[^ < nxj < î])
^n \m=l k==l m=n-+-l fc=l/

< ^- S m(,+iP(̂  < ||Xii| < t^)
"n m=l

+1- 1 nt^P{t^^ UXJ < ̂ ).
^n m=n4-l

Now, the first summand tends to zero because of Kronecker's
Lemma and because of the fact that

S (m + 1)P((, < BXJ < ̂ i) = 5 P(1|XJ ^ t.) < oo,
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and the second one tends to zero because of the above equality
and (18) {nt^t, < C(m + 1)). Q.E.D.

THEOREM 10. — Let Xi, Xg, . . . be a sequence of independent
identically distributed random ^-variables where X is a Banach
space. In order that there exists a sector x e 3C such that
(Xi + • • • + XJn -> x a.s, in norm it is necessary and
sufficient that E||Xi|| < oo. Then also x == EXi.

Proof. — The sufficiency is proved in [9] p. 146 and the
necessity may be shown as follows : if (Xi + ... + XJ/yi -> x
then by Borel-Cantelli Lemma SP(|[Xi — x\\ ^ n) <* oo (cf.
proof of Theorem 8) and E||XJ == oo would imply that

1 + S P(l(Xi ~ |̂| ^ n) = S mP(m - 1 ̂  |[Xi - x\\ < m}
n=l OT=I

> E||Xi -xl = oo
A contradiction.

Using the technique of Theorem 8 and applying Theorem 7
instead of Theorem 4 in the nonlocally convex case we get.

THEOREM 11. — Let Xi, Xg, . . . be a sequence of identically
distributed random a:'variables, where ^ is an F-space and let
0 < ^ f oo be such that

v J- ~ o ( n \
^V^)-"^^);

for a continuous; nondecreasing 9 : R+ -> R+ with, ^(t) + 0
for t ^ 0 and nondecreasing </<p((). Then the convergence of
^P(|Xi|[ > Q is sufficient (and also necessary when X^ are
independent) in order that ||Xi+ ... + XJ/^ -> 0 a.s. in
F-norm.

Remark 6. — Having investigated the SLLNs in the non-
locally convex case we were interested under which circums-
tances [jXi + ... + XJ j /^—0. In the case of p-locally
convex spaces our results permit also to give sufficient condi-
tions for |[ (Xi + ... + XJ/^j -^ 0. However to find such
conditions in the case when ||. || is an arbitrary F-norm seems
to be a more difficult problem.
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