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EXTENSIONS THROUGH CODIMENSION
ONE TO SENSE PRESERVING MAPPINGS

by Charles J. TITUS

1. Introduction.

This paper i1s an exposition of the main problems in terms
of motivation, results, approaches and conjectures.

All manifolds are oriented and of class C*; all mappings,
unless specifically assumed otherwise, are of class C®. Let
M be a connected manifold of dimension n + 1 with the

naturally oriented boundary M = oM which in turn is a
compact manifold of dimension - n; let N be a connected
manifold (without boundary) of dimension n 4 1.

A mapping F: M — N is sense preserving, F e SP, pro-
vided that the derivative mapping

dF,: TM, — TN,, y = f(2)

is for every xe M either singular or bijective and sense
preserving. If dF, is never singular and F € SP then, of

course, F is a sense preserving immersion of M in N.
A mapping f: M— N is SP extendable to M if there

exists an extension of f to F: M — N with F e SP.
We formulate three general problems:

Problem 1. — Given M, N and an M, characterize the
mappings in C*(M, N) that are SP extendable to M.

Problem 2. — Given M, N and an M characterize the
immersions in C*(M, N) that are SP extendable to M.
14
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Problem 3. — Given M, N and an M characterize the
immersions 1n  C*(M, N) that are extendable to a sense pre-
serving immersion of M in N.

For n > 2 Problems 1 and 2 have an essentially diffe-

rent character since the immersions in C*(M, N) are no
longer dense in C*(M, N).

2. Motivation.

A problem which can be traced back at least as far as
Picard (see [22], 310-314] was formulated by Leewner and
H. Hopf about 1948 in essentially the following form :

(A) Characterize the immersions of the circle in the complex
line C which can be extended, modulo a sense preserving
diffeomorphism on the circle, to a function complex analytic
on the disk.

For generic immersions of the circle in G it 1s known
(Titus [27]) that (A) 1s equivalent to.

(B) Characterize the generic immersions of the circle in G
that are SP extendable {and so (A) is a special case of Pro-
blems 1 and 2).

Somewhat later several topologists became interested in
the following (which is a special case of Problem 3):

(C) Characterize the generic immersions of the circle in
R? that are extendable to sense preserving immersions of
the disk in R2.

Part of the charm of these problems, and occasionally
some of the frustration, arises from the fact that no standard
methods seem to apply. For example, the codimension of 1
as well as the «closed condition» for SP extendability
make unlikely any direct application of the general theorems
of Gromov, Haefliger, Phillips, et al.

Another motivation for the study of SP mappings lies in
the following pair of easily proved Propositions. A mapping

F: M— N is called interior provided that all open sets in

M — M are mapped into open sets in N and that F(y)
1s totally disconnected for all y e N.
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" Prorositien 1. — If F: M—>N is SP and if Fi(y)

is an isolated set in M — M for all ye N then F is interior.

Prorosition 2. — If F: M —> N is interior (and C~)
and a sense preserving homeomorphism on some open set then
F e SP.

So the SP condition is closely related to the condition ef
interiority which for n = 1 characterizes the topology of
complex analytic functions (see Stoilow [24], Whyburn [33]).
For those of us interested in such generalizations of function
theory the development of a generic theory inside the class
of SP mappings seems natural. For example, let S < SP
be the class of mappings F: D —>R2 D a closed disk,
where dF, has rank zero wherever dF, is singular and
where dF 1s non-singular on bdy D.

Conjecture 1. — If F € 4 then the interior mappings in
J are dense (e.g., in CO topology) in .

3. Simple Necessary Conditions.
Examples and Conjectures.

The most important distinction between arbitrary and
SP mappings 1s that there is no « folding ». More precisely
one has directly from local differential degree theory (see e.g.,

Milnor [20]):

Condition 1. — If F: M— N, FeSP, and if y¢ F(M)
then the local degree of F at y is positive if and only if
y € F(M).

Also with n=2 and with dM a simple oriented circle
one can prove directly, by methods closely analogous to
function theory, the following inequality on the tangent

winding number of f: oM — R2, TWNY.

Condition 2. — If f:oM —R? is an immersion and f
is SP extendable to M then

TWNf > x(M)
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if f 1s extendab]e to a sense preserving immersion of M
then

TWNf = x(M).

* There is an mterestlng generalization of the second part of
Condition 2 to higher dimensions, with N either a sphere or
R" due to Gramain [11]. However, these necessary condi-
tions, Conditions 1 and 2, are nowhere near sufficient as the

following Figures. 1nd1cate For with M the disk: in figure 1,
Condition 1 is satisfied but 2 is not; in figure 2, Condition 2
1s satisfied but 1 is not; in figure 3, Conditions 1 and 2 are
satisfied but there is no SP extension (a simple corollary
of Titus [

Now, Loewner and Hopf actually conjectured, with M
a disk, that «f an immersion of dD with a non-negative
winding number (= local degree) about every point in
R2 — f(dD) » should be sufficient for SP extendability

to the disk. Although figure 1 represents a counterexample
the following seems to be true:

* Conjecture 2. — If f: S - R? is an immersion with a
non-negative winding number about every point y € R2 —f(S)
then there exists a compact manifold M with ?M =S
so that [ 1s SP extendable to M.

Analogous conjectures in higher dimensions would also
be interesting.

There is another « soft » result which is proved for n =2
(unpublished) and which seems also to be provable by the
same methods for n > 2.

Conjecture 3. — If N =8 and f,g: M - N are immer-
sions in the same regular homotopy class then either both f
and g are SP extendable or neither is SP extendable;
thus, with N = 5", SP extendability is a regular homotopy
invariant.
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A simple corollary of this result for n =1 1is that every
immersion of S' in C is extendable, modulo a sense pre-
serving diffeomorphism on S!, to a meromorphic function
on the disk (for a direct proof of this see Verhey [32]).

4, Combinatorial Approach with n = 2,

If oM =S and f: S —>R? is a transverse immersion
then f may be described modulo diffeomorphic equivalence
by an «intersection sequence ». The problem may then be
transformed into a purely combinatorial one involving this
diffeomorphic invariant and an algorithm in known (Titus [26])
which decides whether [ is extendable to an interior map-
ping of the disk and, in particular, whether f is extendable
to .an immersion of the disk. ,

Also using different combinatorial data, not quite diffeo-
morphic invariants, Blank [2,3] gave a very elegant algo-
rithm which decides whether f is extendable to an immersion
of the disk and at the same time computes the number of
distinct extension classes (two immersions F, G: D — R?
are in the same extension class provided there exist sense
preserving diffeomorphisms H and K on D and R?2
respectively such that G = Ko F o H).

In more recent work by Francis [8], Marx [15, 16, 17, 18],
Verhey [19] these two algorithms have been combined and a
complete combinatorial theory of the boundary behaviour
of interior mappings from M to N (thus in particular of
complex analytic and meromorphicfunctions on two dimensional
Riemann Surfaces with boundary) now seems tractible.

5. An Approach via Restricted Homotopy.

It seems likely that these methods can produce interesting
results with n > 2 for Problems 2 and 3; however we will
restrict ourselves to the case n =1 (where M 1s a finite
union of circles).

With V aset of vectors and let 4V be the linear convex
closure; i.e., the set of all finite linear combinations of vec-
tors from V with non-negative real coefficients. Let Kg(z)
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be the curvature of f: M— N at y = f(z) with respect
to a choice of euclidean structure on TN, (the following
will not depend on this choice).

Next we construct a table (E) of « events » defined for
an immersion f thought of as an intermediate immersion
in a regular homotopy of M in N; each type of event is
seen to be a sense preserving diffeomorphic invariant.

E%: f(y) consists of exactly 2 points z,, 2, and
f'(®1), [ '(xs) are linearly dependent,
E}: ¢{f'(z1), [ "(z3} 1s a half-line,
E: @{f ’(x1)7 f"(xﬂ} is a line,

(E) E3 : Kg(zy) + Ke(zs) > 0,
E} : Ke(a) + Kelz,) < 05

E3: f(y) consists of exactly 3 points =z, z,, 3 and
f(z1), f'(x5), f{x5) are pairwise independent.
Ed: ¢{f'(xy), f'(z2), f'(®s)} 1s contained in a half-
plane,
E}: €{f'(z)), [ (z,), f'(x5)} 1is a plane.

A homotopy will be called GR (generic regular) if it is a
regular homotopy during which only a finite number of
events in (E) occur and at each such time there is exactly
one such event; it is seen (Francis [10]) that the GR homo-
topies are dense and open in the C* topology in the space of
regular homotopies of M in N.

A GR homotopy is called restricted if some of the events
in (E) are disallowed; of course, in a restricted homotopy
one can expect more invariants.

ProrosiTioN 3. — (Francxs 9D). If f, 8: M — N(dim M=1)

are transverse itmmersions connected by an E3, restricted homo-
topy (in which the event E3 is disallowed) then for every M,

f is extendable to M by a sense preserving immersion if and
only iof 8 is so extendable; thus, extendability to a sense pre-
serving immersion is an Ezz restricted homotopy invariant.

ProrositioNn 4. — {(Francis [9]). If f, g: M— N({dim

M = 1) are transverse immersions connected by an E} U E}
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restricted homotopy invariant, then f is SP extendable to an

M if and only if g is so extendable; i.e., SP etendability
is an E3, U E} restricted homotopy invariant.

6. An Approach via Transformation Semigroups.

For more details in the general approach (n > 1) see
Titus [29]; for special cases (n = 1) see Benson [1], Farias [4,
5, 6], Loewner [14], Titus [28, 30, 31].

Given f, g: M — N let us say f grows to g if there
exists a homotopy F:M X [0,1] = N taking f to g
where F e SP. With proper technical conditions this rela-
tion gives a partial ordering on C*(M, N). Thus it is natural
to search for a transformation semigroup & which acts on
C*(M, N) so that the action produces this partial ordering
of « growth ». Not only 1s this possible but there is a natural
group S > & which acts « nearly transitively » on C*(M, N).

Historically this approach has its roots primarily in the
Heavyside Calculus in which various integral operators are
approximated by operators with « degenerate » kernels which
in turn can be thought of as differential operators (see espe-
cially [1, 5, 14, 31]).

The action of the semigroups & turns out to be a natural
variation on the usual action of R on N as in flow theory.

Let = be a top order differential form on N so that
v, > 0 defines the positively oriented bases in TN,.

Let ¥ be the real vector space of all tangent vector fields
Y on N such that:

(a) the solution, ®Y: N X R — N, to the differential
equations defined by Y exists for all time ¢,

(b) Y is divergence free with respect to =.

Let % be a subspace of 7 (generally in most applica-
tions 4 is finite dimensional).

Let @ be a subring of C*(M, R) which contains all the
constant functions.

It is in terms of M, N, =, #, @ that the group J and the
semigroup & are defined.

On & X % defined the equivalence relation («, Y)=(B, Z)
if and only if there exist a, b € R, not both zero, so that
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aY = bZ and a2B = b2x. One has .
{® DR, Z)=(0,0}={B,Z)p=0 or Z=0O0}
and that
(8 218, 2) = (x, Y)} =Jaa, — YlacR, a # 0.

Let J(Y) be the set {(«, Y)la € @} together with the
binary operation (which makes sense for the equivalence
classes), (B, Y)(«, Y) = (« 4+ B, Y); thus each JY) is
an abelian group in which inverses are representable by
(2, Y)™ = (— «, Y) and the common identity by

(0, Y) = (0, O).

The group J 1s defined as the (finite) free product of the
abelian groups J(Y), Ye @; thus every G eJ, except the
identity, is represented as a (reduced) product

G = (om Yn) - (0, Ya), s €@, Y, €9,

where J(Y,) # J(Yi41) and where each element (a, Y,) is
uniquely determined (modulo the equivalence relation).

The semigroup & is defined to be the sub-semigroup of
J given by

L = {(otm Yn) ... (21, Y3)lm > 1, a, > 0},

(where again this makes sense for equivalence classes since
« >0 and («, Y) = (B,Z) imply B > 0).

Next we define the action of J (and therefore of &) on
C~(M, N). First we need a top order nowhere degenerate form

c on M so that o, > 0 defines the positive bases in TM,.
Now, construct the mapping,

A: @ x C*(M, N) = C=(M, R), (Y, f) — 2,
where, for each €M and basis ¢, ...,c, of TM, A}
is defined, with y = f(z), by
¥ ) — Y (¥), dfser, - . ., dfsen)
M (@) = 6(e1y - oy €p)

it is seen that this assigned value is independent of the choice
of basis and also that Af e C®(M, R).
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For a gi.ven Y € # let the mapping
: NX R >N, (y, t) — ®( y),

be the solution to the differential equatlon defined by Y.
We have then for all Y € #, by convention or hypothesis,
that

(a
(b

bt
() ®F o ®F = @), for all s, teR,
(d) det [(d®f)y] =1 for all (y,t)e N X R, (since Y
1s divergence free).
Finally, we can define a mapping of

J x C*(M, N) - C*(M, N)

which can be shown to be an action of J. First,
for (a, Y) € J(Y) define

(x, Y): C*(M, N) - C*(M, N),
by fr—(a, Y)f = (®g3) ° f.
It follows directly that («, Y) f=(8,Z) f for all f if and
only "if (oc, Y)=(B,Z) and thus, for every GeJ, that
Gf = (am Yn) - (ocl, Y,) f is well defined. This gives the

desired action of J as well as, of course, the action of .

@) 1s the identity,
ke

a)
) =Yo (I)Y)

- Prorosrrion 5 (Titus [29]). Given M, N, o, t, %, @ (which
define & and its action), and given any Se &, and any M
then. f: M — N, SP extendable to M, implies that g = Sf

is also SP extendable to M; thus, SP extendability is inva-
riant under the action of the semigroup <.

The idea of this proof is to construct, using the action of &,
a homotopy F: Mz[0,1] = N from f to g where F e SP
(and so represents a growth). This property of the action of
& allows for the generation of SP extendable mappings
as the union of orbits of & on any collection of mappings 2
which are known a priori, by virtue of simplicity, degeneracy
or whatever, to be SP extendable. In special cases much
more information is available as, for example, in Proposition 6.

In R? let ¢ be an imbedding representing the positively
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oriented umt circle in R? (with respect to some euclidean
structure on R2?); and let 2, be the class of imbeddings
of circle S' in R? which are diffeomorphically (sense preser-
ving) equivalent to ¢; thus each fe 9, is trivially SP
extendable.

Prorosition 6 (Farias [b]) Given M =S, o and =
usual forms on S' and R2, ¥ the constant vector field on
R? and @ = C*(S%, R) then every SP extendable mappmg
f: S* = R? is contained in ¥(2,).

The following is not difficult.

Prorosition 7 (Titus, to appear). Given dim M =1
(M a unton of circles), N,o,7v,& = C*(M,N) and ¥ such
that, for every ye N, the vectors {Y(y)|Y e #} span TN,
then the group J acts transitively on every homotopy class of
immersions in C*(M, N). S

ConJECTURE 4. — Given M with dimM = 2,
N (dim N = 3), o, 7, @ = C*(M, R)

and # such that, for every y € N, the vectors {Y(y)|Y € #}
span TN, then the group J acts transitively on every
homotopy class of generic mappmgs note here (n=2) the
immersions are not dense in C*(M, N). '

However, when n > 3, a result as in Conjecture 4 is no
longer possible because of the structure of the singularities
of generic mappings for n > 3 and because of

Prorosition 5. — (Titus [29]). Given any M, N, 0,7, A, &
with n > 2, and given an ze€M with rank dfx <n—3

then, for all G eJ, the rank (dGf), < n— 3 and
(Gf)(2) = f(2);

thus all such points are invariant under the action of J.

Since J is a group the above also leads to another invariant
of the action of J when n > 2; namely, if f is such
that rank df, > n — 2 for all z €M then, for all GeJ,
Gf has the same property. It is still possible that' J acts
transitively on each generic homotopy class with a common
singularity structure of some sort.
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7. Other Applications of the Group j}.

With M=S8, N=R? 6 and ~ as usual, @ =R and
% the constant vector fields on RZ2, it is a detailed geometri-
cal study of the action of & on C¥(S*, R) that is the main
1dea in a proof of the Carathéodory Conjecture on umbilic
points as well as a proof of the related « higher order » Loewner
Conjecture, see Titus [30].

There 1s an algebraic action of J and &, rather than
a differential action, on the space of polynomial mappings
of R to R2? which gives respectively, for example, a geo-
metric form of the Euclidean Algorithm and of Sturm Sequen-
ces; this 1dea has been developed by Norton [21], there is a
related approach in Cohn [3]. This algebraic action is, in a
natural sense, a dual theory to the differential action via a
Laplace Transform. '

There is also a close relation between the differential action
of J and the classical theory of integral operators. For
example, suppose M =S, N=R? o ant t as usual, ¥
the constant vector fields in R? and @ =R. Let ¢ € R?,
feC*(S, R),Se & then it follows that S(f¢) 1is repre-
sented by a curve in R? of the form y, = Af, y, = Bf where
A and B are real polynomial differential operators with B
separating A positively (ie., degB =1 +4 degA, A and B
have all real roots, the roots of B interlace the roots of A,
the product of the highest coefficients is positive). For z,
y, fe C*(S', R) one sees that £ = Af has a unique solution and
thus one can form the linear operator on C®(S!, R) given
by y = (BA)z. Such operators are used classically to
effectively approximate, for example, the Hilbert Operator
given by

y(s) = # [~ cot xaft — 7) d, y = Hu.

But in this context the result of Farias [5] shows essentially
that if one stays in the « parametric » form z = Af, y = Bf,
and allows periodic coefficients (let @ = C>(S!, R) instead of
@ = R) then, essentially, all curves (z, Hz) are of the form
S(fe), Se ¥, where S has, of course, finite order. This
approach has three advantages over the classical theory.
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First, the minimum order of S required to give a given
curve has many of the properties of a polynomial degree.
Second, with the operators in parametric form, no elimina-
tion theory (as leads to y = BA~'zfrom z = Af, y =Bf)
is required; this allows then the consideration of non-linear
targets as in the general theory (rn > 1) of the actions of
J and &. Third, the differential operators, G €J, have
differential operators as inverses so that integration is never
necessary,
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