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AXIOMATIC THEORY OF HARMONIC FUNCTIONS.
BALAYAGE

by N. BOBOC, C. CONSTANTINESCU and A. CORNEA

This paper is devoted to the theory of balayage of
non-negative hyperharmonic functions on a locally compact
space X on which there is given a sheaf of harmonic functions.
The axioms satisfied by this sheaf represents a slightly weakened
form of those introduced by H. Bauer [1].

For any non-negative hyperharmonic function s on X and
any subset A of X let R} be the greatest lower bound of the
set of non-negative hyperharmonic functions on X, which
dominate s on A and let R be the function obtained by its
lower semi-continuous regularisation. We prove the following
relations :

(1) R = R} + RS
(2) R}V® + RI"® <R} + RY;
(3) At A, 5.} s == RA} RA,

The same relations hold for R. We give sufficient conditions
for R* = R* outside A.

If there exists a large number of potentials on X an dif @ 1s
a measure for which any finite continuous potential is inte-
grable then there exists for any subset A of X a measure p*
such that the relation

(4) f*saly.A =f*pl;‘dp.
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holds for any finite continuous potential s. We prove that
this relation holds also in the following cases:

a) X has a countably basis and A, s are arbitrary;

b) Brelot’s axiom D [3] is fulfilled, s is arbitrary and there
exists a series of locally bounded potentials whose sum is
positive on A.

¢) s is arbitrary and A is fine open.
R. M. Hervé [4] has also proved the relations (1) and (4)

under supplementary conditions: Brelot’s axiom 3 is ful-
filled, X has a countable basis and either A is closed or A is
open or Brelot’s axiom D is fulfilled.

A good many proofs done in this paper were inspired from
the classic case or from Brelot’s axiomatic theory. The same
1s true for all concepts used here (e.g. potential, fine
topology, quasi-continuity) which coincide with the usual
ones in the classic cases.

In order to facilitate the reading of this paper, we introduced
a paragraph of preliminary results. For some of them, however,
the proofs are not given here, since they are identical with
the classic ones or can be found in the paragraph of preli-
minaries of [2].

1. Preliminaries.

Let X be a locally compact space and # a sheaf on X of
real vector spaces of real continuous functions called harmonic
functions.

An open relatively: compact set U of X is called regular
if it has non-empty boundary dU and any real continuous
function f on dU possesses a unique continuous extention to U,
whose restriction HY to U is harmonic, non-negative if f is
non-negative. For any regular set U and any ze U the map
f— Hj(z) is a linear non-negative functional on the space
of real continuous functions on 3U; we denote by w7 the mea-
sure on U associated with this functional and we call 1t harmonic
measure.

A numerical function on an open set U is called hyper-
harmonic if

a) it does not take the value — o
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b) it is lower semi-continuous;

¢) any point z € U possesses a neighbourhood U,(z) ¢ U such
that for every regular set V, Vc U,(z), and any ye V

y)> [ s doy.

An open set U is called an MP-set if any hyperharmonic
function s on U is non-negative if there exists a compact
subset K; of X such that s is non-negative on U-K; and
for any boundary point z of U

lim inf s(y) > 0.
Y>x

We shall suppose that the sheaf # satisfies the following

axioms :

Hy. For any point ze X there exists a harmonic function
on a neighbourhood of z, positive at z;

H,. The regular sets form a basis of X;

H,. The MP-sets form a covering of X;

H;. For any open set U the least upper bound of any upper
directed non-empty set of equally bounded harmonic functions
on U is harmonic.

For any regular set V and any bounded (resp. lower
bounded) function f on 3V the function s on V

*
z — f fdwY
1s harmonic (resp. lower semi-continuous and for any regular
set W, WcV,
*
s(@) = [ sdo¥, zeW).
Prorosition 1.1. — Let U, U, be two open sets and for

any ve {1, 2} let s, be a hyperharmonic function on U,. If the
function s defined on U; u U, by

s(z) = inf s,(z).
Uz
s lower semi-continuous, then it is hyperharmonic.
It follows from this proposition that any open subset of
an MP-set is also an MP-set. Hence the regular MP-sets form
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a basis of X and in the point ¢) of the definition of hyperhar-
monic function one may take, in the role of U (z), any MP-set
containing z, this means independently of s.

A numerical function s on an open set U is called nearly
hyperharmonic if 1t is locally lower bounded and for any regular
MP-set V, Vc U, and for any xe V we have

z) >f*s do].

The greatest lower bound of a locally equally lower bounded
set of nearly hyperharmonic functions is also nearly hyper-
harmonic.

Lemma 1.1. — Let s be a nearly hyperharmonic function
on X. The function § equal to
lim 1nf s(y)
Yy>z

at any z e X is hyperharmonic and
$(z) = doy =1 dow)
§(x) 3161&1‘ s dwy ‘llgllf sdw],

where B, is the set of regular MP-sets containing x and F, is
the filter of sections on B,, considering B, ordered by the rela-
tton o .

Cororrary 1.1. — If s,, s, are nearly hyperharmonic func-
tions then s, + s, ts also nearly hyperharmonic and

31+32=31+32-

CororLLARY 1.2. — If (8,)nen S an increasing sequence of
nearly hyperharmonic functions, then s = lim s, is also nearly

hyperharmonic and n>e
= lim s,.

For any family 9 = (s,),c; of hyperharmonic functions we
denote by
VY or Vs‘ (resp. A9 or /\s‘>
tE€IL t€1

the least upper bound (resp. the greatest lower bound) of ¥
in the set of hyperharmonic functions, if it exists.
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Lemma 1.2. — For any upper directed (resp. locally equally

lower bounded) family § = (s),ex of hyperharmonic functions
VY (resp. A\Y) exists and

VY = sups, (resp. Agzm).
tE€L tEXL
For any hyperharmonic function s we have .
S+VS¢=V(S+SL) <resp.s+/\sl=/\(s+sl)>.
t€1 t€1 t€1 (€1
Lemma 1.3. — Let z be a point of X, (4,).ex be a sequence
of sets of non-negative hyperharmonic functions on X and let 9

be the set of non-negative hyperharmonic functions on X which
may be written in the form

. 2 Spy S$q € gn-
If for any ne N "

(Ad,) (x) =0,
then (A9) (=) = 0.

Let us denote

SEYn
A =gye X| inf s(y) g
sey

A> mA,,.

Indeed let y ﬂA,, and € > 0. There exists for any ne N,

neN
an s,€Y, such that

A, =§yr—.: X| inf s(y) = (())ga

We have

n§N 3n(y) < =

Hence y cA.
Let V be a regular neighbourhood of 2. We have

o< " (inf ) do} < iﬁf;s (@) = (AY,) (2) = O.
Hence i "

ol(X —A,) =0,
oYX —A) < w‘;(L_J (X — An)) =0,

neN

S (inf 5) dw} = 0.
sey
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V being arbitrary, we get
(A9) (2) = infs (z) = sup [ (infs) dw) = 0.

sey VeB, seg

Lemma 1.4. — Let s,, s, be hyperharmonic functions on X,
8 > Sy, and

81 () —|—f* sy do) > s,(2) +f* 8 dwY

for any regular MP-set V and any x e V. The function s on X
equal to s, — s, where s, is finite and equal to + o where s,
ts infinite, ts nearly hyperharmonic and

31232+§.

Prorosition 1.2. — Let (s),e; be a lower directed family
of hyperharmonic functions such that for any regular M P-set
V and any ye V we have

s(y)=f" s.doy, tel
For any point ze X such that
inf s,(z) < 4+ o
te€X

we have

inf s,(z) =f* inf s, doY

t€L [X-3¢

for any regular MP-set V containing x.
Let us denote

s = inf s,
tE€X

and let V be a regular MP-set containing x. Obviously
s(z) >/*s dw).

Hence it is sufficient to prove this proposition only in the
case

s(x) > — .
Let te I such that
s(z) < + oo.

For any x e I such that s, <(s, we denote by ¢ the function
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equal to s, — s, wherever s, is finite and equal to + o else-
where. By the preceding lemma ¢, 1s nearly hyperharmonic
and

s, = 8, + iy

The family (f,) being upper directed its least upper bound ¢
i1s hyperharmonic and we have

ss=s+ Lt

Since s(z) is finite, t(z) is finite. Hence ¢ and s are ) integrable
and

s(z) + t(z) = s,(z) =fsl dwY =fsdw;’ —I—ftde,
- s(x) <fs dw).

2. Thin sets and fine topology

We say that a set Ac X is thin at a point ze X—A if
either x¢ A or ze A and there exists a hyperharmonic func-
tion s defined on a neighbourhood of z such that

s(z) < lim inf s(y).
AdY>=z

Let U be an open subset of X, s be a hyperharmonic func-
tion on U and « be a real number. We denote

(U, s, &) = §ze Uls(z) < «f.

The fine topology on X is the least fine topology on X for
which the sets (U, s, ) are open. We shall say: fine neighbou-
hood, fine open set, fine continuous function, etc., instead
of neighbourhood, open set, continuous function, etc., with
respect to the fine topology.

Lemma 2.1. (1) — Let A be a subset of X and zeA. A is
a fine neighbourhood of z if and only if X — A is thin at z.

It 1s sufficient to prove the lemma for the case ze X — A.
Suppose that X — A is thin at z. Then there exists a hyper-

() This lemma shows that the fine topology introduced in this paper coincides
in Brelot’s axiomatic with the fine topology introduced in [3], p. 139.
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harmonic function s defined on a neighbourhood of z and
a real number « such that

Iim inf s(y) > a > s(2).

X—A3Y»x

Let U be a neighbourhood of z such that s is defined on U and
s(y) >«
for any ye U— A. Hence
ze (U, s, a)cA

and A 1s a fine neighbourhood of z.
Suppose now that A is a fine neighbourhood of z. Then there
exists a finite system (U, s, &), i =1,2, ... n, such that

As ﬁ(U‘, Sy %)

i=1

Let s be the hyperharmonic function defined on nU“
i=1

and U be an ultrafilter on X — A converging to z such that

limy s = him inf s(y).
X—A3Y>zx

Then there exists an j such that
X —_ (Uj, Sj, aj) € u.
Hence

limy s = Y, limy s; > Y si(x) + «; — s;(x) > s(z).

i=1 i=1

Lemma 2.2. — Let A be a fine neighbourhood of x. There
exists a compact set K c A which is a fine neighbourhood of .

We may suppose that z € X — A. There exists, then, a hyper-
harmonic function s defined on a neighbourhood of z and
a real number « such that

Iim inf s(y) > a > s(z).

X—A3Y>z
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Let K’ be a compact neighbourhood of z such that s is
defined on K’ and

s > a
on K’ — A. The set
K = {y<K's(y) <
fulfils the required conditions.

Lemma 2.3 (2). — Let x« X, A be a fine neighbourhood of
x and F, be the filter of sections on the set of all regular sets
containing x ordered by the converse inclusion relation. Then

(A) =1,

hm (@)
V. Fo

where (wY), ts the inner measure associated with w}.
Let s be a hyperharmonic function defined on a neighbour-
hood of z, «, § be real numbers such that
a < s(z) < B < liminf s(y),
X—A3Y>w

and u be a harmonic function defined on a neighbourhood
of z equal to 1 at z. There exists a neighbourhood U of z such
that

s> au
on U and

s> Bu
on U— A. We have

. . *
(@) —a>1lim [ (s —au) dof > lim sup S (B — @ju doy
*
— 3 v
=P —a) hnt‘}‘;l:pfx_A udow).
a being arbitrary we get
%
. v _
1111‘1" ;::p‘/x—A udon) =0.

Let v be a real number, y > 1. For a sufficiently small U
we have '

1
—_—<<u<<
Y Y

(3) This lemma was proved in Brelot’s axiomatic theory by M. Brelot [3], p. 131
and R. M. Hervé [4], p. 435.
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on U. Then
1 1

Y T
for any V, Vc U. Hence

$ 3
f udoY < (o)), (A) < v
X—A

_i- < lim inf (Y),(A) < lim sup (02),(A) < .

V, :7..; v' gﬂ!

The prbof 1s complete since Y is arbitrary.

Lemma 2.4. — Let s be a nearly hyperharmonic function
on X and z € X. Then the fine lower limit of s at z is equal to
the lower on X and limit of s at x.

Let « be a real number smaller than the fine lower limit of
s at £ and A a fine neighbourhood of z such that

s>a
on A. We have (lemma 1.1)
lim inf s(y) = limf* s dw) > lim sup /: sdowY

y>z V,Fz V. Fe
> alim (o))
YV, F=

J(A) =
Hence the fine lower limit of s at z is not larger than the
lower limit of s at z. Since the converse inequality is trivial,
the assertion is proved.

3. Balayage of non-negative hyperharmonic functions

Lef f be a locally lower bounded numerical function on X.
We denote by R, the greatest lower bound of the set of hyper-
harmonic functions which dominate f. R, is a nearly hyper-
harmonic function.

Prorosition 3.1. — Let f, g be locally lower bounded numerical
functions and (f,),e; be a family of locally lower bounded nume-
rical functions. We have

a) f<g=> R, <Ry

b) Rf+y < R/ + Rg;
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o f<g<R/= R, =R

d) if for any el Ry is hyperharmonic then R, is also
hyperharmonic and 1€l

e) if fis fine lower semi-continuous then R;ts hyperharmonic.

a) - d) are trivial. e follows from lemma 2.4.

Prorosition 3.2. — Let f be a locally lower bounded numerical
function, U be an open subset of X such that R, is locally bounded
on U and f is harmonic on U. Then R, is harmonic on U.

Let V be a regular MP-set, Vc U. If s is a hyperharmonic
function on X dominating f, then the function on X equal
to s on X—'V and equal to

* )
:c—>f s dwy

on V is hyperharmonic and dominates also f. We denote by
9 the family of hyperharmonic functions on V of the form

* )
a:—>f sdw),

where s is a hyperharmonic function on X dominating f.

Obviously for any ted, any regular set W, Wc V, and any
ze W we have

t(x) =f*tdw;'.
Since
inf == Rf
tey

on V, it follows from proposition 1.2 that R, is harmonic

on V.

Remark. — It follows from this proposition and c) of the
proposition 3.1 that if for a locally lower bounded nume-
rical function f and for a point ze X

lim sup f(y) < lim inf R/(y)
Y>> Y>x

and R, is bounded on a neighbourhood of z, then R, is har-
monic on a neighbourhood of z.
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Prorosition 3.3. — Let f be a locally lower bounded nume-
rical function on X and z be a point of X. If

lim sup f(y) << lim inf Ry(y)
Y>x Y>x
and R, 1s bounded on a neighbourhood of x then R; is upper
semi-continuous at x.

Let ¢ be a positive number and u be a positive harmonic
function on a neighbourhood of z equal to 1 at z. Let further V
be a regular MP-neighbourhood of z such that u is defined
on V, R, is bounded on V and

f<< (hm sup f(y) + ¢)u, R, > (lim inf R{y) —¢)u
Y>z

Y>>z

on V. For any hyperharmonic majorant s of f we denote by
h, the function on V equal to

y—)f*sdm}'.

The function on X equal to s on X — V and equal to
min (2ew + h;, s) on V is a hyperharmonic majorant of h.
Hence

R, << 2eu + A
on V. The family (h,), is lower directed and
inf h_‘ < Rf

on V. Since R, is bounded on V we deduce by proposition 1.2
that the function inf A, is harmonic. Hence

lim sup R/{y) < 2eu(x) + inf h(z) < 2¢ + Ry(z).
I>z s

e being arbitrary we get

lim sup Ry{y) << Ry(x).
Y>>z

Remark. — It follows from propositions 3.1 and 3.3 that
if f1s a continuous finite function and R, is locally bounded
then R, is continuous.

Let s be a non-negative hyperharmonic function on X and
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A be a subset of X. If fis the function on X equal to s on A
and equal to 0 on X — A we denote

R?: Rf.
Oberously
R=s on A;
AcB, s<<t= R} R}
RA,, < R* + RY;
RV * <R + RY.

From proposition 3.2 it follows that if R} is locally bounded
on an open set U, Un A = @, then R} is harmonic on U. If
V is a regular MP-set then

RX-V = Rx_v
and
RV(z) = [ s dw)
for any ze V.

Traeorem 3.1. — Let A be a fine open subset of X and s be
a non-negative hyperharmonic function on X. Then

) R* = R
b) for any regular MP-set V, Vn A = @, we have

= [*R* do};

) if (s)ex (resp. (A)),en) is an upper directed family of
non-negatwe hyperharmonic functions on X (resp. fine open

subsets of X) such that s = Vs‘ (resp A= UA;) then

t€X AEA

= VAR
) Vﬁ

where K runs through the set of compact subsets of A.

a) follows from proposition 3.1 e) since the function on X
equal to s on A and equal to 0 on X—A is fine lower semi-
continuous. b) follows from a) and from the fact that the func-
tion on X equal to R* on X — V and equal to

x»f*Rﬁde
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on V is a non-negative hyperharmonic and equal to s on A.
¢) follows from proposition 3.1 d) since the function on X equal
to s, on A, and equal to 0 on X —A, is fine lower semi-continuous.
d) follows from ¢) and lemma 2.2.

Lemma 3.1. — Let A be a subset of X and s be a non-negative
hyperharmonic function on X finite on A. Then

RA = inf RS,
G

‘where G runs through the set of fine open sets containing A.
Let s’ be a non-negative hyperharmonic function on X
such that

s'>s
on A. We denote, for any a > 1,
Ge = {2« Xlas'(z) > s(2)} v {2« Xls(a) = 0}.
G, is a fine neighbourhood of A since {xe X|s(z) = 0} is

fine open and
RS < as

o being arbitrary we get
R: < inf R§ < R4
G .
where G runs through the set of fine open sets containing A.

Tueorem 3.2. — For any subset A of X and any two non-
negative hyperharmonic functions s, t on X we have

RAL, =R RY, RA, =R+ RA

The second equality follows from the first one by corol-
lary 1.1. Since the inequality

e <R+ RY

is obvious, it is sufficient to prove the converse inequality.

Suppose firstly A fine open. Let K be a compact subset
of A and
Sk = R}.
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Let z be a boundary point of K, V be a regular MP-neigh-
bourhood of # and hy the hyperharmonic function on V,

y%f*Sde}’.

hv < R.‘w&-e-t

on V. Let sy be the function on V equal to infinite where hy
is infinite and equal to R2, , — hy elsewhere. By lemma 1.4
sy 1s nearly hyperharmonic. Since

Rhy/=s+t>sx+t>hy+t

on Vn A we have

‘We have

Sy > t
on Vn A. Hence by lemma 2.4
lim inf $v(y) > $v(z) = lim inf sy(y) > lim inf {(y) = t(z).

V—K3ry>z VNA3Y>z VNA3Y>z
Let f be a non-negative real continuous function on X whose
support is contained in the set

{2 & Xjse(a) >0}
and f << sx whenever f is positive. We denote

s’ = Rj.
Obviously

Réx'o < sA+ta
where K, is the fine interior of K. By theorem 3.1 b) we have
RE(y) = | "RE do}f

for any regular MP-set W, Wn K = &. Hence by lemma 1.4
the function s” on X—K equal to infinite wherever RX is
infinite and equal to R, — R}* elsewhere is nearly hyper-
harmonic. Let z be a boundary point of K, and V be a regular

MP-neighbourhood of z such that
hv > f

on V. The function on X equal to sx on X—V and equal to hy
on V is a non-negative hyperharmonic function which domi-
nates f. Hence

hy > s’ > RE
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on V and therefore
s" > sy, s”

on V— K. We deduce
lim inf §"(y) > t(x).

X—K3r>zx

V

The function ¢’ on X equal to ¢ on K and equal to inf (¢, §")
on X—Kislower semi-continuous on X and therefore, by propo-
sition 1.1, hyperharmonic. It is obviously non-negative and

' >t
on K. Hence
t' > Rf,
§" > RE,

on X— K. It follows

R%.> RE + RX > RE 4 RF
on X.

Let 9 be the family of the functions R, where f 1s a non-
negative real continuous function on X, whose support is
contained in the set

{2 X|sx(z) > 0}
and f < sg whenever f is positive. We have

Vg = Sk.
Since
Sk = S§

on K, by theorem 3.1 a), we get by theorem 3.1 ¢)
V R¥ = RE =Rk
seg
RA, > Rx., + RX
and, by theorem 3.1 ¢),
s+t RA + RA
Suppose now A arbitrary and s 4 ¢ finite on A. Then we have
R, = 1nf R¢,, = mf (R¢ 4+ Rf) > R} 4+ R4,

Hence

where G runs through the set of fine open sets containing A.
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Let us consider now the general case. We denote by B the
subset of A where s 4 t1s finite. Let # be a point where R2,,
is finite and s’ be a non-negative hyperharmonic function
on X such that

s >s+t

on A and finite at 2. For any ¢ > 0 and any non-negative
hyperharmonic function s” on X, such that
S” > s
on B, we have
s" +es’' >
on A. Hence

s" 4+ e’ > RM
e and s” being arbitrary we get
Ri(z) > Ri(a).
x) >

Ri(2)

Similarly we get

We have, by the above considerations,
Riv(2) > Ri(z) = Ri(z) + Ri(z) > Ri(z) + Ri(2).
Hence
e >Ry + RY
and the proof is complete.

Tueorem 3.3. — For any non-negative >hyperharmonic
function s and for any two subsets A, B of X we have

RIY® + REOP <RI+ RE, R+ RAPSRE 4R

The second inequality follows from the first one by corol-
lary 1.1. ’
Suppose first A, B fine open. We denote

431 - R:AUB, S = R‘AnB.

By theorem 3.1 a) we have
B AU B
s, = RAYE s, = RAVE

By theorem 3.1 a)
s; + s <R + R?
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on A uB. Hence by the preceding theorem

AUB ANB __ — RAUB AUB _ RAUB B
R v +R 0 Sl+32“’R +R Rsrgs, R?‘I"Rs

Suppose now A, B arbitrary and let us denote by A’ (resp. B’)
the subset of A (resp. B) where s is finite. Let z be a point
where R2A -+ RP® is finite. Then RAY®, R2"® are also finite at

z. Let t be a non-negative hyperharmonic function on X,
t>s

on A uB and finite at z. For any ¢ > 0 and any non-negative
hyperharmonic function s’ on X such that

s'>s
on A’ uB’ we have
s +et>s
s’ 4+ et > RAYB,
¢ and s’ being arbitrary we get

RA'UP (7) > RAYR(z).

on A uB. Hence

Similarly we get
R °%(z) > R ().
We have further
RA(z) + R¥(z) > R¥(z) 4+ R¥(z) = inf R¥(z) + inf R¥(z)
A" B”
= inf (R¥(z) + R (2)) > inf (R¥O(z) + RIT"¥(z))
A", B”

S R¥UY(z) + REO¥(2) > RAY(a) + REVH(z),
where A" (resp. B”) runs through the set of fine open sets
containing A’ (resp. B’). We get

RA+ RB RAUB+ RAnB

Prorosition 3.4. — Let (A,),ex be an increasing sequence

of subsets of X, A =U A, and s be a non-negative hyperhar-

n€N
monic function on X finite on A. Then

R& 4 R
Let z € X. Obviously

lim R(z) << R(2).

n>w
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In order to prove the converse inequality it is sufficient to
assume

Iim Ri(z) < + 0.

n>oo

Let ¢ be a positive number. We shall define inductively an
increasing sequence of fine open sets (G,),ey such that

AvcG,  Ré(z) < Ri(o) + 3 =

Suppose G, constructed. By lemma 3.1 there exists a fine open
set G’ such that
Anrc G, RY(z) < Ri(a) +

3
Setting

G,y = G v G,
we get by the preceding theorem

Rf=(z) + R{"%(z) < R¥(2) + Ri(x).
Hence :
R=(z) < Ri(2) + Ri(z) — RF'"()
< RI(2) + 575 + Ri+(@) + 3 o7 — Ri(a)
i=1 i

< Ri(2) + 3 o

¢ =_JG.

n=1

Let us denote

By theorem 3.1. ¢) we have
RA(z) < R%(z) = lim R (z) < lim R+(z) + .
¢ being arbitrary we get
RA(z) < lim Ri+(z).
Taeorem 3.4. — Let s be a non-negative hyperharmonic
function on X, A be a subset of X and (f,).ex be an increasing
sequence of non-negative numerical function on X equal to 0

on X—A and such that for any re A
s(z) = hm f,(2).
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Then '
R,tRY, R, fRA

The second relation follows from the first one by corol-
lary 1.1. Let ze X. Since the inequality

lim Ry, (z) < RA(2)

is obvious, it is sufficient to prove only the converse one.
Suppose first that s is infinite on A. If for any ne N

an(x) = O’
then
RA(z) = 0.

Indeed for any ¢ > 0 we may take a sequence (s,),ex Of non-
negative hyperharmonic functions on X such that

sy) > fily),  yeA,
Y s <e.

neN

The non-negative hyperharmonic function on X

DA
. . n€N
is infinite on A. Hence

Riz) < sil2) < e

n€N
¢ being arbitrary we get

Ri(z) = 0 < lim R, (z).
We may assume therefore
0 <Ri(z) <+

for ake N. Let ¢t be a non-negative hyperharmonic function
on X such that

t>fk on A’
t(r) < + .

Let « be a positive number. We denote
B, ={y < Alfu(y) > «i(y)},

B =|_JB..

neEN
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Obviously ¢ 1s finite on B and infinite on A —B. Hence
Ry(@) < RA(@) < R¥a) + RA-%(z) — R¥(a).
By the preceding proposition we have
lim Ry,(z) > o lim Rix(z) = aR(z) > aRa(a).

a being arbitrary we get
Iim Ry (z) = + «© > R}2).

Suppose now s arbitrary. Let « be a real number, 0 < a << 1,
and let us denote

» ={y < Alas(y) < fi(y)},

C
¢ =l Jc.

neN

C={yeAls(y) <+ o}.
We have, by the preceding proposition,
lim R, (z) > « lim R¢(2) = «R¢(z).

n>®

Obviously

« being arbitrary we get

lim R, (z) > R¢(z).

Since s is infinite on A — C we have either
R}Cz) =0
or
R}C(z) = 4+ .

In the first case we get

R (z) < Ri(z) + Ri~%(z) = Ri(z) < lim R (z).

In the second case we get, from the first part of the proof,
lim Ry (z) > R} %2) = + o > Ri(z).

n>w

CororLrary 3.1. — Let s be a non-negative hyperharmonic
function on X, A c X and xe X—A. If {z} is of type G; and

there exists a non-negative hyperharmonic function on X finite

at = and positive on {y < Als(y) > 0} then RA(z) = R(x).
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4. Balayage of measures

A non-negative hyperharmonic function p on X is called
potential on X if any hyperharmonic function s is non-negative
if s 4+ p i1s non-negative. Obviously the sum of two potentials
and a non-negative hyperharmonic minorant of a potential
are also potentials.

Prorosition 4.1. — Any non-negative locally bounded
hyperharmonic function s on X possesses a unique decompo-
sition

s$=p+u,

where p is a potential on X and u ts a non-negative harmonic
function on X. The function u ts a greatest harmonic minorant
of s. Let & be an open covering of X with relatively compact
MP-sets and 9 be the smallest set of non-negative hyperharmonic
functions on X containing s and such that for any te $ and any

Ue® the function RXV belongs to 4. Then

u= AdJ.
Let
s§=p+u
where p is a potentials on X and u a harmonic function on X.
If ¢ is a harmonic minorant of s we have

p+ (u—v9) >0, u—y¢ >0, u>=v.

Hence u is the greatest harmonic minorant of s and therefore
the decomposition of s is unique.
Let us denote now

u= A9
and let Ue ®. Then
u= /\ Rr-v.
tey

Since any t e ¥ is locally bounded the function R¥~Y is harmonic
on U. Hence u is harmonic.

Let t be a hyperharmonic function such that s + ¢ is non-
negative. We denote by ¥’ the set of non-negative hyperhar-
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monic functions s’ on X such that s’ + ¢ is non-negative.
Obviously <Y’ and

utt=AI+t>N +t=\ (s +1)>0
s'ey’
Let us denote
p=s—u.

p is non-negative hyperharmonic function and for any hyper-
harmonic function ¢ on X such that p + ¢t is non-negative
we have

s—u-+t>0, u—u+1t>0, t> 0.
Hence p is a potential and
s=p-+u

Lemma 4.1. — The following assertions are equivalent:

a) For any point of X there exists a locally bounded potential
on X positive at this point;

b) For any two different points z,y € X there exists two locally
bounded potentials p, q on X such that

p(x)q(y) — p(y)q(=) +* 0;

¢) For any two different points x,y € X there exists two locally
bounded non-negative hyperharmonic functions s,t on X such

that
s(@)t(y) — s(y)t(z) + 0;

d) For any point xe X and any regular M P-neighbourhood
V of z there exists a locally bounded non-negative hyperharmonic
function s on X such that

s(z) >fs dw);

e) For any point ze X and any regular MP-neighbourhood
V of z there exists a locally bounded potential p on X such that

pa) > [ p do}.

a) => b). Let z,y be two different points of X and p be a
locally bounded potential, positive at z and y, and & be the
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set of regular MP-sets V such that either z¢ V or y& V. @ is
a covering of X. Let J be the smallest set of non-negative
hyperharmonic functions on X containing p and such that

for any te 9 and Ve ® the function RX-" belongs to 9. Since,
by the preceding proposition
A9 =0,

there exists an ge 9 such that either

glz) =p(®) and  q(y) < ply)

g(zx) < p(z) and  qy) = p(y).

Since any element of ¥ is a minorant of p and therefore a
potential, ¢ i1s a potential. Obviously

q(z)p(y) — q(y)p(z) # 0.
b) = ¢) is trivial.

¢) => d). Let y be a point of the carrier of wY and s, ¢ be

&

two non-negative locally bounded hyperharmonic functions
on X such that

s(z) = Uz),  s(y) < iy).
For an open set U, ze U, y ¢ U, we denote

' ___ NU .
s = Rl -

Obviously
Sly) <dy), §'(2)=1a)
Since s’ is harmonic on X — U,
s<<t
on a neighbourhood of y. Hence

s'(z) = t(x) >ft doY >f s dw}.

d) =>¢). Let s be a non-negative locally bounded hyper-
harmonic function on X such that

s(z) >fs dw},
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and let p (resp. u) be a potential (resp. harmonic function)
on X such that

s=p-+u
We have

p(@) = s(2) — u(z) > [ s do} — [udo} = [ p do}.

e) => a) 1s trivial.

In order to introduce the balayaged of a measure one has
to suppose that there exists a large number of potentials on X :
For that purpose we shall assume from now on that one of the
equivalent conditions a)-e) ts fulfilled. Obviously Bauer’s
Trennungsaxiom T+ implies the condition ¢). Also in Brelot’s
axiomatic, the existence of a positive potential implies the
condition a).

The following lemma contains some of the first consequences
of this hypothesis.

Lemma 4.2. —

- a) X is an MP-set;

b) for any real continuous non-negative function f on X,
whose support s compact, the function R, is a finite continuous
potential on X;

. ¢) any non-negative hyperharmonic function is the least
upper bound of an upper directed family of continuous finite
potentials.

a) Let s be a hyperharmonic function on X, non-negative
outside a compact set K. There exists a potential p on X

p=>—s
on K. Then
p+s>0
on X and therefore
s> 0.

b) Since f is a real continuous function with compact
support, there exists a locally bounded potential dominating f.
Hence R; is locally bounded. By the remark from the propo-
sition 3.3 it follows that R, 1s a non-negative locally bounded
continuous hyperharmonic function. Being dominated by a
potential 1t 1s itself a potential.
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¢) Let s be a non-negative hyperharmonic function on X.
Then
s = sup Ry,
s

where f runs through the set of non-negative real continuous
functions on X with compact support and not greater than s.
The proof 1s complete.

Let £ be the set of real continuous functions on X with
compact support which may be written in the form

P—9

where p and ¢ are finite continuous potentials. Obviously £
is a real vector space ordered by the relation <C. Since

max (p —¢, 0) = p — min (p, g),
£ is a vectorlattice.
Lemma 4.3. — Let f be a non-negative real continuous func-
tion whose support is a compact set K. For any neighbourhood U

of K and for any positive number ¢ there exists a non-negative
function f, € £ whose support lies in U such that

If—fl <e.

Let z, y be two different points of X. Let V be a regular
MP-neighbourhood of z, y¢ V and s a locally bounded non-
negative hyperharmonic function on X such that

s(z) > f s dw}.

By c¢) of the preceding lemma there exists a finite continuous
potential p on X such that

p@) > [ p do}.

Let ¢ be the function on X equal to p on X-V and equal
to

z—>fpdm}'

on V. ¢ 1s a finite continuous potential on X. The function
g = p — q belongs to £, 1s equal to zero at y and 1s different
from zero at z. Similarly we may construct a function g'e %
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equal to zero at z and different from zero at y. Hence for any
real numbers a, § there exists an element of £ equal to « at z
and equal to P at y.

Let U’ be a relatively compact open set,

KcU<cU' cU.
By Stone’s theorem there exists an f’ € £ such that

If' =1l <e

on U’. Let further g be a real continuous function with com-
pact support on X such that

g>supfi(y) +¢
on K,

on X — U/,

on (X—U") n Supp f’. Again by Stone’s theorem there exists
a g’ €% such that
8" —8l <e

on U’ u Supp f’. The function
fo = max (0, min(f’, g'))
belongs to £ has its support in U’, and
lfo— 1l <e,

and the proof is complete.
We denote by A the set of measures w on X such that for
any finite continuous potential p on X

fpdsx<+ .

Obviously any measure with compact carrier belongs to A.
If p, q, p’, ¢’ are finite continuous potentials on X such that

p—q=p —¢,
then by theorem 3.2 for any subset A of X and any me,

SRy dyp— [Re dp. = [ RS dp— [ RS dy.
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Hence the map
P—qéff{;}dp.—-fﬁgdp.

is well defined on £. It is a linear positive functional. By the
preceding lemma there exists a unique measure pA, called the
balayaged measure of p. on A, such that

S (p—q) dp? =fﬁ$dp~———fﬁq"dy.

for any p — g e £. The carrier of p* is contained in A. Indeed
let p— qe % such that

p—qg=0
on A. Then
S (p—q) dur = [ REdp.— [RE dp. = 0.
Lemma 4.4. — For any finite continuous potential p on X,

for any A c X and for any ne A we have

fpdp‘=ff{$dp..

Let 9 be the smallest set of non-negative hyperharmonic
functions on X which contains p and such that for any qge ¢
and any regular set V the function RX~V belongs to ¥. Since
the set of non-negative continuous hyperharmonic functions
s on X such that s < p on X and s = p outside a compact
set (dependlng on s) contains ¥, any element ¢ of § is a finite
continuous potential and p — ge £. Hence

S(p—q) dp* = [ R} du— [ R} dp.

Since p is a potential
inf ¢ = 0.

q€y

Since me A and ¢ is lower directed

1nfj RA dy.\lnffqdp.—O

qe{f

fpdrk‘r—-gggf p—q)du —fﬁﬁd%—;ggﬁfﬁ?dﬁmfﬁtdw
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Cororrary 4.1. — For any non-negative hyperharmonic
function s, for any A < X and for any e A we have
f*sdgi.‘<f*ﬁx‘dy..

If A is fine open this tnequality becomes an equality.
By lemma 4.2 ¢) there exists an upper directed family
(p).exr of finite continuous potentials on X such that
sup p. = s.

tEIX

‘We have
[*sdyr = sup [ p.dpr = sup [(Radu < [ R dps.
(€1 1= O ‘

CoroLrary 4.2. — If A, B are subsets of X such that A c B,
then for any . e A and any non-negative hyperharmonic function
s on X we have

f*sdp.A <f*sdp.".

" By lemma 4.2 ¢) there exists an upper directed family
of finite continuous potentials (p,),e; such that

§ == sup p..
tEL

We hgve
*
J o dut = sup [ podet = sup [ R
< sup.f‘ RE dy. = sup‘/‘pL du? =f*s dpB.

t€1 €1
Lemma 4.5. — Let (A,),ex be an increasing sequence of subsets
of X, A =U A, and p.e A. Let (s,),ex be a sequence of non-

neN
negative hyperharmonic functions on X such that for any n

.f*sn dP-A" =j-* R.’Ann dp.’
7 Sn < Sn+1
on A,. If s is a non-negative hyperharmonic function on X such
that
s =lims,

n>®
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on A and s > s, on A for any ne N, then

f*sdy.A =f*f{;‘ dp..

By corollary 4.1, 4.2 and theorem 3.4 we have
‘/*R;‘de}f*sdu.A llmf s dpAn

n>w

llmfsdeA"—llmf ﬁ“ du.—f ﬁ‘*dy.

D%

n>o0 n>o

Taeorem 4.1. — If s ts the limit of an increasing sequence
of finite continuous potentials then for any p.e A and AcX

f*s dpt -_—-./‘* ﬁ;‘ dp..
The assertion follows from lemma 4.4 and 4.5.

Cororrary 4.3. — If X has a countable basis then for any
non-negative hyperharmonic function s any peA and any

A c X we have
[T sdpr = [T R dy.

Let (f,).ex be an increasing sequence of non- negative real
continuous functions with compact support convergmg to s.
Then (Ry),ex 1s an increasing sequence of finite continuous
potentials converging to s.

Tueorem 4.2. — Let u belong to A. If the relation
f*sdp:‘ =f*15a;‘ dp.

holds for any relatively compact subset A of X and any locally
bounded potential s on X, then it holds also for any non-nega-
tive hyperharmonic function s on X and any subset A of X
which satisfy one of the following conditions :

a) /\Rsx_K = 0,

where K runs through the set of compact subsets of X;
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b) There exists a sequence of locally bounded potentials
(Pa)nex Such that

sup p, >0

ne€N

on A.
a) We have
Rt =\/Rarx,
Y

where K runs through the set of compact subsets of X. Indeed
for any K

f{;«\ﬁ,&nx+ﬁx_x
ﬁA<VRAnK+/\RX—K VﬁAnK

Let K be a compact subset of X and p be a locally bounded
potential on X positive on K. Since

((np)As)ts
on An K and (np)/As is a locally bounded potential we have

by lemma 4.5
f*sdlu.‘“”‘ =.f* RACE dp.
From this relations we get

f sdpr > supf sdurnE = supf RACK dy
= ["RAdu> [T s dps.

S = SA("‘i pk>
) k=1

for any n e N. Since s, is a locally bounded potential we have

ARF® =0,
K

b) Let us denote

where K runs through the set of compact subsets of X. Hence

by a) we get -
S s dur = [T RA dp.
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Since
s, ts

on A and

8, < 8

on X we deduce from lemma 4.5

A/‘*sdy." =f*f{;‘dy..

Let A be a subset of X and s a non-negative hyperharmonic
function on X. We denote by 22 the set of non-negative hyper-
harmonic functions ¢t on X such that the restriction of s to

fre Alt(z) < 1}
1s continuous. We say that s is quasicontinuous on A if

A2 = 0.

Lemma 4.6. — Let A be a relatively compact subset of X and
s be a non-negative hyperharmonic function on X quasiconti-

nuous on A. Then, for any p.e A
f"‘sdp.A =f*ﬁ,‘dy..

Suppose first that the restriction of s to A is continuous.
Since A is relatively compact there exists for any ne N a
real continuous function f, with compact support, not greater
than s and equal to min (n, s) on A. We may suppose

fn < fn+1°

Then by lemma 4.2 b) R, is a finite continuous potential.
Obviously

R ts
on A and

R, <s

on X. Hence by lemma 4.5 we have
[T sdur = [T R dp.
Let now s be quasicontinuous on A. For any te 9% we set

A = {zeAlz) <1}
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Since 22 is lower directed, the family (A,);eqz is upper directed.
We shall prove that
A < sup Rie

tegr _
Let (t,).ex be a decreasing sequence of elements of 2% and
B - U A‘n’

neN

We have by theorem 3.4
R? = sup Rén < < sup. R,

neN (EQ.
RA—B < 2 t'l’
neEN
f{“ R“ + Ra-v < sup R‘t + 3 t,.

‘EQ, neN

By lemma 1.3 we have

A t,\=0
<n§N )
since 9* is lower directed and s quasicontinuous on A. Hence,
by lemma 1.2,
Rr < sup R,

teg:
We get now, from the first part of the proof,

f RA dp < supf RAdp = supf s due
tegh teOA
= = < S sdur < [ R d,

and the proof is complete.

Tueorem 4.3. — Let s be a non-negative hyperharmonic
function and (K,),ex be an increasing sequence of compact
subsets of X such that s is quasicontinuous on any K,. Then

for any n.e A and for any A c U K, we have

neN

f*sdgA=f*R$dy.

By the preceding lemma we have

" s dpre = [TRA dp,
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where

A, =AnK,.

The assertion follows now from lemma 4.5.

In order to obtain further results, M. Brelot has introduced
a supplimentary axiom called aziom D. This axiom asserts
that for any non-negative locally bounded hyperharmonic func-
tion s and any open relatively compact set U, the restriction
of RY to U is the greatest harmonic minorant of s on U. If this
axiom 1s fulfilled 1t can be proved like in [2] that any non-
negative hyperharmonic function on X is quasicontinuous or
any compact subset of X. In this case the hypothesis of the
theorem 4.2 is fulfilled and the relation

f*sdp.A =f*fl;‘dp.

holds if s and A satify one of the conditions a) and b) of
this theorem. Moreover if Brelot’s axiom 3 1s fulfilled this
relation holds for any non-negative hyperharmonic function
s and any subset A of X since in this case there exists a posi-
tive locally bounded potential on X.
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