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ON INFINITESIMAL TRANSFORMATIONS PRESERVING
THE CURVATURE TENSOR FIELD

AND ITS COVARIANT DIFFERENTIALS
by Katsumi NOMIZU and Kentaro YANO Q

We shall say that a transformation y of a Riemannian
manifold M is strongly curvature-preserving if it preserves the
curvature tensor field R and all its successive covariant diffe-
rentials V^. Similarly, an infinitesimal transformation X
on M is strongly curvature-preserving if

Lx^R) =0, m = = 0 , 1,2, . . . ,

where Lx denotes Lie differentiation with respect to X and
V°R = R.

Of course, an affine transformation or an infinitesimal
affine transformation is strongly curvature-preserving. In
the present note, we shall prove the converse in the following
form. Recall that an infinitesimal transformation X is contor-
mal, homothetic, or Killing according as Lxg == fg (/*: func-
tion), Lxg == eg (c: constant), or Lxg == 0, respectively,
where g denotes the metric tensor.

THEOREM 1 (2). — Let M be an irreducible analytic Riemannian
manifold of dimension ^> 2. Then a strongly curvature-preser-
ving infinitesimal transformation is necessarily homothetic. If
M is furthermore complete, then X is Killing.

(1) Both authors are being partially supported by an NSF Grant No. 24026.
(2) We have since extended theorem 1 to the case of a global transformation;

this result will appear elsewhere.
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Note that the additional assertion is a consequence of a result
of Kobayashi [2]. The proof of Theorem 1 will depend on the
following results.

THEOREM 2. — Let M be an irreducible Riemannian mani-
fold of dimension > 2. An infinitesimal con formal transforma-
tion X is homothetic if LxR = 0.

THEOREM 3. — Let M be an irreducible analytic Riemannian
manifold of dimension 2. An infinitesimal transformation X
is homothetic if LxR = 0 and Lx(VR) = 0.

The proof of Theorem 2 makes use of a result of Guillemin
and Sternberg [1] on the prolongations of the conformal
algebra.

Finally, we shall prove the following generalization of
Theorem 1.

THEOREM 4. — Let M be a connected, complete and analytic
Riemannian manifold which has no Euclidean part (i.e., the
restricted homogeneous holonomy group T° has no non-zero
fixed vector). Then any strongly curvature-preserving infinitesi-
mal transformation X is a Killing vector field.

1. Preliminaries.

For an arbitrary infinitesimal transformation X on M, we
shall define a tensor field K of type (1, 2) which measures the
deviation of X from being affine; X is affine if and only if
K == 0. For any vector field Y, consider the derivation

(1) K(Y)=[Lx,Vy]-Vp^
of the algebra of tensor fields. It is easy to verify that K(Y)
is actually a tensor field of type (1, 1) and that K{f^)==fKCY)
for any differentiable function f. This means that K is a tensor
field of type (1, 2) which associates to a vector field Y the
tensor field K(Y) of type (1, 1).

Using the formula Lx = Ax + Vx, where Ax is the tensor
field of type (1, 1) defined by AxY = — VyX (cf. [3], p. 235),
we may express K(Y) as follows :

(2) K(Y) = R(X, Y) - V^(Ax).
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In fact, we have

K(Y)=[Ax+Vx,V,]-Vp,,y]
= [ A X , V ^ ] + [ V X , V T ] — V [ X , T ]
= — Vy(Ax) + R(X, Y).

We now prove

LEMMA 1. — The tensor field K corresponding to a vector
field X has the following properties :

1) K(Y)Z= K(Z)Y/br any vector fields Y and Z;
2) (VuK)(Y)Z= (VuK)(Z)Y/brany^ctor^^Y,Z,a^U;
3) If LxR = 0, ^n (VvK)(Z) == (V^K)(Y) /or any vector

fields Y amf Z;
4) If X i5 conformal: Lxg == /g, ^M

(3) K(Y)g = - a(Y)g
for any vector field Y, where a == rf/*.

5) If X 15 conformal, then, for the form a m 4), we have

(VuK)(Y)g=-(Vua)(Y)g

/or any vector fields Y an<^ U.

Proof. — 1) By using (2), we have

K(Y)Z =R(X,Y)Z—[Vy(Ax)]Z
= R(X, Y)Z — V^(AxZ) + Ax(VrZ)

and hence

K(Y)Z = R(X, Y)Z + VyVzX — 7v,zX

by definition of Ax. Thus alternating with respect to Y and Z,
we have

K(Y)Z—K(Z)Y
= R(X, Y)Z — R(X, Z)Y + ([VY, Vz] — V^ ^)X = 0

by virtue of Bianchi's identity:

R(X, Y)Z + R(Y, Z)X + R(Z, X)Y = 0,
and the definition of the curvature tensor:

[V^,Vz]-V^==R(Y,Z).
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2) We take Vu of 1) and obtain

(VuK)(Y)Z + K(VuY)Z + K(Y)VuZ
= (VuK)(Z)Y+ K(VuZ)Y+ K(Z)VuY,

from which, using 1) again, we find

(VuK)(Y)Z=(VuK)(Z)Y.

3) By using (2), we have

(V^K)(Z) == Vy(K(Z)) — K(VyZ)
= (V^R)(X, Z) + R(V^X, Z) + R(X, V^Z)— V^Vz(Ax)
— R(X, VyZ) — Vv,zZ(Ax)

or

(VYK)(Z) = (VyR)(X, Z) — R(AxY, Z) — ( V ^ V z — Vy,z)(Ax).

Alternating with respect to Y and Z, we find

(VrK)(Z)-(VzK)(Y)
= (V^R)(X, Z) — (VzR)(X, Y) — R(AxY, Z) + R(AxZ, Y)
-([VT,VZ]-V^Z])(AX)

= (VxR)(Y, Z) — R(AxY, Z) — R(Y, AxZ) — R(Y, Z)Ax
= [(Vx + Ax)R](Y, Z) = (LxR)(Y, Z) == 0,

by virtue of Bianchi's identity :

(VxR)(Y, Z) + (VTR)(Z, X) + (VzR)(X, Y) == 0

and the assumption LxR = 0.
4) By definition of K(Y), we have

K(Y) = LxVy — VyLx — V[X.Y].

Applying this derivation to g, we find

K(Y)g = — VrLxg.

Thus if Lx = fg, then we have

K(Y)g=-a(Y)g,
where a == rf/.

5) Taking Vy of the equation in 4), we have

(V^K)(Y)g + K(VuY)g = - (Vua)(Y)g - a(VuY)g,
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which implies
(VuK)(Y)g=-(Vua)(Y)g,

since K(VuY)g == — a(VuY)g by 4).
We shall now interpret Lemma 1 above in terms of the

prolongations of the conformal algebra [1]. By the conformal
algebra over an ^-dimensional real vector space V with inner
product, we mean the following. Let co(V) be the set of all
linear endomorphisms A of V such that

(AX, Y) + (X, AY) = c(X, Y)
for all X, Y in V, where c is a constant which depends on A.
With respect to the usual bracket [A, B] = AB —BA, co(V)
forms a Lie algebra.

Suppose X is conformal. Property 4) means that for any Y
in the tangent space Ta;(M) at a point x e M, the endomorphism
K(Y) is in the conformal algebra co(x) over Ta;(M), of course,
with respect to the metric g^. Property 1) means that the
linear mapping K : Y e T,c(M) —> K(Y) e co(x) is an element of
the first prolongation co^)^. Property 5) means that for
any U e T,c(M), the endomorphism (VuK)(Y) belongs to co {x)
for any Y e Ta,(M). Property 2) means that the linear mapping
VuK : Y e T,(M) -> (VuK)(Y) e co{x) is an element of co {x) W.
Now assume that LxR == 0. Property 3) means that the linear
mapping VK : U e= Tc(M)->VuK e co^^is actually an element
of the second prolongation co^)^. It is known [I], however,
that co^x)^ == 0 when dim M > 2. Thus we arrive at the
following consequence of the lemma above :

If X is conformal and LxR == 0, then the corresponding
tensor field K satisfies VK == 0.

2. Proof of Theorem 2.

From the preceding interpretation of the Lemma, we see
that VK = 0. Let y be the 1-form defined by y(Y) === trace of
K(Y). We have then V Y = = O . Since M is irreducible, we have
Y == 0, that is, trace K(Y) = 0 for any Y. Since K(Y) is in
co(^), it follows that K(Y) is skew-symmetric. In equation (3),
we have K(Y)g == — '^(Y)^ = 0 for any Y, which means that
a == 0. Since a === dfin the proof of equation (3), we see that f
is a constant, that is X is homothetic.
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3. Proof of Theorem 3.

In a two-dimensional irreducible Riemannian manifold, the
Ricci tensor S has the form

S = Xg,
where X is a function which is not identically zero. From this
we have

V^S = (YX)g
for any vector Y.

If the infinitesimal transformation X satisfies LxR = 0
and Lx(VR)==0, then it satisfies LxS == 0 and Lx(VS)==0.
From S == Xg and LxS = 0, we obtain

W (XX)g + X(Lxg) = 0.
From VyS = (YX)g and Lx(VS) = 0, we obtain
0 = LxV^S — Vp^S - (XYX)g + (YX)Lxg— ([X, X]X)g
, . = (YXX)g + (YX)Lxg,

that is,

(5) (YXX)g + (YX)(Lxg) = 0.
Taking Vy of (4) and taking (5) into account, we get

XVy(Lxg) = 0.
Since our manifold is real analytic, the set of zero points of

X is nowhere dense. Hence we have

VLxg=0.
Since the manifold is irreducible, we get

Lxg = eg,
where c is a constant.

4. Proof of Theorem 1.

Since M is an analytic Riemannian manifold, the holonomy
algebra h^ (Lie algebra of the restricted holonomy group at x)
is generated by all endomorphisms of the form

R(Y, Z), (V^R)(Y, Z), . . . , (V-R)(Y, Z; U,; . . . ; UJ, . . .,
where Y, Z, Ui, . . . , U^ are arbitrary vectors at x
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(cf. [3, p. 152]). From the assumption Lx(V'R) == 0, it follows
that Ax(V'»R) = — Vx(V"R). It is easy to see that

[Ax , (V '»R) (Y ,Z ;U\ ; . . . ;UJ ]eA,
and hence

[AX, AJ c hs.

The tensor Lxg = Axg at x is then invariant by A,,. In fact,
for any B e h^, we have '

B(Axg) = Ax(Bg) + [Ax, B]g = 0,
since B and [Ax, B] are skew-symmetric as elements in h^.
Since h, is irreducible, Axg at a; is a scalar multiple of the
tensor g^. This being the case at every point x of M, we have
A^ = fg, that is, Lxg == fg, where f is a function. This means
that X is conformal.

Thus, if the dimension of M > 2, then Theorem 2 implies
that X is homothetic.

If the dimension of M is 2, then Theorem 1 is as pecial case of
Theorem 3.

5. Proof of Theorem 4.

We may assume that M is simply connected. Let
M == Mi X • • • X Mfc be the de Rham decomposition, where
Mi, ^ . ., Mk are irreducible, complete and analytic Riemannian
manifolds. We shall show that the vector field X decomposes
naturally, that is, there exists a strongly curvature-preserving
infinitesimal transformation X. on M,, i^i^k, such that

X<.,..,,,)=(X^.+ • • • +(X,),,
for any point x = (a;i, . . ., x,) e Mi X • • • X M,. Once this is
shown, we see that X; is Killing on M, by Theorem 1 and
hence X is Killing on M.

In order to prove a natural decomposition of X, we proceed
as follows. Let (T^), . . . ,CI\) be the parallel distributions
corresponding to the de Rham decomposition Mi X • • • X M^.

LEMMA 2. — Lx(T;) c (T,) for each i, in the sense that if Y
is a vector field belonging to the distribution (T,), then

belongs to (T,).
Lx(Y) = [X, Y]
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Proof. — Since Lx == Vx + AX and since Vx(T,) c (T,)
because (T() is parallel, it is sufficient to show that Ax(Ti) c (Ti).
Let x be an arbitrary point. In the proof of Theorem 1, we
have seen that (Ax).c lies in the normalizor of the holonomy
algebra h^ Thus the 1-parameter group of linear transfor-
mations exp tAx of Ta;(M) lies in the normalizor of the holonomy
group ^Fa,. It follows that, for each t, (exp (Ax).(T^ coincides
with some (Ty)a; by virtue of the uniqueness of the de Rham
decomposition

T,(M)=(T,),+ • • • + (T,),

(cf. Theorem 5.4, (4), p. 185, and Lemma, p. 186, in [3]).
By continuity, we see that (exp <Ax). {Ti)x == {Ti)x t01* every t.
This implies Ax(T^ c (T^..

LEMMA 3. — Let A be a differentiable distribution on a
differentiable manifold M. If a sector field X on M satisfies
Lx(A) c A, then a local 1-parameter group y< of local transfor-
mations generated by X preserves the distribution.

Proof. — Let Yi, . . ., Y,. be a local basis for A in a nei-
ghborhood of x. It is sufficient to show that ((p(.(Y^))a. belongs
to Aa; for every (. We recall the formula

^•Y,:
dt

(^.[X,Y,]),

(Corollary 1.10, p. 16, [3]).
Since [X, Y,] belongs to A, we have

[X.YJ-i^Y,,
7==1

where /y are certain functions. Therefore

^ =-(„.( 2^))dt \ \j=i /A

=-i{fijo9^1).W^
y=i

If we denote {f^i)^ by Y»((), then the functions Y,(() with
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values in T^(M) satisfy a system of differential equations

(6) ^-s^)mdt y=i

where gij(t) =—fij^F1^))' The initial conditions are
Yi(0) = (Y^. It follows that Y^) has to be a linear combi-
nation

Y.(()=|Fy(()(Y,),

of the vectors (Y^ ..., (Y,),, that is, Y,(() e A,. (F(t) == [?;,(()]
is the matrix function which is a unique solution of

^-G(,)F(.)

with initial condition F(0) = [§y]. The existence of such a
solution is a special case of Lemma, p. 69, [3].) This proves
Lemma 3.

Now we can prove that X decomposes naturally. Let 9^ be
a local 1-parameter group of local transformations generated
by X in a neighborhood of a point x. By Lemma 2,

Lx(T.) c (T,).

By Lemma 3, ^ preserves each distribution (T^) and hence
its maximal integral manifold. It follows, by an argument
similar to the proof of Theorem 3.5, p. 240, in [3], that there
exists, for each ( a local transformation yP of M( such that

? î, ...^^(y^i), ...,9^)).

Each ̂  is a local 1-parameter group and defines a vector
field X, on M;. It is clear that X = X^ + . . . + X^. Since the
curvature tensor R and its successive covariant differentials
V^R decompose naturally, it is obvious that each X;is strongly
curvature-preserving on M(.
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