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ON INFINITESIMAL TRANSFORMATIONS PRESERVING
THE CURVATURE TENSOR FIELD
AND ITS COVARIANT DIFFERENTIALS

by Katsumi NOMIZU and Kentaro YANO (%)

We shall say that a transformation ¢ of a Riemannian
manifold M 1s strongly curvature-preserving if it preserves the
curvature tensor field R and all its successive covariant diffe-
rentials V”R. Similarly, an infinitesimal transformation X
on M is strongly curvature-preserving if

LyV"R) =0, m=0,1,2, ...,

where Lx denotes Lie differentiation with respect to X and
V'R = R.

Of course, an affine transformation or an infinitesimal
affine transformation is strongly curvature-preserving. In
the present note, we shall prove the converse in the following
form. Recall that an infinitesimal transformation X is confor-
mal, homothetic, or Killing according as Lxg = fg (f: func-
tion), Lxg=-cg (c: constant), or Lxg =0, respectively,
where g denotes the metric tensor.

TaeoreM 1 (3).— Let M be an irreducible analytic Riemannian
manifold of dimension > 2. Then a strongly curvature-preser-
ving infinitesimal transformation s necessarily homothetic. If
M s furthermore complete, then X is Killing.

(!) Both authors are being partially supported by an NSF Grant No. 24026.

(2) We have since extended theorem 1 to the case of a global transformation;
this result will appear elsewhere.
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Note that the additional assertion is a consequence of a result

of Kobayashi [2]. The proof of Theorem 1 will depend on the
following results.

Tueorem 2. — Let M be an irreducible Riemannian mani-
fold of dimension > 2. An infinitesimal conformal transforma-

tion X is homothetic if LxR = 0.

Tueorem 3. — Let M be an irreducible analytic Riemannian
manifold of dimension 2. An infinitestmal transformation X
s homothetic if LxR = 0 and Lx(VR) = 0.

The proof of Theorem 2 makes use of a result of Guillemin
and Sternberg [1] on the prolongations of the conformal
algebra.

Finally, we shall prove the following generalization of
Theorem 1.

TueoreM 4. — Let M be a connected, complete and analytic
Riemannian manifold which has no Euclidean part (i.e., the
restricted homogeneous holonomy group W° has no non-zero
fized vector). Then any strongly curvature-preserving infinitest-
mal transformation X is a Killing vector field.

1. Preliminaries.

For an arbitrary infinitesimal transformation X on M, we
shall define a tensor field K of type (1, 2) which measures the
deviation of X from being affine; X is affine if and only if
K = 0. For any vector field Y, consider the derivation

(1) K(Y) = [Lx, Vy] — Vix, 1
of the algebra of tensor fields. It is easy to verify that K(Y)
1s actually a tensor field of type (1, 1) and that K(fY)=fK(Y)
for any differentiable function f. This means that K is a tensor

field of type (1, 2) which associates to a vector field Y the
tensor field K(Y) of type (1, 1).

Using the formula Ly = Ax + Vx, where Ax is the tensor
field of type (1, 1) defined by AxY = — VX (cf. [3], p. 235),

we may express K(Y) as follows:

(2) K(Y) = R(X, Y) — Vx(Ax).
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In fact, we have

We now prove

Lemma 1. — The tensor field K corresponding to a vector
field X has the following properties :

1) K(Y)Z = K(2)Y for any vector fields Y and Z;

2) (VyK)Y)Z = (VyK)(Z)Y for any vector fields Y, Z, and U

3) If LxR =0, then (V{K)(Z) = (V:K)(Y) for any vector
fields Y and Z;

4) If X is conformal: Lxg = fg, then

(3) K(Y)g = —a(Y)g
for any vector field Y, where o = df.

5) If X is conformal, then, for the form o in 4), we have

(VuK)(Y)g = — (Vua)(Y)g

for any vector fields Y and U.

Proof. — 1) By using (2), we have

K(Y)Z = R(X, Y)Z — [Vx(Ay)]Z
= R(X, Y)Z — Vy(AxZ) 4+ Ax(V+Z)

and hence

K(Y)Z = R(X, Y)Z + V5V;X — Vy,X

by definition of Ax. Thus alternating with respect to Y and Z,
we have

K(Y)Z — K(Z)Y
= R(X, Y)Z —R(X, Z)Y + ([Vy, Vs — Vpx )X =0

by virtue of Bianchi’s identity :
R(X, Y)Z + R(Y, Z)X + R(Z, X)Y =0,
and the definition of the curvature tensor:

[vY, vz] - v[Y, 7] = R(Y, Z)
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2) We take Vy of 1) and obtain

(VoK)(Y)Z + K(VoY)Z + K(Y)VyZ
= (VoK)(Z)Y + K(VuZ)Y + K(Z) V1Y,

from which, using 1) again, we find
(VueK)(Y)Z = (VyK)(Z)Y.
3) By using (2), we have

(V+K)(Z) = V+(K(Z)) — K(V+Z)
(V )( ) ( YX, Z) + R(X, VYZ) - VYVZ(AX)
— R(X, V+Z) — Vy,7Z(Ax)

or
(ViK)(Z) = (VyR)(X, Z) — R(AxY,Z) — (VyV;— Vy_z)(Ax).
Alternating with respect to Y and Z, we find
(VxK)(Z) — (VzK)(Y)
= (VyR)(X, Z) — (VzR)(X, Y) — R(AxY, Z) + R(AxZ,Y)
—([Vy, Vo] — Vi, 2))(Ax)

(VxR)(Y, Z) — R(AxY, Z) — R(Y, AxZ) — R(Y, Z)Ax
[(Vx + Ax)R](Y, Z) = (LxR)(Y, Z) = 0,

Il

by virtue of Bianchi’s identity :
(VxR)(Y, Z) + (VyR)(Z, X) + (VR)(X,Y) =0

and the assumption LxR = 0.
4) By definition of K(Y), we have

K(Y) = LxVy — VyLx — Vix y}.
Applying this derivation to g, we find
K(Y)g = — VyLxg.
Thus if Lx = fg, then we have

K(Y)g = —«(Y)g,
where a = df.
5) Taking Vy of the equation in 4), we have

(VoK)(Y)g + K(VuY)g = — (Vua)(Y)g — &«(VuY)g,
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which implies
(VoK)(Y)g = — (Vu)(Y)g,
since K(VyY)g =—a(VyY)g by 4).

We shall now interpret Lemma 1 above in terms of the
prolongations of the conformal algebra [1]. By the conformal
algebra over an n-dimensional real vector space V with inner
product, we mean the following. Let co(V) be the set of all
linear endomorphisms A of V such that

(AX, Y) 4+ (X, AY) = (X, Y)

for all X, Y in V, where c is a constant which depends on A.
With respect to the usual bracket [A, B] = AB — BA, co(V)
forms a Lie algebra.

Suppose X is conformal. Property 4) means that for any Y
in the tangent space T, (M) ata point z € M, the endomorphism
K(Y) 1s in the conformal algebra co(z) over T, (M), of course,
with respect to the metric g,. Property 1) means that the
linear mapping K: Y e T, (M) — K(Y) € co(x) is an element of
the first prolongation co(z)®. Property 5) means that for
any U e T, (M), the endomorphism (VyK)(Y) belongs to co (z)
for any Y e T,(M). Property 2) means that the linear mapping
VuK: YeT, (M) (VyK)(Y) e co(z) is an element of co (z) .
Now assume that LxR = 0. Property 3) means that the linear
mapping VK : Ue T, (M)— VK e co(z)®is actually an element
of the second prolongation co(z)®. It 1s known [1], however,
that co(z)® = 0 when dim M > 2. Thus we arrive at the
following consequence of the lemma above:

If X is conformal and LxR = 0, then the corresponding
tensor field K satisfies VK = 0.

2. Proof of Theorem 2.

From the preceding interpretation of the Lemma, we see
that VK =0. Let ¥ be the 1-form defined by v(Y)=trace of
K(Y). We have then Vy=0. Since M is irreducible, we have
v = 0, that 1s, trace K(Y) =0 for any Y. Since K(Y) is in
co(z), it follows that K(Y) is skew-symmetric. In equation (3),
we have K(Y)g = — a(Y)g = 0 for any Y, which means that
a = (. Since & = df in the proof of equation (3), we see that f
1s a constant, that is X is homothetic.
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3. Proof of Theorem 3.

In a two-dimensional irreducible Riemannian manifold, the
Ricci tensor S has the form

S =g,

where A is a function which is not identically zero. From this
we have
VS = (YA)g
for any vector Y.
If the infinitesimal transformation X satisfies LyR =0
and Lx(VR)=0, then it satisfies LxS=0 and Lx(VS)=0.
From S = Ag and LxS = 0, we obtain

(4) (X2)g + A(Lxg) = 0.
From VS = (YA)g and Lx(VS) =0, we obtain

= (YXA)g + (YA)Lsxg,

that 1s,
(5) (YXA)g + (YA)(Lxg) = 0.
Taking Vy of (4) and taking (5) into account, we get

AV y(Lxg) = 0.

Since our manifold is real analytic, the set of zero points of
A 1s nowhere dense. Hence we have

vag = 0.
Since the manifold is irreducible, we get

Lxg = C§,
where ¢ 1s a constant.

4. Proof of Theorem 1.

Since M is an analytic Riemannian manifold, the holonomy
algebra h, (Lie algebra of the restricted holonomy group at z)
i1s generated by all endomorphisms of the form

R(Y, Z), (VuR)(Y, Z), ..., (V™R)(Y,Z; Uy;...;U,), ..

where Y, Z, U,, ..., U, are arbitrary vectors at =

*
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(cf. [3, p. 1562]). From the assumption Lx(V™R) =0, it follows

that Ax(V"R) = — V4(V™R). It is easy to see that
[Ax, (V"R)(Y, Z; Uy; .. .5 Un)] € bo
and hence
[Ax, k] € h,.

The tensor Lxg = Axg at x is then invariant by h,. In fact,
for any B e h,, we have

B(Axg) = Ax(Bg) + [Ax, Blg =0,

since B and [Ax, B] are skew-symmetric as elements in h,.
Since h, 1s irreducible, Axg at z i1s a scalar multiple of the
tensor g,. This being the case at every point z of M, we have
Axg = fg, that 1s, Lxg = fg, where f1s a function. This means
that X 1s conformal.

Thus, if the dimension of M > 2, then Theorem 2 implies
that X is homothetic.

If the dimension of M is 2, then Theorem 11is as pecial case of

Theorem 3.

5. Proof of Theorem 4.

We may assume that M 1is simply connected. Let
M=M, X -+ X My be the de Rham decomposition, where
M,, ..., M, are irreducible, complete and analytic Riemannian
mamfolds We shall show that the vector field X decomposes
naturally, that is, there exists a strongly curvature-preserving
infinitesimal transformatlon X; on M;, 1 <1<k, such that

X(z,,...,wk) == (Xl)w, + Tt + (Xk)xk

for any point z = (2, ..., 2,) e My X -+ X M. Once this is
shown, we see that X; is Killing on M; by Theorem 1 and
hence X 1s Killing on M.

In order to prove a natural decomposition of X, we proceed
as follows. Let (T,), ..., (T:) be the parallel distributions
corresponding to the de Rham decomposition M; X .-+ X M,.

Lemma 2. — Lx(T)) < (T)) for each t, in the sense that iof Y
s a vector field belonging to the distribution (T,), then

Lx(Y) = [X, Y]
belongs to (T)).
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Proof. — Since Lx = Vx + Ax -and since V(T <(T)
because (T,) is parallel, 1t 1s sufficient to show that Ax(T,) < (T)).
Let z be an arbitrary point. In the proof of Theorem 1, we
have seen that (Ax), lies in the normalizor of the holonomy
algebra h,. Thus the 1-parameter group of linear transfor-
mations exp tAx of T (M) lies in the normalizor of the holonomy
group V.. It follows that, for each ¢, (exp tAx).(T;), coincides
with some (T}), by virtue of the uniqueness of the de Rham
decomposition

T.M) = (T1)e + -+ + (T

(cf. Theorem 5.4, (4), p. 185, and Lemma, p. 186, in [3]).
By continuity, we see that (exp tAx).(T,), = (T)), for every ¢.
This implies Ax(T;), < (T))..

Lemma 3. — Let A be a differentiable distribution on a
differentiable manifold M. If a vector field X on M satisfies
Lx(A) c A, then a local 1-parameter group ¢, of local transfor-
mations generated by X preserves the distribution.

Proof. — Let Y, ,Y, be a local basis for A in a nei-
ghborhood of . It is sufficient to show that (¢,.(Y;)), belongs
to A, for every . We recall the formula

Ci(_?t . Y:)z
dt

(Corollary 1.10, p. 16, [3]).
Since [X, Y;] belongs to A, we have

= — (¢:-[X, Yi]),

(X, Y] = jé‘: e

where f;; are certain functions. Therefore

=~ (2)),
_ _..15;1 (fi o 7). (@Y.

If we denote (¢,Y;). by Yi(t), then the functions Y;(t) with
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values 1n T (M) satisfy a system of differential equations

Q Tt =3 s,

where g;(t) = — fi;(¢7"(2z)). The initial conditions are
Y(0) = (Y;),. It follows that Y,(t) has to be a linear combi-

nation

Y0 = 3 Fy(0(Y))
of the vectors (Y;),, ..., (Y,),, thatis, Yi(t) € A,. (F(t) = [Fy(?)]

i1s the matrix function which i1s a unique solution of

dF
¥ — awr
with initial condition F(0) = [¢;]. The existence of such a
solution 1s a special case of Lemma, p. 69, [3].) This proves
Lemma 3.

Now we can prove that X decomposes naturally. Let ¢, be
a local 1-parameter group of local transformations generated

by X in a neighborhood of a point z. By Lemma 2,
Lx(T) < (To).

By Lemma 3, ¢, preserves each distribution (T,) and hence
its maximal 1ntegral manifold. It follows, by an argument
similar to the proof of Theorem 3.5, p. 240, in [3], that there
exists, for each ¢t a local transformation 9(') of M; such that

?l(xh L] xk) = (?51)("‘51)’ ey ?gk)(xk))'

Each ¢{” is a local 1-parameter group and defines a vector
field X; on M,. Itis clear that X = X, + ... + X,. Since the
curvature tensor R and its successive covariant differentials
V™R decompose naturally, it is obvious that each X;is strongly
curvature-preserving on M,
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