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CONSTRUCTION AND ANALYSIS
OF SOME CONVOLUTION ALGEBRAS

by Arne BEURLING 0

1. A construction method of convolution algebras.

Let ^ be a locally compact Abelian group with the invariant
measure dx. In order to avoid trivial cases we assume that ^
is not compact. We consider a normed family Q of strictly
positive functions co(;r) on ^, which are measurable, summable
with respect to dx, and furthermore, together with the norm
N(co), satisfy the following conditions :

I. For each co e Q, N(co) takes a finite value, such that

(1.1) 0</o)^<N(co).

II. If X is a positive number and co e Q, then Xco e= Q and

(1.2) N(Xco) = XN(O)).

III. If 0)1, (Oa e ^? ^he sum ̂  + ̂  as well as the convolu-
tion (DI * (Og are also in Q and

(1.3) N(coi + co,) < N(^) + N((O,)
(1.4) N((OI*(^)<N((OI)N((^).

(1) This paper was presented at a Conference in harmonic analysis held at Cornell
University 1955. Except for the conference record no reprints were prepared. The
paper is now made available to a larger public on the request by analysts interested
in the subject.
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2 A. BEURLING

IV. Q is complete under the norm N in the sense that for
00

any sequence j c o ^ l ^ c Q such that SN(co^)<<oo , it holds
00 1

that co = ̂  co^ is in Q andi
(1.5) N(co) < S N((O,).

The set of measures \w dx\ c o e Q j constitutes our starting
point for the following constructions of Banach algebras and
shall be referred to as a normed semi-ring of positive finite
measures. By Qo we shall denote the subset of Q defined by
the condition

N(co) = 1

and we shall call such an co normalized. In the sequel we shall
assume that 1 < p < oo and set q = p i p — i. For a fixed p,
we shall use the notation

(1-6) -'-^

and write Holder's inequality in the form
j- i.

(1.7) f |$F| dx <!/ |̂ (o dx\q \f |FpV dx\p.

We associate with each normalized co the Banach spaces
L^ and L^ of functions, measurable on G^ and having the
norms

||F|k=|/|F|'•o/^p,
j_

m^=\fm^dx\\
respectively. From these spaces, we obtain two sets of functions

AP(§, Q) == AP and B ,̂ Q) = B"

by setting

(1.8) A" = U U/,
to6Q»

(1.9) B» = (~} ̂
coeQo
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and we define

(1.10) I IF I l ^ l lFHA^in f l lF I l ^
(oeQo

(i.ii) 11^11 ^ll^lk-^pi^ii^
We shall now prove

THEOREM I. — In the norm (1.10) A^ is a Banach algebra
under addition and convolution^ and

(^ l|Fi*F,||<[|F,[|||F,||.

In the norm (1.11) B" is a Banach space, which is the dual
of A." m the sense that each linear functional y(F) on A" has the
form

(1-13) ^(F)=/$F(te

where $ is a unique element of B9 and

,, ,,, f$F dx
^ SS^M- '̂-
An immediate consequence of the definitions is that B9 is

a Banach space under the norm (1.11). The same is true of
AP under the norm (1.10), but the proof is not trivial. However,
we may infer at once by the Holder's inequality (1.7) applied
to 0eB», FeA^, that ^ \ / ff

(1.15) / |̂ F| dx < ̂ nf ||̂  ||F(|^, < ||0|| ||F||.

For $ == 1 we have by (1.1),

(1.16) |j$j| == sup j fw dx\" < sup N^(co) = 1,
"eQo v ' ; toeQo

which together with (1.15) yields

(1-17) /|F|^<||F||.

Thus, ||F|| is a majorant of the L^norm and A" is a subset
of L1, while L°° is a subset of B" and the L°°-norm is a minorant
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of [|$||. That A^ is actually a Banach space will be proved by
a new definition of the norm ||F||. We set

1 r IFF 1(1.18) W,(F; co)=W(F;co)=^J^^+^-N(a) ) ,

and we call oo e Q relatively extremal for an F e hP if (1.18)
is finite and if furthermore the minimum of W(X) == W(F; Xo))
for X >• 0 is attained for X == 1. From the relation

<m i { i r |F|^ , , ^, .)•d\=^i-^j ^^+N(< l ))idW^J_^_JL C IFÎ
d\ ~ a ( ^,

it follows that co has this property if, and only if

(1.19) r ̂  dx == N(O)) = W(F, co).

If (DO is normalized and X is determined such that X(0o == CD

is relatively extremal for F, we find that
i_

\ C-^dx] p = Min W(F; X(0o) = W(F; co).
(J ^0" ) X>0

Therefore

(1.20) | |F| |=mfW(F;co),
(oeQ

which is our new definition of the norm.
Let us now establish the triangle inequality

(1.21) ||F, + F,|| < UFJI + ||F,||.

Let oDi, (02 e ̂  he such that W(Fy, <riy) are finite (v = 1, 2),
and set

(1.22) w(e) = w(eiFi| + (i — e)|Fa|; ecoi + (i — ^"2)
;̂̂ ^^^^+}N(.̂ (i-,...)

This function W(6) is convex in the interval [0, I], In fact,
according to (1.2) and (1.3) we conclude that the last term is
a convex function of 9. Furthermore, we observe that the
integrand is of the form h == ̂ /^-1 where ?i and ^ are linear
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and non-negative functions of 6. For the second derivative
of h we obtain

^-P^-Wf—^^O.
\ tl t-2 /

Hence, the integrand of (1.22), as well as W(8) is convex in
[0, I], and consequently

2wf l )<W( l )+W(0) .
\ ^ /

Since 2wf1-) = W(|Fi| + [F^; coi + c^) we shall have
\ L /

(1.23) W(Fi + F^; coi + coa) <W(|FJ + |F,|; oi + (o,)
<W(F,;co,)+W(F,;co,),

which, combined with (1.20) implies (1.21).
To prove that Ap is complete it is sufficient to show that

for any sequence ^F^cA^ such that S||F,[| < oo, there
exists an F e h? with the property that

(1.24) lim F — S F, = 0.
n==oo ^

Let k be any number > 1; let o\ e Q be relatively extremal
for F»$ and suppose that W(F^; co^) </c||F||. According to
(1.19)

0-25) f^idx = N(co,) = W(F,; (o,) < /c||F.||.

Hence, the series 2N((o^) converges and co == Sco^ therefore
belongs to Q. On applying (1.23) repeatedly, we obtain

W(S|F, | ; S ^)</cS||F,||,
\ i i / i\ i i / i

and from (1.25) and (1.18) we find
/ n \ n

(1.26) W ( 2 |F,1; a))< k S ||F,|| +4 1 ||F,|] </c 1 ||F,||.
V l / l y n-+-l i

Setting

H = 2; |Fv|, F = S F,
i i

we conclude from (1.26) that W(H$ (o) is finite, and
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consequently that H and F are defined as elements of the
space U/. Furthermore, we have

w(F-S Fv;(o)<w(H-5 IF,|;O)V
\ i / \ i /

where Lebesgue's theorem of dominated convergence can be
applied to the last integral. This prove that

l i m w f P — S F,;co)=0,
n=oo \ i /

from which (1.24) follows.
We have shown at this point that Ap is a Banach space.

We shall now verify that Ap is also an algebra under convolu-
tion. Let Fi, Fg e= A?, and let co^, (Og e Q^ be such that

j.
r /* 117 IP ~~i P
[f^dx\ </c||F.||, ( v = l , 2),

where A* is a given constant > 1. Set (2)

F = ¥ , . F, = J F,{x - i/)F,(y) dy,

(0 = coi * 0)2 = J (Oi(^ — t/)co2(y) Jy.

By Holder's inequality, we have

'̂ ^{^^^• '̂'•'n.̂ '-^^ f̂"-
Hence

p%^< n-iFx^-^r iF^y
J <o(a;)P-1 ^JJ (^(a;—^-1 lo î/)!"-1 y

^^j ̂ ^< îiFiiniF,ir/' IF |P /« IF \P
= J ^- <te j ̂  dy < /c2" ||F^ ||F,

Because of the inequality N((o) ̂  N(coi). N((0a) ̂  i, the
first integral is by definition ^> [IF]^, and consequently

IIFIK^IF.IIIIF.II

which proves (1.12), since A* is arbitrarily close to 1.

(a) We denote by + the group operation in ^ and by -y the inverse of y.
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As to the second part of the theorem we start by recalling
that L^ and L^ are conjugate spaces. We also know that for
any a) e Qo, L^/ is a subset of A^ while the norm in L^ is a
majorant of ||F|[. Therefore a linear functional <p(F) on A^ is
also a linear functional on L^/, where it has the representation

cp(F) == f^Fdx,

$ being a uniquely determined element of L^. We will prove
that this $ is independent of (o and belongs to all of the spaces
L^ for (o e QQ. In fact, for any coi, cog e Qg,

^i + <^2(03 ==
N(co, + co,) u

and <p(F) has the representations

^(F)=/^F^, (<MUJ

in the spaces L^, v == 1, 2, 3. However, it is obvious that
L^ contains the union of L^; and L^. This implies $1 == ^3
and $a == ^3 an(! our assertion follows.

It now remains only to prove that for each number k < 1
and for every fixed $ e B*7, there is an F e A^ such that

\f^dx^k\m\\¥\\.

By choosing o) e Qo such that
JL

|/|$|̂  ̂ j'>/c||$[|
and taking

F-T"$
we find

JL 1.p ( r . ^ . , ) PIIFIKJJ^^^^WCO^

/$F ̂  -/l^l^co ̂  > /c||$[| ||F||,

which completes the proof of Theorem I.
From the definition we conclude that our spaces Ap and B9

satisfy the following inclusion relations. Assume 1 <; pi < p
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and let Qi c 0 be two families which satisfy our four conditions
under the norms N1 and N respectively. If Ni(a>) ̂  N((o)
in QI we obtain

AP(^Q,)cAP(g,Q)cAP<(g,Q),

B^g, Q,) D B^(g, Q) 3 B^(g, Q).

Furthermore, we find that the norm in A^, Q) is a non-
decreasing function of p, while the converse situation holds

-£-
for the norm in B^^, Q). We also observe that if \F{x)\ is
almost everywhere equal to a function ^{x) e Q, then F(a?)
belongs to all of the spaces A?, (i < p < oo) and [IF]^ ̂  N(co).

Up till now we have assumed 1 <; p <; oo. However, for
any choice of Q satisfying our conditions, we will have

lim \\F\\^=f\F\dx,
P==l+0 t/

lim H^HB^ = true max \^{x)\
^== 00

where both sides are finite or infinite at the same time. The
spaces A^, Q) and B^^, Q) are therefore to be identified
with L^^) and L°°(^) respectively. In the other limit case
p = oo we will have

||F||^==infN((o)
0.)

where the inf is taken for those co e Q which are essential
majorants of |F(a;)|; while

|]$||Bi=inf f\^dx.
toeQo

From this we conclude that theorem 1 holds also in the case
p = 1, and that the first part of the theorem is true even for
p = oo.

2. The relation between certain algebras AP
and the space of functions bounded in the mean of order q.

In this section we shall focus our interest on algebras Ap

over the euclidean space R", (n ̂ . 1), which are generated by
some particularly simple families Q. Consider first the set
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Q == Q(R") of positive and summable o{x) which are non-
increasing functions of \x\ and have the norm

(2.1) N(co) = f^ co dx = /;°° co(r) rfV,(r),

where Vn(r) denotes the volume of the sphere \x\ ̂  r in R".
To prove that this set Q satisfies our conditions I-IV it is
sufficient to show that the convolution of 0)1, cog e Q is in Q
i.e., that

^(N) = f^i^—y^M^dy
is a non-increasing function of ]*r|. Without loss of generality
we may assume that ^i{r) is differentiable for r > 0. Denoting
by y* the symmetric point of y with respect to the hyperplane
(z/ — x, x) == 0, we obtain for y situated in the halfspace H^
where {y — x, x) <; 0,

Hence,

d^(\x—y\) _ d^{\x—y"\) ̂ ^
d|rc| d\x\ ^

^cof|rc|) /^ c?(ji)i(|^—z/|) , ,, . v / , *i\ ,
^i^ - î "(^(lyD—^dy*!)^
»|^| JIL, »|^|

which is ^ 0 since \y\ ̂  |z/*[.
We shall also consider the family Q^ defined as the subset

of Q consisting of functions with the property

co(0) == lim (o(a?) < oo.
a;==o

The norm in Qi will be defined as

(2.2) N(co)=co(0)+J^^.

Among the conditions I-IV, the inequality

N((0i * (Oa) < N(a)i)N(o)2)

is the only one that is not obvious. For the proof we may
restrict ourselves to the normalized case N(o)i) == N(0)2) == 1.
Under this assumption we obtain

(^1^2).=0<(0l(0) (1——0)2(0)),
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and the requested inequality follows,

N(o)i * ̂ ) < (^(0) (1 — ̂ (0)) + (1 — coi (0))(1 — co,(0)) < 1.

In this and the following sections we shall denote by
Bq = B^R") and by ^ = ^(R") the spaces of measurable
functions on R" which are L7 over compact sets and have the
norms

(2.3)
\C Wdx

W = sup •w———-
VnMr>o

(2.4)
i /' ^dxll̂ lk = sup^''

r>0 ^ 1 + Vn^)

THEOREM II. — B^ is the conjugate space of the algebra
A^" = A^R", Q). Similarly^ S^ is the conjugate space of the
algebra ^p == AP(Rra, Qi), where Q and Qi are (Ae families
defined in this section.

Let us first show that Sfl is identical with B^(R71, Qi) defined
as in §1. Assume 0 e B^R", Qi) and let ^co^i°°cQi be a
decreasing sequence such that for a given r > 0,

T / \ ^l? 1^1 ̂  r
lim(o,(.r)= ? ^
V:=oo \, "? |~| -'— '

lim N(co,) == 1 + Vn(r).
V==oo

Thus if [1^11 denotes the norm in B^R", Qi),

^^^ |̂  ̂  < /1$|̂  ̂  < ||^N(co,).

For v —> oo we obtain

(2.5) J^J^^< ||^|^(1+V,(r)), ( r>0)

which implies that

(2.6) H^ < ll^ll-

On the other hand, the assumption ^ e W implies the truth
of (2.5) with [1^11 replaced by H^jj^'7, and if y(r) denotes the
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left hand member of (2.5) we shall have

f\^dx ==f^{r) d^{r) ̂ ^(^[—^(r)]

< ll^yr (i + V,(r)4- co(r)] = ||$H^N((O).
Hence,

(2-7) ||̂ || < ||<F|k.
which together with (2.6) proves our statement ̂  == B^R", Q^).
In the same way we find that B9 == B^R", Q) and theorem II
follows on applying Theorem I.

Finally, we give some examples that will not be considered
further in this paper, but are apt to illustrate the relation
between the algebras L^) and A^, Q).

Example 2: Qg is the set of all positive summable functions
on ^ with N((o) determined as in (2.1). Then Ap == L1 and
B^= L00 for l < p < w.

Example 3: Qs is the subset of Qa determined by the condi-
tion

sup w(x) <; / a) dx== N(co).
xeg ^ ' '

As is easily seen, this property is conserved under addition
and convolution, so that conditions I-IV are all satisfied.
For the norm in B^ we find

W\=^f^dx\J,

where E is a variable set of measure < 1. The norm in A" will
be

l|F||=infi \f \^dx\\
< \ ^/ E^Tt )

where ^E^^ is a variable sequence of sets of measures ^ 1
covering each compact part of ^. It is to be expected that
for all p the properties of A.19 are very closely related to those
of L1.

Example 4: Q^ is the subset of Qg consisting of all continuous
functions with real and positive Fourier transforms; N((o)
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is defined as in (2.2). This algebra seems to be of considerable
interest in the case that the dual group of G is not compact.

Example 5: 05 is defined over a euclidien space R" and
possesses the property that the Fourier transform of an co e Qg
is also in Qg; N(co) defined as in (2.2).

3. The algebra A2 over the real line.

The algebras A2 and A2 appearing in theorem II and defined
over the real line are among the most interesting cases of convo-
lution algebras derived by the method of § 1. We shall find
that the main problems of these two algebras permit a complete
solution, and furthermore, that the analysis can be carried
through without introduction of the conjugate spaces B2 and %2.

We begin with A2 and recall that

J /» jp|2
IIFH^inf ^dx { ^dx,

(oeQ J ^

where Q consists of summable positive co which are non-
increasing functions of \x\. By capitals F(rc), G(rc), . . . we
shall denote elements of A2, while /*((), g((), . . . will be their
Fourier transforms in the definition

f{t)=fe-itxF(x)dx.

The ring of Fourier transforms /, (F e A2), will be denoted
by A2 and will have the norm \\f\\ = |]F[|.

Other notations that will be used throughout the paper are

ri(a) = yi(a, f) = \/^J^ \f{t + a) -^)|2 dt,

Aa/W ==/•(<+°a) -/•((),

A(n=f,(.,n^.
This integral A(/') will be an important tool for the analysis
of A2 as shown by
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THEOREM III. — A function f belongs to the ring A2 if and
only if:

a) f is continuous,
b) lim f{t) =0,

c)A(/*)<^.
Under these conditions, f is the Fourier transform of an F e A2,

and the following inequalities hold:

(3.1) 11^11 <A(n< 5||̂ ||

{provided that f^O).
We prove first that our conditions are sufficient and imply

HFI^A^). From c) and the definition of Y](a, f) and A(/'),
it follows that Aa/*(() c= L2 for a belonging to a certain set E
whose complement is of measure zero. We point out also,
that Y](a) > 0 for a -=f=^ 0 except in the trivial case f^O which
we exclude.

Using the Plancherel theorem, we define for all a e E a
function ¥y,{x) by setting

^ — 1)F^) = lim 1 F ̂ V(Q ̂ .
7l=oo ^T; ̂ -"

If P is another number e E, all four functions appearing in
the identity

A,/-(< + P) - A«/W - W + a) - Ap/(()

belong to L2, and we obtain, on taking the Fourier transforms
of each member,

(^ _ i) (e-^ — l)Fa(^) = {e^ — 1) (6-1^ — l)Fp(a;).

Hence, Fa(.r) == F(^) is independent of a, and the Parseval
relation yields

(3.2) ^(a) = 4 F |F(.r)|2 sin2 ̂  ̂ , (a e E).

Our aim is now prove to the existence of an co e Q such that
[F]2/^ is summable. For this purpose, we divide both members
of (3.2) by ^(o^a^2 and integrate with respect to a over (0, oo),
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obtaining

A. BEURLING

, . o OLX4 sin2 ---(3.3) A(/) = r \FW r
«-7 —oo «y o

By defining

2j dff. dx.
o ^(a)a3/2

. o arc
4 A F " 2 .—— == 4 I , , ,,, aa,

(x(a;) Jo Y](a)a3/2 '

, , 1 r^ ̂ W j^=-sj, y^'
and using Schwarz' inequality, we get for x > 0,

. . OLX 2
4 Q-j •?» ____.

^>i r—i,a ^-^Sf^^^i.
V-{x) 2 Jo a 2 ^Jo P r ^ '

Hence
y^00 IF^/rM2 /^00 IPiV^M2

AW= IF^^> f 1^ rfa",
J-oo ^) J-oo ^(^)

2 r ^ d x ^ 1 Fdx r^d^ r^, ^^=A(fl.J o ^ Jo Jo ^ Jo a3/2

Consequently co e Q, and

iiFii2 < r co(^) ̂  ru^M2^ < AV)
J-oo J-^ ^(^)

which verifies the inequality [|F[| < A(/*), provided that f is
actually the Fourier transform of F. In accordance with the
definition of F and the fact that f is continuous, we have, for
all a and (,

f(t + a) —f(t) =f^e-^+^F{x) dx—f^e-itxF{x) dx.

The Riemann-Lebesgue theorem implies that the first integral
tends to 0 as a -^ ± oo, ( being fixed. This shows that the
limit

/ • (^^im^+a)
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exists, and consequently, that

(3.4) /•(<)= f^+f^F^dx,

which is the desired relation, since by hypothesis, /'(oo) == 0.
Since the conditions a) and b) are obviously fulfilled for

every f e A.2, it remains only to prove that f e A2 implies
A(/*) < 5||F[|. The proof of this inequality depends essentially
on the following lemma, which is proved elsewhere (3).

Let w(x) be non-increasing and summable over 0 <^ x < oo,
and let a and b be constants such that 0 <^ a < 1 <; &. Then
(o(rc) admits a majorant co*(rc) with the following properties:
xa^{x) is non-increasing, ^(o*^) is non-decreasing and

(3.5) f--(^<(i_,^_i)f^)'fe-

Let co e Q be normalized and have the property that (F)2/^
is summable, and let CD* be the majorant described above
and corresponding to the case a === 1/2, b = 3/2. Thus

f ^(x) dx < 6^°° (o(^) dx = 3.

By Schwarz9 inequality,

AW = \^w'<f'^^a•w[ J o a ' ) Jo ^(A_\^o \ a / a

\ a /

where the last integral is ^ 3/2. Hence, on substituting the
right member of (3.2) for ^(a), we find

. o QLX
.00 .00 sin2—

(3.6) AW < 6 ( \VW ( ——9— ̂ dxf

J-oo JO * / z ^0 c o * ( — i a

From the inequalities

_^_ ^ 0 < ( S < 1
/ \ ^^ ' It

(f) (F.P>I(ri*

(8) A. BEURLING, On the spectral synthesis at bounded functions, Acta Math.^
t. 81, 1949.
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we infer

A. BEURLING

QLX

"2" , r 1
d(x. ==r_^,^^l+^--2l_^Jo^, Jo J.^p/ 0 <o* (1)

i r1i r1^.,^. r ^ - 4
<

""(a-) Jo P"2 ^*(a;)Ji P3'2 "*(a;)'
Thus

A2^) < 24 ^o|F^a;<24 rJ-» " J-
1FL2

, <^
,̂

and this completes the proof of theorem III.

On the continuity theorem in A2 and the principles of contrac-
tion.

A function K(z) defined in the whole complex plane and
having the properties

IK^-K^KIz'-zl
K(0) = 0

will in the sequel be called a contractor. We shall, in particular,
be interested in the circular contractor Kg defined by the for-
mula

Z \Z\ <; £,

(3-7) K.(.)=__
|z|

Furthermore, a function g(t) shall be called a contraction of
f(t) if for all ( and ('

(3.8) \gw\ < \m\,
W)-gW<\f{t')-f(t)\.

We shall also consider conditions such as

(3.9)
lg(<)K2W)|,

1

\g{t')-8W\<^W)-f,{t)\,
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and in that case we shall say that g is a contraction of the series
N

5 A.
i

One of the most striking consequences of theorem III
is that each contractor K is a bounded operator on A.2. In
fact, if f is continuous and tends to 0 for (-^±00, the same
is true of g = K(jf). Clearly, A(g) < A{f) and theorem III
yields

(3-10) IIKWIK 5||/1|.
The continuity theorem for A2 is now a consequence of the
following stronger.

N
THEOREM IV. — Let g be a contraction of the series S /v

where each f^ belongs to A2. Then 1

(3.11) ^AMIglK/cill/.H,i
where /c(< 5) is a constant depending only on the space.

If, in a sequence {gn^j ^ch function is a contraction of
N

S /v? then the assumption

lim M(g,) = 0
n==oo

implies

(3.12) lim ||g,|] == 0.
n=oo

This property of a space will be refered to as the principle
of uniform contraction, whereas the implication (3.11) alone
will be called the principle of contraction.

Since (3.11) is obvious we start by proving (3.12). We have

while
|Aag^)|<S|Aa/v(<)|eL2,

i

lim A,g»(() = 0

for fixed a and (. Hence, by the Lebesgue theorem of dominated
convergence,

lim T](a, g,,) = 0.
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Similarly,
^ Sn) ^ y ^^/v; ,,TI

^3/2 ^ 2. ^3/2 e L .

and we may apply the same theorem to the integral A(g^)
obtaining

lim A(g^) = 0,
n=oo

and (3.12) follows from theorem III.
In the later part of this paper we will meet several rings

satisfying the principle of uniform contraction and it is there-
fore convenient to give at this instance a short account of
their basic properties. We shall denote by F a normed ring
of continuous numeric functions f(t) defined on any space S
and with the property that at each point (e S,

(3.13) sup lf-^1 = 1. (^)
11^11^1 ||g||

We shall also assume that the principle of uniform contraction
is valid in F with a certain constant A*.

To the ring F we may adjoin each function h with the pro-
perty that g e F implies gh e F. By the closed graph theorem

(3.14) 11^1 <m||g||, (m<oo)

and we define the norm of h as the least number m satisfiyng
(3.14) By this completion of F we obtain a new ring which
will be denoted by ex F. In order to avoid ambiguities, the
norm in ex F will sometimes be denoted by ||/i||^$ the notation
M(A) shall stand for the supremum norm of A. We observe
at once that (3.13) implies that

(3.15) MW<||A||^
By a closed ideal J in F we shall mean a closed linear subset

of r such that /*e J, g e F imply fg e J. The closure of } in the
uniform topology will be denoted by J. The ideal generated
by an /*e r will be denoted by }y and defined as the closure
of the set \gf', g ^ F } .

(4) In this paper we don't make any distinction between Banach algebras and
normed rings, but we prefer the latter notation for Banach spaces of numeric func-
tions which are algebras under pointwise addition and multiplication.
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Using these notations we shall now prove the following
four elementary lemmas.

LEMMA I. — Let /*, g belong to F and let there exist a positive
number m such that

(3.16) (\f{t)\-m)\g{t)\^0.

Then the equation hf—g = 0 possesses a solution A e P and

(3.17) HAIK/cMI/ i+MV
m \ m /

The condition (3.16) implies that g{t) vanishes on the set E
where \f{t)\ < m. If h is defined as =0 on E, and == g / f on
the complement of E, w-e find whether this set is empty or
not,

\h(t') - h(t)\ < 1 |g(C) -g(()| + lî l \f{t')-f{t)\.
• * i ' m

Hence, h is a contraction of the series

m-1^) + m-WW

and this proves our statement.

LEMMA II. — A function g e F belongs to the closed ideal
J if and only if, for each given £ > 0, the inequality

^ "(r^1

has a solution f e. J. In particular^ we shall have

(3.i9) }=J"r,
and the jy consists of those g e F for which

(3.20) lim M(——S——) = 0.„=« \1 + n\f\]

Assume that f, g verify (3.18). If e < 1, then \g{t)\ < 2s.
on the set where |g(()| < e. Setting gi == g — K^g), where
Kgs is the circular contractor defined by (3.7), we see that

(lA<)l-£)Igi(t)l>o.
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Thus by lemma I there exists an h <= F which satisfies the equa-
tion hf—gi == 0. Consequently

||^-g|]<||K^)||=S(£,g),
where S(s, g) tends to 0 for £ -> 0. This proves lemma II.

LEMMA III. — If r is separable then each closed ideal }
contains an element f such that J === Ty.

Our assumption implies that J is likewise separable and
there exists then a sequence {fn}^ ̂  which is dense in }.
Observing that the functions |/n|2 belong to } we set

f-^aW,

and choose a^ > 0 and so small that the series converges in
norm. If n and p are given integers we can always find an
integer q so large that

M(^)<..
Thus the assumption

limM/,——^T-}=0
P—— U+Pl/nl/P=oo

implies lim M ( .—^— } == 0.
^ \i + qf/

Hence, by lemma II, }̂  c ̂  (n == 1, 2, . . . ) . From this
we conclude that

(3.21) j,c j = closure (J^?/

and lemma III is established.
n^l

LEMMA IV. — If r satisfies the principle of contraction with
the constant k then the extended ring ex V satisfies the same
principle with the constant 3/c. N

Let the function A be a contraction a of the series 5 ^v where
i

each term belongs to ex F, and let g belong to F and have a
norm <^ 1. From the relations

g{t')h(t') - g{t) h(t) = g{t) {h{t') — h(t)) + h(t'} {g(t') — g(()),
\g{t')h(t') — g{t)h(t)\ < \g{t)\\h{t') —h(t) | + M{h)\g{t') — g{t)\,

\g(t)\\h,(t') —h,(t}\ < \g(t')h,{t') — g(t)h,{t)\ + M(hW) — g{t)\,
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it follows that

ig(0/t(Q-g(W)i<6|g((')—g(()l+ iig((W)-g(^(oi,
i

with

& = = M ( A ) + SM(^)< 22; INIex.i i
Thus gh is a contraction of the series

bg{t) + 5 g(W<),i

where by assumption each term gelongs to F. Therefore gh e F
and

|^||<^(&+||N|ex)<3/cJI]^|l,,

which proves our statement.
Let us now return to the ring A2 and consider its closed

ideals. Taking the Fourier transform g(t) of e^w^x), where (A)
is a normalized function e Q, we see that ]g(<o)| == 11^1] == 1.
Thus A2 satisfies the conditions stipulated for F, and even
lemma III applies to A.2 since A2 is obviously separable.

If E is a closed set of points ( we shall denote by JE the
set of functions g e A2 which vanish on E.

Consider now the ideal Jy generated by f and let E be the
zeros of /*. By the criterion (3.18) of lemma II, ge A2 belongs
to jy if, for each £ > 0, there exists an integer n such that
for all (

\g(t)\<e+n\f(t)\.

However, for continuous functions which tend to 0 for
( -> =b oo this condition is satisfied provided that g vanishes
on E. Thus

(3.22) }ECJ,C^, },C^C^

and we have proved

THEOREM V. — For an ideal Jy, we have jy = JE? where E is
the set of zeros of f.
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This property obviously remains true if E is empty in which
case j^ == JE === A2. For arbitrary closed ideals we obtain

THEOREM VI. — Let E be the set of common zeros of functions
belonging to a closed ideal j. Then J == JE.

By lemma III J contains a generating element /*, i.e., with
the property }/ == J. From this we conclude that f can't vanish
outside E and our statement follows on applying theorem V.

The extended ring ex A2.
Following the procedure described in a previous section we

form the extended ring ex A2. By Lemma IV we know already
that the principle of contraction must be valid in the new ring
with the constant k == 15. In the actual case we shall find,
however, that a much stronger result is true. This depends
mainly on a property of A2 which has not been relevant earlier,
viz. that A2 contains a sequence {gn}^ with norms <^ 1 such
that gn{t) converges uniformly to 1 over each compact set
as n —> oo. If, in fact, o)(^) is a normalized function belonging
to Q the same is true of n^(nx) for n = 1,2 . . . and the latter
function has a Fourier transform gn{t) with the desired proper-
ties. Using this fact we shall prove

THEOREM VII. — The ring ex A2 consists of all functions of
the form

(3.23) h = c + f

where c is a constant and fe A2.
The non-trivial part of this theorem expresses that ex A2

does not contain any other functions than (3.23). In the proof
of this, and of similar theorems later on, we shall use the nota-
tion

S(a, g, h) = ̂  J^ \gWh{t + a) - h{t)\2 dt,

and the identity

^g{t)h{t) = g(t)A^) + h{t + a)A»g((),

which by Minkowsky's inequality yields

|^(a,g,A)-7](a,g/t) |<MWyi(a,g).



CONSTRUCTION AND ANALYSIS OF SOME CONVOLUTION ALGEBRAS 23

On dividing both members by a372 and on integrating with
respect to a over (0, oo),

F ̂  g. h) ̂  - A(gA) < M(A)A(g).
J 0 a

Assuming h <= ex A2 we insert in this formula the function gn
defined above. By theorem III,

A(g^) + M(/i)A(g,) < 5||̂ || + 5M(A)||g,|| < 10||A||«

Thus for n —> oo,

A(/i) == lim F ^(a, g,., A) ̂  < 10||A||e,
n= oo j o a

Being necessarily continuous h thus satisfies conditions a)
and c) of theorem III. However, by the proof of that theorem
we showed that a) and c) imply the representation (3.4) which
is the desired result.

In the theory of ex A2 it is convenient to set

A(oo) == lim h{t),
t=± oo

and to adjoin t == oo as an ideal point of the (-axis. Under
these conventions theorem VI remains true : Each closed ideal
J in ex A2 has the form JE where E may or may not contain
the point oo. For the rest we only point out that the previous
results on A2 remain valid for the extended ring. We finally
observe the interesting inequality

IML<^N»

which holds for functions h e ex A2 with \h{t)\ ^> m > 0.

4. The algebra Jb2 over the real line.

For the norm in A>2 we have

(4.1) [|F||2 = inf fo)(0) + r ^dx\F IF12^,
^€=a\ J_oo /J-oo (0
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co being here a positive and non-increasing function of \x\
with the property that

o)(0) == lim co(a?) < oo.
.0=0

We first prove

THEOREM VIII. — The space Ao2 is the intersection of A2

and L2, and the norms in these spaces satisfy the inequalities

(4.2) llFllĵ HFH^
(4.3) HFIL^HF^,
(4.4) IIFIL^IIFII.^+IIFIli1.

The relation (4.2) is a consequence of the fact that Qi
is subset of Q in which N1(00) > N(co). As to the proof of (4.3)
we recall that

j_

iî  = ̂ pjr^JJ^i2^2 <\^-
Hence, on taking $ = F in (1.14),

||F||̂  =/ F^ ̂  < ||F|̂ ||̂ |̂  < IJFIIjdIFIIi*,

and (4.3) follows. For the purpose of proving (4.4) we set
J_?=0. s r^dx(==b,

\ *J ——00 ~ )

where a) e Q is normalized and & is a number close to |)F||A.2.
Clearly

/ x abw(x}
wl{x) == a + L[x)

belongs to Qi and
/t00

N(coi) = («>i(0) + 1 (Oi dx < (a + b).
t/ ——00

Thus, on inserting (Oi in (4.1) we obtain

||F|1^ < (a + 5)J'JF12^+^<te = (a + &)2,
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which proves (4.4) with the sign ̂ . That the strict inequality
actually holds for F =7^= 0 is easily established.

By Jfc2 we shall denote the ring of Fourier transform /*,
(FeJb^ with the norm \\f\\ = [|F||. Combining theorem III
and VIII we obtain

THEOREM IX. — A function f belongs to A2 if and only if:
a) f is continuous,
b) yeL2,
c) A(f) < o>.

Under these conditions the following inequalities hold:

(4.5) |[/•||<A(f)+——?< 6||/1|.
\ 1^

[provided that f-=^0).
From this we see that the principle of uniform contraction

is valid in Jfc2 with the constant k = 6. Forming the Fourier
transform g(t) of e^co^), where co e Q^ is normalized and
o(0) < £,we find that \g{Q\ > 1 — £, [|g|| < 1. Thus X2 verifies
the conditions stipulated for the rings F. Therefore theorems V
and VI remain true, and nothing new is to be found with
regard to the ideal theory. On the other hand, the completion
of A2 turns out to be quite a fascinating problem showing
new and interesting aspects.

Each function ^ejb2 being of summable square, it follows
that

(^6) ^f)^—— \\f\\^

The amount of the integral A(f) which derives from the range
1 < a <; oo, is therefore no longer significant. For this reason
we introduce

(^•7) A,(/-) = f1 ̂  rfa,
Jo a

and observe that

r4.8) A,(f) < A(/) < A,(n + — miL.\/^
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On combining this with (4.5),

(4.9) m<w+J—m^
V27:

Similarly,

(4.10) llfll> i-(A,(fl+,̂ ||/||,,)

The completion of A>2.
By lemma IV we already know that ex Jb2 satisfies the prin-

ciple of contraction with a constant k <^ 18. We also know
that continuity and boundedness are necessary conditions
for functions belonging to ex Jb2. If h has these properties we
find that the boundedness of Ai(gA) for gesJk2, \\g\\ ̂  1, is a
both necessary and sufficient condition. In fact, by our previous
inequalities (3.1), (4.3) and (4.9),

(4.11) ^-Ai(gA) < \\gh\\ < Ai(gA) + 5M(A).

Assuming still ||g|| <; 1 we obtain by (3.29),

(4.12) J^(a, g, A)^-A,(gA) < M(/.)A,(g) < 5M(A).

Settingaw = ̂ Mgh)- w = n^r^'g'h) ̂ '
it follows from (4.11) that

-|-aW<||A|j,<a(/i)+5MW.

Combining this result with the inequalities

|^)—a(A)|<5M(A), M(A)<||A||e.

we find that

(4.13) ^^)<||A||»<^)+10M(A).

Consider first the case that h possesses a modulus of conti-
nuity

0(a) == sup \h{t+ a )—A(() |
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which is summable on [0, 1] with respect to the measure
a-372 da. Then it follows that

St.,,,̂ 0 *̂̂ .),
V2ii

(̂  11*11. <J;•e^+10M(»).

After these preliminaries we have reached the main problem
of this chapter: to obtain a complete characterization of func-
tions belonging to the extended ring ex Jb2. Some kind of uni-
form continuity is obviously required, but the stated property
of 6(a) is too strong and the problem of finding the adequate
notion of uniformity is not quite easy and needs a series of
lemmas.

LEMMA V. — Let ^E^i00 be a sequence of closed sets on the
t-axis such that the distance between E^ and E^ is ^ 1 for

00

m -=f=- n. Let f belong to A2 and have the expansion ^ L where fn
vanishes outsides E^. Then fn e Jlo2 and

(^•15) ^IIIAII^ 1011^11.

For 0 < a <; 1 we have by assumption

WWn{t) = 0 {m^n)

and it follows that

S^a, /•„) == ̂ ,f),

^rMdt=f^\f\'tdt.

By Schwarz' inequality

^if}-\ r ' / a n^r <A (n r ̂  ̂ dv-Ai(/,)-^ ^,Q^ <A^)^ ^^ ^

Hence, on summation,

S W < W).
1
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By (4.9),
||/>„||2<2A^)+|^||f»||l..

Since ^(f) < 5||/-|| and \\f\\v < 2v\\f\\, we finally get,
00 KQ
5||/•„|la<2A?(/•)+^||/•||^<100||/•|^

LEMMA VI. — There is a finite constant ki such that for any
gejy

(4.14) i/S ^<^||g||,
v —°°

wAere bn is the maximum of \g(t)\ on the interval [n, n + 1].
Let Yn(<), (n == 0, ± 1, . . .) denote the continuous function

which is = 1 on [n, n + I], ==0 outside [n— 1, n + 2]
and linear on the two remaining intervals. Clearly

T(t)= S T4n(^exi2.
—00

Thus yg belongs to cfe2 and the series
00

T^ = S T4ng
—•00

verifies the conditions of lemma V. Hence,

i bin< iiî giî iooiMMi2.
—oo —oo

From this we conclude that (4.14) must be true if we take
/ci=20||Y||.,

LEMMA VII. — There is a finite constant /Cg such that for any
sequence [a^}^ °f non-negative numbers with finite square
sum, we can find a g e Jb2 satisfying the following conditions:

min |g(()|>a, ||g|| < ̂  Y / S aL
[n,n+l] V —»

Setting
n == oo

gi = S <WiT4n+» {i = O? 1-? 2, 3).
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we obtain for each g,,

^-, gi) == S aSn+î a, T4»+.) <-^- 1 a^

(̂gi) < v-i- S aia+if
V ** ——00

5
y = -o- 2j ^n+i

^»oo r oo

f Ig.l2--^^.'—~, " —«>I 16i| — o

Thus by (4.9) - °° ̂  __ ____

1 1 ^ 1 1 ̂ /W^N/I '̂
and we find by Schwarz' inequality that

g-igi^i
verifies our condition if we takel"=\\/^^^)<s-

Let us now return to our main problem and recall the defi-
nition

^(a, g, h) = ̂ f^ \gWh(t + a) - /»(()|2 dt.

We set
^ = ^(a, A) = ̂ f^1 \h{t + a) - A(()|2 ̂  {n == 0, ± 1, . . . )

and call Yjn(a) the local modulus of the L^-continuity of h.
For later use we point out the inequality

(4.15)
|Y],(a + P) — Yi,(a)| < Y),(P) + ̂ in+i(P), (a, P > 0, a < 1).

Denoting by &„ the maximuni, and by a,n the minimum of
\g{t)\ on the interval [n, n + I], we obtain

(4.16) F \/ i a% ̂  < f1 ̂ (a, g, h)
Jo V —» <* J«

< r1 /^ 1,2 tda.v s ̂ n,̂ '
c/ 0 » —oo ""
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which combined with lemma VI and VII yields the following
result:

THEOREM X. — A continuous bounded function h belongs
to ex A2 if and only if

(4.18) K(A) - sup F v/^o) d- < oo,
^e(° Jo a

when f^ varies in the convex set

^-SW-S^^A); T^>0, ST,<li.
( ———00 — — — Q O )

We shall now see that K(/i) also admits another and more
significant definition. If the functions ̂ 1^ possess a common
majorant 9(a), summable over [0, 1] with respect to the
measure a'^^a, then clearly

K(»)<f^.

However, this inequality remains true if we choose 9 in a
wider class of functions. We shall say that 9 ̂  0 is a mean-
majorant of [r}n}l^ on [0, i] with respect to the measure
a-^a if(4-20' rf^r^ (-o.^-)
If such a function is summable for ar^^doL we obtain by
Schwarz5 inequality for each ^ e C,

/ / o 4 \ r1 /T d(xl ^ r 1 ^ dQL r 1 ^Y ^ r 1 dQL
4.21 V ^ 3 7 2 < 1 — — " 3 / 2 ?~i72? ^ ? 3/2Jo o^1 (Jo 9 a372 Jo a3^ - Jo a 7

LEMMA VIII. — If K(A) < oo, then the functions ^e6 are
equicontinuous and the uniform closure (° of & contains a unique
element ^p* such that 9 == VY* l5 a mean-majorant with the
property

(^•22) K{h) = f\ ̂
<yo a
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Let us first show that K(A) < oo implies the existence of
a bounded function X(e), (0 <; £ <; 1), tending to 0 at the
origin and such that for each ^ e (3

(4.23) r^J^<^ (0<^<1) .

If this statement were false there would exist a number
Xo > 0 such that for each given £ > 0 the inequality

r^^0
would hold for some ^ <= (°. If p is a given integer we could
also find non-overlapping intervals jy^c (0, 1] and functions
^ , j?eC such that

J;v^>x..

1 p

Since 6 is convex, ^ == — S ̂  ^^Id belong to 6 and
P ir^p-'-^^A.

This contradiction proves our statement.
From (4.23) we may now derive some important conclusions.

For 0 < 2j3 < 2a < 1, we shall have by (4.15),

^(2a) < ri,(a + [3) + ^(a - ?) + ^],+i(a - ?).

An integration with respect to ? over (0, a) yield,

ar),(2a) ̂ "^(P) ̂  + ̂ WP) ̂ .

Here we may apply (4.23) to ^ == Y)^, Y]^+i. Thus

ayi,(2a) < (2a)3/2X(2a) + (^(a).

Since we may assume X(e) nondecreasing this inequality follows
on setting 2a == £,

(4.24) YJ,(£) < 3\/e)i(£), ( 0<e< l , n = 0, ± 1, . . . )
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By virtue of (4.15) we obtain for ^ e= 6,

(4.25) |^a+£)-^(a)|
00

< S .̂Ma + e) — T],(a)|(Yi,(a + e) + ̂ (a))
—oo

< 36X(l)\/£\(e), (0 < £ < 1).

By this equicontinuity and by (4.23) it follows that the map-
ping

e-.^fv^
is continuous. The integral therefore assumes its least upper
bound K(A) for some ^eC. Since (° is convex,

(1—9)^+6^06
for 0 ̂  6 ̂  1 and for each n. Hence

Jj-r+e(^-'r)r^<j^|s-
This implies

r^g-^ja
Jo \/y a3/2^05

and^ proves that \/^* is a minimal mean-majorant of ?yjJ^.
If Q contained another function, say '^, with the same pro-
perties^then the sign of equality would hold in (4.21) with
? == \/y, and the two functions ^* and ^ would have to
be proportional and therefore identic.

According to the previous results the quantity M(A) + K(A)
is a norm equivalent with ||A||a and the extension problem
for Jb2 is thus completely solved.
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