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ON SPACES OF POTENTIALS CONNECTED WITH V CLASSES
by N. ARONSZAJN, F. MULLA, P. SZEPTYCKI (1)

(Lawrence, Kansas)

§ 1. Introduction.

There are in existence many classes introduced in view of
extending the notion of Bessel potentials of L2 functions
(cf. [2]; classes P01 discussed there were introduced earlier
but the theory was not published in extenso).

The most important appear to be the classes often denoted
by LS (Calderon [6]), W^ (introduced by Gagliardo [11] and
Slobodeckii [14] as the extension of classes W^ introduced
by Sobolev for integral values of a) and ^a>p (the special case
of more general classes introduced by Besov [5]) (2).

These classes are defined essentially as follows (for precise
definitions see § 7).

L£ is the class of all Bessel potentials of if functions, i.e.
of all functions u of the form u=Ga*f, /*e L^ where Ga is
the Bessel kernel of order a (cf. § 2). The norm in LS is defined
by iHkp - 11/lk

W^, for a > 0 is defined as the class of all functions which
together with all derivatives of order <^ a (in the sense of
the theory of distributions) are in L^ and have finite norm.

[a] r /» /-» /-»

S S |D,u|̂ +
1=0 \j\ =/ i-J R" J R"J R"

Dju{x) — Dju{y) ̂  dxdy ~\
\x—y\^ | l^—yld

,i/p

(1) Research for this paper was sponsored by the Office of Naval Research, Con-
tract Nonr 583(04), and by the National Science Foundation, Grant G-17057.

(2) We shall not consider here the classes introduced by Nikolskii [12] as they
are not so closely related to potentials of L^ functions. The same applies to the general
classes of Besov.
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In the latter expression the double integrals are to be omitted
for a integer. (For a precise definition of the norm in W^
see § 3).
i ,̂ a > 0, is defined as the class of all functions of Lp

with the finite norm

u a,P,A » +JA?u
H°

f Ifl-"^)^ / f>a.
P^D /

This expression does not give a standard norm in ^<xlp.
However, for all integers k > a the corresponding norms
Ma,p,& are equivalent.

In view of different aspects of the theory, each of these
classes has its advantages and disadvantages. From the point
of view of simplicity of properties the class ^lp seems to be
the most advantageous; the class L£ is the simplest from the
point of view of definition and representations of its elements.
Class Wp is in most cases in a kind of intermediate position
between the other two; for a not integer and all p, 1 ̂  p ̂  oo,
Wp coincides with ^p, whereas for a integer 1 < p < oo,
it coincides with L^. The only cases when W^ has a somewhat
independent existence are p == 1 or p = oo and a integer.
These are actually the cases when the information about
W5 is the least precise. For this reason, if we were interested
in studying these classes in the whole space R", there perhaps
wouldn't be much point in introducing the classes W^. This
study, however, is conceived as an introduction and help
to the investigation of the corresponding spaces on domains
of the space R71 (as was done in the case of Bessel potentials
in [3]). In this connection we immediately come across the
question of defining these classes intrinsically for a domain
D c R». For Wp the answer is immediate. To define W^(D)
it suffices to replace R71 by D in all the integrals occurring in
the definition of the norm. Such definition is justified by an
extension theorem asserting the existence of a simultaneous
linear and bounded extension mapping from W^(D) to W^R")
for a rather general class of domains (3)

(3) Some details about this question can be found in the revised version of [3]
(to appear).
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As concerns L^ there is no known direct definition of a
corresponding class in a domain D.

In the case of ^^ there is an intrinsic definition for a
domain D proposed by Besov in which the integration of
the difference is taken only over the points of D where the
difference is defined. However, it is not known, and probably
not true that for a general domain D the different norms
defining ̂ p are equivalent. Even if one of them is chosen,
the presence of the higher difference occuring in the norm
makes it very unwieldy to use it in a domain. In the case of
classes W^ we know that most of the results of the theory
ofBessel potentials of L2 functions can be extended toW5(D)(3).
It is not known and seems difficult to extend these results
to the proposed classes ^^ (D). This is the reason why in the
present paper we are stressing the study of the classes W^.

All the classes under consideration can be considered as
completions of the class C^ with corresponding norms (except
for p ==oo). The classes L£, W^, l^are such completions rela-
tive to the class of sets of Lebesgue measure 0. This approach
avoids some essential difficulties, but in some respects it
is rather inconvenient, especially if we want to speak about
restrictions of these classes to hyperplanes or more general
subsets of R71. Clearly this approach does not allow any insight
into pointwise properties of derivatives of functions of the
classes under consideration.

Similarly as was done in the case of Bessel potentials of
L2 functions we introduce the perfect functional completions
of C? with the norms of L^, W^, Sf^. To distinguish these
perfect completions from the imperfect completions we use
the symbols P^ for the perfect completion corresponding
to L£ (in analogy to the symbol P01 for Bessel potentials of
L2 functions), P^ for the perfect completion corresponding
to W^ (in analogy to P01 for Bessel potentials intrinsically
introduced on domains) and B"^ for the perfect completion
corresponding to î .

It is to be noted that for p == 2 all three classes coincide
with P^ and this is the only exponent for which a single class
can be defined combining all the advantages of P^ P^P and
g<x,p
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All three families of spaces considered here were extensively
investigated by several authors, Besov [5] (see also [12]),
Calderon [6], Gagliardo [II], Slobodeckii [14], Stein [7], [8],
Taibleson [19] and others, (4) and many of the results presented
in this paper were obtained by them. We believe, that in
addition to some new results which we obtain here, the most
significant contribution made is the introduction of the repre-
sentation formulas for the study of the spaces under consi-
deration. The method appears to have possible applications
in the general study of differential problems.

The basic idea behind the use of representation formulas
lies in the fact that they represent a function as an integral
transform (or a linear combination of such) applied to expres-
sions whose 1̂  norms occur in the definitions of the spaces
under consideration. For example, the representation for-
mula (c.f. § 5).

u{x) = S S (m) /R" D^CW^ — y)Wy) dy
l==Q\j\=l

expresses u in terms of all its derivatives of order ̂  m; the
norm in W^ is defined in terms of U' norms of these deriva-
tives.

We give a general method for obtaining such representation
formulas. They are derived from identities written in terms of
Fourier transforms, where they appear as quite elementary;
the translation of these leads to identities in terms of the
original functions, usually in terms of some special integral
transformations. This kind of translation has a well determined
meaning in terms of tempered distributions, but since we are
interested in applying the resulting formulas as bona fide inte-
gral transformations, we have to use a relatively simple theo-
rem (§ 5) giving conditions under which the formulas so
obtained are valid as integral formulas. These considerations
in turn necessitate an analysis of the corresponding integral
transformations in order to decide if these transformations
are absolutely regular.

In § 6 we give criteria for absolute regularity which were
already known tor some time to be sufficient (but were not

(^) See [12].
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published). Quite recently E. Gagliardo [11 a] proved them
to be also necessary.

In the introductory chapter we recall the definition of the
kernel Ga and some of its properties ( § 2 ) . For functions of
Co0 we introduce the standard and approximate norms of
Wj? (§ 3) and the norms | \y.,p,k °t ̂ p (§ ^) anc! investigate
their properties; in particular we prove the equivalence of
norms | \a,p,k with varying k.

The second chapter deals with the imperfect completions.
In § 5 we describe the formal way of obtaining all our repre-
sentation formulas (among these the reproducing formulas
and inversion formulas for Bessel potentials). § 6 is to be
taken as a brief introduction to the general theory of integral
transformations which leads in particular to the notions of
semiregular, regular, and absolutely regular transformations
and their basic properties. In § 7 we introduce in a precise
way the imperfect completions; in § 8 we prove the continuity
of the standard norm of W^ considered as a function of a. In
§ 9 we derive various auxiliary inequalities concerning the
kernel Ga, its derivatives and differences, which are needed
in § 10 where we consider several integral transformations
occuring in our representation formulas and analyze them
from the point of view of properties described in § 6. Almost
all of these transformations turn out to be absolutely regular
which allows us to obtain in § 11 all the equalities, iso-
morphisms and inclusions between the different classes.
We show in particular that there is a well-determined space
B0^ of tempered distributions such that ^atp = GaB0^ for
all a > 0. In most cases these results were obtained by other
authors by different methods; we were able to make some
of them more precise. In § 12 our representation formulas are
used to represent the spaces W^, S><x'lp as projections in suitably
defined L^spaces; this allows us to prove in a simple way
that W^, W^ and ^P %a'p' are conjugate in suitable pai-
rings.

Chapter III deals with the perfect completions P"^, P"^,
and B^. In § 13 we prove their existence, describe their
exceptional classes and show that in almost all cases the
representation formulas introduced before give perfect repre-
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sentations of functions in corresponding perfect completions.
It is shown further that functions in perfect completions have
pointwise defined derivatives (for p = 1 the results are some-
what weaker). It is also shown that for every function in
any of the imperfect completions we can very easily obtain
a corresponding function in the perfect completion by repla-
cing it by the pointwise limit of its regularizations (corrected
function) and taking as its exceptional set the set of all
points where the limit does not exist or is infinite. (Here again

v

the result is less precise for P01'1, a-integer.)
In the last section we prove theorems about restrictions of

functions of our classes to hyperplanes and extensions from
hyperplanes to the whole space. We take advantage of the
fact that our representation formulas give perfect represen-
tations of functions in our classes, and consequently the
pointwise restrictions are defined directly by these formulas.
The results of § 10 provide an immediate verification that
the restrictions so obtained are in suitable classes. The exten-
sions are obtained by again making a suitable use of the
representation formulas.

Throughout this paper we shall consistently use the termi-
nology and results of the theory of functional spaces and func-
tional completion; for details we refer the reader to [1].
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CHAPTER I

PRELIMINARIES

§ 2. Notations and Bessel Kernels*

The following notations will be used consistently, x, y, z, ...
will denote points of the n-dimensional Euclidean space
R", \x — y\ the Euclidean distance of the points x, y^
\x\ = \x—Oj, ^, Y), ... points of the dual space, (S;,, re) the
inner product of the vectors ^ and x. The symbol D,

for i == d\, . . . , i^ will denote the operator ———————»
^ .^. ̂

|i| = Z. f^g will denote the convolution of f and g, ^(^) the
Fourier transform of /'. We shall denote by 3lo the class of
all sets of Lebesgue measure 0.

In order to avoid any possible misunderstanding, we shall
make the following conventions concerning differences. We
shall consider only forward differences. The symbol A? a-a- will
denote the difference of order k with increment (and initial
point a, taken with respect to a variable x. In the case when
a function proceeded by the symbol A?,^ depends on several
variables, then in the operation of taking the difference, all
variables other than a; are treated as parameters. For example,

^a'.xu{x, x— y, t) == u(a + t, a + t—y, t) — u(a, a — y , t}.

We will use the following abbreviations systematically. If
fis a function of a single variable x (where there is no doubt
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as to the variable with respect to which the difference is
taken) we will write

^f{x)=^UW=^U-
We will also write

AL;.=A?;,

if the difference is applied to a function of several variables,
and

A?,^) = A?/-.

if f is a function of a single variable x.
Concerning mixed differences, we mention only the follo-

wing evident relations

A(,a;a;A^a,;.2?< == ^a^xftt,a\x

if /c, (, a, and x are independent of o^, and A*i, ^i, Oi, and x^
are independent of a?;

A^X-;. = A^, == A?^A?;,

if /c, (, A-i, and 1^ are independent of re.
For a > 0 the Bessel kernel of order a,

Ga(^——2/)==Ga(k——!/|)

is defined by the formula (c.f. [2]) :
A «—n

(2.1) GM)= ^^ , K^(M)M 2 ,
2-2-^^(-5-) 2

\ L /

where Ky denotes the modified Bessel function of the third
kind of order v.

The same formula could be also used for a < 0$ the resulting
function, however, is not locally integrable around the ori-
gin and cannot serve to define an integral convolution ope-
rator. In some considerations it will be convenient to indicate
by G^ the Bessel kernel of order a on the space R"1; thus
foo _ Qvj^ — ^a*

The following properties of the kernels Ga will be needed
in the sequel (c.f. [2]).
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The Fourier transform of G» is given by the formula

(2.2) G (^ = (2Tt) 2
a" (1 + W2'

The kernel G, is positive and analytic except at x == 0-
for x ̂  0, Ga(a;) is an entire function of a. The behavior of
G, is described by the following formulas (all representations
being valid uniformly in a for a in any fixed bounded interval)

For |a;| -*- 0 :

r^7—0')
(2.3a) G^)=-A——/i.yia-.^oda;!-") ifa^n—1

2«^/2p/_a\ ~
\ 2 /

For n—l^a^ra, we have

(2.36) G^)=
n~2 / ^

On-.. 2 P/ a \ • M —— aH-^-JsmTC———
\ ^ / ^
1 \<i-n
yM

2 — re + a^r -= F/n—a+ 2^
\ 2

+ 0(1).

The last formula gives, in particular,

(2.3 c) G )̂ == — — — 1 ^ L^(2.3 c) G )̂ == — — — 1 ^ Lg 1 + 0(1)1.
2»-iW--^L 1^ J

\ 2 /
a^Tt^n-"-^ I- ••z'

\ ^
For a ̂  TI, we have

(2.3 d) G^)=——————1
n-2n—Z . \

on- 2 r/ a \ • a — n2 T C ^yj81"11^-
/1 I,|Y-" -i ty^^
'2 + a — ̂2—a+^ rir —

i fO^a—n^l.

+ O(l*l<lo )̂)
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(2.3 e)

G.(^)=-
*—i

a \ (A'

D-r^r-"-.
r!

1 klV2 - M )
2"-lt'•/!!^(\ "

J| \ «—n—2fc""

-2-1-')
a — n^ '2+a—^. a — nsin—? w / f ' n / f + i Fi

+ 1 , ,'^y^)
/-j

+o(M^iog^),
for 2k — 1 ̂  a — » ̂  2/c + 1, A-integer, /c > 1.

Hence, for a — n = 2A-,
(2.3 /•) Gat+^a;) =

1 ( ̂ (-im-r-l)!/ 1 . A 2 "

2».»/-^f^^VSO r! ^ 72 it L l / f + ^ 1

(T^) r i
+2VV-[log^+o(l)

Formulas (2.3 a)-(2.3 f} actually give the significant terms
of the development of G,(a;) around 0; by differentiation they
give the principal part of D,Ga(a;) at 0.

For |a;| -— oo, y.—n—1
2 g-1^1,1

(2.4) G,(a-) — ,̂ _i n_i-
2 a TC 2 r

It follows that G. e L1 tor all a > 0; by (2.2) f G^x) dx == i.
Formula (2.2) also implies the following composition property
of the kernel Ga :

(2.5) G«*Gjs== G«+ji.
Gg.{x) being a function of |a;| only, define Ga(r) == Ga(|a;|)

with |a;| = r. Then
q—n

r 2 K(2.6) dGa(r} -J--aX
dr

n-a4-2\'/?n4-a—2 ^

2 2 T t 2 ^

and hence G<x(r) is a decreasing function of r.
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It will be convenient to introduce on the space R" X R"
the measure p.p, 0 < (3 < 1 defined by the formula

(2.7) d^y)=———————^^-H.^^
L(n, p)G2^p(0) \x—y\11

where (see (2.3)),

r (?+")
(2'81 <WO)^r(,.+p>'

and C(n, p) is defined by the formula

H4-2

^ Q. p/ „ 2-2P+1TC 2

(2.9) C(n, p) = ——————-————,————
r((3+i)r(p4-^-)sin^

\ A /
r |̂  _ j i2

"J^———————^dz fd^
(^+M2) 2

where z' denotes the projection of the point z = (z^ . . ., zj
on the hyperplane z^ == 0.

It follows from the assymptotic representations of Ga (c.f.

formulas (2.3) and (2.4)) that for a > 4» Ga(^) is an L^
. 1 1 P

function, — + -y === 1. We will need an estimate for the
P P

norm \\G^p.
To obtain this estimate we integrate separately over the

regions \x\ ̂  1 and \x\ ̂  1. We use formula (2.4) for \x\ ̂  1

and for \x\ ̂  1 we estimate (5) : G^(x) ̂  ̂ ^(l + log^
if \ M /

4 < a ̂  ̂  G^(x) ̂  x fl + —L— (1 — |̂ |̂ )"|
P L a — n J

for

n < a < n + 1 and Ga(^) ̂  x for a ̂  n + 1.

(6) x denotes here a constant (which may differ from one formula to another)
depending only on n.
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(2.10)
n

'-71
reY+1"

/* •v ^ ^'for —7<a^n
P

I|G,HLP^
[(a—^-^B^p+l,^-)'!1^ for n<a<M+l

\x for a^n+1-

For a > 0, G^-o(^) is a continuous function on R71. In some
instances we shall need an estimate for the difference quotient

A?G^(rr)^ ^ ̂  ^ From (2.2) we have
l.jp — r? r \ /|(|P

^ e'(S.»)Ce<?>0 _ m* ,
A?G^(r.) = (2n;)-'1 e——-^———^-^,

•yR" //I 1 ltl2\ 9(i + m2
and hence

(2.11) ^lA^-^lr^)-"^
.n&^r2*8^^2 I d\

I(IP
( l + l ^ l 2 ) 2

^ (2-It)-n2*-F (
i,'R11

-'^'^^ = ̂ -P-'1-1^^ ̂

(1+|^|2)

§ 3. Standard norm. Approximate norms. Classes ^atp.

In this section we shall define two norms which arise in
connection with the generalization of Bessel potentials (c.f.
[2]). For this purpose we shall need certain properties of
covariant tensors.

Let V0 denote the linear space of all covariant tensors
of order I i.e. of all ^-linear complex valued forms
A° (^i, ^2, . . ., ^i) defined on the n-dimensional vector space
R71 (of contra variant vectors). In every fixed coordinate
system there is a 1-1 correspondence between tensors A°
and ^-tuples of their components given by the formula

A î, ...,^-A^,.^, ...,^,
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where (^, . . . , ^) denote the components of the vector
p^ s = 1, . . ., I and summation from 1 to n is understood
over the repeated indices.

Let S denote the surface of the unit sphere in the space
R", (o^ its area, and I/ its l-th cartesian power; let
0^ = (9i, . . . , 0^) denote an arbitrary point of S^,

|0 |̂ ==1, / = 1, . . ., n and d\o == d^ . . . d^

the element of volume of ^/.
Define now for A° e V0 and 1 ̂  p <; oo the standard norm

(3.1) W="- f,|A»(0(o)|^e(o,
'"n »y ^j

and the approximate norm (dependent for p =^= 2 on the choice
of the system of coordinates)

(3.1') |A(O-|^=SW./
For p == oo we put as usual [A^ = sup A°(|O(Q)| and

|A<^ == sup |Ai°i. ^

For any A^, B0 e V<^ we define the corresponding standard
and approximate scalar products :

(3.2) (AO, BO) = J ^ f , A^e^B^Ao,
(3.2') (ACT, B»-) = ^ AW.

Observe that by the orthogonality relation j W c?6 == ̂  8y
(where 6 = (01, ..., O")) we get from (3.2) J^ n

(3.3) (A», B<'>) = (AO, B<'>~).
We shall now deduce some inequalities between the norms
I Ip alld I "IP-

Expanding A^O^)) in (3.1) in terms of components, using

( n \1/P .
Holder inequality and the fact that ^ 16*^ 1 is a decreasing
function of p we get s=l

(3.4) |A%, ̂  T ÎAO-I,, if p^2
|AO|p ̂  n'̂ l̂ qp if p ̂  2

(for p = 2, |A»|, == |AO-|, by (3.3)).
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On the other hand, for every A° <= V<0 there exists a B0 e V<°
BCO^O and such that (A^, B^-) == JA^B^. Taking
into account (3.3), applying Holder inequality and using (3.4)
we finally obtain

(3.5) n-̂  |A(0-|, ̂  |A(0, ̂  n |̂A(%, p ̂  2,
^-WA^-1, ̂  |A(^ ̂  n^A -̂l,, p > 2.

Denote now for any ueCo00, by ^^(x), the (symmetric)
tensor of all derivatives of order I of u at the point x, and
define for 1 ̂  p < oo and a ̂  0, m == [a], (3 === a — w,
0 ̂  P < 1, the standard norm of u of order a,

(3.6) Kp=f(7)(-|)'[r|V'.(.)|^.
t=o\ t / \ p / Lj R»

+ f tJB"JR
V^)—V^(z/)|^

^r- - 2 / 1 ^ ^?(^ !/)]•

It a is an integer, ? = 0, we omit in (3.6) the double integral
(the measure duio == 0),

m i rn\ / c) \1 ^

^pm•^^(m)(-) \ ^'uWdx.
l-=0\ i /\ P I JR»

Similarly, we define for u e Co", the approximate norm of order a,
/m\/2\l^0.6') ^^(TV^yfr iv'u^-î

i=o \ t / \ P I LJ R»

+
' BV R'

^}—-Vu(y)np
a;- yl^ ^^(^ y)]-

If a is an integer, ? = 0, the double integral is to be omitted.
For p = oo the norms are given by

V'u(a;)
[a-

—V'u(i/)
-^

(3-7) H,,, = max ^suplV'w^)!., sup
0.$(<ni f .1; s-£.c

(3.7')
M^ = max Ssup|V'^)-,,sup ̂  - v^" (.

0!$<<ni( a; a^Sy |a;——I/|F ^

When a == TO is an integer, the norms are given by
(3.8) !<„ = max {sup^^H,

0<^m x

l"~L.o, = max |sup|V'M(a;)~U.
O-^/^m x

Clearly, |u|o.« = |M~lo,« = ||u|ji,".

i'
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We shall denote by 3 ,̂ a ̂  0, 1 ̂  p ̂  oo the class of
all functions u e Co° with the standard norm |u|a.p.

For p = 2, it is easy to verify (using (3.3)) that both of
the norms | |a,2 and | ~[a,2 are equal and coincide with the
standard norm | |a in the space P9' of Bessel potentials.
The norm [ |a is continuous in a; it will be proved in the
sequel that so is the standard norm | |a,p. The latter is one
of the main reasons for introducing the standard norm (the
other being its independence of the choice of a coordinate
system). For technical reasons, however, in most of the consi-
derations we shall use the approximate norm | (a,p, this
being justified by the following inequalities which are imme-
diate consequences of (3.5) :

^Q. ^^u^^^^n^u^ for p^2,
^) ^-^lun^^l^^^^lun^ for p>2.

We shall now describe some properties of the classes ^(x>lp

which follow directly from the definition. It is easy to see that
S^ is a proper functional space whose perfect completion,
in the case when a is not an integer, is the proper functional
space of all functions of C^'^ which vanish at oo with all
their derivatives of order < m. (C^^ denotes the class of
all functions in C'" satisfying together with all derivatives up
to order m uniform Holder condition with exponent ?.) This

v ' •

space will be denoted by P<i'ao<,
For a integer, P^w< is the space of all the functions u of

C01 vanishing at oo together with all derivatives of order ̂  a.
For 1 ̂  p < oo, 9^ is a proper normed functional class;

it is a proper functional space if a > n/p, p > 1 and a ̂  n,
p == 1. In all remaining cases it is an (incomplete) functional
space rel. 8Io-

§ 4. Classes ̂ P^.

We shall define in this section the normed functional classes
^a,p,/c ^iic]^ hy completion, will lead to the spaces B^
mentioned in the Introduction.
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Define for ue Co00, k > 0 an integer, 0^a</c and l^p< oo,

(4.1) IK-IMÎ X.J;.̂ ^*
.M^̂ ,

and for p == oo,

(4.2) )|u|L^ = maxjsup |u )̂|, sup 1A?^-
( a ; a?,( l^l )

Denote by^'^ the class of all functions us Co00 with the norm
!HLM.

We shall first prove that if /c, ^ > a, then the norms
I I Ikp.ir and ( I ||a,p^ are equivalent.

LEMMA 4.1. — Let /c, /Ci 6e two integers, 0 ̂  a < k ̂  k^
and 1 ̂  p ̂  oo. T^n /br e^ry ^ e Co00.

2-.N|,̂  ̂  ||u|],,, ̂  ̂ 2^ ̂ ) ||uf|,,,,

PROOF. — The first inequality follows immediately from
the remark that

|A?.u(a;)j = lA^A^aOl ̂  "S* (*-7*)|A?u(a; + ft)).
(=»

To prove the second inequality consider first the case when
Zfi == k 4- 1. We use the following simple identity,

(4.3) A, - 1 A,», = - 1 512-/AI,
^ ^ /=«

(4.3) with N = 1 applied to the function A^-'-Wa;),
0^^ / f—l , yields

^A^-'u - ̂ A^A?-^ = - ̂  5 W^ + .().

Adding together the above identities for I = 0,1, .. ., k— 1,
and dividing both sides of the obtained identity by [t^ we get

A^) __ J_Aj»{g) _ _ 1 V ^ ̂ » A?-n^ + ̂ )
|̂  2*-" |2^ - 2,2;.i2 u——^«——'•
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Taking L^ norms of both sides of the last identity, with

the measure we get, in view of the invariance of these

norms under translations in x and homotetic transformations
in t (obvious modification for p = oo) :

iNkp.fc ̂ 2fj 2«-^ IMkp.fe+i*

The result follows now by induction if we observe that

2^/c(/c + 1) ... (/ci — 1) _____2^ F(/ci)_____

^(l-2^) (l_2^)r(/c)n(l-2^)
l-1 p^^-1^)
<(i_2^)r(/c)'

For p = oo, the class S^1*00** is a proper functional space.
Its (perfect) functional completion will be denoted B01'80^
(By Lemma, 4.1, 1B<x•1ao< is independent of k.)

Observe that for i^p<i oo, ^^<x'1plk is a proper normed
functional class and a functional space rel. 31̂ .



CHAPTER II

IMPERFECT COMPLETIONS OF ^P AND ^k.

§ 5. Some properties of distributions and representation formulas.

We will use the theory of distributions for two purposes :
first, to define in the quickest way imperfect completions of
the classes ̂ p and ^"'^ rel. ̂  (sets of Lebesgue measure 0),
and secondly, to establish different representation formulas
(such as inversion formulas, reproducing formulas, etc.)
which will serve as the main tools in our investigations. The
easiest way to obtain these formulas is to write them tor
tempered distributions (6) in terms of their Fourier transforms;
they are obtained then by standard integration techniques.
Then, by applying the inverse Fourier transforms we obtain
the desired formulas in the form of « integral transforms ».
It remains to be shown that when the distribution is a func-
tion of some class, its integral transform is also a function of
a corresponding class, and that this transform is given by
the usual Lebesgue integration, or, in some cases, by singular
integrals.

For relevant facts of the theory of distributions we refer
to L. Schwartz [13] (we use here the traditional definition of
Fourier transform which accounts for some differences in
our formulas as compared to [13]). As usual if denotes the
countably normed space of functions of rapid decrease with
norms given by

(5.1) |)9|L,) = sup(l + H^|D..y(:r)|,
a;

l«'l^m

(6) Our considerations are still valid for more general classes of distributions,
but the greater generality will not be needed in the present paper.
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y is the space of tempered distributions, u(<p) denotes the
value of u e if' at 9 e if.

We use also the derivatives D,, the differences A? and the
Fourier transform u for u e if\

In the following formulas u e ̂  and ^ is a distribution of
rapid decrease (i.e. Fourier transform of a C°° function of
slow increase).

(5.2) {u^Y == (2^)n/2u?,
(5.3) (D,ur==(i^u={i^){i^^.u,
(5.4) (A?^))'^^^)-!)^^,
(5.5) (G,Cr)r - (2^(1 + l^l2)^2, a > 0,
(5.6) (Dp,^))' - (2^)-ra/2(^ (1 + ISI2)^2, a>0.

It should be noted that D^Ga(^)) is a function belonging
to L1 for [ / I < a. For [ / [ ̂  a, it should not be considered as
a function but as a distribution-even though for x ~=f=- 0, the
derivative in the usual sense exists and is an analytic function
decreasing exponentially at infinity. We denote this analytic
function by DjGa{x). It will be used only for |/| == a. In
this case the distribution derivative DjG^{x) for 9 e if can be
written in terms of a singular integral:

(5.7) fDfi^x)<f{x)dx=.^(0)

+ Km / D'jG^x) ̂ (x) dx,
(\0 »/|a;|>£

where Aj is a constant determined as follows. Denote by
JWf k = i, . .., n, the number of differentiations with respect
to a;fc in Dy; thus |/| == /'(D + • • • + /(n). Then we have

Aj == 0 if at least one of the f^)ls odd,
v/Jw + 1\ r(fw+i\

2(— i)W2l \ 2 / ' V 2 ;(5.7') A, =
"„ r/»+ 1/IV

V 2 ;
if all the j^ are even.

Let T( be a linear operator TV: if —>- if depending on a
parameter ( varying over some measure space S. We assume
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that T< is continuous in if for almost every (e ®. Then for almost
every (e S the operator

(5.8) (T^)(9)=<T<y)

is well defined and T? : if' -> if\ Under the Fourier transform 9,
T( and T? give rise to the operators

(5.9) t< = OT -̂1, t? == 3T -̂1,

and for every y e ̂  and ^ e= if^

(5.10) (T<y)' = t<y, (1^)' = t?u.

We will deal with operators of the form

(5.11) Tf=f^dt y e t f ,

and correspondingly we will write

(5.12) Tu= f^udt ue^,
v fo

the last integral being defined by

(5.13) (T*u)(y) = u(T9).

The following assumptions will be made
A) For every y e if the integral f T^a;) dt exists as a Lebesgue

integral for every x and represents a function of if. Moreover,
the operator (5.11) defined by the formula (T<?)(.r) == j T<y^) dt
is continuous on if.

B) For every y e if the integral I \Tt<f(x)\ dt exists for almost
all x and as a function of x belongs to L^R") n L^R").

By virtue of hypotheses (A) and (B) we have the formula

(5.14) ty(S) = f^^) dt, for every y e if.

The following statement holds.

THEOREM 5.1. — Let u e L^/br some 1 ̂ p^: oo and assume
that T^u e if' satisfies the following conditions:

(5.15) T?u is a function for almost every t
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(5.16) j |T?u(^)| dt exists in Lebesgue sense for almost every x

and as function of x is locally integrable.

Then T*u as defined by (5.13) is a function and

(5.17) Tu(x) = f^u{x) dt

almost everywhere.
By our assumption JT^u(x) dt is a function and the only

thing to prove is that it is equal to T*u as defined by (5.13).
In fact if yeCo00, then in view of (B), (5.16) and Fubini's
theorem,

X" (f^W dt) ̂  dx = /J/K1 ̂ W) dx] dt = T*u(y).

Note that the assumption u e L^ guarantees that

(TTu) (y) = u(T,y) = f^ u{x)Tff{x) dx.

We shall now proceed according to the following scheme. In
terms of Fourier transforms we will write identities which can be
proved by standard methods in the form T = FT( dt. T( will
be multiplication operators by functions of C00 of slow increase
and the same will be true of T. The same functions will give
us the operators T? and T* acting on ^". We will then know
explicitly the operators Tf and T* as convolution operators;
in most cases T(* will be a convolution with a function of
rapid decrease, at worst it will be a singular integral convolu-
tion operator. In every case the verification of conditions
(A) and (B) will be immediate. The verification of assump-
tions (5.15) and (5.16) of our theorem will obviously depend
on the function u and we will have to rely on results of forth-
coming sections on integral transformations and inequalities
to check on the validity of these assumptions tor u belonging
to different classes of functions in which we are interested.

The formulas we list below are valid under the tacit assump-
tion that (5.15) and (5.16) hold.

The variables t, ^ are yi-dimensional vectors, to is real, A* is
a positive integer, 0 << (? << k. Consider the expression
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(5.18) nIpi't+K'.E) '1|2*

W^)- „"———'-^dtdt,

(^+M2) 2

/-00 jp»o ___ 1 |2fc /•» ^-L^^^ î™
/ A \fc+l

== ( ^ C(n + 1, ^A^JW + \W.

On the other hand

IM,(^) = Jllj,n (<2 + |<|2) ""̂  [W^- 1) + (^- I)]*

^->(.(e-i«,S)_l) -(_ (e-.<._l)]» ̂  ̂

n- . _n^H^ A / Jf\ / k\

(^M2) !! 2 ( z ) ( z J -̂̂a" u<=o\ ^ / \ t l /
(^o _ 1)^ (^o _ i)̂ .(̂ ?) _ l)^-.(^)_ iy, ̂  ̂

/^ fc / Z p \ / / ^ \
_ ( V / W \ / '1 \fc-^/A2*-^-^ 91r^^l) ^• — I 2i [ i )[ / M — ; (LAlt|.a-fc)l(|zi^v-r»+l+2p;J^f./^oV i / \ i l /

|([———2P (^.S) —— l)^-^?) __ 1)^ A.

The last expression is obtained by integration with respect
to to. (For a similar reasoning, see[2].)

Changing the kernel G^i+ag to the jn-dimensional kernel,
we obtain finally

r" \ k / U \ / k \
(5A9) i= C(~Q\ S (i)(.)(-!)jRnLfc(n, p)^^^o\ ^ /\k /

k—lt

<//,-^,?) / 1 \ ^(^ S) _ iy /g-^ S) _ /[Vi
/A2k-/-f ,p \ [^________-L7 V^__________~2_ /7f
(^ (Z-fc) ̂ 2n+2p; ^ _p ,^2xp ,^+2p a^

where
/_ l\^+i •

(5.20) C,(n, ^=[ y G,̂ (0) C(^ P) AÎ  |̂ |̂

Of the three factors depending on ? in (5.20), the first is
a positive decreasing function of ? for all (3 ̂  0. The second
has simple poles for integers (3^0 and no zeros on the posi-
tive P-axis. The third is an entire function and has only simple
zeros on the interval 0 ̂  (3 ̂  k at integers p, 0 << (S <; A*.
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The resulting product C^(n, (3) is therefore, for 0 < ? < /r,
a strictly positive analytic function with simple poles at 0
and k.

If we consider the integrand in (5.19) as an operator of
multiplication T(, thus T == 1, we obtain by inverse Fourier
transform the reproducing formula

1 r k / k\ / k \/K 94 \ ,. — 1 / v i V n 1 ̂ -^to.^i; u — i Zi [ j )[ j ][—->-;Lfc(n, p),/R"^==o\ ^ /V i /
A2A—f—/ ipA'^^(A''.Ap)*(ASu)rf(.

Multiplication of both sides of the identity (5.19) by
(1 + l^l2)01^ 0 < a ̂  (3, leads to an inversion formula for
the operator Ga. We denote the inverse operator of Gy, by
G_a, and we get

1 r k / h \ / k \
(5.22) G_,u == - 1 \ S ( 7 ) 7 (- 1)A-/•

'-'*("» P) JR''(,;.=O\ i ' \k /

^^Sr21
 (A^-) * (A''")d(-

Especially simple and interesting is the case when A- == 1.
Then for 0 < (3 < 1 :

(5.23) (̂H^P

, 1 F G^Wie^-Die-^-i),
^C^^G^pWJn" l^2? (1+1^

which can be transformed into the reproducing formula

(5.24) u === G^*u

+ r7n8^——(fi} f ^^) (A-'G^)*(A'U) < (̂•L(n, p)Lr2n+2p(^) JR" l^ ' r

Formula (5.24) can also be written in the form

.(5.25) u(z) == G^*u(z)
• + f i • [G^ - x) - G,p(z - y)1 \u(x) - u(y)3 ̂ ^^ y^

JR"JR" |^—2/|2'
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The corresponding inversion formula for 0 <; a ̂  j3 < 1 is

(5.26) G_aM(z) == G2p_a*"(z)

-i C C [G2@-a^—- x) — G^z—y}] [u(x} — u(y}} , ,
'JnJn" \^-y^ <W.y).

Multiplying (5.23) by 1 - 1 £ (m) ^ (-l)'(^(^,
\1 + \^U l=» \J\=l

where TO is an integer, m ̂  0 and transforming the result we
get, with a == m + P

(5.27) u(z) = £ (m) S j Cn GfG^z — x)Dju{x) dx
;=o |y|=( ' - n

-L. C C WUz—x) — D^G^(z — y}] [D,u(x} — D,u(y}]
'JB-JR" \x—y^

d^(x, y ) }

and the corresponding inversion formula for y ̂  a = w + P,

(5.28) G^u(z) = J (?) ^ 2 g /,, D^G^_,(z — x)D,u(x) dx

-L C C [D^a-̂  x) ''—D^G^z — y)] \D,u{x) — D,u{y}]
JR-JB" \x—y^

^{^ y} } •

At the end we include the case when a == m is an integer.

From the identity 1 = ̂ -——^ ̂  (T) ̂  (- 1)WW

mentioned before we then get the following reproducing
formula

(5.29) u{z) = S (T) S /,. D^G^(z - .r)D,u(o;) rfrr,
y==o U^i

and the corresponding inversion formula

(5.30) G^u(z) = S (T) S fD^G^z — x)Dju(x) dx.
1=0 (y|==^

In the last formula the integrals corresponding to the values
|/[ = m are understood as singular integrals as explained by
formula (5.7).
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§ 6. Regular and singular integral transformations.

The purpose of this section is to introduce a terminology
concerning integral transformations which will be used throu-
ghout this paper.

Let ^X, ( JL^ , jY,v^ be measure spaces; denote L^(X) == L^X, pi),
L^Y) = L^Y, v) (7). u and v will generically denote measu-
rable functions in X and Y respectively. Let K(^?, y) be a
complex valued function defined on X and Y measurable in
X X Y. K(a?, y) gives rise to a formal integral transformation
defined by the formula

(6.1) ^y) = Ku{y) = ̂  K(x, y) u{x) d^x).

It is defined for all u for which the integral (6.1) exists in
Lebesgue sense and is finite for almost all y. Denote by ®&
the set of all such u. We say that for u e 3)̂  the formal integral
transformation K is properly defined.

An integral transformation K (or kernel K(a;, y)) is p-semi-
regular (p-s. r.) it the subspace ®K n L^X) is dense in L^X)
and is transformed boundedly into L^Y), i.e. that there is
a constant Mp — the p-bound of K — such that

|IKU||̂ )̂ M,H|̂ ).
A p-s. r. operator K can be extended by continuity to

a unique bounded transformation Kp on the whole of L^X),
K?(LP(X)) c L^Y). Kp will be called the p-extension of K.

The transformation (or kernel) is p-regular (p-r.) if
D'(X)c2)K and K(L/\X)) c LP(Y). For p-regularity of K
it is necessary and sufficient that

(6.2) f ( f K{x, y)u{x) d^x)) p(y) rfv(y) ̂  C||u|MHk,
u Y \»7 x /

1 1-h^1'
for any ue L^(X), ^e L^Y), the integrals being taken in the
indicated order, C being a constant independent of u and ^.

(7) All measures will be assumed to be o-finite.
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The smallest such constant C is == Mp. p-regularity im-
plies p-semi-regularity. K is p-absolutely-regular (p.ab.r.)
if \K(x, y)\ is regular. This is equivalent to the property

(6.3) f K(rr, y)u(x)v(y) d^(x) d^y) ̂  MplHMHIir,
J XxY

for any ueL^X), ^eL^Y). Obviously, absolute regularity
implies regularity. On the other hand, for non-negative ker-
nels, p-absolute regularity is equivalent to p-semi-regularity.

If a kernel K is p-s.r., p-r. or p-ab.r. for all p, 1 <^ p <1 oo,
we call it semiregular, regular, or absolutely regular, respec-
tively.

We have the following theorem.

THEOREM 6.1. — If the transformation f Vi(x, y)u(x) d[J.{x) is
p-ab. r. then the adjoint transformation f K.(x, y)^(y) d^(y) is
p'-ab.r..

The proof is immediate by (6.3).

THEOREM 6.2. — Let K be a p-ab. r. transformation of
L^X^pL) into L^Y, rfv) and M be the p-bound of \K(x, y)\.
Consider, moreover, the measures d^{x) == 9 (re) d^{x) and
d^(y) = ̂ (y) d^[y) where 9 and ^ are measurable non-negative
functions on X and Y respectively, satisfying 9 (re) ̂  A and
W ^B- Then K is p-ab.r. from LP(X, d^) to L^Y, d^)
with bound not exceeding MA^B17^

Proof. Observe that for Ui e LP(X, d^), ^ e ^'(Y, d^)
we have

l^^ill^OW == ||^i||iAx,^)
and

ll^^lllLP'Cy^v) - ||^||LP'(Y.dy,).

Hence for Ui e LP(X,d^), ^ e LP'^Y, d^i) we have

ff^\K{x, y)\\u,(x)\\^{y)\ d^(x) d^(y)

^ff^ \K(x, ̂ /)l9(^l/p^(y)l/pl^(^)l9(^l/pl^(^)l^y)l/^^^ ^(y)
^ MA^^ |̂|Ui||LP(X.̂ )||̂ |LP'(y )̂.

We are mainly interested in regular integral transforms since
we need a pointwise representation of P(y) by the integral
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(6.1) for all ueL^X). There are no known direct properties
of the kernel K{x, y) characterizing its p-regularity. For
p.-ab.r. such properties are well known in the two extreme
cases p == 1 and p •== oo :

(6.4)
K is i'ab.r. -<-=> f \K(x, y)\ d^(y) ̂  A = const. < aoa.e. inx.

(6.4')
K is oo-a&.r. ^=^ j^ [K(rc, y}\ d^(x) ̂  B = const. < ooa.e. in y.

For other values of p the next theorem gives sufficient
conditions for jo-ab.r.. Quite recently these conditions were
proved by E. Gagliardo [11 a] to be also necessary.

THEOREM 6.3. — Let 1 < p < oo and assume that there
exist two non-negative measurable kernels K^ and Kg such that

(6.5) |K(^ y)| ̂  K,(x, y)^K^ y)W
and

(6.6) { K^x, y) d^y} ̂  A a.e. dy.
»y Y

j K^{x, y) d^(x) ̂  B a.e. c?v.

T/ien K is p-ab.r. with bound not exceeding A1^1^'.

Proof. — For uel/(X) and peL^(Y), by applying (6.5),
Holder inequality and (6.6), we get

f J\u(x)\\K(x, y)\My)\d^(x)d^y)
»/' X U Y

^- [XXlu(a;)lp Kl(a;? y) rftjl(lz;) ̂ ^J^
r r r ~^llp'
[jj^(x, y)\Wd^{x)d^y)\

^A^B^'I HiLplHiLp'.

Depending on the nature of the kernel K there are several
methods by which we may find kernels Ki and Kg that show
K to be jo-ab.r.. We describe two of these methods which will
be used in the sequel.
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Method 1. — We find two measurable functions y(a?) and
^(y), positive and finite a.e., and put

(6.7) K,{x, y) = \K{x, y}\ MW'P',
K,{x, y) == \K{x, y}\ ̂ x}IW'"'.

The functions <fi(x) and ^i{y) will be called factors. (6.6) now
translates into the following conditions for the factors:

(6.8) ^ | K(x, y)\W dv(y) ̂  ̂ (x)^',

f'\K{x,yMx)dy.{x}^BW1.
%J X

Remark 1. — The result of E. Gagliardo mentioned before
states that the existence of factors <f{x) and ^{x) satisfying
(6.8) is also necessary in order that K be p-absolutely regular.
More precisely, it is proved that if K is absolutely regular
and M is the p-bound of |K(^,y)| it is possible to find
yeL^X) and ^ e L^(Y) such that (6.8) is satisfied with
A = B == M + £ for any £ > 0.

Method II. — We find a representation of K(a;, y) as a compo-
sition of two kernels $(a?, z) and ^F(z, y),

(6.9) K(x, y) = f <S{x, z)¥(z, y) Ao(z),
Jz

where Z is a measure space with measure rfco(z). We find
further an « inner factor » X(z), 0 <; X(z) <; oo a.e. such that

(6.10)
Ki(̂ , y) = f |$(o;, z)|Wl¥(z, y}\ d^(z) < oo a.e. in x, y,<y z
K^(x, y}=f^ 1^, z)|X(z)-^|¥(z, y)| rf(o(z) < oo a.e. in x, y.

Thus (6.5) is satisfied. The conditions (6.6) now take the form

(6.11)
f f \^(x, z)|X(z)l¥(z, y}\ <fo)(z) d^y) ̂  A a.e. in x,

U Y U Z

f f |$(;r, z)|X(z)-''1¥(z, i/)[ Jo)(z) dy.{x) ̂  B a.e. m y.
*J X »L/ Z
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It is possible to combine the two methods as well as to
devise others adapted to special kinds of kernels.

In most cases we will deal with p-absolutely regular kernels.
In a few cases, however, we will meet with p-semi-regular
kernels; it is therefore of interest to give some information
about them. We start with some general remarks.

The subspace ®K of measurable functions u(x) for which
the integral transform (Ku)(y) is properly defined has the
property that with each u(x) it contains all functions u^{x)
majorated by u, i.e. such that |^i(a;)| ̂ ]u(rr)| a.e.

By a simple measure-theoretic argument one proves that
there exists a measurable set A c X, unique up to sets of
measure 0, which is the largest among all those sets on which
all functions u e 3)̂  vanish a.e.. If A == X we may say that K
is singular (such are, for instance, the singular operators
of Calderon-Zygmund type); in this case ®K reduces to the
function 0. If (^(X — A) > 0, but also p-(A) > 0 we may
call K partly-singular; in this case, if we replace X by A, the
transformation becomes completely singular. Of interest
here is the case [^.(A) == 0, i.e. essentially A == 0; in this case
we call K non-singular (8). A p-semi-regular kernel is certainly
non-singular.

The same argument which leads to the existence of the set
A shows that fora non-singular K there exists a sequence of
measurable sets B(, i == 1, 2, . . . such that

(6.12) B ,cB,+ icX, pL(BO<oo , ^X--UB^==O,
\ i /

the characteristic function of each B( belongs to 3) .̂
A simple function is a measurable function taking only a

finite number of values and vanishing outside of a set of
finite measure. For every function u(x), measurable and finite
a.e. a classical standard procedure allows to construct a
sequence of simple functions Uj[x) such that lim Uj(x) = u[x)
and \Uj{x)\ ̂ \u[x)\ a.e.. These functions can be chosen so
that each Uj[x) vanishes outside some B^, and hence so that
each Uy€=3)R. In addition, if u e I/(X) for some p << oo, then
lim \\u — UJ\\^P = 0.

(8) The same terminology is used in [21] in a different meaning.
13
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Denote by 3)^ the class of all simple functions in ®K- The
last remark leads to the following statements.

THEOREM 6.4. — A non-singular K is p-semi-regular for
p < oo if and only ifK{3)^) c L^Y) and HKU||LP(Y) > M|HJLP(X) for
u e ®K. K is p-regular if in addition^ L^X) c 3)^.

In fact, the above remark shows that 3)&c ^R n LP(X) is
dense in L^X) and the continuous extension of K from 3)^
to L^X) coincides with K on ®K n L^X) since {Kuj){y) converges
by dominated convergence to (Ku)(y) for every y where
f\K{x,y)\\u(x)\d^x)<^.

THEOREM 6.4'. — A non-singular K is co-semi-regular if
and only if the characteristic function y of X belongs to ®K,
K(®K)cL°°(Y) and \\Ku\^ < M\\u IL\X) /br u e ®K. TAe
co-regularity is equivalent to co-semi-regularity.

In fact, if L°°(X) n ®K is dense in L°°(X), there must be
1 1a Uoe®K with J j y — UolJL^x) <-y^ hence |uo(a?)| >-y a.e.

and ^ e 3) .̂ On the other hand y^ e ®K implies Lao(X) c 3)̂  (hence
the last part of the theorem) and the boundedness of K on
L°°(X) follows by dominated convergence:

(^Xy) -> (Ku)(y)a.e. in y,
l(Ku^)(y)| ^Msup|u^)| ^Msup|u(^)],

x x

hence sup |(Ku)(z/)| ̂  Msup |u(a;)|.
y x

Remark 2. — In Theorems 6.4 and 6.4', the class S&K can be
replaced by other subspaces of S^ n L^X) as long as for each
u e ®K n L^X) they contain a sequence Uj converging pointwise
a.e. to u, dominated by some u' e ®K, and such that ||î ||̂  <c,
c depending on u but not on /'. For instance, we may take the
class of simple functions vanishing outside of some of the sets
Bi {i varying with the function). Another instance of such
a change may be of interest if X and Y are euclidean spaces
where we would like to replace simple functions by Co°°-func-
tions. This is possible if the sets Bi can be chosen to be
open.
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We turn now to interpolation theorems — the Riesz _
Thorin convexity theorem [20].

Let l^po^oo, ^Pi^0^ O^e^l,
i/po = (i - e)/po + e/p,.

THEOREM 6.5. Let K be non-singular. If K is pi-semi-regular
(or prr., or p,-ab.-r.) for i = 0,1, ^en K 15 pe-semi-regular
(or pQ-r., orp^ah.-r.) /or 0 < 9 < 1. 77^ pQ-bound Mp satisfies
1VI^ ̂  Mp̂  M .̂

Proo/*. — lo Semi-regularity. By Theorems 6.4 and 6.4'
the question reduces to be boundedness on the subspace of
simple functions ®K, hence Thorin's proof applies.

2o Regularity. Since L^o(X) c L^o(X) + L^(X), the result
follows from semi-regularity.

3° Absolute Regularity. Use lo for \K(x, y}\ and then the
fact that for positive kernels ab.-r. is equivalent to s.-r.. If
p.-ab.-r. is established by the kernels K^ and Kg, satisfying
(6.5) and (6.6) then pe-ab.-r. can be established in similar
fashion by kernels

KI == K^e/PoK^, K^ = K^WKjf^i.

Remark 3. — The extension of the convexity theorem, due
to E. M. Stein (see [15] and [16]), to the case when not only
the exponents of the lAclasses but also the measures pi and
v vary suitably, leads to a similar extension of Theorem 6.5.
The proof applies without changes if one notices that if K
is non-singular rel. ^ and v then so is the kernel (f(x)K(x, y ) ' ^ ( y )
(9 and ^ finite a.e.) rel. to any two measures ^ and v' equi-
valent to (JL and v respectively.

Remark 4. — The notions introduced in this section could
easily be extended to integral transforms from L^X) to
L^Y) with q=^p and even (under suitable restrictions) to
transforms between two Banach spaces of measurable func-
tions.

Remark 5. — The terminology we introduced above has
not been used before. The notions, however — without being
specifically named — were investigated long ago in many
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special cases. The distinction between semi-regularity and
regularity was not so sharply drawn. The p-absolute regu-
larity, especially the first method, was very extensively used
as a tool to establish regularity in many special instances
(see Hardy, Littlewood, Polya [10], Ch. IX). The criterion
of the first method was not put in the general form (6.7),
(6.8), but rather in a form adapted to the special cases.

As mentioned before, we deal in this paper with integral
transformations which in most cases are p.-ab.r., or at least
p-s.r.. In a few cases, however, we meet with a special type
of singular integral operator. The pertinent theorems are special
instances of theorems of CaIderon-Zygmund [7].

We consider kernels of the form D'fi^x—y), \j\ = m
(see § 5, especially between (5.6) and (5.7)). The following
statement holds :

If ue L^R"), 1 < p < oo, then the limit

(6.13) ^) - limj^^ D;G,Cr - y)u(x) dx

exist and is finite for almost all y and (6.13) is a bounded trans-
formation of If into IA

The statement does not hold for p = 1 or p == oo. Hence,
whenever we have to use singular integrals our results will
be restricted to 1 < p < oo.

§ 7. The imperfect completions of ^a' P, ̂  P^.

As it was remarked in § 3,4 3^ and ^'^ are functional
spaces rel. 3lo- We shall now define their functional comple-
tions rel. 8lo (^e imperfect completions).

The norms Hp,p, |u~|p,p, 0 ̂  (3 < 1 introduced in § 3 have
obviously a meaning for any measurable function u (they
may be infinite). Let 1 ̂  p < oo, 0 ^ a = m + ^ , w = [a],
o ^ p < i .

We denote by Wj? the class of all functions u e L^R") such
that

1. all the distribution derivatives DyU, |/| ̂  m are functions,
2. |D,u|p^< oo, 0^1 / l ^m.



ON SPACES OF POTENTIALS CONNECTED WITH L^ CLASSES 245

It is clear that for u <= W^ both norms \u\^,p and |u |a,p as
given by formulas (3.6) and (3.6') have a meaning and are
finite. Also the relations (3.9) hold.

By standard arguments, similar to those in the proof of
completeness of L^ spaces, one shows that W^ is a complete
functional space rel. 8lo (the class of sets of Lebesgue measure
0). Also a standard argument by regularization (9) shows that
^ ' P is dense in W^. Hence we have the following

THEOREM 7.1. —W^ is the functional completion of 9^ p rel 8lo-
For p == oo, we define W^o as the class of all functions

u which together with all distribution derivatives of order <^ a
belong to L00 and, if a is not an integer, satisfy Holder condi-
tions with exponent ?. It is clear that 9^^ is contained but
not dense in W^. One shows immediately that each equivalence
class of W^ rel. 2lo contains one and only one function which
is continuous and bounded with all its derivatives of orders <; a
all of these derivatives satisfying a uniform Holder condition
with exponent a — a*, a* being the largest integer < a.
All such functions form a proper complete functional space
pa,- c W^ with the norm of W^. The space PCL10Q< (the proper
functional completion of t^01'00 introduced in § 3) is a closed

v

proper subspace of P01' °°.
We define now ^^ as the class of all functions u e L^R")

such that for some integer k > a the norm

(7.1) |<,,-iH|£.+ f ^J^dt
JR" H

is finite.

(9) By regularization we obtain function Uo converging to u pointwise almost
everywhere and in L^-norm as p ->- 0. Since (D.u)p == D -Up for any regularization,
it is sufficient to prove the statement for 0 << a == (3 <^ 1. Then

1"., -<p= ,H-^+ ̂ ^^^^ ||̂ - ̂ ,|̂ .

The integrand in the latter expression is dominated by 2n+2sl l 2P [|A^j[£p and for

fixed ( converges to 0 with p \ 0. Taking now a function y e Co° which is == 1
for |a;|^l, one proves that for /eC00 with |/J3,p< oo, \f(x) —^>(^x) f(x)\^p->- 0 as
p \ 0. Double integrals in approximate norms are handled in a completely similar
way as in the case of Bessel potentials in [3].
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The argument used in § 4 to prove that for two integers
A, A*i > a, the norms | \y.,p,k, \ [a.p./ci are equivalent is
still valid in this more general setting, with constants as in
Lemma 4.1, which justifies the omission of the index k in the
symbol ^lp.

Using again the standard argument, we have

THEOREM 7.2. — ^B^ is the functional completion rel, 8(0
of the class ^P1k.

v

Similarly as in the case of P^ we define the proper complete
functional space B01'00 of all continuous function with finite
norm | |a.p,/c- Except for vanishing at oo, the functions of
8^°° have the same properties as those of B^^.

Let us add the following statement. If a << a' then there
is a constant C independent of u such that for every u

(7.2) Ma.M^CH^.

To prove (7.2) we may restrict ourselves to the case when
k = k ' . Then the integral in the norm (7.1) can be decomposed
into two parts : integral over \t\ ̂  1 and \t\ ̂  1. The first
part is majorated by the corresponding integral in |u|£',p^,
the second by a constant times ||^||£p.

It follows that
(7.3) ^ =» ̂  for a < a'.

§ 8. Behavior of the standard norm.

The purpose of this section is to describe the behavior
of the standard norm |u|a,p for a fixed function u and a varying
between two consecutive integers.

Before stating the main theorem of this section we introduce
the space W^>, m > 0 (m an integer) of all functions ofW^1,
all of whose derivatives of order m are signed Borel measures
of finite absolute mass. In the definition of the norm \u\m,\
(see (3.6)) the integral involving the derivative of u of order
m is to be replaced by

(8.1) f^f^\d^{x)\d^

where p^"*) y"u
A ...^
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We shall prove the following theorem :

THEOREM 8.1. — Let 1 ̂  p ̂  oo and m^O be an integer.
i) If u<=W^ then lim \u\^p exists, possibly = + oo.

a//w-4-l

ii) If l<p< oo, then Km |u|,,p < oo if and only if
a^m+l • ' J •

u 6 Wr1; if u 6 Wr1 ^M lim |u|,,p == |u|̂ ,p.
a/^w-t-l

m) lim [u[a,i < oo ^/> anrf (mZz/ i/* ?^eW^1; if u e W;̂ 1
a/<m-hl ^ / A^ ? 1>

^M lim \u\^ = |u|^+i,i.
a^m+l

iv) I f i ^ p < oo,a7^d^ueW^ao>m,^^lim|u|a,p==|M|^p.
a\w

v) lim \u\^ < oo, i/ 6mrf oyzZy i/1 uep^1 '00; ifuep^1^
a.^m+l '

^M lim |u|a,^ == l^lm+l.oo-
a/</n+l

Proo/*. — It follows from the definition of the standard
norm | |a,p that is is sufficient to consider the case when
m = 0. Assume first that 1 ̂  p < oo. For 0 < 8 < 1 the
standard norm may be written in the form

(8.2)

W-IW'UJ:."̂ '̂

'''"ll'̂ Cfn^ ĵL'l̂ l̂ l"'-
The expression (8.2) has a meaning (it may be infinite) for
every u e IA
Observe that for ? / 1 (see (2.9))

/g 3^ 1 —> Q- ____^____2n
' / C(n,p) ' (l-P)C(n,P)^co/
Rewrite now the integral in (8.2) for u e D' in the form

c^p)^)!.5^"^*
(8.4)

-Ctn^wX., '̂1"^"-''*

+C(n.P)L,(0)L.'̂ ')IIA•u"t"f' = W + W-
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A simple computation yields

(8.5, nw ̂ i»ĵ ^ îw,
and by (8.3)

(8.6) Ip(u)^0 for P^l.

According to (8.6), to investigate the behavior of |u|p,p as
6/^1, it is sufficient to determine the behavior of Ifl(u) as
P/^l .

Define now
l?«<8-7' w^L,̂ '-

Clearly, Wu) is well defined for all ueL^ moreover, we
have with

, . G.n+^t} Ga\+2p(l)An = mm „——•— = mm -^—1—,
I'1^1 ^2n+2B(v) 0^p<l <Jn-H+2pW

o^p^i
(8.8) AJp(u) ̂  rp(u) ̂  Ip(u),

and therefore Ip(u) is finite if and only if Ip(u) is finite.
On the other hand, if u e WPp« with 0 < ?o < 1, (1 — ?o)p < 1

(and consequently Ipju) < oo) we can write for P ̂  P.,

(8.9) |Ip(u)-Ip(u)|
< ^ Po^ max G^+^(o) ~ ̂ n+a^) j ^^^qn.^G^pW"1^ |̂ -P«> w)'

and since (c.f.(2.10)) G2n+2p(o).." G2n+2p(f) is bounded uniformly

with respect to ( and ?, ?o ̂  P ̂  1» we g^ by (8,3)

(8.10) | Ip(u)-Ip(u)|->0 /or p^l.

l3(u) can now be represented in the form

(8-"' w-c^n'^^'"9-
where(8.12) ?M)= ^"r.
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Since IJA^ULP ̂ - 2||A^u[|Lp we get

(8.13) ?(^9)^?(^ OY^
\ ^ /

for every 5.
Rewrite (8.11) in the form

A r / w r2'111 1 \w-c^XsJ^^^'T6

-c^XJî i.2'̂ 2""1-^-
In view of (8.13) the sequence ty(2~w5,9)j is non-decreasing

for every s and 9, therefore applying summation by parts (u)
to the series under the sign of the last integral, we get

{SM} W = C(n, p) (I1- 2(P-̂ ) fj^^

S ^ 2(m+l^-l^{2-m-ls, 0) — 9(2-'"s, 0)] + y(s, 9)) ds d^
C m==0 ;

In view of (8.3) we have

{SA5} ^ C(n,P)(l-2<P-^) = 7 ̂  • iog2-

On the other hand the integrand in (8.14) is an increasing
function of (3, 0 ̂  ? ̂  1 and taking into account (8.10),
i) follows.

To prove ii), assume that 1 <; p <; oo and lim \u\^p < oo.
. . P^Then in view of (8.10) there exists *a positive constant M and

a set ^M c S °t positive measure such that(8•16) x.̂
i 3 ywia-fip[f(l—t,, 6) — 9(2-»,»)] + »(», 0) j & ̂  M,
(m==0 )

(10) The idea of introducing the function y(5, 9) and using the inequality (8.13)
is due to E. Gagliardo.

(u) More explicitly we use the following version of the Abel formula: If
00

^^^^ ^m^* S ̂  |-non decreasing, S ^ < oo,
m=o

00 00 00

then S o/A == <Vo + S (^+1—^)^+1 with ^ === S &/.
OT=O m=o /s=m
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for all 6 e i^i and (i < 1. Invoking now the definition of (8.12)
we conclude that for almost every s e [1/2, 1] and 6 e SM the

lx2_^u are uniformly bounded. By reflexivitynorms
2-ms

of the space L^R") (1 < p < oo) there exists an increasing
sequence of positive integers m^ and a function UQ e L^R")

such that ^"-'̂ -̂ ue weakly in IA By a standard
z""^

reasoning in the theory of distributions we conclude that

UQ=^U' Choosing 9i, . . . , O^e^i as any system of linearly^Q
independent vectors, we conclude t h a t , ^ . . . . . . e L ^ and

consequently u e W^. Conversely, if u e W^ then applying the
Minkowski inequality (12) and Fatou's lemma, we get
lim zx^ == p^ and consequently, taking into account
s->-o s [ L? |^6 |i/
(8.10) and the fact that as ? / 1 the integral in (8.16) converges

"|A2-m^|| we getincreasingly to log 2 lim
2-^

r T { \ 2 n Clim Ip(u) ==— —
ĵ l pv / p (0^ J |

()U

b9
rf9.

This completes the proof of ii).
To prove iii) we use a similar reasoning as in the proof of

ii). Assume first that l im |uJ8 i<oo . As in the proof of ii)
P^1

we conclude that for some sequence |^, ^\0 and 6 e SM

the norms p-^8-^ , are uniformly bounded. By the theorem
I ^n I L<

.about « vague convergence » of Borel signed measures with
absolute total mass finite, we can find a subsequence
\s'n\ c \Sn\ and a measure d^ with absolute total mass

W^liminf ^u\ suchthat-^^r converges vaguely to d^o-
^ k 5"

Using again a standard reasoning from the theory of distri-

butions we conclude that ^9 == -.> and consequently for every

(la) See [10], Prop. (203).
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0 e SM'? -u- is a signed Borel measure with total absolute mass
^)9

finite. Therefore ueW^>.
Assume now that ueW^>. Then, for every, 0, |9| == 1,

limu^ + ̂  ~ u^ == piQ^), where (JLQ^) is a signed Borel
s-^O S

measure with total absolute mass finite, the limit being
understood as a vague limit.

Introduce the system of coordinate axes such that the
a^-axis coincides with 9. Then d^ is a Borel measure of the
form dx' d^'{Xn) where the measures d^^(x^) are of finite
total absolute mass on the ^-axis for almost all x' and such
that |p(.e| == /Rn-Jv.c'1 d x . d^' is the distribution derivative
of the function u{x\ x") for fixed x ' . We can write

(8.17)
A,QU u{x + (T + 5)6) — u(x' + TO)|AB' dT.

S L- J -oo J B' -00 J R"-1l- r f r^d^x^dx' d^=^- r [/"(T + ̂  -/w^^T+5

5 J-«,JR"-<JT s ^-00

where /•(T) == |[A6|[— oo < ̂  < r] == f^_ f^ \d^'{x^\dx'.f(^} is
an increasing function of T, such that/'(— oo) = 0, /'(oo)==|p,9[y
and therefore the last integral in (8.17) yields

lim^ ^H.lim
s-^O

A,e"
s5->-0 5 L*

The proof of iii) is now completed in exactly the same way
as that of ii).

iv) If u e W^0 the integral in (8.2) can be estimated for
P <^ PO as follows (c being an absolute constant),

/o 4o\ r r u(x}—^y}p j i \(8.18) -,/——-f1 d^x, y)
JR"JR" |^—yr

< ,G^^Q)C(n,3o) rr u^ - u(y) ̂  ^ .
- G^p(0)C(n, p) JJ,._,̂  |a:-ylP° d^{x' y )

1^—yl^l

2n+2,
9p—i /^

- — — ^ - . l j u l l f p l G^^)^.+
G2^2p(0)<-(^ P) JR»
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1Since for (3 \ 0, .——_ -> 0 and all remaining factors are
L(n, p)

bounded, (j^Gy,{t)dt = l)» iv) follows.
v) follows immediately from the observation that

T I I / / \ u(x} — u(u)hm l u ] f t ^ == max ( sup u[x), sup —x————x^-
P^l' ' \ x x^-y X——y\x^y\ \ X -

Remark. — If p == oo, iv) is not in general true. We have then

lim |u|fi^ == max(sup \u(x)i osc (u))
p\o

where
osc (u) == sup \u{x) -- u{y)\.

a?, y

COROLLARY. — ^O^a^a' then for e^ery u e W^, Kp<oo^

|u|a,p^C|u|^.p

wAere C == max (1 + 4 n, 2(0.8)^2An'l), w/iere A^ î  the constant
of inequality (8.8). Consequently, W^ D W^' for a' > a.

Proof. — It is sufficient to consider the case when
O^o^a'^1. Combining (8.4), (8.5), (8.14) and the fact
that the integral on the right hand side of (8.14) is an increa-
sing function of (S we get for 0 < ? < (^ < 1

, , ^ Fi i ^^H A-iC^e^i—^-1^)1^, ,M,̂  jmax [1 + ̂ ^. ̂  ̂  ̂  _ ̂ ] { lul,,

and the result follows by an easy estimation of the constant
in the latter inequality.

§ 9. Auxiliary inequalities.

In this section we shall establish some inequalities involving
kernels Ga which will be needed in the sequel.

We denote by n a positive integer n'^n, M" === n — n .
Unless otherwise indicated x , y\ z , t\ . . . will denote pro-
jections of points x, y , z, t, . . . on the hyperplane R"':
^4-1 == • • • == x^ == 0, ^", y", z", <", . . . projections of these
points on the hyperplane R'1 : x^ = = • • • = x^' == 0. Accor-
dingly, dx and dx" will denote volume elements of R71 and
R^.
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The letter c will stand for (in general different) positive
constants depending on various parameters. In all conside-
rations we will assume that the orders a of the kernels Gy,
and orders of occurring differentiations and differences are
bounded from above by some fixed but otherwise arbitrary
number M > 0. The letter x will be used to denote (in general
different) positive constants depending only on n and M.
In the cases when behavior of constants is of importance we
shall say that c is majorated by /*(a, ?, y, . . . ) if there is a
constant x such that c ̂  x/'(a, [3, y, . . .) in the considered
region of these parameters.

In several instances we shall use the following

Young's inequality: if fe L^ geD7 , 0 ̂ i- + 1-— 1 = i-
then f.g.U and \\f. g\\^ ̂  \\fMg\\^ p q

From the differentiation formula (2.6) it can be deduced
that for any a > 0 and a multi-index /, |/| < a,

(9.1) |DA(^)1 ̂  ^ [G.W + T^^l^)] t

From series expansions of Ga (see(2.3 a) — (2.3 d)) we also
get, with an arbitrary multi-index /,

(9.2)
[ xal^-^i for a ̂  n + |/| and \j\odd

xa
\x\v-n-^ for a < n + |/| and \j\ even

^+ | / | -a 1

x /or a ̂  n + I/I an^ I/I °dd|DA(^)
•w

-.for a > n + |/| ̂ ^ |/| epen.\ a — n
Also for |^| <_ i and even

(9.2')

1 + l o g — — / •o ra^n+1 /1xaa"
^|DA(^)I x 1+10§T.^ / l o r a > n + l / l •1 \ \x\ /

For any multi-index /, |/[ < a, (9.1) implies

(9.3) D,G, e Li(R71); f |D,Ga(^) |^^x (1 + -̂ —1}
JR» " \ a—1/|/
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Using (2.2) we easily obtain

(9.4) f , G^x) dx' = f G^', x ' } dx' = (27T)-^2G^V').
J R" J R"

(If n = n, the right-hand side is of course 1.)
Let a > 0 and consider the expression f n |A<Ga(^)| dx.

Choose the coordinates' axes in such a way that the vector (
is parallel to the x,, axis. Using the fact that G^{x) is a decrea-
sing function of \x\ we can write (|<[ == ^>0), in view of

(9.4),
^|AA^)| dx = 2f^f^G^) dx^dx'

== 2(2^)-"21^G^(^) dx, = 2(2^I)-'L21/_^G^(^)y,(^) dx,,

•y^ being the characteristic function of |—±. l» — j -

By the Parseval equality we get for a <; 1,

sm^lr _"-! p«. ^""o-
/,. 1^.^1^=8(2.) -^^^^

n-i / '°0 sin Y] ^T]
=8(2^)" 2 |(|«Jo Y](|(|2+4Yi^

=8(2.)-^|^^2sin^(^^^^^,+^^4^

^ 2(l+a)sin^

^8(2TC)"2MttJo.W+4^^

(9.5) r |A,G,(rc)| dx ̂ —(— 1^ /o'- 0 < a < 1.
JR" ' 1 — a

Similarly, one gets

(9.6) f \^Ga.W\dx^———\t\ for a> l .
i/R" a — 1
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We could also get the inequality

^[AA(^)| dx<^i + log-^l, M ̂  1,

which, however, will not be used.
Similar inequalities can be obtained for derivatives of the

kernel Ga. We have, for |/[ < a,

(9.7) _(. |A,DA(.)1 A, ̂  ,__^__^ 1.1-'

if
I/I < ' < I/I + 1

and

(9.7') (Wfi^dx^-——K——-1,1 for a > 1/1+1.JB a — |/[ — i

In view of (9.3) it is enough to prove (9.7) and (9.7') for
j[

|([ < — • For these values of [(], (9.7) and (9.7') are obtained
Jj

as follows. The integrals are divided into two parts :

JR" = Ji^i < 2M + JM > 2m*
The first integral is evaluated (in (9.7) as well as in (9.7'))

by using (9.2) or (9.2') and the inequality

IWWI ̂  |D,G^ + t)\ + |D,Ga(^)l-
To evaluate the second integral we write

M |A<D,G^)| ̂  r S 9^D,G^+TO) ̂•^t^j^^n == z, \^k~~ ^j^y.{
^0 /c==l[ ^^^fcJ n k-=i ^k

where

0=-=(0,,...,«.).

To obtain the desired evaluation in (9.7) we use (9.2) for
the derivatives of order |/| -)- 1 in (*) and integrate both sides

/ A 0 \

of (*) over \x\ >2\t\ (we use here — \x\ < |a;+T9| <— \x\ ).
\ ^ ^ /

The evaluation in (9.7') is obtained even more simply by
integrating both sides of (*) and using (9.3).
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By a similar argument, we get

F WjG^x^dx^K^fi+log1} j^l,
J^ \ \t\/

but this inequality will not be needed.
We shall now estimate the integral fn. \^fia{^)\ dx\ with

n' < n, n" == n — n ̂  1. We shall restict ourselves to the
case when 0 <; a <; n" 4- 1.

From (9.4) we have (note : ( = i' + € , x = x + x " )

(9.8) j^ \^G^x)\dx' ̂  f^ G^{x) dx' + f^ G^x + t) dx'
= (2^-7^//2[G^">(^'/) +RGan")(^' + <")].

On the other hand,

(9.9) f^ [A<G^)| dx'^f^ \^G^{x)\ dx' + f^ \^-G^x)\ dx\

The first integral on the right hand side of (9.9) can be
estimated by an argument similar to that in the derivation of
(9.5). Without loss of generality we can assume that t' has
the direction of the x^ axis. Integrating separately over the
regions where |o/ + t'\ ̂  \x'\ and \x' + ('| ̂  \x'\ we get

(9.10)

f^ \^(x)\ dx- = 4(2^-^ y;'̂ 2 G^ix^x-) dx,.

In view of (9.2) for |/| == 0, the latter formula gives

( f^,G^x)\ dx1 ̂  [{^ + 1 - a) (a - n")]-i \tl\-n"
I if M" < a < 7i" + 1
I f^G^x)\ dx' ̂  xa jo/'l^"-1 \t'\

for 0<a^n".

(9.11)

The second integral on the right-hand side of (9.9) can be
written in the form

(9.12) f^,G^x)\ dx' = (2^2 [G^^") — G^x" + f)}.

Assume that |̂ | =^ 0 and \x" + t"\ ̂  0. Since G^y") is
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a function of the radius r == |i/"| only, we get from (9.12),
using (9.2),

^ r>\x'-t-t'\ fIC.^') I •r\
{ \^fG^x)\dx'^(2v)-n'? \ aljg ^'dr

Jw^' J\x'\ dr
^+'•1 dr

. %« y.n'-a+l

(9.13) f^,G^x)\ dx'
%(a — n")-1 \t"\a-n'

if y^//<a<n//+l,
%a[min (|a;"|, \x" + ("j)]01-"'-1 |("|

if (Xa^Ti".

The last inequalities combined with the corresponding
inequalities (9.11) yield

/ ̂ " + i _ a) (a — 0]-i M"-"-

(9.14) /^|AA^)| dx'
if n" < a < n" + 1

x^mind^l.l^+n)]61-'-1!^
if 0<a^n".

(9.14) is now combined with (9.8) using the following remark.
If for positive numbers a, b, c, a^b and a ̂  c, then for
arbitrary 0, 0 ̂  0 ̂  1, we have also a ;< ^c1"9. Applying
this remark for a < n" to (9.14) and (9.8), and using the inequa-
lity (see (2.3 a) and (2.3 b)),

Gy\x") ̂  xa(»" — a)-1 W'1', for

we get, with arbitrary 0, 0 ̂  0 ̂  1,

a < n",

cj^-" if n"<a<n"-\-l:
c ̂  x[(n" + 1 — a) (a — n")]-1

(9.15) r I^G^))^'^ cl̂ Emind.r"!, K + ("I)]1-"'-6
JR"' if 0 < a < n

c^x^—a)6-!.

The following corollary to (9.15) will be needed. If
0 < a < n", and S > 0 is such that 0 < a — 8 < 1 then

(9.16) f^G^x)\\x"\-6 dx ^ cM'-6;
c ̂  x[(n' — a)(a — S)(l — a + S)]-1.
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We outline briefly the proof. We have

/JAA^)11^1-5 dx
= IX-Kl̂ ri + f^^][f^ |A,G^)| l^l-8 dx'] dx".

In the first integral on the right-hand side of the formula
above we apply the second inequality (9.15) with 6 = 0 for
|a;"| < |(| and 0 == 1 for |a-"| > |(|. We get

fw^•J^\Wx)\\x"\-6dx'dx"

^ 4^1^ l^l"-"-6 dx" + l^l X-l^l Kl01——5-1 dx}

and the desired estimate follows. In the integral over
|*r"| ̂  \x" + n we divide the integration over x" into
|̂ " + i"\ < |(| and 1^" + t"\ > |t| and proceed similarly.

The previously obtained estimates will now be extended to
higher differences. The basic formula will be the following:
for 0 ̂  /c' ̂  /c, the coordinate axis x^ being chosen in the
direction of the vector t =7^= 0,

(**) A?u(.»)

= \t\W C 1 - - - C ^u{x+ t{^ + • • • + T,.)) dTi . . . d^.
,/ 0 »/ 0 ^l

Formulas (9.3), (9.5), (9.6), (9,7), and (9.7') give now for
^>1,

(9.17)
xa(a — |/|)-i(|/| +/c — a)-^! '̂

f i\*np !^\\^ <- ^w l ] i < c l <\ j \+ kJ^ \^G^{x)\dx ̂  ^ _ ̂  __ ̂ ^
for I/I + k < a.

In the first case, if 0 -< a — |/| <^ 1/2, we write

A?D^G, = A?-iA.D^
and get by (9.7) the evaluation y.a(a—l/l)""1!^'31"^1- It
1/2 < a — I/ I ^k— 1/2, we write

'T = (a — l/'l)/^ A?D/^ == A,D^Gy;+^A,G^ • • • * A,G^
and apply (9.5), (9.7) and repeatedly Young's inequality (with
p ==- g == r == 1), which leads to the estimate xaltl01""!-'1.
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If ^—-_-< a — I / ] </c, we use (**) with k ' = = k — 1 and
^

u == DyGa and then apply (9.7) obtaining an evaluation
x([/|+;c-a)-i|^l.

In the second case, we use (**) with V = /c, u = DjGy.
and apply (9.3).

The extensions of formulas (9.15) and (9.16) to higher diffe-
rences will be needed only for t = t' <= R< We assume k ̂  1,
M' > 1, n" ̂  1, hence TI = n + M" ̂  2.

(9.18) /^|A?G,(o;)| ̂ ' ̂  cKl^r-"'-6

/br a < M" + /c, max [(a — n'), 0] ̂  6 ̂  /c.

The constant c can be expressed in the simplest way by put-
ting Oo = max[(a — M"), 01 and writing 9 == Oo(l — r) + /CT,
0 <. T <L 1. We have then

c = %a|M" — al^^M" + k — a)-
/br a ^= n", /c > 1 a^rf a — M" ̂  /c — 1

c == x(M" + /c — a)-^
/or k > 1 ayirf /c — 1 < a — n" <k(9.18')

c = xa|^" — ap-1^" + 1 — a)
/or a =7^= M" and A* = 1

c = x6-1

for a == M" aMc? any k ̂  1.

One should notice that for a == M", 0 has to be strictly posi-
tive.

The inequality (9.18) for 0 = k is obtained by using (**)
with /c' == k and u = Ga(^), then applying (9.2) and integra-
ting over R< The resulting constant c is xa(n" 4- k — a)~1.

When a =^= n\ we can take the other extreme value of 6,
Go = max[(a—n"), Oj. For a < n", this means O^ == 0. We
write then A?'Ga == A^^A^Ga) and the inequality is given
by (9.8) with (" = 0 and with constant xa(M" — a). For
a > M", 60 == a — yi". If M" < a < n" +1 and /c = 1, the
inequality is given by (9.11). If n" < a < n" + 1 and /c^2,
we write A?Ga = /A('GO^\ * /A^Go^, integrate with res-

pect to x' and apply (9.11) and for the second integration
(over R") use (9.17) with / == 0. Finally, for a > n' + 1,
which implies k ̂ 2, we write A?Ga = (At'G„4-^)*(A?~lGa-n~Y)
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-^ifa—n^/c—l andY=a n"withy=- i f a — n f f ^ / < '— l a n d Y = — — — i f a — 7 i " > / r — l
2t K

and argue as in the preceding case.
In all previous cases we obtain (9.18) by combining the

evaluations A and B corresponding to 9 = 9o and 0 = k
into A1" .̂ The remaining case a == n" is dealt with pre-
sently.

We write f\^G^{x)\dx ^ xJ'|A<.G^)| dx\ By (9.10) this
is maj orated for 0 < 0 <; 1 by

^Gy^x^x^dx^
<^'^{s2 + W^ds < xl^'l-^'Y1^ ds

- xe-^'ivi-0.
and the result is obtained by combining the latter inequality
with that for 9 == /c.

We next extend formula (9.16)
(9.19)

j^^'G^ix^dx^c^^ for o< n", 0<a—S</c,
c == x max[(/c + S — oi)^(k + n' — a)-2,

a|^^"—a|- l(a—S)- l,|yl"—a|- l(M"—G)~- l] /or a ̂  n"
c = X(M" — S)-2 /or a == n".

The proof is completely similar to the one of (9.16) using
(9.18) instead of (9.15).

Remark. — The constants in (9.18) and (9.19) are not
the best possible; they become infinite when a —> n" for fixed
9 > 0 in (9.18) or fixed ^<nff in (9.19) which should not
happen in view of the evaluation for a == yi". In the present
work we shall not need better evaluations. It would not
be difficult, however, to improve them by making more
thorough use of the exact formula (9.10).

Our next two formulas concern differences with respect
to two different increments t and <i.

(9.20) •
For 0<p< /c , 0<^</ci, P + P i ^ a — 1 / 1 ,

f [A?A?/D,G,Cr)| dx ̂  x (1 + 21^1 )
JR" \ P r PI/

{k-^^-^-^W.
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Decompose j' == i u i', hence |/[ == |i| + \i/\. Write then

/; |A*A?.«D,G^)| dx ̂  f^f^f^ |A?D,G|.^ - y}\
IA^D.-GI.-J+P/I/ — z)|G«_yFp-p.(z) cto dy dz.

If a == |/'[ 4- P + Pi we have only a double integral. Apply
then Young's inequality and (9.17) to obtain (9.20), at first
with a constant depending on |i| and \i'\. Making the two
extremal choices |i| == 0 and |i'| == 0 and combining the
resulting evaluations, one obtains the desired constant,

For n'^n, 0 < ? < k, 0 < ̂  < k^, P+pi^a—|/|,
(9.21) /^ ̂ -"'-ftlA^D.G^)! dx dt[ ̂  c\t\^

with c=x[min(P,(3i,/r—P,/fi—pi)]-1 , «,,,
(/c-P)-^-^(l+^.

In the proof we divide the integration relative to t{ into
|(i| < |([ and |^ i |>M. For |^| < \t\ we apply (9.20) with
(B and ?i replaced by (3 — £ and ?i + s respectively, where
£=1/2 min (?, ^ (/c—(3), (/Ci — Pi)). For \t[\ > \t\ we
apply again (9.20) but with ^ and ^ replaced ^ + s and
Pi — £ respectively.

We finish this section with the following inequality

(9.22) f f^i^A'
JR"'JR" I 1 ] '

-l^M^dxdt' <c' - ' ^ + n " ax at == c

'R"\/R" j1' ] '

/or n ^ n, y > 0, a/zrf min [a — |/| — y, /c— y] =T > 0,
c = x[Ty(/c — y)]-1.

Integration over (' is divided into |('| << 1 and [('[ > 1.
In the first part we write

|A?D,G^)| ̂ fWDfi^x-z)\ G^(z) dz

with a' = |/[ + y + ^/2. Integrating over x (where we apply
(9.17)), then over z and finally over [('I << 1 we obtain an
evaluation ^ x(y + r;|2)~l(k—^)~~l^~l. In the second part
we write f\^Dfi^x)\ dx ̂  v.f\^fi^x}\ dx which by (9.3)
gives, after integration over |(' > 1,

yYl + -^—i^T-1^^ + ̂ /2)-1 T-1.
\ a — I/I/
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§ 10. Special integral transformations.

In this section we will describe certain regularity properties of
integral transformations occuring in connection with the repre-
sentation formulas of § 5.

The properties established here (in particular in proposi-
tions 1 and 2) imply that for u e W^ and u e= ̂ P with sui-
table a, the integrals occuring in the representations formulas
of section 5 considered as integral transformations applied to
u, its derivatives, difference quotients of u and its derivatives
are p-absolutely regular (in some exceptional cases p-semi-
regular). Consequently, for u in a suitable class W^ or ^atp

the corresponding identities are valid pointwise almost every-
where. Further consequences of this fact will be presented in
sections 11 and 12.

We use the same notations as in § 9: n is an integer,

0 .̂ / .^ 11 i 7 / \ doc at i ft f i\ ax at<n ̂  n, n =n—n, d^{x, t) = ———, d^(x\ (') = —-,- .
I"! I" I

We recall (c.f. § 6) that the statement K(rc, y) is p-s.r.,
p-r or p-ab.r. with measure spaces |X, ^m|, ^Y, d^\ means
that the transformation j^ K{x, y)u(x)d\^ is p-s.r., p-r., or
p-ab.r., respectively.

//
PROPOSITION 10.1. — If a — [ / [ ——— > 0, then the kernel

P
K(y, x ) = ' D ( j y ) G ^ { x / — y ) with measure spaces ^R", A/j ,
[R^, dx'} is p-a6.r.. For a — | / | — n ' > 0 it is a&.-r..

Proof. — For n = n' the proposition follows directly from
(9.3) and Young's inequality; the bound for the transformation

VLK is in this case majorated by ————-
^—\1\

For M' <; n we consider first the cases when p = 1 and
p = oo. For p = 1, a — |/| > n" and condition (6.4) must
be verified. By (9.1), (9.4) and (2.3 d),

/^ |D,G^' - y)\ dx ^ ̂ [GW)

+.^G^^)]^^r^a-l/r'-'^-a-l/]-^
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If p •== oo, a — I / ] > 0, (6.4') has to be checked. By (9.3)

f \^G^x'-y)\dy^^-^^
it

Let now 1 << p <; oo, —— •< a — [y|. In this case we applyJLet now l <. p <^ oo, —— <, a

Method I of § 6 with

^(^^^"^(^^(a-l/DG^V)]^ and ^{x') = 1.

By (9.1) and (9.4) we get

J^ |D,G '̂-i/)| ̂ ^^^^^.^^(a-l/^G^V)]

= —HTi ̂ y) '̂-"-I/I
On the other hand, using again (9.1) and (9.4) we get

f^ |D,G '̂ - y)\ WW) + (a - WW^'111 d y ' dy"
^^^f^Gyi^y'') + (a- }\)G^-WYdy".

In view of (2.10) this is

< ________x________ ^(i;'}P'ii>
= (a -I/I) (a-1/) -H-lpY^^1 '

and the proposition follows from Theorem 6.3 with the
p-bound of the transformation maj orated by

(10.1) M, ̂  x(a - 1/D-i (a -1/| -̂ -1.

PROPOSITION 10.2. — Let k be an integer^ k > y > 0 and
let a —- I/I ——^ y (/ien ^ kernel

''Kfy,.-,,̂ ^^^^

wi^/i measure spaces |R71; ^yj, tR" X R"? '̂(a;', ( ' ) j Aa.s?
the following properties

i) J/* a — j/ | —— > y tAen K 15 p-a&.r. /or 1 ̂  p ̂  oo.
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n'ii) If n" > 0, I / I = 0, a — — = = y then K 15 p.-a6.r. /br
Kp^oo. P

in) J/* n" == 0, a/zc? a — |/| = y ^Aeyz K is p-s.r. for 2^p^oo
and its adjoint kernel is p-s.r.y for 1 <^ p <^ 2.

Proof. — i) We write, using the composition property of Ga,
lA?;^G^'-y)l

=|/^A?..,D^Gi,i4-^(z—y)G^i_^(a;' - z) ̂
== [./R" A?;yDy)Glyl+T+£(^ —— ^Ga-lyl-Y-e^' —— z) dz ,

1 .with £ = — min(/c — y, a — |/| — y — ^ I p ) > 0- We apply
2t

now Method II of § 6 with inner factor

^) = [G .̂|-,-,(z")]-1 .̂
By (9.4) and (9.22) we have

A= r r r ^-.^G^^-^^nJR"'JR"JR»' \tf\'<+n' p / / _, i / 1 1 . /
/. / - I At T^)P_ /-M ^a-yl-T-^ ——z) dx dzdtr> i^ IA* 'nWP /^•M i*—ui—i—»\

= ̂ J^ IA(^^^ ̂  ̂  ̂  x(.y(^ - y))-.

By f9.17), (9.4), and (2.10) we get

B= r r |A^D^G|,,+^(z—y)|
JR-JR'- |<T

^ r r lA^D^Gii^tz
= £ /. ̂ ^y ~ y)} ̂ -^^ - .) dyd.

^U^^-^^^-^-^ dyd.
<^\1\ +T)T-l(^-T)-lJR""/R»•[G^l-^W/p

Ga—lyj—v-.^^) C? '̂ ̂ "

< ^(1/1 + ̂ -^ - y)-1 f^ [G^^{z")Y dz"
^ ^(1/1 + T)[T(^ - Y)(°' - 1 / 1 - Y - "W ]̂-1

It follows by Theorem 6.3 that the bound Mp of our trans-
formation can be evaluated in the present case by

(10.2 i)
Mp ̂  ^(|/| + ̂ 'W^k - y)(a - |/| - y - n''lp)W]-1,

where
e==-|-min[(/c-Y),(a-|,|—y-^/p)].



ON SPACES OF POTENTIALS CONNECTED WITH L? CLASSES 265

ii) In this case we shall apply Method I of § 6 with the fac-
tors 9(y) == \y"\-'"'!> and ^ (x ' , i ' ) == i.

We have, by (9.19), with a = y + n ' f p , S = n"fp,

f 1K(^,Q|^= f ̂ ^y^dy^c.
J R" J R" |t I

On the other hand, by (9.18) we have, for |('| ̂  \y"\

f^ \^G^x' - y)\ dx' ̂  c\y"\a-n'-k\tt\k

and for |('| > \y"\,

f^\^(x'-y}\dx'

,1 /,|,,"|«-n'cli/'r-"' if a.<n"
—n' r^

C\y"\ 2P j('j2p- j^f a=n"

clf'l"-"" i/' a>ra''.
Therefore

f r ^••^'.-y^dx'dt'JK^JR"' , ,,a—-t-»'i^i p

^ ( r +r \ r i^,G^;-y)i^^
\J\t'\^\y"\ J}^[>jy"|/JR" / a-^+n'

^cly'l-^p'^^^^

which completes the proof of ii). An evaluation of the bound
Mp can be obtained from the constants in (9.18) and (9.19).

iii) With a — |/| = y, M" = 0, x === ,̂ (' = ,̂ we get,
using (9.17)

r \^^WG^x—y)\, ^ . , . , , , / , , ... ,,
JB" \t\^——^^ ̂  xa^ —^ ^ + 1 / 1 ~ a) .

and hence K is oo-ab.r. and the adjoint of K is 1-ab.r.. We
shall prove now the 2-semi-regularity of K and its adjoint.
By Theorem 6.4 it is sufficient to verify that

\J^ K(y, x, t)u{y) dy IL^XR".^) ̂  c\\u\ [̂ (R"),

for all simple functions u on R/1 with some constant c inde-
pendent of u and that
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M H^Rn^Rn l̂  ̂  ̂ M^ () ̂ (^ t) || IW ̂  c| \W\ \^n ̂  ̂  ̂

for all simple functions on ^R" X R", d^\ with a constant c
independent of u. To prove (*) observe that for any simple
function u,

- <)= f ̂ î""^ ̂ ) ̂  - ̂ l((-^))'w\x

where

^i

JR" I1!

^ - (e~i&ft) — l)fc ^__ wvn
^ -(l+l^ia)^]^-!,^ ^ u(.^•

Hence, using Parseval equality and (5.18) we get

||w[]^RnxRn,dp.)= i i ^{^d^t)

J R" J R"

(̂njl̂  C(n, a - |/|)A|fc_,,|.|2(a-l̂ )|lu|l̂ ,

Similarly, if w is a simple function on |R" X R"; dy.\ and

'A^D^G^—y)^"JJi.r^~!"^.')^.')

"(S) =(^T^Tii<-•s);i.(£1^l>wff'l)A
then

where w(^, () is the Fourier transform of w(^, ^) with respect
to x. Using Schwartz5 inequality, Parseval equality and (5.18)
we get (**) with the same constant as in (*).

iii) follows now by interpolation (see Theorem 6.5). For
2 ̂  p ^ oo, the p-bound Mp of the transformation is equal
to the p'-bound Mp» of the adjoint transformation and they
are both evaluated by

(10.2 iii) Mp == M;- ̂  ̂ l-21^—\j\)-l{k + |/| — a)-i.

n'PROPOSITION 10.3. — Let k > Y > 0, and a — |/| — —j- > y.
A^D^G (x' — u) . ^Then the kernel K(x\ y, t) = -t—1——.———v-j- with measure

spaces \ R"', dx' \ and [ R" X R", dy. (y, t) } is p-a6.r., 1 ̂  p ̂  oo.
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The proof is completely similar to the one in Proposition

10.2 i). We c h o o s e £ = i m i n ^ — T ) . ( a — l / l — T — n 7 J D ' ) ]
Zi

and apply the second method with the inner factor

X(z) = [G^.WP'.

The p-bound of the present transformation is equal to the
p'-bound in (10.21).

PROPOSITION 10.4. — Let

k > Y > 0, k' > Y > 0, a — |/| ——7^ y + y',

^ ̂  P ̂  °° • The kernel

K(v t x' t'} - ̂ i^^W-v)^{y,t,x,t,)- ^.^

with measure spaces

{R11 X R71, d^y, t ) } , IR71' X R71, d^ (x\ t[)\

is p-ab.r.

Proof. — Consider first the case when n ' === 0. Then by
(9.21) K satisfies conditions (6.4) and (6.4') with constants
A == B. Hence K is 1-ab. r. and oo-ab.r. and by interpolation,
(Theorem 6.5), it is ab.r. with p-bound == A = B given by

(10.4 a)

M, = X[(A——Y)(/C' -Y)min(y, /, /c-y, /c' - y')]-^ (//! + JiL)

Consider next n < n and !<;?<; oo. We use now the
general criterion of Theorem 6.3 with kernels

Ki(y, t, x\ t,) = \t\^\t[\-rf \^G^^ — z)\
|z"|^1A?,Dy>G^(^-y)l^,

K,(y, t, x\ t[) == \t\-^\t[\-rf \^Gn^^ — z)\
l^r^lA^D^Gp^^—y)!^.
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1 ^
We have put here p == a — n " l p — y'; £ == — £o or = — EQ

depending on whether

IT' - ̂ lp\ > £o/2 or |y' - n"/p'| < £o/2
/ 1 \(so that |Y '—n7p'±£|>—£o) with

£o = min(y, y', /c — y, /c' — y');

the upper or lower sign accompanying £ is chosen depending
on whether \t[\ ̂  \t\ or |(i| > |(| (13),

Condition (6.5) is checked immediately. The first inequality
in (6.6) is obtained as follows :

f^f^^y.^x.t'^^'dxdt^
= J^f^f^' M-^r-W; ̂ w^x - z)| \zY^

|/^At-D^Gi,i^,(z—^)Gp-,,i_^—y) dz, dx1 dzdt[ (14).

We integrate first with respect to x' applying (9.18) with
0 == Y ± £, and then integrate with respect to z, applying
(9.17), and then with respect to ^. We end with integrals with
respect to t[ of the form

îJ Î̂ ""^ + ̂ ^iJ^l^l-^^^xso-^A.
We treat similarly the second inequality in (6.6) where

in the integral

y^/R"K^ ^ ̂  0 M-" dy dt = f^f^f^j^ . . . dy dz, dz dt

we apply (9.17) for integration with respect to Zi and (9.19)
when integrating over z, and end again with integrals over
1^1 ̂  1^1 and M < W similar to those above. For the constant
B we get the evaluation xso'^n"/?')""1- F011 ^e bound Mp
we obtain thus

(10.4 b)
For n< n, M^A^B1^ ̂ x[min(y, y', /c—y, /c'—y')]-4.

(13) The proof could also be obtained by applying the second method of § 6
separately to the two components K/ and K" of our kernel K == K' + K" where
K7 = K for |^| < |(| and K7 == 0 for |({| > |([.

(14) If p— | ; | -T==O the last integral f.. . ̂  is replaced by A^D^Gj^+^sfz-y).
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This evaluation is at first obtained for 1 <; p << oo. Howe-
ver, since it is independent of p it is also valid for p = i
or p = oo (one could obtain similar evaluations more directly
by using (6.4) or (6.47)).

PROPOSITION 10.5. — Let t e R" be fixed, 0 < (3 < k,
O < Y < / C ' , a > p + y .

i) The kernel j^j^A^Ga^—x} is ab.-r. for measure spaces
JR"; dx\ and |R"; dz\ with bounds independent of t.

ii) The kernel \t\-^t^^^G^z—x) is ab.-r. for
measure-spaces ^R"; dx\ and ^R" X R71; d^{z, t^)^ with bounds
independent of t.

Proof. — We show that the kernels are l-ab.-r. and oo-ab.-r.
by finding evaluations A and B for the corresponding inte-
grals (6.4) and (6.4'). In case i) we apply (9.17) with ]/| == 0
by writing K(z, x) = f \t\-^G^z -- y) G^^y — x)dy to
obtain A and K(js, x) = j Ga-p(z — y) j^-PA^GpQ/ — x)dy to
obtain B. The p-bound so obtained is

(10.5 i)
M^x(/c—(i)-1 for l^p^oo.

In case ii) we apply (9.21) to obtain A and (9.20) to obtain B.
The p-bound so obtained is

(10.5 ii)
Mp ̂  x[min(P, y, k — (3, k' — -()]-lfp{k — ̂ (/c' — y)-1

for 1 ̂  p ̂  oo.

Remark 1. — Statements in Propositions 10.1. — 10.4
pertaining to p-ab. regularity of an integral transformation
are equivalent to p'-ab. regularity of the corresponding adjoint
transformation. When we refer to such a statement about
the adjoint transformation we will write « adjoint proposition »
(e.g., adjoint Prop. 10.2).

Remark 2. — In the preceding propositions we considered
only the measure dy.{x, t) or d^ix^t'). In the following sections
we will often need these propositions with the measure

^^'^r?^^^^^^ (or W '̂)) ^placingL.̂ , p; ̂ 2n+2^)

d^(x, t). Whenever the statements pertain to p-ab. regularity,
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by virtue of Theorem 6.1, we still have p-ab. regularity with
the new measure, with bound M^ ̂  (C(M, (S))""1^' Mp or
^ (C(n, P))"1^^!? depending on whether the measure is changed
in the domain-space or the range-space. The only case when
we deal with p-s.-regularity is in Prop. 10.2 iii). By checking
directly the proof in this case (especially for the 2-s.-regularity)
one verifies immediately that jo-s.-regularity is maintained
with d^ replacing dy., the evaluation of the bound being
changed as above.

§ 11. Inclusions. W^ and ^P as spaces of potentials.

In this section we give a description of inclusions between
spaces W^, L^, and ^'^ We also derive some representation
formulas for functions of W^ and ^a>p which allow us to charac-
terize those spaces as spaces of Bessel potentials of certain
classes of distributions.

It will be convenient to introduce the space

[L^R") X L^R" X R", d^)]
(11.1) A; - x " t x ̂ W X L^R- X R-, d^)]

^m+l__4 "
————.— times
n—1

if a is not an integer, a = m + p, m == [a], 0 < ? < 1, and

(ii.r) AP,=LlRn)JL^Ll^""~^+i_i
————.— times
n— 1

if a = m is an integer.
Elements of A£ will be denoted by |^, Wj\ or by |^j if a

is an integer, / being a multiindex, 0 ̂  |/| ̂  m. The norm
in AS is defined by the formula

(11.2)

ii h- îip'== i (Ty-^y s [inrw + iw.
f==0 \ l / \ P / \J\=l

Clearly, W? is boundedly imbedded in A£ (with approxi-
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mate norm | ~\^,p isometrically imbedded), the imbedding
being defined by

(11.3) ^ = D,u; ^(x, t) == A'^)(ueWpa).

Wj? can be therefore considered as a (closed) subspace of A^.
LS will denote the space of Bessel potentials of order

a of functions in L^ saturated rel. 3lo? lfe- ^e space of
all functions u for which there exists a function /*e L^R") such
that u(x) = Ga*y(^) almost everywhere. The standard norm
of u is defined by

(11.4) IMkp=||^||LW.
The space L^ was investigated by Calderon [6]. An equi-

valent definition of L^ as a space of distributions is that L£
is the space of tempered distributions u whose inverse poten-
tial of order a, G^u, is in L^ (15).

The space L^, for p <; oo, will be considered as an imperfect
completion of the space Co° with norm given by

iHi^^iiG^-a^i-Aruii^
where m is an integer >^ a/2. For p = oo, the imperfect comple-
tion leads to the space Lo^; this is the space of all bounded
functions u such that Gs^yU is continuous in R^^) and
vanishes at oo. Obviously La°< c Lo°. For p = 1 we introduce
also L^ as the space of tempered distributions u such that
G_aU is a Borel measure of finite absolute mass; we put
| |u| |a,i= | G_au|(R71). Obviously again U c L^ c Lp for 0<P < a.

The perfect completions corresponding to spaces L^ will
be introduced in § 13 and denoted by P^.

As concerns inclusions between spaces Wj? and L^ we have
the following theorem (16).

THEOREM 11.1 — i) If a is an integer then L^ = W^ for
1 <; p < oo. ii) If(x. is not an integer then L^ => W^ /b^ l^.p^2
a^ L£ c W^ /br 2 ̂  p < oo. iii) J/* a' > a > 0, ^en W?' c L£
anrf L^ c W?.

Proof. — i) Let a = m be an integer. If u e L^,, 1 < p < oo,
then u=G^f, /•eL^R71) and therefore by (5.7) and (6.13)

(15) G—«M is given in terms of Fourier transforms by (G—au)^ = (1 + l^l2)^2^.
(16) This theorem is contained in the results of Taibleson [19].
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the distribution derivatives DyU, |/[ ̂  m, are in L^R") and
there is a constant C independent of u such that

I^Lp^C||/l||,p=qHL,.
Conversely if ueW^ then (5.30) gives for f == G^u the expres-

m /m\
sion /*= S ( 7 )(—!)' S Dy[G^*D^uj in sense of distributions

/=o V / (./|=/

and therefore by (5.7) and (6.13), /"eL^R") and there is a
constant C independent of u such that IJ/'ULP^ Cjuj^p.

ii) Let 1 ̂  p ̂  2, a == m + ?, m = [a], 0 < (3 < 1, and
u e C?. Then G-yU is clearly defined pointwise by formula (5.28).
We write this formula in the form

(11.5) G^u(z) = £ (m) 2 [(- iyD,G,^,(z)
^=0 \ t' / \j[=l

, r r A^DyG^—rr) , , , . / ,+ Ja" JB" ——IT|P——wj(xf t) d^(x91)

with ^, wy as in (11.3). G_a can then be interpreted as the
result of a transformation of an element of AS. In view of
the propositions 10.1 (for n == n), the adjoint Prop. 10.2 iii)
and Remark 2, § 10, there is a constant C independent of
u such that ||G_au||Lp ̂  C|u|a,p for 1 ̂  p ̂  2.

Let 2 ̂  p ̂  oo and u = G^f, fe LP. Then by Prop. 10.1,
DjU e I/, |/[ ̂  m, and there is a constant C independent of
u such that HDyul]^ ̂  CH/'HLP. On the other hand the expres-

A(D,u(a;) . , i r i • ision w, == — " Q is the result of the integral transformation

of Prop. 10.2 (n == n') applied to /* (with measure dy. replaced
by d^) and by Prop. 10.2 and Remark 2, § 10, there is a constant
C independent of u such that IHlLVxR^p) ̂  CJI/'H^.
This completes the proof of ii).

iii) Let u e W^'. Since W^ with increasing a form a decrea-
sing sequence of spaces we may assume without loss of gene-
rality that a' is not an integer, a' = m' + (3', m' == [a'],
0 < (3' < 1. Then by (5.28), u=G^f where

m /w\
(11.6) f(z} = S (7 2 [(-l)'DAa-a*^)

(=0 \ I' .1 |y|=(

-4- C C A^D^G^Jz—a;) / . , / ,.
JB" JH- "^—^P'————WJ{X' ) '̂(a;' )]'
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Vj and Wj as in (11.3) (with (3' instead of ?). By virtue of Pro-
positions 10.1 (with n = n), 10.2 i) (adjoint, with n' = n)
and Remark 2, § 10, formula (11.6) is valid pointwise almost
everywhere and /*€= L^

On the other hand, if u e L^, u = G^' */*, /'<= L^ then by Pro-
position 10.1, Dju e L^ I / I < a', and iii) is proved for a integer
If a is not an integer, a == m + ?, then the expression
AtD.^ for [ / I ̂  m belongs to L^(R71 X R", ^ap) by Propo-

sition 10.2 i) (with n == n) and Remark 2, § 10, with norm
bounded by C\\f\\^ with C independent of f.

Remark. — It can be proved by examples that the inclusions
in ii) are proper for p =/= 2. It is well known that W^ and L^
coincide for every a > 0 (c.f. [2]).

We now proceed to prove the following theorem.

THEOREM 11.2. — If a. > y and both a and a —y are no(
integers, then W^ == G^W ,̂ 1 ̂  p ̂  oo. More explictly,
the space, W^ consists of all functions u of the form u == Gy*^,
p e W^, and there are constants Ci, Cg > 0, independent of u
such that

(li.7) c^H^ ̂  K, < C,H,_^,
Proo/'. — Let u e Wj?. By propositions 10.2) and the last

remark of § 10, the inversion formula (5.28) is valid point-
wise almost everywhere if y <; a and a is not an integer.
Let a = m + P, m = [a], 0 < (3 < 1, a —y = m' + (3',
m' == [a —y], 0 < p' < 1. Then for |/'| ̂  m',

(11.8) D^G_^)

= (- 1)̂ | (7)^ [/,. D^G^z - x)^x}dx
. r r A^Djff/G^-^z—a;) , . , / .1
^JB- w——^^?') d^ T

(11.9) ^^D/G-^{g)

= (-''D" 2 (7) S f f ̂ D .̂,!̂ )̂ &
<=o\l /y|=(L^n" l^l"

i r r A .̂̂ ^^D .̂Gaq.̂ z — a;) , , , , ,1+ JB,. L —fer—WJ{X't) d^xl ̂ '
14
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where ^, Wj have a meaning as in formula (11.3)
1Noticing that d^(x, t) ̂ ——. d^{x, t) and recalling that

j[ ^(^ P)
, — _ ^ p ( l _ p ) for 0 < p < l , using Propositions 10.1,

L^TZ, pj
10.2 i) adjoint 10.2 ii), 10.4 and Remark 2, § 10, we get
G-^eWj?-7 and lG-^u|a_^p ̂  C|u[a,p with
C^min(p, 1-(3, (3', l-P^P^-P^Wl-P')]1^!^.

Conversely, if v e= Wj?~^ then G^p is given pointwise almost
everywhere by the formula

m' / Tvf\

G^(z) = 2 ( , ) 2 [ ̂ D^G^(z-;r)D,(^) dx1=0 \ t / ]j\=i'—
+ F , A,.D^G,^(z-^A,D,^) -i
'JnjB- |̂  |̂ ' ^W^J-

Using the same reasoning as above we conclude that Gvp e W^
and |G^[a,p^ Clp[a-Y,p with

C^xtmin(p, I—?, p', l—P^PO—P)]1^^!—?')]^!-1.

This completes the proof.
In particular it follows from Theorem 11.2 that

W^+P=G,WPp for 0<P<1

and m integer, and there is a constant C > 0 such that

^HP.P ̂  \Gm^\m+^p < C|p|^p.

It follows from the estimates indicated in the proof that the
constant C increases unboundedly as (? -> 0 or (3 —> 1. For
1 < p < oo, this result can be improved by using singular
integrals. This is done by means of the following proposition.

PROPOSITION A. — If K{x—y) is a kernel such that for
/*e I/ the integral Kf(x)== ^n K(^—y)f(y) dy (possibly under-
stood as singular integral) exists pointwise almost everywhere
and there is a constant C independent of f such that

(11.10) I™LP^C|)/I|.P,
then for every v e WPp, 0<P<1, Kp e WPp and, |Kp|p.p^C|p|p,p
with the same constant C as in (11.10).
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The proof follows immediately if we notice that A(K/*== K^f
and that

'"IS- = ll•'ll^'+J„.C(n,p)GC^)|.|^"A••^lt"fc•

We can now state the partial improvement of Theorem 11.2 :

THEOREM 11.2'. — There exists a constant C depending only
on p, n, the positive integer m and an upper bound of a such
that for 1 << p << oo

C-^kp^lG^I^^CH^.
Proof. — Obviously it is enough to consider the case

O^a^ l , m= 1. Put u= Gi^-^-u==-^-Gi*^. By (5.30)
with m = 1, we have ^xk ^xk

^)={G^u)(z)--~i('G^\{z).
k=i \ozk ^k/

As in Theorem 11.1 i), this gives our present theorem for
a = 0 and, by Prop. A, also for 0 ̂  a < 1 with the same
constant C. We use then Theorem 8.1 ii) to extend it to a = 1.

The next theorem (17) is a counterpart of Theorem 11.2
for spaces S .̂ In its proof we will use the following obvious
propositions

PROPOSITION B. — Consider two measure-spaces iX., dy.\,
^Y, d^\ and a kernel K(x, y) p-ab.-r. with p-bound Mp for
\K(x, y)|. Let

K\x, y} = A(x, y)K{x, y) with \A.(x, y)\ ̂  C == const.

for all x, y. Then K' is p-a&.-r. with p-bound ̂  CMp.

PROPOSITION C. — Consider three measure-spaces ^X, d^i,
iY,c?v|, tT,rfco^ and a kernel K(x,y,t) x e X, y e Y, ( e T mea-
surable in the product space XxYxT. Suppose that for each
fixed t, K(x, y, t) is p-ab. -r. with p-bound for \K(x, y, t)\ uni-
formly bounded by M. Then, if the total mass (D(T) is finite,
the kernel fK(x, y, t) dw(t) is p-ab. -r. with p-bound ̂  Mco(T).

(17) This theorem is a particular case of a result of Taibleson [19].
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THEOREM 11.3. — J/' a > y > 0 , l^p^oo, then

Ga-Y^ = ̂ atp.

Afore explicitly, %a'p 15 <Ae 5pace o/' aH functions u of the form
u == Ga-v^ with v €= W^ and there exist constants C, C' > 0
depending on a, y, /c, /c' (/c, k' are integers, 7c' > y, /c > a)
5uc/i ^Aa^

(11.11) CH^ ̂  |G,_^[^ ̂  C'H^.
Proof. — By Lernina 4.1 we may assume without loss of

generality that k = [a] -4" 4: and we may choose then A*'
so that k — k' ̂  a — y + 1 and A-' ̂  y + 1.

If ^ e %^P then by Young's inequality we get Ga-y^ e L^ and
IICa-v^lli/ ̂  IHliA Furthermore, for every ^

A^-^^A^-^Ga-^A??.
Applying (9.17) (with |/| = 0) we get

^n|(|-a+T|Afc-^Ga-^)|^<X

and hence, by Young's inequality

/K- M-ll M-W,.̂  ̂  ̂ /^ H-V||M-TA^|]£P ̂
which completes the proof of he second inequality in (11.11)
with C' < x.

Put now u = Ga-v^. Hence v = G^y,u. We use the formula
(5.22) which at first we know only to be valid in sense of
distributions (we replace (3 by a and a by a —y). By shifting
a suitable number of differences from Ga+y to u (or vice-versa)
in the convolutions we can rewrite the formula (still in sense
of distributions) as follows

(11.12) G ^ u ( z ) = — — — — S i (^)(?)(-1)'^(^ a) )l.ll==o\ i A i /
[t+l'^k

^ ^^—1—1' p /*\
^t, Cf—fcX-^/^aV^ \l+l' p /« ^\ii(^\ fl^rif——. ..2——^z^^^^a+y^ — ̂ u^ aa;a(

^ H, <. / ^ y ^ ^ r r A^-.ĵ G,̂ .(f)
^ .^oYzA^/AJK" î 2'^/'>fc

M^^G^z — x}^ ^u(x)dxdt \.
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We have here a linear combination with constant coeffi-
cients of formal integral transformations. Our aim is to show
that when Ha,p,/c < °o each of these transforms is in L^R"; dz)
and when we apply |^]-TA^ to them we obtain functions in
L^(R71 X R"; d^{z, (,)).

Consider first the transforms in (11.12) in the first sum
when I + V ̂  k. Their kernels can be written in the form

(11.13) f^K{x, z, t) d^t)

with
K(a-,z,<)=A^,,G^(z—:K) ) , , , » ^ .
rl,^!i\ — |/|-"-2aA2&-;-('p tf\jfi Ior I+1^.1aW[l) — \t\ ^,((—A)t;<"2n+2a(<) dt\ ——

K{x, z, t) = M-PA .̂̂ G^z —x)
dw{t) = |(|-»-2a+PA[*(7l-̂ ,,G^+ (̂<) dt for 2 ̂  I + I' ̂  k
P = min(l + I' — 1, a) ~ ~

By (2.11) and in view of the exponential decrease at oo of
G2n+2a, dw{t) has a finite total mass ̂  %. The kernels |K(a;, z, ()|
are p-ab.- r. for (R»; dx) and (R"; dz) by virtue of Prop. 10.1
and 10.5 i) with bounds ̂  x independent of (. Furthermore,
the kernels |fi|-r[A^K(a;, z, ()| are p-ab. -r. by Prop. 10.2 i)
and 10.5 ii) for (R»; dx) and (R» x R"; dy.(z, <i)) with bounds
independent of (. Hence, by Proposition C above, the trans-
forms in the first sum in (11.12) have norms | Lp y bounded
by c||u||Lp.

Consider now the second sum in (11.12) where l+l'^>k-{-l.
The corresponding transforms can be written

(11.14) f^f^ A(t)K(x, t, z)w(x, t) dy.(x, t)

where we put
^,()=|<|-aA,'k,u(a;—r(),

K{x, t, z) = jfl"" +k " ^'-"G^z—x)
q(2fe—/—r)

A(t) = |(|~ * A^ ,̂,G^2«(()

We have here |A(()| ̂ x (by (2.11)), K(x, t, z) is p-ab. -r.
for (R» X R"; dy.{x, t) and (R", dz) (by adjoint Prop. 10.2 i)
for n ' = n and |/| = 0) and |^j-TA?;.,K(a;, z, t) is p-ab. -r.
fo^R^R"; dy.{x,t)) and (R»xR»; ^(z, t^)) (by Prop. 10.4
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with n' == n and |/| == 0). By Proposition B, this finishes the
proof of the first inequality in (11.11). By checking on the
bounds in all the propositions used in our proot we find the
following evaluations for the constants C and C' in (11.11) (18) :

(11.15) 1/C^xy-2, C'^x for l^P^oo.

THEOREM 11.4 (19). — If(x. is not an integer then ^'P = W^,
Ir^p^oo. If a is an integer then ^^cW^ for l^p^2
and W^ c ̂ P for 2 ̂  p ̂  oo.

Proof. — The first part follows directly from Theorems 11.2
and 11.3 and the remark that for 0 < ? < 1, ^fp == W^,
1 ̂  p ̂  oo. To prove the second part, observe that if u e ^B^,
a-integer, then u = G^A? A^^ 0 < £ < 1 , and the
norms |^|a,p,fc ^d lAle.p are equivalent. By the reproducing
formula (5.24) (with p = e) and Propositions 10.1, 10.2 i)
adjoint, we also have pointwise a.e..,
u^ = f^ ̂ ^ ~ y)A(2/) ̂+J:.J:.A"̂ rJ')T^(̂ "•)•
Therefore derivatives D^u, [/[ ̂  a are given by the formula

Uu{x) = f^n ̂ fG^x — y)f,(y)

+f rA^>Gy(.-,)A^)^^
J^JR" |t| H

The right-hand side of the last expression can be interpreted
as the sum of results of two integral transformations applied

to fe and Wg = < / E ^ / respectively. By Propositions 10.1,
"10.2 i) adjoint, and 10.2 iii), the first transformation is abso-

lutely regular for [/| <^ a, the second is absolutely regular
for [ / I < a and jo-s.r., l ^p^2 if )/| = a. Thus ̂  c W$,
if a is an integer and 1 <L p <1 2.

(18) On the assumption that k and /c' are chosen as they were at the beginning
of the proof. For other choices of k and k' the evaluations should be changed by
using Lemma 4.1.

(19) Besov obtained this theorem for 1 << p <" oo. The first part was obtained by
Taibleson without restrictions.
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To prove the opposite inclusion for 2 ̂ p ̂  oo, we remark
that if u e W^ then by (5.29) (with m = a) we have, at first
in sense of distributions u == Ga-g*^ where

(11.16) W =J^)^^D<;>G^-.)D^)^.

Applying Prop. 10.1 we prove that this is a bona fide inte-
gral representation, that /g e L" and is given by (11.16) a.e..
By Theorem 11.3 it is sufficient to prove that /g e ̂ 'P, 2^p^<x>.
We know already that /^LP; on the other hand ̂  canME
be written as a linear combination of terms Wj(y, t) given by
the formula

^t)=^^^u^A^^^{y, t) = "^ -^

By Proposition 10.2, for |/| < a, Wj(y, t) is the result of
an absolutely regular integral transformation applied to
DjU; for I/I = a and 2 ̂ p ^oo it is the result of a p-s.r.
transformation. Hence w/ e L"(R» X R», dy.} which completes
the proof.

If for fixed Icy > a., > 0 we choose a norm ||MJ|B-.>P on
^•P equivalent to |u|a.,p,fc, and then define ;

(|M||B<»,p = ||Ga,_gU||B«o-P

for u e ̂ 'P, a > 0, this norm, by Theorem 11.3 will be equiva-
lent to Ha,^ for a > 0. If we restrict the choice of HMJJB-O.P
by the additional requirement that for p = 2 it coincides
with \u\^===\u\^ we shall call the resulting norm, ||u||B'<.p
a standard norm on ^'P. The simplest such choices of ||u||B'..p
seem to be the two following norms : the first, for a = 1
leads to the standard norm:

(11.17) ||u||̂  = ||Gi_,u||£p

+ ̂ SL 1^1^-^)11^ dt'
the second, for ^ = 1/2, defined by \\U\\B^P = \u\^ leads to;

(11.17Q |M|B^=||G^_.U||̂
^2»-T(^l/2)j^ \t\-^Q^t)\\^_^ d^
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Recapitulating, we can state

THEOREM 11.5. — Consider ^'p with a standard norm for
a ̂  0. The potential operator Gy is then an isometric isomor-
phism of ^'P onto a^+T.p. For p •== 2, ^a'2 == W^ = U, wi(A
equality of standard norms in all these spaces.

Remark. — For any norm [lullD1 '? as defined above, and
(unction u(y} we can consider the function <D(a) == HuHe01'?
(==oo if u^^^) for a^O. Obviously <I>(a) < oo implies
$(a') <; oo for a' <; a. It can be proved without much diffi-
culty that 1° for all a, $(a) is continuous to the left; 2° if
<I>(a) < oo, for 0 ̂  a ̂  a' then <& is continuous on this inter-
val. If we take for \\u\\^p the norm (11.17) or (11.17'), then
$(a) is non-decreasing.

Consider the inverse potential operator G_a applied to
1̂ . This gives a space of distributions G-a^^) which, by
Theorem 11.3, is independent of a. We will denote this space
by B° .̂ Hence

(11.18) ^ == Ga(B°^) for a > 0.

Since for 0 < (3 < 1, ^>p = Wl^, we obtain by Theorem
11.1 ii) in view of the fact that G-a(L£) = IA

(11.19)
B^cLP for l^p^2, B0'^!^ /or 2^p^oo.

As a consequence, we have also

(11.20)
^cL£ for l^p^2, ^DL£ /or 2^p^oo.

§ 12. A projection formula and conjugate spaces.

In this section we shall need some results of the theory of
pairings and associated norms (c.f. [4]). Let A and B be complex
Banach spaces and (^, w) be a bilinear hermitian complex
valued form on A X B (i.e. linear in y, antilinear in w). The
system [A, B, < , >] is called a pairing. A pairing is proper
it <^o? w> = 0 for all w e= B implies ^ = 0 and <^, Wo) = 0
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for all v e A implies WQ = 0. The norms in A and B are admis-
sible with respect to the pairing [A, B, < , )] if <^, w} is a
bounded functional on A for every fixed w e B and a bounded
functional on B for every fixed v e A. Let [A, B, < , >] be a pro-
per pairing and norms in A and B be admissible.

The correspondence v—> f(v)=={v, w) is a canonical linear
continuous mapping A -> B* where B* is the anticon jugate
of B, i.e. the space of antilinear continuous functionals on B.
Similarly, w -> <p, w) is the canonical mapping of B into A*.
We say that in this pairing B is canonically isomorphic with
A* if every linear functional <p e A* can be represented in
the form <?(?) == <^, w°) with some fixed w9 e B (since the
pairing is proper this w^ is clearly unique). A bounded ope-
rator P*: B —> B is called adjoint of a bounded operator
P: A -> A with respect to the pairing [A, B, ( , )] if
<PP, w} == <P, P*w> for all v e A and w e B.

The adjoint may not exist for some operators in some
pairings. In the pairing [A, B, < , )] every bounded operator
on A will possess an adjoint if and only if B is canonically
isomorphic to A*.

If AQ is a closed subspace of a Banach space A then we
say that an operator P : A —> AQ is a projection of A onto A^
if P is bounded, P(A) = \ and P2 == P.

If a projection P of A onto AQ has an adjoint P* then P*
is also a projection.

THEOREM 12.1. — Let [A, B, < , >] be a proper pairing of
Banach spaces, Ao, Bo be closed subspaces of A and B, and
P,P* be adjoint projections of A onto Ao and B onto Bo respec-
tively. Then

i) The pairing [Ao, Bo, < , )] is proper.
ii) If B is canonically isomorphic with the conjugate space

of A (in the pairing [A, B, < , >]) then Bo is canonically iso-
morphic with the conjugate space of Ao (in the pairing
[Ao, Bo, < , >].

Proof. — i) Let ^o€E Ao and <^o, P*w> = 0 for all w e B.
Then by definition <^o, P*w> = <P^o, w) == <?o, w) == 0 for
all w e: B and since the pairing is proper, ^o = 0. The proof
is similar for WQ e Bo.

ii) Let <p be any bounded linear functional on Ao. By the



282 N. ARONSZAJN, F. MULLA ET P. SZEPTYCKI

Hahn-Banach theorem y can be extended to some bounded
linear functional y on A. By assumption there is an element
w? <= B such that y(^) == <P, w^} for all v e A. Hence for ^ e Ao,
yM = <^, ^> == <P^, ^> = <^ P* ^> = <^ ^>,

^ == Pw? e Bo.
By i) w^ is unique.

We proceed now to apply Theorem 12.1 to the case when
A = A^ B = A£' (c.f. § 11). For [^ Wj\ e A; and ;̂, w}\ e AS'
and for ^yj e AS and ^Jj e AS, if a is an integer, the bilinear
form < , )a is defined by the formulas

(12.1)

(^ ̂  î. ^!>a=^(7)^[^^)^^

^•f^/R^J^ ̂ J^ ̂ H^ t)]

for a not integer, TH = [a], (? = a — [a], and
m /m\ /» __(i2.r) <t^|, ^;|>»=S^)^/^^)^)^

if a is an integer a === m.
The pairing

(12.2) [A£, AS\ < , >a]

is clearly proper, the norms in AS and AS' are admissible and
tor 1 ̂  p < oo AS is in this pairing canonically isomorphic
to the conjugate space of AS.

As indicated in § 11, for every p, l ^ P ^ ^ ? the space
W^ with norm | ~|a,p can be isometrically imbedded in the
space AS, the imbedding Ea,p: W^ ~> AS being given by
the formulas

(12.3) ^) = D,u^), ^ t) = ̂ w.
ueW^, |/|^7n=[a], p=a-[a],

if a is not an integer, and

(12.3') ^{x) == D,u(o;), u e W^, I/I ̂  w,

if a is an integer, a == m.
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Consider now, for ^y, Wj\ e A^ or for t^.j e A^, if a == m
is an integer, the transformation Ta,p defined by the formula

m /m\ r /^(12.4) T^,^{z)=^(m)^\ D^G^z-xW
1=0 \ v / \J'\=l \jJ R"

+f r^.py^-^^,,)^,,)]
J ^ J v ^ H' J

for a not an integer, and

(12.4') T |̂ (z) = S (m) S X" DyG,,(z - o;)^) ̂
^o\ ^ / ^ y l = ^ l / R

for a integer, a = m.
If ueW^ then the reproducing formulas (5.27), (5.29) and

Propositions 10.1 and 10.2 give

(12.5) T^pE^pu(x) == u{x) almost everywhere.

Using propositions 10.1, 10.2, and 10.4 we conclude that
for a not an integer and l^p^°o, Ta,p^y, w^\ e W^ if
[^ ^j} e ̂  an(^ there is a constant C independent of t^y, Wj\
such that

(12.6)
l^.pl^'"'/! la.P^QI^^^IIlAS ^ l^P^OO.

On the other hand if a is an integer, oc, •= m, then from (5.7)
and (6.13) it follows that t^eAf , , implies T^p^y|eW^.,
and there is a constant C independent of |(^| such that

(12.6')
IT^rLp^Cll^llAS. for Kp<oo.

We easily verify that

(12.7) (Ea.pT^)* = E^T,^

in the pairing [AS, AS\ < , >a].
Taking into account (12.5), (12.6), (12.6') and (12.7) we get

THEOREM 12.2. — If either a is not an integer and l^p^ oo,
or OL is an integer and 1 <; p <; oo, then the operator Pa,p = E^nTa n
is a projection ofhfy, onto the subspace Ea,p (W^). In the pairing
(12.2), P^p' is the adjoint operator of Pa,p.
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Pairing (12.2) induces a corresponding pairing of the spaces
W^ and W^,

(12.8) [Wp-, Wp-, ( , ),]
with

(12.9) (u, ̂  == <E,.pU, E^\

tor ueWp', (^eWp,.

Hence, using Theorems 12.1 and 12.2, we get

THEOREM 12.3. — If either a is not an integer and l<lp<<oo
or a is an integer and l<;p<;oo, (Aen m (/^ pairing (12.8)
the space Wp",, is canonically isomorphic to the conjugate space
of W;.

Similar results can be obtained for spaces ^atp. To obtain
an isomorphism of ^atp' with (^atp)* we have to choose a
suitable pairing (the isomorphism obviously depends on
the pairing). The quickest way is to use the isomorphism
G-a+i/2 between ^afp and Wp72 (see theorems 11.4 and 11.5)
and take advantage of the pairing [W^2, W^,2, ( , )i/2] (see
(42.8) and (12.9)). We obtain thus the pairing

(12.10) [̂  ̂ < (G_a+i^, G^a+l/2<

1 . 1 »i - - --

^1/2]

and the theorem

THEOREM 12.4. — For l^p<;oo, ^1pf is canonically
isomorphic to (J^)* in pairing (12.10).

Remark. — In analogy with our procedure in the case of
spaces W^ it would seem more natural to use the following
construction for spaces %a'p. Put ^?= L^R") X L^R" X R", d^).
For \v,w\ e^? define ||̂ , w\\^ = |H|^ + \\w\\i\^^\^ For
a>0, the space ^•F with norm | |a,p.fc, A->a, is then isome-
trically imbedded in ^p by the mapping E^p:

u-> |u, I^A?^.

The spaces ^p and ^ are in natural pairing with scalar
product <^, w { , ^', w ' j > = f^ dx+ ffww'd^t). We
would expect now to find suitable adjoint projections of
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^ onto E^p^) and of ^ onto E^(^). These will be
obtained if we get suitable reproducing formulas for the
^P which would play in the present case the same role
as the formulas (5.27) and (5.29) played in the case of spaces
W^ when we constructed the transformations Ta,p and the
projections Ea.pTa.p. Such reproducing formulas exist; they
require the use of the reproducing (or pseudo-reproducing)
kernel for the space ^a>2 with the norm | |a,2,/c (f01* Wp we
used the reproducing kernel G^{x — y) of the space W? with
norm | ~a,2? this space being essentially the space P01).
The required reproducing kernel is the inverse Fourier trans-

form of (27r)-^(l + q^^with C = ̂ =^C(^ ̂ Al^M201.

The reason why we did not use this approach is that we would
need many properties of this kernel which are not readily
available.



CHAPTER III

PERFECT COMPLETION OF ̂  AND ^a P fc.

§ 13. The spaces P06^ and B°̂ .

In this section we prove the existence of perfect functional
completions of ^p and ^^ which will be denoted P^
and B"^ respectively. We give also a description of the excep-
tional sets of these classes and differentiability properties
(in the ordinary sense) of functions in these classes.

We recall that a functional space 9 rel. 31 is the perfect
completion of a normed functional class S rel. 81, 81 c 81, if 9 is
a functional completion of 9 rel. 81 and ^l is contained in
the exceptional class of any functional completion of 9. A
perfect functional completion, if such exists, is always unique.

We remind the reader that 3^ and ^P^ are formed by
functions in Co00 with norms |u[a,p or |^]a,p,fc ^d their imper-
fect completions (rel. §(o) are W^ and S^ respectively. We
also consider the class Co° with the norm [|u[|a,p as defined
in L4. We define its perfect completion, which will be denoted
P^ (14 is its imperfect completion rel 3lo)-

Since for a non-integer the norm in W^ is equivalent to
the one in flS^ [see Theorem 11.4) we will have

(13.1) B^ == P^ for a non-integer.

Since for integer m and 1 <; p <; oo the norm in Wp1 is
equivalent to the one in L^ (see Theorem 11.1) we will have

(13.2) P^ = P^ for integer m and 1 < p < oo.

It is therefore enough to prove the existence of B^ and
v

P^ in order to have P^ except when a is an integer and
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v
p == 1. We will show that P1'1 exists, but the problem, of

• v .existence of P7"'1 for m integer > 1 remains open.
For p == oo all our incomplete spaces are proper functional

spaces and, as mentioned before, have proper functional
completions denoted by Pct'fw<^ pa1ao< and B<:f"w< contained
in P01'00, P^ and B^ respectively.

The exceptional classes for P^P and B^ will be denoted
Sl̂  and 8°̂  respectively. Since for 0 ̂  a^ << o^ <; 03 we
have L^ => ̂ ^ => L^ (see Theorem 11.1 iii)), the correspon-
ding norms on C^ satisfy ||^(|^,p ̂  ^Ha^fe ̂  ^'ll^lk,? with
positive constants c, c'. Hence

(13.3) P^ D B^ D P^ a^d ^p D §8^ => Sl013^

for 0 ̂  a^ < ag < 03.
Since we will prove the existence of P111, the exceptional

v

class of which will be denoted 3l1'1 we have also

(13.3') p^'1 D p1'1 D p^'1, ai^'1 => si1'1 ^ st '̂1
for 0 ̂  ai < 1 < a^.

v

The existence of P"1'1 for /n an integer > 1 not being proved
as yet, we will use an « almost perfect » completion of S"111

v

which we will denote here (improperly !)P7"'1 and which will
have an exceptional class given by

(13.4) ^mfl=^\^\
a<m

This class is much smaller than 3lo- The existence of a comple-
tion of S '̂1 rel. Sl7"'1 is assured by the fact that there exists
a completion of 9?7"'1 rel. Sl^1 for every a << m (20), hence also
rel. ^mfl (see Prop. 6, § 4 of [1]).

We can therefore write, extending (13.3'),

(13.5) P^11 3 P"111 D P^, ^i11 D ̂ im'l 3 Sl̂ 1

'/or m a^ integer and 0 ^C Qi -< m << a^.

(20) This follows from the fact that there exists a completion rel. SIo» namely W^*,
and that there exists a completion of Co30 with the weaker norm |[M||«,I rel. Sl^c^lo.
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To simplifv some statements we will use the notation Stt^
. v . v .for the exceptional class of P^ even in cases when P^ coin-

cides with P^ or B^ respectively. (However, P^ will be
considered with its own standard norm | |a,p-)

We shall need the following facts from the theory of func-
tional spaces and functional completion.

A normed functional class 9 rel. 31 with the norm || || is
said to have the global majoration property if there is a cons-
tant M ̂  1 such that for every u e 9 there exists a u e 9 such
that Reu{x)^\u{x)\ exc. 81 and \\u\\ ̂  M\\u\\. If M = 1
this property is referred to as the strong majoration property.

Denote by S3 the class of all sets B c E(E — set of definition
of 9) for which there exists a u e= 9 such that \u(x)\ ̂  1
on B exc. 81; let §80- be the class of all countable unions of sets
of SB. For Be SB we define S(B) == inf||u|[, with inf extended
over all u e 9?, \u{x)\ ̂  1 on B exc. 81. For B e §8̂  the capacity
Ci(B) is defined by ^i(B) = inf ^S(B^), the inf being extended
over all JB/^ c S3 such that UB,,=)B.

We have the following propositions :

PROPOSITION A. — If the normed functional class 9 satisfies
the global majoration property and has some functional comple-
tion^ then it has a perfect functional completion relative to the
exceptional class of all sets B with Ci(B) == 0. (c.f. [I], Th. 6.3.).

PROPOSITION B. — Let 3^? î? ^o c ^i? ^e two normed func-
tional classes rel. 81 such that:

1° For every f e= 9^ the norms of f in SQ and î coincide.
2° For every fe^i, there exists a sequence \f^\ c 9?o such

that l im[ |^—/ > | |==0 and lim f^x) = f{x) exc. 81.
n •>- oo n •>• °o

Then 3^ ancl/ ^i have the same functional completions.
The proof of Prop. B is simple and we omit it.
We turn now to the proof of existence of P^, B^,

1 ̂  p << oo, and P1'1. We will notice first that in all our
imperfect completions L£, iB^, and W^, if a function u{x)
belongs to one of them, then so do all regularizations i6p == u*€p
with some fixed regularizing function e and Up converges
strongly to u in the corresponding norm. Furthermore for
a function y e Co° such that ^(x) = i when \x\ ̂  1, (f((7x)u^(x)
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belongs to the same space and converges in norm to u^{x)
when a" \ 0. It follows that we can choose p/c \ 0 and CT^ \ 0
such that ^(o'fc^O^c^) converge in norm to u(x). Moreover,
if u[x) is continuous (p(cr^r)u^(^) will converge pointwise
everywhere to u{x).

To abbreviate, we will denote by 9 any of the imperfect
completions L^, S^ and Wj? and by [| || the corresponding
norm. What has been said above implies

1) A continuous function belonging to 9 must belong to
any functional completion of Co° with norm \\ |[.

We have furthermore
2) If for each u{x) e 9 the function u\x) = \u{x)\ also belongs

to 9 and |[u'[| ̂  ||u[| (21) then Co00 with norm |] |] has a perfect
functional completion rel. to an exceptional class 81 formed by
sets A for which there exists an increasing Cauchy sequence of
positive continuous functions fn e 9 such that fn{^) /^ °° for
xe A.

Proof. — By Prop. B the class 9 of continuous functions
belonging to 9 has the same functional completions as Co00.
Since 9 has the strong maj oration property there exists by
Prop. A a common perfect completion of Co00 and 9. Also the
exceptional sets A for this completion are those of capacity
Ci(A) == 0. Since the sets of the class 81 are obviously excep-
tional for any functional completion it remains to show that
if Ci(A) = 0 then A e 81. In fact, Ci(A) = 0 means that for
every k there exist sets A^ and functions /w e 3ft such that

Ac(jA^, illA^IKS-" and |/̂ (a;)| > 1
n=l '•=1

for xeA.^.
n n

The sequence of functions fn{x) == S 2 l/^^)! shows that
Ac 21. 1=1A=1

THEOREM 13.1 — The perfect completions B^ for 0 <; a< 1
and P^ for 0 < a ̂  1 exist and their exceptional classes
SS^ and ^1P are determined as in Prop. 2).

(21) This is a special form of strong maj oration property.
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For 1̂ , a < 1, we can take the norm Ma.p.i ^nd the
condition in Prop. 2) is obviously satisfied since for

u\x}=\u{x)\, \^u{x)\<\^u{x)\.

The only remaining case of W^ is settled by noticing that
if u{x) is absolutely continuous in any variable x^ on an inter-

val, so is \u(x)\ and —1^(^)1 = —^ almost everywhere
on the interval. ^xk ^xk

Remark 1. — The exceptional class 3l1'1 was investigated
by W. H. Fleming [8] who proved that it is the class of
sets of {n — l)-dimensional Hausdorff measure 0.

We will need the following mean-value theorems for Bessel
potentials, similar to Frostman's theorems for Riesz poten-
tials; the theorems were proved in [2].

For any g{x) ̂  0, g e L^g we will consider the function

u{x) == G^g(x) == f G^x — y}g{y) dy

as defined everywhere by the integral — infinite when the
integral is infinite.

MEAN VALUE THEOREMS. — There exists a constant C
depending only on a and n such that for each sphere S(x, r),
r^l,

1 C^ w—\r Ga^ — y) ̂  ̂  CG^ ~ ^) f^ ^^vz'
l^^? r)\ Js(a;.r)

1 Cn) Tc7——\T ^^(y) ^y ̂  GG^g{x) for every x when
1°(^ r)! J^r)

g e L^c anrf g > 0.
i riii) lim _——- Gag(y) dy = G^g(x) for every x when

r\0 ]b(^, r)\ Js(x,r)

g e L^c and g ̂  0.
iv) lim (e? * Gagr)(^) = lim Gagc(^) ̂  Gag(a;) /br every x when

p\o p \o k

g e L^c ^^^ g ̂  0 where e is any regularizing function,
Our next proposition will settle the question of existence

of P^ and B^ in all the remaining cases.
3) Consider two of our imperfect completions 9 and 9^

such that for some a > 0, Ga î) = ̂  ayirf

C-W=^l|Ga^C||^
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for every fe 84 with a constant C > 0. Suppose further that 84
satisfies the global majoration property in the form

(*) For every f^9^ there exists f e 9^ 5ucA ^Aa^ f'(x) .> \f(x}\
a.e, and ||/''||i ̂  M||/*||i with M independent of f.

Then: 1° ^ /ia5 property (*); 2° Co0 m (/ie norm || || of
^ /ia5 a perfect functional completion 9 rel. 21 where 21 i5 the
class of sets A. for which there exists a function g^9^ ^ ̂ >. 0
with G^g{x) == oo for x e A; 3° 9 is formed by all functions
defined exc. 21 by the integrals j Gy.{x — y)f{y) dy with fe 9^

Proof. — 1° For u e 9 take fe 9^ with u = Gaf, then f by
(*) and put u == G^f. Obviously u >,\u\ and IKII^MC^HI.

2° We show first that 2t is (7-additive. If A = UA^, A/, e 21
and gk is the corresponding function, then g = ̂ "^gh^gk
corresponds to A. Next we show that every A e 21 must be
an exceptional set for any completion of Co30 in the norm of
9. To this effect consider the function g e= 3^, g ̂  0, Gy,g(x) == oo
for x e A. As before, we can find a sequence of functions
9(cr^)(^*Gag) e Co° which converge in norm of 9 to Gy^g.
By Mean-Value Theorem iv) these functions converge point-
wise to Gy,g(x) == oo for x e A.

To finish the proof of 2° and 3° we remark that each

u{x) = f G^{x — y)f{y) dy

in ^ is finite exc. 21, namely outside of the set A where

fG^x—y)f(y)dy= oo

(/'' corresponds to /*by (*)). It follows that in each equivalence
class rel. 2lo of ^ there exists one and only one equivalence
class of ^ rel. 21. Taking "9 with the norm of 9 we see that 9
is a functional class c 9 forming a Banach space isometrically
isomorphic to the one formed by ^$ hence 9 is complete.
Since Co° c 9 (22) it remains only to show that 9 is a functional
space rel. 21. In fact, if \u^\ ^-9 and ||^||->0 we choose

(22) The simplest way to see this is to write for u e Co°, f==G-.y.u==G^—^—A)^
where A is the Laplacian, ( an integer >> a/2.
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^ so that S|KJ|<O). If ^e^ with u^=G^ f^
corresponds to f^ by (*) and g = S/^ then ^(.r) -> 0
outside of the set A where Gy.g{x) = oo.

THEOREM 13.2. — The perfect completions P^ and B^
errî  /or all a > 0 and; p ̂  1. The exceptional classes ^1P

and SB^ are determined as in Prop. 3, 2° 6y taking in case of
P^ the isomorphism Ga: L? —>• LS and in case of B^ the iso-
morphism Ga-Y : ^)p -> ^a>p w^A any Y, 0 < y < a.

A comment should be made in case of B^. We first use
Y <; 1 to be assured of the strong majoration property in
^•p as in Prop. 2). Then by Prop. 3) 1° we obtain the global
majoration property for all '̂p. Obviously, the perfect
completion and its exceptional class are independent of the
choice of y.

Remark 2. — The classes ^'2 = U^2 = SB"'2 were studied
extensively in [2]. Classes ^p for p ̂  2 were investigated
by B. Fuglede [9].

For a function u e= L^g the Lebesgue set is the set of points
x such that there exits a number u^[x) with

1 F
^IsTT"^ lu(2/) ~ UIJ{X)} ̂  = °-r\0 \0[X, r)\ Js(x,r)

The complement Ay of the Lebesgue set is the Lebesgue excep-
tional set (L.-exc. set) of u on which the function u^{x} is not
defined (see the corresponding developments in [3]).

With an arbitrary bounded function g vanishing outside
of a compact and satisfying g dx == 1 define

U^X) =]^jp-"/^^^(y) ̂

wherever the limit exists. The points x where the limit does
not exist form the exceptional set of u9- the corrected function
of u by g. The Lebesgue function u^ serves as a « minimal »
corrected function since every ug is an extension of u^.

u^ix) == u(rc)a.e.

and the L.exc.set An has measure 0.
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The following remark concerning the function u^ is of
importance to us; it is an immediate consequence of the mean
value theorem i) (c.f. [3]).

Remark 3. — a) If u{x) is represented a.e. by the integral
f Gy,(x — y)f(y) dy then the integral represents u^{x) at every

point x where the integral exists and is finite.
b} More generally if u is represented a.e. by the integral

j T)jGy,{x—y)f(y) dy, \j\ <^ a, then the integral represents

^[x) wherever f [Ga-\j\{x — y) + Gy{x — y)}f(y} dy exists.

THEOREM 13.3. — i) If u belongs to L^ or Sf^ then u^ and
every correction u9 belong to P^ or B^ respectively, ii) If
u e W^, m an integer, u^ and every correction ug belong to
the almost perfect completion P7"'1 rel. \\ Sl01'1.

a < m

Proof. — Part i) follows immediately from the Remark 3
and the representation of the functions in perfect comple-
tion. given in Prop. 3) 3°. Part ii) follows from i) since
pm,i ^ ^ ^ p<x.i PQR 77i == 1 it is an open problem if actually

a < m

u^ is in the perfect completion P1'1 and if the L. exc. set is
in ^lrl.

Remark 4. — The corrected functions and the minimal
corrected function were introduced with the idea of recap-
turing the « true » value of a function which might be « incor-
rectly » defined on a set of measure 0. The above theorem
shows that there is some factual background in this heuristic
idea. The corrections most often used are by spherical means
(g = co^/n for |.r| <; 1, == 0 for \x\ > 1) or by regularizations
{g=e).

From now on we consider a (non-singular) integral trans-
formation as defining a function wherever the integrals
occurring exist and are finite. An integral representation of
functions in an imperfect completion 9 will be called perfect
if it actually defines functions in the perfect completion 9.

In the preceding section we considered several representa-
tion formulas which represented almost everywhere, by inte-
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grals, functions in different imperfect completions 9. It is
important to know if these integrals give actually a perfect
representation of the corresponding functions in the perfect
completion 9. This is true in most cases and the key to this
result lies in the following theorem.

THEOREM 13.4 — As in Prop. 3) consider two spaces
9 = Ga^i) where 9 is L^ or ^^P and ̂  is U or ^P with
0 <; £ <; 1. Suppose further that an integral transform K
from some measure space |Z, d^{z)\ (23) to ^R", dy\ transforms
p-ab. regularly L^Z, d(^(z)) into 9^ (24). Then for any function
w{z) e L^Z, rfco(z)) the integral

H ffG^X~y)K{^ y)^) ̂ (^ ^y
represents perfectly a function u(x) e 9 outside of a set of the
corresponding class 31.

Proof. — By Prop. 3) 3° it is enough to show that
f(y) =f\K{z, y}\\w{z)\d^{z) is in 9^ When ^ = LP this
follows from p-ab. regularity of K. When ^ = i^ one has
also that ^["^A^yK^, y) is p-ab. -r. and since

|A,JK(^ 2/)||^|A^K(^ y)|,

the kernel [^A^IK^, y)\ is p-ab. -r. too.
Remark 5. — As examples of formulas to which our theo-

rem applies we note the reproducing formulas (5.21) (especially
as rearranged in (11.12)) (5.25), (5.27), (5.29), inversion for-
mulas (5.22) (rearranged as in (11.12)), (5.26), (5.28), the ope-
rator (12.4) in the projection Ea,pTa,p and many others. Howe-
ver it does not apply to (5.30) or (12.4') since these contain
some singular integral operators.

We pass now to differentiability of functions in our classes.
There are three basic questions in this connection.

I) Existence of distribution-derivatives as functions in the
right classes.

(23) | Z, dco(z) j may be | R7", dz \ or | R7" X R7", d^[x, t) j and so on with dimen-
sion m possibly different from n.

(24) This means when ̂  = ^'P not only that K is p.-a6.-r. but also that the
kernel \t\-^^yK(z, y) is also p.-ab.-r. from j Z, d^(z) \ to j R" X R", d^(y, t) \ .
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We may consider the imperfect completions 9. The right
class for derivatives Dj of functions in 9 is the class of the
same type (L, W or 9^) with the same exponent p and with
order a diminished by |/| units.

a) Classes W^. — These are the best from the present point
of view. Their definition implies that D^.(W^) c W^'l for
all jo, 1 ̂ p r^oo and all / with |/| ̂  a.

b) Classes S^^. — Practically as good as the preceding.
By theorems 11.3 and 11.4 we have with

6 - m i n f 1 a — |/|V ^ = G,_^ - G -̂Î GI,,̂
2 \2 /

and
D^'" = G^^D/W^6 c G^_|,|W^ = ̂ ^

With our definition of B0^ (see § 11) the inclusion is true even
for [ / I = a but B0^ is a functional space only for p ̂  2 and
for p > 2 it contains distributions that are not functions.

c) Classes LS. — Everything is right for 1 <; p <; oo.
For u e L£ we use the representation

D,u(rr) = fG^{x — y) fDfi^y—z)f{z) dz dy

for /*e L^". The inner integral is a singular integral (see (5.7)
and (6.13)). Hence Dy(L£) c LS-|/| for l<p<oo, |/| ̂  a.
But when p == 1, or p === oo, the inclusion is never valid.
We have still obviously D,(L£) c (̂  Lj| = (̂ | WPp for

P<a-|y| p<a- iy i
|/ |<a; also D^c^^l'00. For |/| = a, Dj(L^) contains
distributions which are not functions, whereas

D.(L,J,)c n LL.
l^^<oo

II) Representation of derivatives by differentiation under
integral sign. Perfect representation.

If the function u is represented by one of our integral
transforms, which, by our theorems, puts it in one of the
classes L, W, %, of order a at most, then we cannot apply
Dj to the kernel for |/| ̂  a and obtain still a non-singular
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integral transform. (Sometimes, when |/| ==a we get a singular
integral transform of the type (5.7)). Therefore we will assume
I / I < a. Our considerations are valid also for |/| == 0.

The case 1 <; p < oo. — The only relevant classes are L^
and ^P. If ue^ (or L£) then a.e. u = G^^f and

DjU= Dfi^f

with fe^P, 0 < £ < min(l, a — |/|), (or u = G^f and
DjU == DjGy,*f with j fel / ) ; in both cases the representation
of DjU is perfect in view of Remark 3 b and Theorem 13.3 i).

The case p = 1. — If us ̂ a'1 the results are exactly the
same as in the preceding case.

If u e W?, a an integer, we do not know if the representation
is of the kind treated in Theorem 13.4. However, we know
that DjU e W?^ and the representation is almost perfect,
i.e. valid outside of a set in j | 2tP'1.

g<a—L/i
If u e L^ we know that in general DjU « L^i. However,

if the representation is u = Gyf^ f e L1, we get, in view of
inequality (9.1) that DjU is defined by the integral outside of
a set e ̂ -l^i.

The case p = oo. — In this case all functions in our classes
and all their derivatives of order <; a are continuous and
bounded. The derivatives are represented by the correspon-
ding integrals everywhere.

Ill) Pointwise differentiation.
We will introduce a notion of pointwise derivative, some-

what more restrictive than usual. We will say that u defined
outside of some exceptional set A has a pointwise derivative
in some direction, say the direction of x^ — axis, at the point
y if in some interval y^ — a < x^ < yn + a? a > 0, u(y', x^)
is defined and absolutely continuous and

j[
^^{y) == ̂ -r^^y', yn)

h^O li

exists and is finite. If u e L^c and the so defined D^ u exists
a.e. and Dy; u e L^c then Da; u is the distribution derivative
of u.
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By repeating the operation we obtain any higher order
pointwise derivative DjU. It is clear that it is necessary to
define u much more precisely than exc. 8lo ln order that the
derivatives DyU exist in pointwise sense.

We will consider the perfect completions P^, P^ and
B^ and prove that for u in any one of them the pointwise
derivatives DyU exist for |/| < a outside of a set of the corres-
ponding class ^-l ,̂ ^a-i./i'p Qp ga-iyj.p ^^ belong to
pa-iy|.^ pa-iy(,p ^j ^-Ui'p respectively. The only exceptions
will be p == 1 for all classes and p == oo for P^.

We prove first a few inclusions

(13.6) For 0<a'<a and i- >-1- >-1- —^=^,
P q P n

pa'PcP^, gl^cgt^.

In fact, by Young's inequality (see [2], § 10, Prop. 1)) we
have G^f^ L^ if /•<= LP, hence G^f = G^ * {G^f) e P^^.
The inclusion between exceptional classes follows from the
one between the spaces.

(13.7) For p<q, SI^D^.

It is enough to prove this for bounded sets. Suppose
A c S(0, R) and A e ̂ . It follows from Prop. 3) 2° for the
isomorphism Ga : D7 -> L^, that A c [x: Gyf(x) = oo] for
some /e L^, f^ 0. Let y(x) be the characteristic function
of S(0, R). Put A == /J, /2 = (1 — yJA Then G^ is a regular
analytic function in S(0, R), and hence A c [x: Gy,f^(x) = oo].
Since ^ e I/, (13.7) follows.

LEMMA. — lo Let A e ̂ P {or A e §8°^), a > 1. Then all
straight lines parallel to the X-axis and meeting A form a set
6 3(a-i.p ̂  ^ SB^-l.P).

2° Let A e ̂ l1 .̂ Then all straight lines parallel to the x^-axis
and meeting A form a set of Lebesgue measure 0.

Proof. — 1° By proposition 3) 2° there exists a function
y ^ O such that A = [x: G^(x) == oo] with y e Lp or

A = [x: Ga-ey(^) == oo ] with £ = min a——^ ~ | and y e % .̂
L 2 ^J
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Put 9i(.r', a-n) = /_yf(x', Xn + ^) ̂  for a positive integer
N. We have

ll?i||L" ̂  2N||9|^, |]A^||^ ̂  2N||A,9||,p.
Therefore (pi e L/' or 9^ e ̂ 'P respectively. Put

AW=[X: G,9^)=00]

and AW = [x: G^,(x) = oo] (or AW = [a-: G»_,9i(;r) = oo]
and AW=[x: G^_^(x) == oo]). Then AW^-P and
AWe^-i-P (or 33^ and aB01-!-/' respectively). Consider a
point y t A u AW u AW. By (9.1) we have

^G«(^-y) c[G^-y)+G^(a;-y)]

hence for any h, \h\ < N,

!G»9(y', y» + h) — G,9(y', y,)|
/^ r*h •\

^ ^ Ga '̂ —— ̂  ̂  ~ :rra + T) T^'^ ^) rfT ̂r ^ JRnJo °̂  ^

^ c j n Ga^' ~ ̂ '? yn ~ xn^ ( ^^^ ^n + T) ̂  dx

r ^h "i
+ Ga-l(z/ —— X) ^{X\ Xn + ^) d^ dx\

J^ Jo J
, . , , ^ <Ga?i(y) + G^iyi(y)] < <x>
(or similarly

|Ga-E9(y, yn + h) — G^{y)\ ̂ c[G^^{y) + G^_^(y)] < oo).
It follows that for y outside of the set

00

A u U (A^ u A^) e ̂ -I-P
N=1

(or SS01"1 )̂ the whole straight line parallel to ^-axis and
passing through y lies outside of A.

2° By Prop. 2) there exists an increasing sequence of conti-
nuous positive functions u^ forming a Cauchy sequence in
W^ such that A c [x: u^{x) / oo]. Since the u^ are continuous
we can find a set Ai of measure 0 formed by straight lines
parallel to a^-axis such that

y»/i ^
Uk{^\ X^ + h} —— U^X) == | —— U '̂, Xn + T)

JQ ^n
r) C?T

for all k, h and x outside of A^.
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If there was a set of positive measure of straight lines
parallel to o^-axis and meeting A there would be also a set£ b [p

of positive measure of such lines on which — ^/c(^'? ̂ n^^) f ̂
JO ^71 |

<; IVP for some constant M and all k {since — u^ is a
\ ^

Cauchy sequence in L^). Also in this last set there would
have to be a point y where |^/c(y)| < N for all k. On the
corresponding line we would have

W, y n + A ) | < N + M [ A | ^
and the line would not meet A.

THEOREM 13.5. — 1° The case l<p<oo. If u e P^
(or B )̂ and |/| <; a the pointwise derivative DyU exists exc.
3(a-|,|.p ^ 3ga-L/|.P) ^ belongs to P01-'^ (or B l̂-^); I/1

I / I = a, D^u ea;i5te exc. 8lo ^^ e Lp for u e P^ = P^.
2° TAe case p = 1. If u e P01'1, P^i, or B^, aMd |/| < a, D^u

^i5te ^c. |̂ SIP'1 and belongs to (̂  Pi3'1; 17 | / |===a==l
^ P<a-|y| P<a-|y|

anrf u e P1'1, Dyu e.r^^ e^c. 3lo ^^ belongs to L1. 3° TAe case
p = oo. //• u 6^0Mg5 ^o P01'00, P^", or B^ and \j\ < a, DjU
exists everywhere and belongs to B01-1^00, P01-!^!'00, or B01-1 '̂00

respectively, if \j\ = a, and u e= P01'00, ^e^ DyU î'5te ^c. 8lo
anrf belongs to L°°.

Proof. — 1° Clearly it is enough to consider the case [/| = 1.
Suppose first 1 <; a. We confine ourselves to the case u e B^
(the case u e= P^ is slightly simpler, both are similar to the
case p = 2 treated in [2]). Since u(x) = G^f{x) exc. 33^
with 2s = min(a —1,1) and fe %6^ we can take the set
A e ̂ -^P of straight lines parallel to a^-axis such that

u(x) = G^f(x)

outside of A as in the above Lemma; then we write
\
, (U(X\ Xn + h) —— U{X\ X^))

r ^ l ^== JR" J ~h ̂  Ga-£^'— y^xn ~~ y-W^ y- +T) ̂  dy'
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The integrand is majorated by

c-^ [G,_^'—z/', x^—y^) + G,_i_^'—y, Xn—yn)W, z/n+T).

Introducing

TV, 2/n) == sup J^ |/V, y, + T)| ̂

we check immediately that

\^{y. yn}\ ̂  sup -^-J1' lA^i/', ̂  + T)I ^T.

Applying Hardy-Littlewood inequality we get Je^
hence outside the set where G^J(x) + Ga-e-i^^) = oo and
set A - which form a set in g^-1^ - — u(x) exists and is

/ ^ \ ^ ^ ^n
given by ( — G a . } * f which is a perfect representation of a

V^n /

function in B01"1 .̂
If a == 1, we use a sequence |y^| c Co0 converging in P1^

to u exc. Sl1 .̂ For almost all l ines—©^ converges in L/-
^n

norm. If we assume that S]y^—TA+i|i,p < 00 ^e conver-
gence is dominated by

s ̂ ?t(a;) -^ y*-1^ + ̂ Tl(a;) e Lp?

hence almost everywhere

lim — (u(x', a;n + h) — u{x', a;,))
/l==0 Iv *

= lim lim — (y^r', ^+^)—9^', ^))
fc=oo h=0 ' I

which finishes this part of the proof.
2° We use the preceding part and the inclusions (13.6)

and (13.7) to show that DjU for |/| < a exists exc. (^ Sl?'1
P<a-|y|

and is represented by any of the relevant representation for-
mulas differentiated under the sign of integral; but such a
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differentiated formula in all cases represents a function in
i ^ pP'i, For I/'] === a === 1 and u e P1'1 the proof is as in case 1°.

P<a-|j|

3° This is obvious except when [ / [ == a and ueP01 '00 when
we proceed as in 1°.

§ 14. Restrictions and extensions of functions ofP^^, B .̂

We shall apply here the results of § 10 and § 13 to charac-
terize the restrictions of functions of B^ and P^ to hyper-
planes and extensions of functions of B^ from hyperplanes
to the whole space. Results presented here were obtained in
a somehow less precise form by Besov [5] (for B^^) and Stein
[18] (for P^). The corresponding results for P^ can be
obtained from the ones described here, in view of its inclusion
relations with B°^ and P^ (§ 13).

We begin with the characterization of restrictions of func-
tions of B^.

By Theorem 13.2, if u e B*^ and y is a fixed number,
0 < Y < min (1, a), (25) then u = JG^(x—y)f(y) dy exc.
SS^ with /e %T'P (=Wj) and the norms \f\^p and \u\^
(k > a) are equivalent. For almost all z we have

/•(.) = G^f{z) + f f ^A^-y) ̂ ) ̂ {y,t} •
JwJw \t\'

where w{y, t) == \t\~^^tf(y), and consequently,

(14.1) u(x) = /^ G^{x - y)f(y) dy

+f f '^-^^^y^JR"JR" \H'

the latter formula being valid in view of Theorem 13.4 exc.
SB .̂ Formula 14.1 is suitable for defining restrictions of u
to hyperplanes. As before, for ^'-integer, 0 <; n' <^ n, xf will
denote the projection of the point x onto the hyperplane

(25) We could put Y == — min (1, a).
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^+1 = = • • • = x^ = 0, n" = n — n\ Assume that a > ——,
1 ̂  p ̂  oo and define the restriction of u to R"', ^

(14.2) i.'(»') = /„ G.^(x' - »)/•(») dy

+ f F '̂-y) ,̂,)^ ,̂),
JR"JR» H"

with f and w as in formula (14.1)
Hence u' is the sum of results of integral transformations

of Props. 10.1 and 10.3 adjoint applied to /"eL^R") and
weL^R" X R", d^{y, t)] respectively. By Props. 10.1, 10.3
adjoint, and Remark 2 of § 10, we conclude that vf is defined
a.e. on R"', belongs to L^R"') and |U'|LP(R"') ̂  c\f\^p with a
constant c independent of />. Similarly, the difference quotient

7Z"w\t^ x ) == |^| P A?/u'(^'), /c' > a —-—, is the sum of
P

results of the transformations of Props. 10.2 and 10.4 applied
to /and w respectively, and by Props. 10.2 i), 10.4, and Remark
2 of § 10, it belongs to L^R"' X R71', d^{x^ t[)] and

I^W^cl/^p

with some constant independent of /*. We conclude that
u e I^/^R^) and

(14-3) l^la-n'/p^^clul^fc

with k > a and some constant c independent of u.
It remains to prove that u' e B^^'^R"'). In fact, u(x)

is a pointwise limit outside of A e ̂ 'P of a Cauchy sequence
of continuous functions u^ e ̂ ^(R"). Hence their restric-
tions u^ form by (14.3) a Cauchy sequence of continuous
functions in iB01-71 "^(R^) converging pointwise to u' outside
of A n R 7 1 . We must now prove that A n R"' e ̂ -^^(R71').
In the proof of Prop. 3), 2°, § 13, it was shown that there
exists a sequence |^cC^ Cauchy in ^^(R") such that
Ac [a;: lim Vk{x) = oo]. Their restrictions form a Cauchy
sequence of continuous functions ^ e ̂ -"^(R^) and
on A n R^, ^(a/) -> oo, hence A n R"' e ̂ -^/^(R"'). We
have proved thus
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THEOREM 14.1. — If ueB^R"), a>"-, l^P^oo,
P

then the pointwise restriction u ofuto R"' belongs to B'̂ '/^R'1')
and the restriction mapping is linear and bounded.

We shall prove now that this restriction mapping is a map-
ping onto. Let u\x') e B^R"'). Similarly as in (14.1) we can
write with some y, 0 < y < min (1, ?) (26) and an f e W];(R"')
(with the norms |M'|p,p.&' and \f'\-^,p equivalent),

(14.4) u ' { x ' ) = Q^f{x')

^f^^^'-^-^^^^^
cY R «y R ) - I

exc. SB^ (in R"') where w ' ( y ' , t ' ) -= \t'\-^^f'{y'). Observe,
that by the definition of the kernel G^") we have

p/o4^\
(14.5) G^V) = GyW) = W2 v 2 / G ,̂-(|̂ |)

^t)
= Cn:aG.+nW).

where Ga+n denotes the usual M-dimensional kernel.
Define now the extention u of the function u' by the for-

mula

(14.6) u(x) = cn^, [f^ Gn^x - y')f(y') dy

+ J.- L1 ̂ A^^ ^y. Q W. t')].

Clearly M is analytic outside the hyperplane R"' and
u{x'} == u\x'} exc. SS^ (in R"').

//

Let a == (3 + — and /c be an integer, k > a. Applying

Props. 10.1 adjoint, 10.2 i) adjoint, and Remark 2 of § 10, we
verify that u e L^R^) and H^l]^ ̂  c|u'|p,p^ (/c' > p), with
some constant c independent of u'. Similarly, by
Prop. 10.3 and 10.4 adjoint, the difference quotient
\t\-^u{x) == w{x,t) is in L^[R71 X R71, ^(^,^)] and

(26) We could put Y =- l-min (1, (3).
3



304 N. ARONSZAJN, F. MULLA ET P. SZEPTYCKI

[Mli^u.) ̂  ^l^'lp.p.fc' with c independent of u'. Since (14.6)
is of type (**) of Theorem 13.4, this proves

THEOREM 14.2. — If ^'eB^(R^), P>0, l^p^oo,
then u' can be canonically extended by (14.6) to a function
u e BP^^^R"), the extension mapping being linear and
bounded.

We state now the following theorem concerning spaces
pa.p .

THEOREM 14.3.—-i)J/ lU€=Pa^ a >-n—, n">0, 1 <p<.cc,
P ~

then the restriction u' of u to R71' belongs to B^^R"') the,
restriction mapping being linear and bounded.

ii) If u'csBl^R^), P>0, yi">0, Kp< oo, then u
can be extended to a function u e P?"^IP1P the extension map-
ping being linear and bounded.

Proof. — Let ueP^R"), then by Theorem 13.2,
u^) = YR" G^ — y)f{y) dy

exc. 81°̂ , /' e L^^.
Define

uW=f^G^-y)f{y)dy.

By Prop. 10.1, u' is defined a.e. on R"', belongs to L^R"')
and HU'ULP ̂  ^II/'ULP with a constant c independent of f. On

n
the other hand, by Prop. 10.2 ii) for k > a — — — t h e diffe-
rence quotient P

'̂, t') = l^-^u^') ̂ f^'^'.^^fiy) dy

belongs to LP[R»' X R"', du.\x'', t ' ) ] and | \w'\ \LP^') ̂  c\\f\\ip
with some constant c independent of f. This proves that
u'e&a-!l'lP•P{RR). To show that u' is actually in BIX-'l7^(R»')
we proceed as in the last part of Theorem 14.1

ii) Let w'eBP'^R"') and let u be given by (14.6). Then
u = G^-ipf with

f{x) = c^[f^G^^{x-y')f'(y') dy'

+ L' X- ̂ •••^y^"^ ̂ '{V, t') d^ (y', f')],
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and by Prop. 10.1 adjoint, 10.2 ii) adjoint, and Remark 2
of § 10, f^V and \\f\\^p ̂  c\f\^p. In view of the definition
of f (as in (14.6)) this completes the proof.

v

We mention finally the case of the spaces P7"'1 w-integer,
about which no information can be obtained from the theorems
proved above. E. Gagliardo proved (c.f. [11]) that restrictions
of functions of P^^R") to R1-1 are in L^R71-1). His reasoning
can be extended (by completion of Co°) to prove that restric-
tions of functions of P^R") to R"' are in ^"-^(R^
m — n" > 0, P°'1 == L1.
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