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ON SPACES OF POTENTIALS CONNECTED WITH L? CLASSES
by N. ARONSZAJN, F. MULLA, P. SZEPTYCKI ()

(Lawrence, Kansas)

§ 1. Introduction.

There are in existence many classes introduced in view of
extending the notion of Bessel potentials of L? functions
(cf. [2]; classes P* discussed there were introduced earlier
but the theory was not published in extenso).

The most important appear to be the classes often denoted
by L% (Calderon [6]), W§ (introduced by Gagliardo [11] and
Slobodeckii [14] as the extension of classes W? introduced
by Sobolev for integral values of «) and #*? (the special case
of more general classes introduced by Besov [5]) (3).

These classes are defined essentially as follows (for precise
definitions see § 7).

- L% 1s the class of all Bessel potentials of L? functions, 1.e.
of all functions w of the form u= G,*f, fe L?, where G, is
the Bessel kernel of order a (cf. § 2). The norm in L% is defined
by {[ulla,, = [Iflle-

Wz, for « > 0 1s defined as the class of all functions which
together with all derivatives of order < « (in the sense of
the theory of distributions) are in L? and have finite norm.
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(8) We shall not consider here the classes introduced by Nikolskii [12] as they
are not so closely related to potentials of L? functions. The same applies to the general
classes of Besov.
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In the latter expression the double integrals are to be omitted
for a integer. (For a precise definition of the norm in W&
see § 3).

$or o >0, is defined as the class of all functions of L?
with the finite norm

g = (Il + f

This expression does not give a standard norm in $*»,
However, for all integers k > a the corresponding norms
|t|q,p are equivalent.

In view of different aspects of the theory, each of these
classes has its advantages and disadvantages. From the point

of view of simplicity of properties the class $*P seems to be
the most advantageous; the class L% is the simplest from the
point of view of definition and representations of its elements.
Class W$ is in most cases in a kind of intermediate position
between the other two; for @ notinteger andallp, 1 < p < oo,

W2 coincides with $%?, whereas for « integer 1 < p << oo,
1t coincides with L. The only cases when W% has a somewhat
independent existence are p =1 or p = o and « integer.
These are actually the cases when the information about
W4 is the least precise. For this reason, if we were interested
in studying these classes in the whole space R", there perhaps
wouldn’t be much point in introducing the classes W$%. This
study, however, is conceived as an introduction and help
to the investigation of the corresponding spaces on domains
of the space R" (as was done in the case of Bessel potentials
in [3]). In this connection we immediately come across the
question of defining these classes intrinsically for a domain
D c R™ For W% the answer is immediate. To define W%(D)
it suffices to replace R* by D in all the integrals occurring in
the definition of the norm. Such definition is justified by an
extension theorem asserting the existence of a simultaneous
linear and bounded extension mapping from W%(D) to W%(R")
for a rather general class of domains (?)

Ay
|¢)*

[ |~ dt e, k> .
! )

(3) Some details about this question can be .found in the revised version of (3]
(to appear).
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"As concerns LZ there is no known direct definition of a
corresponding class in a domain D.

In the case of $*? there is an intrinsic definition for a
domain D proposed by Besov in which the integration of
the difference is taken only over the points of D where the
difference is defined. However, it is not known, and probably
not true that for a general domain D the different norms
defining #*P are equivalent. Even if one of them is chosen,
the presence of the higher difference occuring in the norm
makes it very unwieldy to use it in a domain. In the case of
classes W% we know that most of the results of the theory
of Bessel potentials of L? functions can be extended to W%(D)(®).
It is not known and seems difficult to extend these results
to the proposed classes $*? (D). This is the reason why in the
present paper we are stressing the study of the classes Wé.

All the classes under consideration can be considered as
completions of the class C; with corresponding norms (except
for p = ). The classes LZ, W%, $*Pare such completions rela-
tive to the class of sets of Lebesgue measure 0. This approach
avoids some essential difficulties, but in some respects it
is rather inconvenient, especially if we want to speak about
restrictions of these classes to hyperplanes or more general
subsets of R". Clearly this approach does not allow any insight
into pointwise properties of derivatives of functions of the
classes under consideration.

Similarly as was done in the case of Bessel potentials of
L2 functions we introduce the perfect functional completions
of C; with the norms of L%, W3, Rep, To distinguish these
perfect completions from the imperfect completions we use
the symbols P*? for the perfect completion corresponding
to L4 (in analogy to the symbol P* for Bessel potentials of
L? functions), P*? for the perfect completion corresponding
to W% (in analogy to P2 for Bessel potentials intrinsically
introduced on domains) and B*? for the perfect completion
corresponding to $*>.

It is to be noted that for p = 2 all three classes coincide
with P%, and this is the only exponent for which a single class
can be defined combining all the advantages of P*?, Pe? and

Ba..p.
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"All three families of spaces considered here were extensively
investigated by several authors, Besov [b] (see also [12]),
Calderon [6], Gaghardo [11], Slobodeckii [14], Stein [7], [8],
Taibleson [19] and others, (*) and many of the results presented
in this paper were obtained by them. We believe, that in
addition to some new results which we obtain here, the most
significant contribution made is the introduction of the repre-
sentation formulas for the study of the spaces under consi-
deration. The method appears to have possible applications
1n the general study of differential problems.

The basic idea behind the use of representation formulas
lies in the fact that they represent a function as an integral
transform (or a linear combination of such) applied to expres-
sions whose L? norms occur in the definitions of the spaces
under consideration. For example, the representation for-

mula (cf. § 5).

m
u(z) = 120 ljlzl () R" D;-”sz(x —Y) Dju(y) dy
expresses u in terms of all its derivatives of order <X m; the
norm in WP is defined in terms of L? norms of these derlva-
tives.

We give a general method for obtaining such representation
formulas. They are derived from identities written in terms of
Fourier transforms, where they appear as quite elementary;
the translation of these leads to identities in terms of the
original functions, usually in terms of some special integral
transformations. This kind of translation has a well determined
meaning in terms of tempered distributions, but since we are
interested in applying the resulting formulas as bona fide inte-
gral transformations, we have to use a relatively simple theo-
rem (§ 5) giving conditions under which the formulas so
obtained are valid as integral formulas. These considerations
in turn necessitate an analysis of the corresponding integral
transformations in order to decide if these transformations
are absolutely regular.

In § 6 we give criteria for absolute regularity which were
already known for some time to be sufficient (but were not

(%) See [12].
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published). Quite recently E. Gagliardo [11 a] proved them
to be also necessary.

In the introductory chapter we recall the definition of the
kernel G, and some of its properties (§ 2). For functions of
Cs we introduce the standard and approximate norms of

We (§ 3) and the norms | |, of $*7 (§ 4) and investigate
thelr properties; in partlcular we prove the equivalence of,
norms | ., With varying k.

The second chapter deals with the imperfect completions.
In § 5 we describe the formal way of obtaining all our repre-
sentation formulas (among these the reproducing formulas
and inversion formulas for Bessel potentials). § 6 is to be
taken as a brief introduction to the general theory of integral
transformations which leads in particular to the notions of
semiregular, regular, and absolutely regular transformations
and their basic properties. In § 7 we introduce in a precise
way the imperfect completions; in § 8 we prove the continuity
of the standard norm of W% considered as a function of a«. In
§ 9 we derive various auxiliary inequalities concerning the
kernel G,, its derivatives and differences, which are needed
in § 10 where we consider several integral transformations
occuring in our representation formulas and analyze them
from the point of view of properties described in § 6. Almost
all of these transformations turn out to be absolutely regular
which allows us to obtain in § 11 all the equalities, iso-
morphisms and inclusions between the different classes.
We show in particular that there is a well-determined space

B%? of tempered distributions such that %*? = G,B%" for
all @ > 0. In most cases these results were obtained by other
authors by different methods; we were able to make some
of them more precise. In § 12 our representation formulas are

used to represent the spaces W%, %P as projections in suitably
defined L*-spaces; this allows us to prove in a simple way
that W%, W2 and $%° %" are conjugate in suitable pai-
rings.

Chapter III deals with the perfect completions P*?, pae,
and B*?. In § 13 we prove their existence, describe thelr
exceptional classes and show that in almost all cases the
representation formulas introduced before give perfect repre-
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sentations of functions in corresponding perfect completions.
It is shown further that functions in perfect completions have
pointwise defined derivatives (for p = 1 the results are some-
what weaker). It is also shown that for every function in
any of the imperfect completions we can very easily obtain
a corresponding function in the perfect completion by repla-
cing it by the pointwise limit of its regularizations (corrected
function) and taking as its exceptional set the set of all
points where the limit does not exist or is infinite. (Here again

the result is less precise for P*2, a-integer.)

In the last section we prove theorems about restrictions of
functions of our classes to hyperplanes and extensions from
hyperplanes to the whole space. We take advantage of the
fact that our representation formulas give perfect represen-
tations of functions in our classes, and consequently the
pointwise restrictions are defined directly by these formulas.
The results of § 10 provide an immediate verification that
the restrictions so obtained are in suitable classes. The exten-
sions are obtained by again making a suitable use of the
representation formulas.

Throughout this paper we shall consistently use the termi-
nology and results of the theory of functional spaces and func-
tional completion; for details we refer the reader to [1].
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CHAPTER 1

PRELIMINARIES

§ 2. Notations and Bessel Kernels.

The following notations will be used consistently. z, y, 3, ...
will denote points of the n-dimensional Euclidean space
R", |t —y| the Euclidean distance of the points =z, y,
|z} = |#— 0|, &, %, ... points of the dual space, (§, =) the

inner product of the vectors £ and z. The symbol D,
!

for i = {3, ..., 4} will denote the operator -

T 7
lil = 1. f+g will denote the convolution of f and g, f(§) the
Fourier transform of f. We shall denote by 9, the class of
all sets of Lebesgue measure 0.

In order to avoid any possible misunderstanding, we shall
make the following conventions concerning differences. We
shall consider only forward differences. The 'symbol Af,,, will
denote the difference of order k with increment ¢ and initial
point a, taken with respect to a variable z. In. the case when
a function preceeded by the symbol Af,., depends on several
variables, then in the operation of taking the difference, all
variables other than x are treated as parameters. For example,

Avaoti(z, z—y, t) = ula+ 1t a+ t—y, t) — ufa, a— Y; t).

We will use the following abbreviations systematically. If
f is a function of a single variable z (where there is no doubt
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as to the variable with respect to which the difference is
taken) we will write

faiof () = Af of () = ALf.
We will also write

Ak Ak

L,z — Lz

if the difference is applied to a function of several variables,

and
2:af (%) = Af.

if fis a function of a single variable z.
Concerning mixed differences, we mention only the follo-
‘wing evident relations

:‘.a:z z:ﬂg?-’ﬁ{ - Ah ay; Ty ld z
if k, t, a, and = are independent of z,, and ky, ¢, a;, and z,
are independent of z;

t:c :cA zz‘A t,z—Az‘:zAf;a:

if k, t, ky, and ¢, are independent of z.
For « > 0 the Bessel kernel of order «,

Go(z —y) = Ga(lz —yl)

is defined by the formula (c.f. [2]):
1 a—n
21)  Go(l2l) = Ko (l2])l2] *,
2 2 1:2['<—;-> 2
where K, denotes the modified Bessel function of the third
kind of order v.

The same formula could be also used for « << 0; the resulting
function, however, is not locally integrable around the ori-
gin and cannot serve to define an integral convolution ope-
rator. In some considerations it will be convenient to indicate
by G{™ the Bessel kernel of order a on the space R™; thus
G(n) —_ G

The following properties of the kernels G, will be needed
in the sequel (c.f. [2]). .
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The Fourier transform of G, is given by the formula

n

o(f) = (2T *
(2.2) G&%—u+ﬁmm

The kernel G, is positive and analytic except at z = 0;
for x £ 0, G4(z) 1s an entire function of a. The behavior of
G, is described by the following formulas (all representations

being valid uniformly in « for « in any fixed bounded interval).
For |z| - 0:

I n——a> | .
(2.30) Gol@) = ——2 L ja= 4 o (Jo*") if a < n—1.

2eg2[! <—§—>
For n— 1< a<n, we have

1

(2.3b) Guz) = P
2 2 I‘<i> sin gt —%

2

(g1al)” _—

ST ow-

The last formula gives, in particular,

(230 QM%Z;;JRZJP%%ﬁmMW
For a => n, we have ’
(23d) Gyle) = ———
2"1\:_2—[‘(32-(— sin =2 —2— n

I‘<2_:1__+n>—1‘<<2%-|xl>—:n> + O aflog )

2 2 -
f0<a—n<1.
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(2.3e¢) (= 1)’['(“ —n

1 2 r> 1 2r
Gy(z) = el
o 2"1t"/2[‘<_°ﬂ> grgo r! < 2 lxl)
2
1 a—n—2k \
L1 1 ﬁ(? lxl> < Ly \)zk.
sin 2" k![‘<k+1“;n) P(\—”é‘“”) 27
o L)
+ O<|:1c|2 +2 log )

for 2k —1 < a—n < 2k + 1, k-integer, k > 1.

Hence, for « — n = 2k,

(2.3f)  Geipale) =
1

i ) Ak

Formulas (2.3 a)-(2.3 f) actually give the significant terms
of the development of G,(z) around 0; by differentiation they
give the principal part of D,G,(z) at 0.

For |z| - oo,
1 oa—n—1

(2.4) Go(®) ~ o x| % el
2 2% ¢ 2 F<%> |
It follows that G, « L for all a>>0;by (2.2) [ Gu(z) do =1.

Formula (2.2) also implies the following composition property
of the kernel G, : ’

(2.5) Ga* Gg = Goyp
G4(z) being a function of |z| only, define G,(r) = Gq(|z|)
with |z| = r. Then

(26) dGa(r) = —1 r ; Kn—a+2 (7‘),

n+a—2 n
Ty

and hence G,(r) 1s a decreasing function of r.
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It will be convenient to introduce on the space R X R*
the measure pg, 0 < <1 defined by the formula

_ 1 Gzn 26( )
21 dusle, ) = B G0 o — g W

where (see (2.3)),
28 F<B+J2i)
(2.8) Gant2p(0) = M’

and C(n, §) 1s defined by the formula

n+2
9—2f+1 2

[@ + 1)I‘<B +i> sin

——J Ieun*“ dz dz,,
z + |2

(2.9) Cln, B) =

where z' denotes the projection of the point z = (z,, ..., z,)
on the hyperplane z, = 0.
It follows from the assymptotic representations of G, (c.f.

formulas (2.3) and (2.4)) that for « >§, Gu(x) 1s an LP
1

function, i—{——7= 1. We will need an estimate for the

- norm ||Gy}er.
To obtain this estimate we integrate separately over the

regions |z| =1 and |z|] < 1. We use formula (2.4) for |z| > 1
and for |z| < 1 we estimate (°): Gy(z) < x[x|°‘""< + logl |>

if

n 1 wn
<aZn Ga(x)_éx[fl +——(1—a )]
for

n<a<n-+1 and Go(z) < x for a=>n+ 1.

(®) » denotes here a constant {which may differ from one formula to another)
depending only on n.
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We get
(2.10)
" * n
» a___n7>l+llp for ?<°‘§n
1Gallr < P

[(a—n)—p—1B<p+1, _n>]w for n<a<<n+1
L% ‘ | for a=>n+1. -

For ¢ > 0, G,14(x) 1s a continuous function on R In some
instances we shall need an estimate for the difference quotient

k
A} Gn+c(x), k= p, p <o. From (2.2) we have

|¢|?
MGouoz) = (e || T
VAT
and hence
L2k s1n(E ol dE
(2.11) IE L | MG, ()| < (20 - Mp nio
| ' (14 [E2) ®
< (2m)"2k— ’ .—IEI_PT_H;dE= _"2k"9_"—1wnB<E“—;—1L =F >
R"(i + |EI2)T .

§ 3. Standard norm. Approximate norms. Classes 5%P,

In this section we shall define two norms which arise in
connection with the generalization of Bessel potentials (c.f.
[2]). For this purpose we shall need certain properties of
covariant tensors.

Let VO denote the linear space of all covariant tensors
of order I 1e. of all l-linear complex valued forms
AO® (01, 95, ..., v,) defined on the n-dimensional vector space
R* (of contravariant vectors). In every fixed coordinate
system there is a 1-1 correspondence between tensors A®
and n'-tuples of their components given by the formula

AO(py, ... o) = AP 9h, oL, 0,

.....
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where (¢5, ..., ¢;) denote the components of the vector
v, s=1, ..., | and summation from 1 to n is understood
over the repeated indices.

Let X denote the surface of the unit sphere in the space
R*, ®, its area, and X' its [-th cartesian power; let
0y = (8, ..., 0) denote an arbitrary point of X

'Ojl—_—i,].= 1,...,n and d0(1)=d01...d9,

the element of volume of X
Define now for A® e V@ and 1 < p << o the standard norm

nl
34 A= 57 [ Ak di,

and the approximate norm (dependent for p == 2 on the choice
of the system of coordinates)

(3.1%) |[AOTP = Z |[ALlP.
For p= o we put as usual |AO| = sup A9(|0,)| and
AT, = sup |A{L.

For any A(’) B® e VO we define the corresponding standard
and approximate scalar products:

! n —
;lz J o AO(B)BO(0p) Oy,

n

(3.2) (A, BY) =

(3.2)) (A®, BOT) =3, APBP.

Observe that by the orthogonality relation f 00/ db = —2 9
(where 6 = (61, ..., 06") we get from (3.2)

(3.3) (A(’), B®) = (A®, BO").
We shall now deduce some inequalities between the norms
| |pand |

Expanding A®(§,) in (3.1) in terms of components, using

Holder inequality and the fact that < i |0‘|”>llp 1s a decreasing
function of p we get s=1

(34) A <nPAO], i p<2
AC, < niEACT, i p>=2

(for p =2, |A%, = A0, by (3.3)).
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~ On the other hand, for every A® e VO there exists a BO e VO,
B® =0 and such that (A®, B®") =]A®[|B®,. Taking
into account (3.3), applying Hélder inequality and using (3.4)
we finally obtain

(3.5) n~'2|AGT], < |AY, < nllF AT, p=2,
n=1PIAGT, < [AO|, < nl2AGT, p=2.

Denote now for any ueCy, by V'u(z), the (symmetric)
tensor of all derivatives of order ! of u at the point z, and
define for 1< p< o and «a=>0, m=[a], f =a—m,
0 < B < 1, the standard norm of u of order «,

(3.6) |ula., =z§mo (’;‘><3>'[ |V u(x)|E d

+]RJ” VI :v:yT‘; (y):d#p ( y)]~

If « is an integer, § = 0, we omit in (3.6) the double integral
(the measure du, = 0),

, _aim /l\l“vt ,
ulte = 3(7)(5 ) |19 ut@)l de.
Similarly, we define for u € Cg°, the approzimate norm of order «,
38) W= (T)(5) [ [, IV‘ (@) s do
I_

+fRJR,. Vle) - on (yw:dw(w, y)]-

lac —yl?
If « 1s an integer, § = 0, the double integral is to be omitted.
For p = oo the norms are given by

Viu(z)— Viuy)| |

(3.7 lu|g,. = max ;sup|V’u(x)|m, sup
o

stem( | le—ylf LY
(3.7
3 - i \
|u]q,. = max 3sup|V’u(x)~|w,s up Vu() v u(y)‘f €
osinl s e L
When « = m is an integer, the norms are given by
(3-8) |ulm - = maxyﬂ{sup[V‘ ( )|°°;,
|U [, = max {sup|V’ ) ]t

It

Clearly, |ulo,. = |u o, = ||ullr=
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We shall denote by F*?, o >0, 1 < p < oo the class of
all functions u e Cy with the standard norm |ul,,,.

For p = 2, 1t is easy to verify (using (3.3)) that both of
the norms | |, and | Ja.2 are equal and coincide with the
standard norm | | 1n the space P* of Bessel potentials.
The norm | |, i1s continuous in a; i1t will be proved in the
sequel that so is the standard norm | |,,. The latter is one
of the main reasons for introducing the standard norm (the
other being its independence of the choice of a coordinate
system). For technical reasons, however, in most of the consi-
derations we shall use the approximate norm | |, » this
being justified by the following inequalities which are imme-
diate consequences of (3.5):

3) (7 W Ter Slidey S Te, for p <2,
. U o, S |Uap S n™uly, for p=2.

We shall now describe some properties of the classes F*?
which follow directly from the definition. It is easy to see that
%= 1s a proper functional space whose perfect completion,
in the case when a is not an integer, is the proper functional
space of all functions of C™® which vanish at oo with all
their derivatives of order < m. (C™P® denotes the class of
all functions in C™ satisfying together with all derivatives up
to order m uniform Hélder condition with exponent §.) This
space will be denoted by Pe<,

For a« integer, Po=< is the space of all the functions u of
C* vanishing at o together with all derivatives of order < a.

For 1 < p << o0, P is a proper normed functional class;
it is a proper functional space if « > n/p, p >1 and a« > n,
p = 1. In all remaining cases it 1s an (incomplete) functional
space rel. A,.

§ 4. Classes %Pk,

We shall define in this section the normed functional classes
#erk which, by completion, will lead to the spaces B*?
mentioned in the Introduction.
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Define for u € C*, k>0 an integer, 0l a<<kand 1 < p < oo,

(61) el = e + [ [ SR ao ar

i -
tUllLP

= Hqu‘p + f ,tln-}-pa dt7

and for p = oo,

(4.2) ”u”amk = max?sgp lu(z)|, S.:,ltp L&lﬂ}ng

1

Denote by *P* the class of all functions u € C;° with the norm

{124l p.5-
We shall first prove that if &k, k > «, then the norms
Il llepk and || |lapk are equivalent.

Lemma 4.1. — Let k, ky, be two integers, 0 < a < k<
and 1 < p < . Then for every ueCy.

k—k, Bﬁ)
2 ”u”aphénu”apkg(i 2a—k) (k) 21

Proor. — The first inequality follows immediately from
the remark that

8] = [Mt—*atu(a)) <5 (7 )bbu(e + L)

To prove the second inequality consider first the case when
ky =k + 1. We use the following simple identity,
1 1
(4.3) Ay — 5 Ay = —
oy 2 ,%,
(4.3) with N =1 applied to the function ALA¥—'-1y(z),
01 k—1, yields

2-7A},

ALt — o AN = L S ()M 4 o).

941

Adding together the above identities for [ = 0,1, ..., k—1,
and dividing both sides of the obtained identity by [t|* we get

fu(z) 1 Adu(z) _ 153 AfHu(z + st)
e = 5 L0 e
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Taking L? norms of both sides of the last identity, with
dx dt
o
norms under translations in z and homotetic transformations

in t (obvious modification for p = ®):

k
I1ulla, .k ém [[ulla, p, k+1-

the measure we get, in view of the invariance of these

The result follows now by induction if we observe that

PHh(k+1) ... (y—1) _ 94—+ Tk
0 — 29 (1 — 2290k TT (1 — 279

7.2*%[(ky)
(1—2=4I'(k)

For p = o, the class $*>* is a proper functional space.
Its (perfect) functional completion will be denoted B*><.
(By Lemma, 4.1, B**< is independent of k.)

. Observe that for 1 < p < o, $*7* is a proper normed
functional class and a functional space rel. Y,.

<



CHAPTER 11

IMPERFECT COMPLETIONS OF %P AND %Pk,

§ 5. Some properties of distributions and representation formulas.

We will use the theory of distributions for two purposes :
first, to define in the quickest way imperfect completions of
the classes 32 and $* 7 * rel. Y, (sets of Lebesgue measure 0),
and secondly, to establish different representation formulas
(such as inversion formulas, reproducing formulas, etc.)
which will serve as the main tools in our investigations. The
easiest way to obtain these formulas is to write them for
tempered distributions (%) in terms of their Fourier transforms;
they are obtained then by standard integration techniques.
Then, by applying the inverse Fourier transforms we obtain
the desired formulas in the form of « integral transforms ».
It remains to be shown that when the distribution 1s a func-
tion of some class, its integral transform is also a function of
a corresponding class and that this transform is given by
the usual Lebesgue integration, or, in some cases, by singular
integrals.

For relevant facts of the theory of distributions we refer
to L. Schwartz [13] (we use here the traditional definition of
Fourier transform which accounts for some differences in
our formulas as compared to [13]). As usual ¥ denotes the
countably normed space of functions of rapid decrease with
norms given by

(5.1) [1¥llm. 10 = sup(1 + |aI*)|Dig ()],
lij<m

(®) Our considerations are still valid for more general classes of distributions,
but the greater generality will not be needed in the present paper.
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¥’ is the space of tempered distributions, u(y) denotes the
value of ued’ at ged.

We use also the derivatives D,;, the differences A¥ and the
Fourier transform u for ue ¥’

. In the following formulas ue Y’ and ¢ is a distribution of
rapid decrease (i.e. Fourier transform of a C” function of
slow increase).

A

(5.2) (us9)" = (2m)"200,
(5.3) (Dju)” = (i&)Yu = (¢5,) (iEj,)A S,

(5.4) (Afu(2)"” = (649 —1)* k),

(5.5)  (Ga(®)"” = (2m)~™*(1 + |E)~2,  a >0,
(5.6) (DGa(2)” = (2m)™2(@EY (1 + [E[*)~*2, a>0.

It should be noted that D;Gq(z)) is a function belonging
to L! for |j| < . For |j| = «, it should not be considered as
a function but as a distribution-even though for z =40, the
derivative in the usual sense exists and is an analytic function
decreasing exponentially at infinity. We denote this analytic
function by DjG,(z). It will be used only for |j| = a. In
this case the distribution derivative D;G,(z) for 9 € can be
written in terms of a singular integral :

67) [ DGy(e) sla) de = Ag(0)

+lim [ DiGy(a) 9(a) dz,
ENO V [z|>¢
where A; is a constant determined as follows. Denote by
Joy, k=1, ..., n, the number of differentiations with respect
to z, in Dy; thus |j| =ju 4+ -+ 4+ jw- Then we have

A; =0 if at least one of the ju is odd,
[‘ ].511 + 1 r jn + 1

2(— q)vre 2 o 2

o, [‘<n _; Il‘)

(5.7 A=

if all the ju, are even. . ~
Let T, be a linear operator T,: ¥ -9 depending on a
parameter ¢ varyling over some measure space 6. We assume
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that T, is continuous in J for almost every t € G. Then for almost
every te® the operator

(5.8) (Tru)(¢) = u(T. 9)

is well defined and T; : 9’ — 9’. Under the Fourier transform 9
T, and T{ give rise to the operators

(5.9) T, = 9T, TFr= 9T,
and for every gef and ue d’,

(5.10) (To)" =Tg, (Trw)" =Tra

We will deal with operators of the form

(5.11) Te = f%_ Todt 9e9,
and correspondingly we will write

(5.12) Ty = fe; Tiudt ue,

the last integral being defined by
(5.13) (T*u)(¢) = w(Te).
The following assumptions will be made

A) For every ¢ € 4 the integral /;; T.p(z) dt exists as a Lebesgue

integral for every x and represents a function of 9. Moreover,

the operator (5.11) defined by the formula (T¢)(z) f Teo(z) dt

is continuous on 9’
B) For every ¢ € $ the integral fi& |Tig(x)| dt exists for almost

all z and as a function of x belongs to L}(R") n L*(R").
By virtue of hypotheses (A) and (B) we have the formula

(6.14)  T¢) = f%_ T3(E) dt,  foreveryped.
The fo]lowingistatement holds.

Taeorem b.1. — Let u e L? for some 1 < p < o and assume
that T{ue Y’ satisfies the following conditions :

(5.15) tu ts a function for almost every t
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(5.16) fi; |TFu(z)| dt exists in Lebesgue sense for almost every x
and as function of z is locally integrable.

Then T*u as defined by (5.13) is a function and

(5.17) T*u(z) = [Tiu(z) dt

almost everywhere.

By our assumption f Ti{u(z) dt is a function and the only
thing to prove is that it is equal to T*u as defined by (5.13).
In fact if g e Cy, then in view of (B), (5.16) and Fubini’s

theorem,
S ([ Tiu(a) dt) ¢(a) dz = Sl for w@) Tip(a) da] de = T*u(g).

Note that the assumption we L? guarantees that

(Trw) (9) = w(Te) = [, u(z)Tp(2) do.

We shall now proceed according to the following scheme. In
terms of Fourier transforms we will write identities which can be

proved by standard methods in the form T = f T, de. T, will
be multiplication operators by functions of C* of slow increase
and the same will be true of T. The same functions will give

us the operators T* and T* acting on ¥'. We will then know
explicitly the operators T; and T* as convolution operators;
in most cases T; will be a convolution with a function of
rapid decrease, at worst it will be a singular integral convolu-
tion operator. In every case the verification of conditions
(A) and (B) will be immediate. The verification of assump-
tions (5.15) and (5.16) of our theorem will obviously depend
on the function u and we will have to rely on results of forth-
coming sections on integral transformations and inequalities
to check on the validity of these assumptions for u belonging
to different classes of functions in which we are interested.

The formulas we list below are valid under the tacit assump-
tion that (5.15) and (5.16) hold.

The variables ¢, £ are n-dimensional vectors, &, is real, k is
a positive integer, 0 << 8 < k. Consider the expression
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(5.18)

w i E) 412k
Linp(8) = f_ - le Hﬂz@ dt dty
(6 + |¢F) *

® |gite — 1|2k d
B f_wleTwTﬁldt" f . t wrieap (1 EPP
1+ 17 *
(— 1)k+l

Cln + 1, B)AY_wls|®(1 + [E[7)P.

2

On the other hand

w _n+1-+ 20
Ikm-ﬁ(E) =f.mﬁ" (2 + Itlz) 2 [eiz,<ei<:,2)_1) + (eu,_i)]k
[e—ito(e_i(t,s)_i) + (e-—it,_i)]k dto dt

. n+12+2_3 k k k Kt
&+t =t
= [T s (9)(5)e
u,, 1)}:_1 ( —ito 1)k—l.(ei(t,E)___ 1)l(e—i(t,§)_ 1)1, dto dt

kT k\ [k )
- R™! 12—-0< l >< A > - 1= (A“’? o "l;illzﬂG"+1+25)
W= | |_,._2g3 (et(t, H___ 1) (e—:(t, H_ 1)1, dt.

The last expression is obtained by integration with respect
to t,. (For a similar reasoning, see[2].)

Changing the kernel G{2;.,3 to the n-dimensional kernel,
we obtain finally

619 1= [ cop S0 ) ()
AT Plua=e (ex!(nz>__1)l(e—"<"5>—-1)"

(A:"(Ti—k)l‘zGZn-}-%ﬁ) (1 + tEIz)p |tln+2p dt‘,

where
(65.20) Cyn, ) = =1

2

Of the three factors depending on 3 in (5.20), the first is
a positive decreasing function of §§ for all B = 0. The second
has simple poles for integers § = 0 and no zeros on the posi-
tive J-axis. The third is an entire function and has only simple
zeros on the interval 0 < <k at integers 3, 0 < B < k.

Gant28(0) C(n, B) AT s |2,
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The resulting product Cy(n, ) i1s therefore, for 0 < f§ <k,
a strictly positive analytic function with simple poles at 0

and k.

If we consider the integrand in (5.19) as an operator of

multiplication T,, thus T =1, we obtain by inverse Fourier
transform the reproducing formula

521) =gy o, 2,005 )0

2k —|—14
A_u_‘l—tl%‘.f;ﬂ@ (A2,Gag) * (Afu) dt.

Multiplication of both sides of the identity (5.19) by
(14 &)*2, 0<<aXf, leads to an inversion formula for
the operator G,. We denote the inverse operator of G, by
G_,, and we get

(5.22) G_qu— ﬁ_ﬁ) ﬁ,é( ’; )(l’:) (1)t

2k—1—14
M’T—‘ﬁ:—(g;ﬂ@ (A’Lngﬁ—a) * (Aiu) dt.

Especially simple and interesting is the case when k = 1.
Then for 0 < B < 1:

. 1
OB =

+ Ganpop(t) (€40 — 1) (7D —1)

o s
C(n, B)Ganrap(0) Jun  [t+2P (1 + [Ep)P

which can be transformed into the reproducing formula

(5.24) u = Gypru

1 Gzn+2ﬁ(t) WAy .
T, BGarsasl0) ﬁ (s (A-Gop)e(A) dt

Formula (5.24) can also be written in the form

e ) Gygls — 3] ule) — uly)]
" (" [Gaglz — @) — Gap(z — y)] [ul(z) — uly
T ./nn]nn |z — yp®

dpg(z, y)-
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The corresponding inversion formula for 0 <a B <1 is
(5.26) _au( z) = Gzp__a.u(z)

Multiplying (5.23) by 1 = 0 +lEF 120('") 3 (— 1) (EY(EY,

where m is an integer, m = O and transformlng the result we
get, with a =m 4§

(5.27) u(z) :éo 3} fre DPGaslz — @)Dyua) da
1”Gaa (2 — 2) — Dj”Gya(z — y)] [Dju(z) — Dyu(y)]
P P ’
dug(z, y)}

and the corresponding inversion formula for y < a=m + f3,

(5.28) G_yu(z) = 3 (1) 3 § [ DPGauy(z — )Dyu(a) da

=0 ul—
[D}”Geoy(2— ) — Dj”Gya—y(2—y)] [Dju(x) — Dju(y)]
+ f . f S gr— ;

dug(z, y)}.

At the end we include the case when « = m is an integer.

1 ) s
_— m — 1DY8)(z8)’
TS ® 3 0@
mentioned before we then get the following reproducing
formula

From the identity 1 =

7 3

(M S [ D Can(z — 2)Du(z) da,

(5.29) wu(z) = (1) 2,

l

and the corresponding inversion formula

(5.30) G_pu(z) = 3 () 3 [DfGu(z — 2)Du(z) da.
=0 lil l
In the last formula the integrals corresponding to the values
|/| = m are understood as singular integrals as explained by

formula (5.7).
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§ 6. Regular and singular integral transformations.

‘The purpose of this section is to introduce a terminology
concerning integral transformations which will be used throu-
ghout this paper.

Let §{X,}, { Y,v} be measure spaces; denote L?(X)=L"(X, u),
L(Y) = L*(Y, v) (). u and ¢ will generically denote measu-
rable functions in X and Y respectively. Let K(z, y) be a
complex valued function defined on X and Y measurable in
X X Y. K(z, y) gives rise to a formal integral transformation
defined by the formula

6.4)  oly) = Kuly) = [, K(z, y) u(z) du(a)

It 1s defined for all u for which the integral (6.1) exists in
Lebesgue sense and is finite for almost all y. Denote by Dx
the set of all such u. We say that for u € D¢ the formal integral
transformation K is properly defined.

An integral transformation K (or kernel K(z, y)) 1s p-semi-
regular (p-s. r.) if the subspace Dk n LP(X) is dense in L?(X)
and is transformed boundedly into L?(Y), i.e. that there is
a constant M, — the p-bound of K — such that

|| Kl |epey < ”u”L"(X) :

A p-s. r. operator K can be extended by continuity to
a unique bounded transformation K, on the whole of L?(X),
K,(L*(X)) e L7 (Y). K, will be called the p-extension of K.

The transformation (or kernel) is p-regular (p-r.) if
L?(X)cDx and K(L#(X)) < LP(Y). For p-regularity of K

1t 1s necessary and sufficient that
62 [ ([ K yuta dMO()w)<QMM%w
_ + _7 =1,
P P

for any ue L?(X), v e LF(Y), the integrals being taken in the
indicated order, C being a constant independent of u and .

(7) All measures will be assumed to be o-finite.
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The smallest such constant C 1s = M,. p-regularity im-
plies p-semi-regularity. K 1s p-absolutely-regular (p.ab.r.)
if |[K(z, y)| 1s regular. This 1s equivalent to the property

a

6.3) || K@ yulz)oly) dul@) dly)| < Mllullslslhr,

for any ue L#(X), ve LP(Y). Obviously, absolute regularity
implies regularity. On the other hand, for non-negative ker-
nels, p-absolute regularity is equivalent to p-semi-regularity.
If a kernel K is p-s.r., p-r. or p-ab.r. for all p, 1 < p < oo,
we call it semiregular, regular, or absolutely regular, respec-
tively.
We have the following theorem.

Treorem 6.1. — If the transformation j;( K(z, y)u(z) duw(z) s
d

p-ab. r. then the adjoint transformation /Y K(z, y)o(y) dv(y) is

p’-ab.r..
The proof is 1mmediate by (6.3).

Taeorem 6.2. — Let K be a p-ab. r. transformation of
Lr(X,dw) into LP(Y, dv) and M be the p-bound of |K(z, y)|.
Consider, moreover, the measures dp,(r) = ¢(z) du(z) and
dvi(y) = Y(y) dv(y) where ¢ and | are measurable non-negative
functions on X and Y respectively, satisfying ¢(z) < A and
Y(y) < B. Then K s p-ab.r. from LX(X, dyu,) to LP(Y, dv)
with bound not exceeding MAYPBUP.

Proof. Observe that for u, e LP(X, dy), ¢ € LP(Y, dv)
we have
(g ul“L"<x,dm = [|u| |LP(X.dp.)
and
[ orep cv,an = (191l le v av-

Hence for u, e L(X,dp,), v; € L?(Y, dv;) we have

S foex 1K@, )l (@)llos()] dita(2) dvs ()
< S x| K (@, 9 9@ ()P s ()] ()P0 () [ (7 dis () ()
< MAYPBYE [uy | |uox, aul 191117 (x,av,-

We are mainly interested in regular integral transforms since
we need a pointwise representation of ¢(y) by the integral
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(6.1) for all ue L?(X). There are no known direct properties
of the kernel K(z, y) characterizing its p-regularity. For
p.-ab.r. such properties are well known in the two extreme
cases p=1 and p= o :
(6.4)
Kis1-ab.r. ¢=>/;|K(x, y)| dv(y) < A = const. << wa.e.inz.
(6.4")
K is w0-ab.r. <=>/x |K(z, y)| di(x) < B = const. << wa.e. iny.
For other values of p the next theorem gives suflicient

conditions for p-ab.r.. Quite recently these conditions were
proved by E. Gaglardo [11 a] to be also necessary.

Taeorem 6.3. — Let 1 < p << o and assume that there
exist two non-negative measurable kernels K, and K, such that
(6.5) |K(z, y)| = Ki(2, y)""Ky(z, y)'*
and
(6.6) ) Kz y) dly) <A aedp
Y

jn Ky(z, y) du(z) < B a.e. dv.
X

Then K is p-ab.r. with bound not exceeding AYPBVP.

Proof. — For ueL?(X) and ¢e LP(Y), by applying (6.5),
Hélder inequality and (6.6), we get

[ 1@l 1Kz, 9l o)l dsa) dvty)
<[ [ [ @l Kutz, y) dua) dviy) ]

~ ’ 1/p’
[ [ Kale, 3) 1oyl din(e) dviy)|
< AVBYu [l o

Depending on the nature of the kernel K there are several
methods by which we may find kernels K, and K, that show
K to be p-ab.r.. We describe two of these methods which will
be used in the sequel.
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Method 1. — We find two measurable functions ¢(z) and
Y(y), positive and finite a.e., and put

(6.7) Ki(z, y) = |K(=, y)| Y(y)/3(=)"", ,
Ks(z, y) = [K(z, y)l o(2)/d(y)"".

The functions ¢(z) and {(y) will be called factors. (6.6) now
translates into the following conditions for the factors:

(6.8) fy |K(z, y)|4(y) d(y) < Asp(z)"7,

f X |K(z, y)|o(z) du(z) < B(y)™.

Remark 1. — The result of E. Gagliardo mentioned before
states that the existence of factors ¢(z) and {(z) satisfying
(6.8) 1s also necessary in order that K be p-absolutely regular.
More precisely, it 1s proved that if K is absolutely regular
and M is the p-bound of |K(z,y)| it is possible to find
¢e LX) and ¢ eLP(Y) such that (6.8) is satisfied with
A=B=M-+ ¢ for any ¢ > 0.

Method I1. — We find a representation of K(z, y) as a compo-
sition of two kernels ®(z, z) and ¥(z, y),

(6.9) Kz, y) = [ (a, 9¥(z ) doa)

JIZ

where Z i1s a measure space with measure dw(z). We find
further an « inner factor » A(z), 0 << A(z) << o0 a.e. such that

(6.10)

Ki(z, ) = [ [0, DNEAT( y)l dofz) < o ae.ins,y,
Ka(a, 9) = [ 10, DG *¥(5 ) dofs) < ®  ac. ina,y.
Thus (6.5) is satisfied. The conditions (6.6) now take the form

(6.11)

ﬁ/; [(I)(:E, z)| A=) ¥ (3, y)| do(z) dv(y) < A a.e. in z,
ﬁ ﬁl(b(x, 2)|A(z)?|¥(z, y)| do(z) dp(z) < B  ae.in y.
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It 1s possible to combine the two methods as well as to
devise others adapted to special kinds of kernels.

In most cases we will deal with p-absolutely regular kernels.
In a few cases, however, we will meet with p-semi-regular
kernels; it is therefore of interest to give some information
about them. We start with some general remarks.

The subspace Dx of measurable functions u(z) for which
the integral transform (Ku)(y) is properly defined has the
property that with each u(z) it contains all functions u,(z)
majorated by u, i.e. such that |u,(z)| < |u(x)|a.e.

By a simple measure-theoretic argument one proves that
there exists a measurable set A <X, unique up to sets of
measure 0, which is the largest among all those sets on which
all functions u € D¢ vanish a.e.. If A = X we may say that K
1s singular (such are, for instance, the singular operators
of Calderon-Zygmund type); in this case 9 reduces to the
function 0. If w(X—A) >0, but also p(A) >0 we may
call K partly-singular; in this case, if we replace X by A, the
transformation becomes completely singular. Of interest
here is the case w(A) = 0, 1.e. essentially A = 0; in this case
we call K non-singular (8). A p-semi-regular kernel is certainly
non-singular.

The same argument which leads to the existence of the set
A shows that for a non-singular K there exists a sequence of
measurable sets B, ¢t =1, 2, ... such that

(6.12) B,eB,y; X, uB) < o, P'<X — U Bi> = 0,

the characteristic function of each B, belongs to Dk.

A simple function is a measurable function taking only a
finite number of values and vanishing outside of a set of
finite measure. For every function u(z), measurable and finite
a.e. a classical standard procedure allows to construct a
sequence of simple functions u;(z) such that lim u;(z) = u(x)
and |u;(z)] < |u(z)| a.e.. These functions can be chosen so
that each uj(z) vanishes outside some B;, and hence so that
each u;e Dx. In addition, if ue L?(X) for some p << o, then
hm [ju — uflrr = 0.

() The same terminology is used in [21] in a different meaning.
13
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Denote by 9k the class of all simple functions in Pg. The
last remark leads to the following statements.

Tueorem 6.4. — A non-singular K is p-semi-regular for
p < o if and only if K(Dk) ¢ LP(Y) and ||Kul|revy = M||u||urxy for
ueDg. K is p-regular if in addition, L?(X) c Dg.

In fact, the above remark shows that Px c Dx n L?(X) 1s
dense in L?(X) and the continuous extension of K from @
to L?(X) coincides with K on D¢ n L?(X) since (Ku;)(y) converges
by dominated convergence to (Ku)(y) for every y where

S 1K, p)llu()| du(z) < w.

Tueorem 6.4". — A non-singular K is oo-semi-regular if
and only if the characteristic function y of X belongs to D,
K®x) c L*(Y) and [[Kulliewy < MlJulli=y for ueDx. The
oo-regularity is equwalent to oo-semi-regularity.

In fact, if L”(X)n9k 1s dense in L*(X), there must be

a ugePx with |y — ugllem < —;«, hence |uy(z)| >—é—a.e.

and y € Y. On the other hand y € Dx implies L*(X) ¢ Dg (hence
the last part of the theorem) and the boundedness of K on
L»(X) follows by dominated convergence:

(Ku)(y) = (Ku)(y)a.e. in y,
| (Kw))(y)] = M sup uy()| < Msup |u(z)],

hence sup |(Ku)(y)| < Msup |u(z)].

Remark 2. — In Theorems 6.4 and 6.4, the class Dk can be
replaced by other subspaces of Dg n LP(X) as long as for each
u € Dg n LP(X) they contain a sequence i, converging pointwise
a.e. to u, dominated by some u’ € D, and such that ||u ”LP(X)———

¢ depending on u but not on j. For instance, we may take the
class of simple functions vanishing outside of some of the sets
B; (v varying with the function). Another instance of such
a change may be of interest if X and Y are euclidean spaces
where we would like to replace simple functions by C;*-func-
tions. This is possible if the sets B; can be chosen to be
open.
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We turn now to interpolation theorems — the Riesz —
Thorin convexity theorem [20].

Let 1< p o0, 1S p <0, 0561,
1/py = (1—9)/po+°/p1-

Tueorewm 6.5. Let K be non-singular. If K is p;-semi-regular
(or pysr., or piab.-r.) for 1 = 0,1, then K s py-semi-regular
(or py-r., or pg-ab.-r.) for 0 < 6 << 1. The pg-bound M"e satisfies
M, < MM,

Proof. — 10 Semi-regularity. By Theorems 6.4 and 6.4
the question reduces to be boundedness on the subspace of
simple functions 9Dg, hence Thorin’s proof applies.

20 Regularity. Since LP1(X)c Lk (X) -+ L~ (X), the result
follows from semi-regularity.

3° Absolute Regulanty Use 1° for |K(z, y)| and then the
fact that for positive kernels ab.-r. is equlvalent to s.-r.. If
pi-ab.-r. 1s established by the kernels K;; and K,; satisfying
(6.5) and (6.6) then pg-ab.-r. can be established in similar
fashion by kernels

K, = K%—e)pe/noK%za/m, K, = K—0riirg KOpilrt,
Remark 3. — The extension of the convexity theorem, due

to E. M. Stein (see [15] and [16]), to the case when not only
the exponents of the Lf-classes but also the measures g and
v vary suitably, leads to a similar extension of Theorem 6.5.
The proof applies without changes if one notices that if K
is non-singular rel. « and v then so is the kernel ¢(z)K(z, y){(y)
(¢ and ¢ finite a.e.) rel. to any two measures ' and v equi-
valent to p and v respectively.

Remark 4. — The notions introduced in this section could
easily be extended to integral transforms from LP(X) to
LY(Y) with ¢ 5~ p and even (under suitable restrictions) to
transforms between two Banach spaces of measurable func-
tions.

Remark 5. — The terminology we introduced above has
not been used before. The notions, however — without being
specifically named — were investigated long ago in many
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special cases. The distinction between semi-regularity and
regularity was not so sharply drawn. The p-absolute regu-
larity, especially the first method, was very extensively used
as a tool to establish regularity in many special instances
(see Hardy, Littlewood, Polya [10], Ch. IX). The criterion
of the first method was not put in the general form (6.7),
(6.8), but rather in a form adapted to the special cases.

As mentioned before, we deal in this paper with integral
transformations which in most cases are p.-ab.r., or at least
p-s.r.. In a few cases, however, we meet with a special type
of singular integral operator. The pertinent theorems are special
instances of theorems of Calderon-Zygmund [7].

We consider kernels of the form DG,(z—y), |jl=m
(see § b, especially between (5.6) and (5.7)). The following
statement holds :

If uel?(R"), 1 < p << o, then the Limut

(6.13)  ¢(y) _zl\ngljlz _yi>e DiGn(e — y)u(z) dz

exist and s finite for almost all y and (6.13) s a bounded trans-
formation of L into L*.

The statement does not hold for p =1 or p = o. Hence,
whenever we have to use singular integrals our results will

be restricted to 1 < p << .

§ 7. The imperfect completions of % P, 8% Pk,

As it was remarked 1n § 3,4 57 and $*P* are functional
spaces rel. Y, We shall now define their functional comple-
tions rel. Y, (the imperfect completions).

The norms |ulg, P |u g 0 < B <1 introduced in § 3 have
obviously a meaning for any measurable function u (they
may be infinite). Let 1 < p< 0, 0 a=m+ , m = [a],
0<g<1t

We denote by W2 the class of all functions u € LP(R") such
that

1. all the distribution derivatives D;u, |j| < m are functions,

2. [Djulg, < o, 0 7] = m.
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It is clear that for ue W% both norms |ul,, and |u |4, as
given by formulas (3.6) and (3.6’) have a meaning and are
finite. Also the relations (3.9) hold.

By standard arguments, similar to those in the proof of
completeness of L? spaces, one shows that W} 1s a complete
functional space rel. ¥, (the class of sets of Lebesgue measure
0). Also a standard argument by regularization (°) shows that
F»? is dense in W%. Hence we have the following

Taeorem 7.1. — W% is the functional completion of F* 7 rel U,.

For p = o, we define W% as the class of all functions
u which together with all distribution derivatives of order < «
belong to L™ and, if « is not an integer, satisfy Holder condi-
tions with exponent . It is clear that 3*® is contained but
not dense in W%. One shows immediately that each equivalence
class of W% rel. A, contains one and only one function which
is continuous and bounded with all its derivatives of orders < a
all of these derivatives satisfying a uniform Hélder condition
with exponent a —a*, a* being the largest integer << a.
All such functions form a proper complete functional space
P**= c W% with the norm of W%. The space pa =< (the proper
functional completion of F* “ introduced in § 3) is a closed

proper subspace of pe=,

We define now % as the class of all functions u e L?(R")
such that for some integer k> a the norm

N Ak pp ‘
(7.1) |u|g,p,,‘=”u”£,,+jnn liAtullEr 5,

TS

1s finite.

(%) By regularization we obtain function u, converging to u pointwise almost
everywhere and in LP-norm as ¢ > 0. Since (D;u), = D;u, for any regularization,
it is sufficient to prove the statement for 0 << a = § <<1. Then

' 1 G ﬁ(t)
o —ulP =Ny —wllPp A ——e " Gzarat®) Ay A 1P, dr
lug —ulf,, = llup —ullfr + Cls B) Gorga(0) Jun 12 (18 e llfp

The integrand in the latter expression is dominated by —G—mﬁ:g—t) 27 ||A,uf|fp and for

fixed t converges to 0 with g 0. Taking now a function ¢Cg® which is = 1
for |2/ < 1, one proves that for feC® with fls, p < o, |f{@) — 3(e) f(2)]s, , >0 as
e\ 0. Double integrals in approximate norms are handled in a completely similar
way as in the case of Bessel potentials in [3].
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The argument used in § 4 to prove that for two integers
k, ky > a, the norms | |epkr | |aps are equivalent is
still valid in this more general setting, with constants as in
Lemma 4.1, which justifies the omission of the index k in the
symbol &=,

Using again the standard argument, we have

TuroreM 7.2. — B*P is the functional completion rel. %A,
of the class R*P*.

Similarly as in the case of P#* we define the proper complete
functional space B** of all continuous function with finite
norm | 4,4 Except for vanishing at oo, the functions of
B»® have the same properties as those of B**<,

Let us add the following statement. If « << &’ then there
1s a constant C independent of u such that for every u

(7'2) Iula.p.k _S__ C|u|a',p.k"

To prove (7.2) we may restrict ourselves to the case when
k = Kk'. Then the integral in the norm (7.1) can be decomposed
into two parts: integral over [t| <1 and [t| = 1. The first
part is majorated by the corresponding integral in |ul% , 4,
the second by a constant times ||u||fe.

It follows that

(7.3) Bers PP for  a < ok

§ 8. Behavior of the standard norm.

The purpose of this section is to describe the behavior
of the standard norm |ul,,, for a fixed function u and a varying
between two consecutive integers.

Before stating the main theorem of this section we introduce
the space Wis, m > 0 (m an integer) of all functions of Wi,
all of whose derivatives of order m are signed Borel measures
of finite absolute mass. In the definition of the norm |u|,,
(see (3.6)) the integral involving the derivative of u of order
m is to be replaced by

(8.1) Sm fa dsgem ()] doew
"u

o0, ...00,

where pym =
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We shall prove the following theorem :

Tueorem 8.1. — Let 1 < p < oo and m = 0 be an integer.

1) If ue Wy then lLim [u[“, exists, posmbly = -4 o0.
aAm+1
i) If 1<p< oo, then lim |ul,, < o if and only if
aAm-+1
ue Wit of ue Wi+l then lhim |u]a p = |Ulnt1,p-
. afm+

ni) hm |ule,; < o if and only if ue Wigts if ue Writ
a.;/m+1
then lim |u|,; = |u|pi11-
aAm+1
i) If1 < p < o, andu e W, ag > m, thenlim|u|, , = |ul, p-
aNm

v) lim |u|,. < %, if and only if uePm™L>; if yePmit>

a/.m-o—l
then hm |u|y . = |U|nt1,w-
aAm+1
Proof. — It follows from the definition of the standard
norm | |4, that is is sufficient to consider the case when

m = 0. Assume first that 1 < p << . For 0 <f <1 the
standard norm may be written in the form

8:2)
ulfy = it + [ [ P2 Gyt

Rr o/ RP

! G2n+2ﬁt
= e+ e B Gamag(0) e st 1A dt

The expression (8.2) has a meaning (it may be infinite) for
every ue LP.

Observe that for B 7 1 (see (2.9))
1 o, 1 2n
Cn, ) 7 (1 —B)C(n, B) ~ w,

Rewrite now the integral in (8.2) for u e L? in the form

(8.3)

. A 2n+2BL
C(n’ B)G2n+2p(0)j |t|n+pa ”Atu”Lp dt
(8.4)
- : Gany2p(t)
i fltl<1 |t|"+pp [|Aul|te de

C(m, B)%mp(m J
antap(? Aullge dt = 1 I .
+C(n, p)GanB(O) fm>1 ItI"‘H’p H ullfe dt = ﬁ( u) + p( u)
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A simple computation yields

[ 2r1 1p dt _ 21)-—1(0" »
®8) L Sl [ o =g el
and by (8.3)
(8.6) Ig(w) -0 for g 71.

According to (8.6), to investigate the behavior of |u|g, as
B .71, it is sufficient to determine the behavior of Ig(u) as

B
‘ Define now
®8.7) To(u) = [Badite 7,

C(n, B) Jju<a 1t]™+7
Clearly, Ig(u) is well defined for all u e L?; moreover, we

have with

An — min G2n+29(t) — min Glgl-)1+2@(1)
Just Ganp2p(0)  o<p<t GiPu42p(0)

(8.8) ATg(u) < Tyw) < Ty(w),

>

and therefore Ig(u) is finite if and only if Iy(u) is finite.
On the other hand, if ue Wl with 0 <<, << 1, (1 —Bo)p < 1
(and consequently Ig(u) << ) we can write for § >,

(8.9) le(u)*Ifs&‘” 0 Gart25(0) — Gansag(t)
n, Bo. 2rt2fl0) — Pansapl!
=Tl B)Canrap (0) 2 TEEE Ig(w),

and since (c.f.(2.10)) Gery26(0) l_tl_ G2,1+2p(t)

with respect to ¢t and 3, Bo < f < 1, we get by (8,3)
(8.10) [ Tg(u) — Ig(w)| -0 for g 1.
Ig(u) can now be represented in the form

1 11
(8.11) Iﬁ(u)=mfzfo i 905, 0) ds db,
where

1s bounded uniformly

Aseu

S

(8.12) 5(s, 0) =
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Since ||Apuller < 2||Ai0 ullr we get
2

(8.13) o(s, 0) < ‘P<”;T 9>(1°)

for every s.
Rewrite (8.11) in the form

2~

1 z 1
W) = G, 51y (2, et 8 )
1 o1 g
_— _ m(B—1)p —m
C(n, B)fz 11231443—1),,”202 ®(27™s, 0) ds.
In view of (8.13) the sequence {¢(27™s,0)} is non-decreasing
for every s and 0, therefore applying summation by parts (1)
to the series under the sign of the last integral, we get

1 1 1
(8.14) IB(u) = C(n, @) (1 ___2([3—1)p) f‘;‘fllzg-l-(—ﬁ—l—);
} 5 e m-avg 20, 0) — (275, 0)] + o(s,0){ ds b

m=0

In view of (8.3) we have

) 1 2
B15) M a—

On the other hand the integrand in (8.14) is an increasing
function of B, 0 < B <1 and taking into account (8.10),
1) follows.

To prove ii), assume that 1 << p < o and lim |ufg, < .

g
Then in view of (8.10) there exists a positive constant M and
a set Yyc ) of positive measure such that
~1 1
(8.16) Jl[ﬂ Sl+(@._1)p

3 i 2Amt) A=Prg (21, §) — ¢(27™s,0)] + ¢(s,0) ds < M,

m=0

n 1
w, log 2

(9) The idea of introducing the function ¢(s, 8) and using the inequality (8.13}

is due to E. Gagliardo.
(**) More explicitly we use the following version of the Abel formula: If

a,>0, b,>0, {a,}-non decreasing, 2 b, < =,
m=0

oo @0
then 2 a,b, = aysy + Z (@ — @) 8,41 With s, = 2 b,
m=0 m=60 I=m
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for all 6 € Yy and § < 1. Invoking now the definition of (8.12)
we conclude that for almost every se[1/2,1] and 0 e Xy the
A2_”‘x0u
27ms e
of the space L/(R") (1 < p << o) there exists an increasing
sequence of positive integers m, and a function uye LP(R")
such that 4-;%':&% uy weakly in I[». By a standard
s
reasoning in the theory of distributions we conclude that

norms are uniformly bounded. By reflexivity

wy =& Choosing 0, ..., 0, Xy as any system of linearly

20

- 0 ou
independent vectors, we conclude that b—;i; oo € L» and
1 n

consequently u €« W;. Conversely, if ue W, then applying the
Minkowski inequality () and Fatou’s lemma, we get
lim Baul _ |pu and consequently, taking into account
s3>0 S ||LP L) LP

(8.10) and the fact that as § 1 the integral in (8.16) converges

increasingly to log 2 lim %;L"i‘:l—‘ we get
m> oo LP
. 2 n (|ou
b Tg(u) =2 o/ sﬂ;d"-

This completes the proof of ii).
To prove iil) we use a similar reasoning as in the proof of
i1). Assume first that lim|u|g; << co. As in the proof of ii)
1

we conclude that for some sequence £s.4, .\ 0 and 6 eXy

}_A_s,,e"‘j , are uniformly bounded. By the theorem
Sn L1

:about « vague convergence » of Borel signed measures with

absolute total mass finite, we can find a subsequence
fsul < §{s,{ and a measure dyy with absolute total mass

the norms

Zab¥®ll such that é"‘—?y dx converges vaguely to d.
n ||L Sn

Using again a standard reasoning from the theory of distri-

|ug] <lim inf

: . 0
butions we conclude that gy = °%, and consequently for every

20

{1%) See [10], Prop. (203).
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0 e Xy, Z—L{; is a signed Borel measure with total absolute mass

finite. Therefore uwe Wis.

Assume now that we Wis. Then, for every, 0, [0] =1,
lim 42+ sh) — ulz) _ wg(x), where po(r) 1s a signed Borel
s3>0 s

measure with total absolute mass finite, the limit being
understood as a vague limit.

Introduce the system of coordinate axes such that the
z,-axis coincides with 0. Then dug is a Borel measure of the
form da’ dv,(x,) where the measures dv,(x,) are of finite
total absolute mass on the z,-axis for almost all 2’ and such

that |uy| = [ wt Vo] dZ’. dv, 1s the distribution derivative
of the function u(2’, 2*) for fixed 2’. We can write

(8 17)

sﬁu

=2 f_ /R + 5)8) — u(z’ + 0)|da’ dx

< fm fﬂ f |dv, (@) da’ dv = - f_ ) —f(x)]dr,

where f(1) = |w|[— 0 < z, < 7] A,,_,f; |dve(z,)|dz’. f(7) 1s

an increasing function of 7, such thatf(— o) = 0, f(o0)=|w|,
and therefore the last integral in (8.17) yields

Aseu
S

Iim
>0

’élﬂel-

The proof of ii1) is now completed in exactly the same way
as that of 1u).

1v) If ue Wk the integral in (8.2) can be estimated for
B < Bo as follows (¢ being an absolute constant),

(8.18) f u(z) — uly)F ,
nn]nn x———y]ﬁ k(@ )
C n B u(z) — u(y)
<e¢ 2n+2[30(_> ) Y0 ff d ,
- Gzn+z[3 le—yl<1| |&— ylpo H )

901
¥ Garrad0)Cm, B) '””“’fm Gansslt) dt.
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1

* C(n, B)
bounded, ( [, Ga(t)dt = 1), iv) follows.

v) follows immediately from the observation that
|z — yl
Remark. — If p = o0, 1v) is not in general true. We have then

Since for 0

— 0 and all remaining factors are

lim |ulg,, = max (sup u
lim v (sup uia),

w#y

lim |ulg,, = max (sup {u(z)|, osc(u))
BN0 <
where

osc (1) = sup u(z) - - ufy)|.

CoroLrary. — If 0 a<<a' then for every u e Wi, 1 < p< oo,
[ula,, = Clula,,
where C = max (1 + 4 n, 2(0.8)2A;1), where A, ts the constant
of inequality (8.8). Consequently, W%> W% for o > a.

Proof. — It 1s sufficient to consider the case when
0<a<<a' <1 Combining (8.4), (8.5), (8.14) and the fact
that the integral on the right hand side of (8.14) is an increa-
sing function of B we get for 0 B[ <1

21, _,C(n, B) (1 — 2(—Dw)y uip
ulpg = Jmax 1+ g AR g T || e

and the result follows by an easy estimation of the constant
in the latter inequality.

§ 9. Auxiliary inequalities.

In this section we shall establish some inequalities involving
kernels G, which will be needed in the sequel.
We denote by n’ a positive integer n’ < n, n"=n—n'.

Unless otherwise indicated z', ¥, 2/, t', ... will denote pro-
jections of points z, Y % 1, ... on the hyperplane R"':
Ty = - =x,=0, 2", y’, 7", 1", ... projections of these
points on the hyperplane R": = ..« =z, = 0. Accor-

dingly, dz’ and dz” will denote volume elements of R* and

R,
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The letter ¢ will stand for (in general different) positive
constants depending on various parameters. In all conside-
rations we will assume that the orders a« of the kernels G,
and orders of occurring differentiations and differences are
bounded from above by some fixed but otherwise arbitrary
number M > 0. The letter x will be used to denote (in general
different) positive constants depending only on n and M.
In the cases when behavior of constants is of importance we
shall say that ¢ is majorated by f(«, 3, v, ...) if there is a
constant x such that ¢ < xf(a, B, v, ...) In the considered
region of these parameters.

In several instances we shall use the following

Young’s inequality: if fel?, gels, Ogi—l— i—1=i

then frge L and [[f+glle < [Iflldllglhs. P 7 ’
From the differentiation formula (2.6) it can be deduced
that for any « > 0 and a multi-index j, |j| < «,

00)  IDGulell < ¢ [Gule) + ;= Gy
From series expansions of G, (see(2.3 a) — (2.3 d)) we also
get, with an arbitrary multi-index j,

(9.2)
xa|z|* VI for a < n + |j| and |j|odd

|z|*"V! for @ < n + || and || even

nA il —a
IDGa@ =1, for &= n + |j] and |j] odd

|foroc > n + |j| and |]| even.

«—n—|j|
Also for |z| < 1 and even |j|,
(9.2") ( /
mw—"—m(i + log () for @ < n -+ 1

ID;Ga()| =
! < —&—logl )fora =>n+ ]|

For any multi-index j, |j| < &, (9.1) implies

(93) DG,eLR7); [ |DGyfa)lde<x(

< R

—IJI>
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Using (2.2) we easily obtain
(9.4) f Go(a) da’ — f G, ") da’ = (27)~"BGI "),
R" R"

(If " = n, the right-hand side is of course 1.)
Let « >0 and consider the expression f,.IAG z)| dz.

Choose the coordinates’ axes in such a way that the vector ¢
is parallel to the z, axis. Using the fact that G,(z) is a decrea-

sing function of |z| we can write (|¢{| =¢,>>0), in view of
(9.4),

) 1el/2
/an,G [dx =2 [ [, Ga(@) da, da’

n—1

=22r) * [U0 GO(z,) da, = 2027) * [T G® (@) (@) da,

—lt|/2

%, being the characteristic function of[ |t| I;l]

By the Parseval equality we get for « < 1,

_n—1 Sin Z]M

> 2
2
f |A,Go(2)| dz = 8(27) L[ 7]———(1 O dn
a1 /” sin v} dy)

=8(2n) * ISy nld® + Gt
T |ya 2 1 1 be
=) i 2 G g e )

e 21+ a) sinzg
<825 Tl [

2 |t|2 ¥ 4n2)a/2d71’
(9.5) f 1AG ()] de <

o—lgr for 0<a<t.

Similarly, one gets

9.6) f|AG @ do<-—2l  for  a>t
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We could also get the inequality

(1G] de <o(1 +log )1, <1,
R

L%

which, however, will not be used.
Similar inequalities can be obtained for derivatives of the

kernel G,. We have, for |j| < a,

9.7) [ ,1AD,Gula)] do < =
R

) = (@) (T—a+ 17D

Jl <e<<ljl +1

and
9.7) | |AD,Gy(2)] do < ——
O7) [ | IADGule)] do < 5
In view of (9.3) it is enough to prove (9.7) and (9.7") for

t] <%—- For these values of |t|, (9.7) and (9.7") are obtained

as follows. The integrals are divided into two parts :

ﬁx" = ﬁwl<2lll + ﬁz1>2ltl'

The first integral is evaluated (in (9.7) as well as in (9.7"))
by using (9.2) or (9.2") and the inequality

|AD,Gq(2)| < |D;Ga(z + ¢)] + |D;Ga(2)|-

To evaluate the second integral we write
|t] n
@ BDGE@I= [ 3
Qo k=1

where

Jd - for @il + 1.

0
Oy DG+ 70)| d,

b="=(0,...,0,)

Il

To obtain the desired evaluation in (9.7) we use (9.2) for
the derivatives of order |j| 4 1 in (x) and integrate both sides

of (x) over |z| > 2|t <We use here %— lz| < |z + =0] <% |:v|>

The evaluation in (9.7") i1s obtained even more simply by
integrating both sides of (x) and using (9.3).
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By a similar argument, we get
1
S IADGya(a)] do < e (1 -+ log ) 14 < 1,

but this inequality will not be needed.
We shall now estimate the integral /; w |8,Ge(z)| dz’, with

n'<n, n"=n—n'=>1. We shall restict ourselves to the
case when 0 < a << n” -+ 1.
From (9.4) we have (note: ¢t =¢ + ¢, z = 2" + 2”)

98) [ wIAGu(@)lde’ < [ v Go(z) do’ + [ v Galw + 1) do’

—_ (2“>_n1/2[Ga(."") (xll) + Gém) (.’B” + tll)].
On the other hand,

(9.9) [ wlAGu(@)lde’ < [ 1 |AGa(®)|de’ + [ o |AGal2)| da’.

The first integral on the right hand side of (9.9) can be
estimated by an argument similar to that in the derivation of
(9.5). Without loss of generality we can assume that ¢ has
the direction of the z, axis. Integrating separately over the
regions where |z’ 4 | <|2'| and |2’ + | = |2'| we get

(9.10)
S I8Gaf(a)] do’ = 4(2m) T F [P G (g, 0") dy.
In view of (9.2) for |j| = 0, the latter formula gives
| [l b Go(@)] da’ < [(n” + 1 — @) (& — n")] 2 1]
(9.11) if n’ <ac<n”+1

Jrw186Go(2)] dz’ < v || |2
for 0O < a < n'.

The second integral on the right-hand side of (9.9) can be
written in the form

(912) ﬂ\"'lAl"Ga(x)I dzr’ = (2ﬁ>—n'/2 IG;"")(-'E”) - G&"”)(x” + t”)l'
Assume that |2"| %40 and |z” + t"| 5= 0. Since G{”(y") is
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a function of the radius r = |y”| only, we get from (9.12),

using (9.2),
f|z”+t”l
||
&+t Jp
fw' el

(o — n") |
, if n'<a<n'+1,
(9.13)  [owl8rGa(a)] da’ < xa[mln ("], 2" - A i
lf < ag "

dG%;:gr[ dr

< xa

[ J8Gofo)] da’ < (20"
Rn

The last inequalities combined with the corresponding
imnequalities (9.11) yield

A 1) (o = O

i n”<a<n”—|—

(O48)  fuwlAGal@)] 42" < gl min (o7, [o” + )]~ 1
if 0<a<n

(9.14) is now combined with (9.8) using the following remark.
If for positive numbers a, b, ¢, a < b and a < ¢, then for
arbitrary 0, 0 <0 <1, we have also a < b%c—, Applylng
this remark for @ < n” to (9.14) and (9.8), and using the inequa-
lity (see (2.3 a) and (2.3 b)),

GE(a") < xa(n” — ) 2"]*,  for  a<nf,
we get, with arbitrary 0, 0 < 01,
dtje if n<a<<n"+1;
cZx[(n"+1—a)(a—n")]?
(9.15) |AG(z)| dx’ <( c[tlo[mm(lx”|, |x”+ t"])]e-0
R

if 0<a<<n”
¢ < x(n” —a)i-1,

The following corollary to (9.15) will be needed. If
0<a<n" and >0 is such that 0 <« —¢& <1 then

(9.16) ﬂumc Na"|= dz < eft]*=;
¢ < x[(n" —a)(a —8)(1 — a 4 )]
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We outline briefly the proof. We have
Jro MG (@)]|2"]7 dee
=[Sercwea T Seprall fue 8Ga(@)l 2717 do' ] do”.

In the first integral on the right-hand side of the formula
above we apply the second inequality (9.15) with 6 = 0 for
|2"] < |t] and 6 =1 for |z"| = |t|]. We get

Jiraiearr Juw 18G(a)| ||~ da’ da”
=c [flx"sgm 2715772 da” [ [y 12”127 da”|

and the desired estimate follows. In the integral over
|2"] = |z" 4+ t"] we divide the integration over z” into
2" + ¢"| < |¢| and |2" 4 ¢"| > |t| and proceed similarly.

The previously obtained estimates will now be extended to
higher differences. The basic formula will be the following :
for 0 < k' < k, the coordinate axis x, being chosen in the
direction of the vector t == 0,

() b
= |f|FAkz¥ f f ottt e ) day .. o

Formulas (9.3), (9.5), (9.6), (9,7), and (9.7") give now for
k=1,
(9.17) .
[ ra(e — [71) (17| + e — a) 7>

- for JI<a<l|j|+ k
/Rn IA:‘DjGa<x)|d‘r = ; x(a — |j| — k)7 ¢*

. for 7] + k< o
In the first case, if 0 <<a—|j] < 1/2, we write
A¥D,G, = Af7A,D,G,
and get by (9.7) the evaluation xa(a — |j|)72e|* VL If
12 <<a—|j| £ k—1/2, we write
¥ = (a—[j)k, MD,Ga = ADGyyeAGye -+ AGy

and apply (9.5), (9.7) and repeatedly Young’s inequality (with
= ¢g=r=1), which leads to the estimate xa|t|*V.
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If k—%<a-—m<k, we use (**) with K —k—1 and

u= DG, and then apply (9.7) obtaining an evaluation
(lj| + k — a)3[e]e+.

In the second case, we use (**) with k' =k, u= DG,
and apply (9.3).

The extensions of formulas (9.15) and (9.16) to higher diffe-
rences will be needed only for ¢ = ¢’ « R*. We assume k > 1,
n’>1, n” > 1, hence n=n' 4 n" > 2.

(9'18) /;{n'[A?’Ga(x)l d.’L'I é Clt,lolm”la—n"—e
for o« <<n”+ k, max [(a —n"), 0] 0 < k.

The constant ¢ can be expressed in the simplest way by put-
ting 0y = max[(e — n"), 0] and writing 6 = 04(1 —7) + k=,
0 <1< 1. We have then

c=xa|n” —oa|"Yn" + k—a)"

for a£=n", k>1 and a—n"<k—1
c=xn" + k—a)?"

for ' k>1and k—1<<a—n" <k
c=xa|n" —a|"(n" +1—a)

for a=~n" and k=1
c = x671

for o= n" and any k> 1.

One should notice that for « = n”, 0 has to be strictly posi-
tive.

The inequality (9.18) for 6 = k is obtained by using (**)
with &' = k and u = G,(z), then applying (9.2) and integra-
ting over R”. The resulting constant ¢ 1s xa(n” + k— a)7.

When « == n”, we can take the other extreme value of 6,
0, = max[(« — n"), 0]. For a« << n”, this means 6, = 0. We
write then A¥G, = Af~1(A,G,) and the inequality is given
by (9.8) with ¢"=0 and with constant xa(n” —a). For
a>n", fp=a—n". If " <<a<<n"+1 and k=1, the
inequality is given by (9.11). If n" < a <n”" + 1 and £k =>2,
we write AFG, = (A,:Gﬂ) * (A{"‘IGEZE), integrate with res-

2 2
pect to 2’ and apply (9.11) and for the second integration
(over R*) use (9.17) with j = 0. Finally, for a >n" 41,
which implies k= 2, we write AfGy = (A;Gyyy) * (AF2Gompy)

(9.18")
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N fa—n">k—1

with Y= ifa—n" <k—1and y=2=

and argue as in the preceding case.

In all previous cases we obtain (9.18) by combining the
evaluations A and B corresponding to 6 =0, and 6 =k
into A'~*B°. The remaining case a = n” is dealt with pre-
sently.

We write [|A5G,(a)|de’ < x [1A:Gy()| da’. By (9.10) this
is majorated for 0 < 0 <1 by

A/1”/2 (n +1)(zn’ x”) dx ,
< [0 (2 A o) ds < xfa”| [ 510 ds

= x-1|¢|%|2"| .

)2

and the result is obtained by combining the latter inequality
with that for 6 = k.
We next extend formula (9.16)

(9.19)
[ 185G (@)] 27|17 de S et for < n', 0<a—3<k,
¢ =xmax[(k + & —a)(k + n" —a)72,
ajn” — a| (e — &)1, |n” — a|L(n" — o) ] for o ==n"
c=xn"—2¢e)t for a=n"

The proof is completely similar to the one of (9.16) using
(9.18) instead of (9.15).

Remark. — The constants in (9.18) and (9.19) are not
the best possible; they become infinite when a — n” for fixed
>0 in (9.18) or fixed ¢<<n” in (9.19) which should not
happen in view of the evaluation for a = n”. In the present
work we shall not need better evaluations. It would not
be difficult, however, to improve them by making more
thorough use of the exact formula (9.10).

Our next two formulas concern differences with respect
to two different increments ¢ and ¢,.

(9.20) - |
For  0<B<h  O0<Bi<h, B+ph=a—]|,
JL 18D, do < o1+ 2
" B+ B
| (k — B) (ks — Ba) |1}ty P



ON SPACES OF POTENTIALS CONNECTED WITH LP crLassgs 261

Decompose j=iui’, hence |j|= i+ [i'|]. Write then

S 1AMED,Go()| da < [ o [0 [4 |ADGriple — )]
|A8 DGy 8, (y — 2)| Gayyi-p—p,(2) dz dy dz.

If « =|j| + B + B, we have only a double integral. Apply
then Young’s inequality and (9.17) to obtain (9.20), at first
with a constant depending on [i{| and [i'|. Making the two
extremal choices |i| =0 and || =0 and combining the
resulting evaluations, one obtains the desired constant.

For n'<n, 0<B<hk O0<B<h, B+B=a—|j,
(9.21) Lnljxn |t~ B AYARD G, ()| dz dty < clt]®,
with ¢=x[min(B, By, k —B, ky — Bl 1

B

In the proof we divide the integration relative to #; into
lti] < |t| and || > |¢|. For |4| << |t| we apply (9.20) with
B and B, replaced by f —e and 3; + ¢ respectively, where
e=1/2 min B, B, (k—B), (ks —B1)). For |t >|t| we
apply again (9.20) but with § and B, replaced B+ ¢ and
B, — ¢ respectively.

We finish this section with the following inequality

|AEDGula) 4, g
022) [ | BT |t|*+" Mgz ar <
for " < n,vy>0, and min[a—|j| —v, k—y]=7>0,
o = wfey(k — )
Integration over ¢ is divided into || <1 and |¢'| > 1.
In the first part we write

|ASD,Ga(2)| < [ 1AED,Ga(z — 2)| Gaal2) dz

with o’ = |j| + v + 7/2. Integrating over x (where we apply
(9.17)), then over z and finally over |¢'| <1 we obtain an
evaluation < x(y 4 7/2)71(k —y)~'t~!. In the second part

we write [ [AfD,Gq()| do < x [|D,Gy(z)| dz which by (9.3)

gives, after integration over |t'| > 1,

7.<1 —}—a:

T < s
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§ 10. Special integral transformations.

In this section we will describe certain regularity properties of
integral transformations occuring in connection with the repre-
sentation formulas of § 5.

The properties established here (in particular in proposi-
tions 1 and 2) imply that for ue W% and ue $*? with sui-
table a, the integrals occuring in the representations formulas
of section 5 considered as integral transformations applied to
u, its derivatives, difference quotients of u and its derivatives
are p-absolutely regular (in some exceptional cases p-semi-
regular). Consequently, for u in a suitable class W% or $*»
the corresponding identities are valid pointwise almost every-
where. Further consequences of this fact will be presented in
sections 11 and 12.

We use the same notations as in § 9: n’ is an integer,

dx dt dx dt
) dU~I xl, t') =

We recall (c.f. § 6) that the statement K(z, y) is p-s.r.,
p-r or p-ab.r. with measure spaces {X, dw{, {Y, dv{ means

that the transformation /;K(x, y)u(z)dy. is p-s.r., p-r., or
p-ab.r.; respectively.

0<n<n, n"=n—r duz, t) =

K(y, &) = D{"Gy(2’ — y) with measure spaces {R", dy},

{RY, dz'{ is p-ab.r.. For a« —|j| —n" >0 it is ab.-r..
Proof. — For n = n’ the proposition follows directly from

(9.3) and Young’s inequality; the bound for the transformation

x .
. a—1j]

For n" < n we consider first the cases when p =1 and
p= . For p=1, a—|j| > n" and condition (6.4) must
be verified. By (9.1), (9.4) and (2.3 d),

Jaw IDSGala’ — y)l da’ < %Gy ")
+

K i1s in this case majorated by

%

G S —
a_ll lJI( )]_._/_lll___n
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If p= o0, a—|j| >0, (6.4') has to be checked. By (9.3)

J Iyl dy <

|- In this case we apply

Let now 1 < p << 0,
Method I of § 6 with

o(y) = [«GE_;(y") + (a—1]1)GE"(y")]F"? and {(2') =
By (9.1) and (9.4) we get

[ IDGale — )] de’ < s [1GE2(y") + (|G ()]

— 1/l

=
On the other hand, using again (9.1) and (9.4) we get
Jar IDGale’ — y)| [1GE25(y") + (2 — ) GE (") dy’ dy”
ST [HGE20y") - (21D Go )
In view of (2.10) this is

= e ] — Wy e

and the proposition follows from Theorem 6.3 with the
p-bound of the transformation majorated by

. . " _1

100 M, <o) (a—lj| =)

Prorosition 10.2. — Let k be an integer, k >y > 0 and
let o —|j] —~%g'y then the kernel

A{t o (J’)Ga(x’ — y)

Ky, o', ') = o

with measure spaces §{R"; dyl, {RY X R", du/(z', ¢')} has
the following properties

) If a~jj|——%~>y then K is p-ab.r. for 1 <p < oo.
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i) If n” >0, |j]=0, a—"- =y then K is p.-ab.r. for
1<p= . p

i) If n" =0, and & — |j| = y then K is p-s.r. for 2<p <o
and its adjoint kernel is p-s.r., for 1 < p <2

Proof. — 1) We write, using the composition property of G,
|Af; 2 D Go(2" — )]

A8 DGy ye(2— Y) Gaji—y-e(2” — 2) dzl
= ’ /;{" M’:yD;y)GIJHHE(Z —Y) Ga—ljl—y—e(‘”' — z) dz‘,

with ¢ =—;—min(k—-—y, a—|j| —y—n"/p) > 0. We apply

now Method II of § 6 with inner factor
A(z) = [GaZ)jy—e(z")] 2.
By (9.4) and (9.22) we have

A= f f ‘M’:zD§ Gljl+74’-e(z“‘y)| )\(z)p
MJ RN R |+ ( ' —z) da’ dz dt’

G jy—e(

(z
138D os O s at < ek — )

U R"

By (9.17), (9.4), and (2.10) we get
( —_
B= ., %D ”G”'*”*" I (2) 7 Goaryoyoelad’ — 37) dy d
R"J R"

< |Ak, DY Gng.yﬁz—y)l Az) 7 Couyjpy—s(@’ —3) dy dz
T JRPJR lt IY

<x{lj] + VY= faor S [GYge(a)7®
G jiy—s(2) da’ dz”
< x(ljl + Y)Y—l(k _— ‘\()_1 A/;‘n” [Ga(n_”fj]_y—s(z”)‘]p' dZ” '
= x(Ijl + Ntk — )@ —Ij| —y —n"[p)™]7
It follows by Theorem 6.3 that the bound M, of our trans-
formation can be evaluated in the present case by
(10.2 1)
M, < x(|j| + YV [yer(k — y)(a — || — ¥ — n"[p)t+P] L,
where

e = min[(k—y), (& —|j| —y — n'[p)]
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11) In this case we shall apply Method I of § 6 with the fac-
tors ¢(y) = |y"|™" and Y(z’, t') = 1.
We have, by (9.19), with « =y + n"/p, & = n"/p,

o Ak’-m’Ga( f— |- ip
[ K@, ety dy = [ RG22 g, <

On the other hand, by (9.18) we have, for 1t < |y

[ MG (2’ — y)| da’ < cly”|= 4"

and for [t = |y],

[ clynla_,," lf 1< n//
S | MGy’ —y)| da’ < cdy’| | if a=n"
clt’|*™ if a>n".

Therefore

188 Gala’ — 9] 31 1
= t
/R"/ Jn"' , a——+"

<f >f 186:2 Gal@” — y)l 40 4y
[<|v| ./“[)” G—-+n

= CIy”I"‘ P = cq(y)Pl¥,

which completes the proof of i1). An evaluation of the bound
M, can be obtained from the constants in (9.18) and (9.19).

m) With a—|jl=7v, n" =0, 2/ =2, t' =1t we get,
using (9.17)

|48, DGy —
l t] a—|J|

W gy < xa(a —|j)) 2k + || — )=

R?

and hence K 1s o-ab.r. and the adjoint of K is 1-ab.r.. We
shall prove now the 2-semi-regularity of K and its adjoint.
By Theorem 6.4 it is sufficient to verify that

) | S Ky, 2, tuly) dy

for all simple functions u on R" with some constant ¢ inde-
pendent of u and that

LR" < R", dit) é C| |u| ng(R"),
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“‘/f‘&" mK Y, z, )w(z, t) dp(z, t ”L'(Rn) C”WHLt(me" )

for all simple functions on §{R* X R", dit} with a constant ¢
independent of u. To prove () observe that for any simple
function u,

sl = | A‘f’ﬂDﬁﬁzﬂ”ﬁ,— 1) uty) dy = F-3(0,E),
Rr '

where

(e~i&H — 1)k
(T4 Ep =

Hence, using Parseval equality and (5.18) we get

||W”L=(R"><R"dm—] J [o(5)[2d (&

— )1
<
=2

o(E) = (— Ea(®).

Cln, & — |7 AT — ksl ) * 0] o] .

Similarly, if w is a simple function on {R* X R"; du} and

 MDPGyln —
uly) = [ SR i, 0 dp(a

1 =D — 1)k

e (D — 1)
_(1+|E]2)a12( E) Jm |tln+¢—lfl

where w(E, t) is the Fourler transform of w(z, ¢) with respect
to 2. Using Schwartz’ inequality, Parseval equality and (5.18)
we get (») with the same constant as in ().

i11) follows now by interpolation (see Theorem 6.5). For
2 < p < w0, the p-bound M, of the transformation is equal
to the p’-bound M, of the adjoint transformation and they
are both evaluated by

(10.2 i) M, = My < xat—22(a —|j|)71(k + |j| — @)

n, > v,

u() w(E, t) di

Prorosition 10.3. — Letk > v > 0, and & — |j| —

kTY) r_
Then the kernel K(z', y, ¢) _ AD] Gﬁff y)

spaces §R”, dz'} and {R* X R, du (y, 1)} is p-abr,1 < p< oo,

» with measure
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The proof is completely similar to the one in Proposition
10.2 i). We choose ¢ = %min [(k — ), (& — |j] — y — n"[p")]

and apply the second method with the inner factor

A(z) = [GEZ iy (z") "

The p-bound of the present transformation is equal to the
p’-bound in (10.21).
Prorosition 10.4. — Let

”

=y,
p__( Y

k>vy>0 kK>y>0, a« —|j| —
1 < p< w. The kernel

A, D Ga(2” — y)

Kly.t, 2, ) = AT
1

with measure spaces
{R* X R", du(y, t){, {R" X R", du (', &)}
s p-ab.r.

Proof. — Consider first the case when n” = 0. Then by
(9.21) K satisfies conditions (6.4) and (6.4') with constants
A = B. Hence K is 1-ab. r. and o-ab.r. and by interpolation,
(Theorem 6.5), it is ab.r. with p-bound = A = B given by

(10.4 a)

h@=4w-wwwwmmm%%k—mw—wﬂ*@*ﬁ£%>

Consider next n’ < n and 1 << p << . We use now the
general criterion of Theorem 6.3 with kernels

Ki(y, @', ) = |76 [ |8 Gy @ — 2)
||| AL, D Gr(z — y)l dz,

Kz(?/’ 2 x,’ t;) = ltl_Yltil_Y'f |AZ:'$'Gn"/p+“{l=€(z, - z)]
lZ”I—"”IplAf.'yD§y)G@I€(z S y)l dZ.
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3
€g OF = — ¢,

We have put here § = a—n"/p—¥y'; ¢ = :

depending on whether
W= Z a2 or Y —np] < eof2

(so that |y — n"[p’ = ¢| = % so> with

g =min(y, vy, k—vy, k' —¥');
the upper or lower sign accompanying ¢ is chosen depending
on whether || < |¢| or |&] > |t (*3),
Condition (6.5) is checked immediately. The first inequality
in (6.6) is obtained as follows :

_ﬂ\"' ﬁ"' Kl(ya 2 .’E', t;) Itil_n' dx' dt’'.
= ./R"' /It" ./;("' Jt| 6] YA, w'Gn”/p-f-Y'j;e(x, — z)| |z"|" "
| a8 - DF G e(s — 20) Gyl —) daa|da’ dz di ().

We integrate first with respect to z’ applying (9.18) with
0 =y Z=¢, and then integrate with respect to z, applying
(9.17), and then with respect to z;. We end with integrals with
respect to #; of the form

¢ fur B de e [l o L8] A Soxert = A

We treat similarly the second inequality in (6.6) where
in the integral

Jar fro Kaly, .27, ) [ dy dt = fo fro fon foo - - - dy dzy dz

we apply (9.17) for integration with respect to z and (9.19)
when integrating over z, and end again with integrals over
|t| = || and [¢| < |t similar to those above. For the constant
B we get the evaluation x¢ *(n”/p’)~t. For the bound M,
we obtain thus

(10.4 b)

For n’ <n, M, < AYPBVP < x[min(y, Y/, k—v, k' — )]

13) The proof could also be obtained by applying the second method of § 6
P pplying

separately to the two components K’ and K” of our kernel K = K’ 4+ K” where
K’ = K for |tj| <|t|]and K’ = 0 for |t{| > |t].

(4) If B—|j| — y =0 thelast integral [‘ .. dz, isreplaced by Af ,D&’)G;jlﬂxg(z—y).
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This evaluation is at first obtained for 1 << p << oo. Howe-
ver, since it is independent of p it is also valid for p =1
or p = o (one could obtain similar evaluations more directly

by using (6.4) or (6.4")).

Proposition 10.5. — Let teR* be fized, 0 <P <k,
0<y<<k, a=p+1.

1) The kernel |t|=PA%.G.(z— z) is ab.-r. for measure spaces
{R"; dz{ and {R"; dz{ with bounds independent of t.

1) The kernel |t|=8|¢|YA¥, AX,Go(z—2) s ab.-r. for
measure-spaces {R"; dz} and {R* X R"; du(z, t,)} with bounds
independent of t.

Proof. — We show that the kernels are 1-ab.-r. and oo-ab.-r.
by finding evaluations A and B for the corresponding inte-
grals (6.4) and (6.4"). In case 1) we apply (9.17) with |j| =0

by writing K(z, z) = f |t|~#A%, Gg(z — y) Gagly — 2)dy to
obtain A and K(z, z) J Gop(z —y) [¢|7PA%,..Gply — x)dy to
obtain B. The p-bound so obtained is

(10.5 i)
M, <x(k—B)* for 1=Zp=<co.

In case i1) we apply (9.21) to obtain A and (9.20) to obtain B.
The p-bound so obtained is

(10.5 1)
M, < «[min(B, v, k — B, k' — )] (k — B) (k' — )
for 1< p< .
Remark 1. — Statements in Propositions 10.1. — 10.4

pertaining to p-ab. regularity of an integral transformation
are equivalent to p’-ab. regularity of the corresponding adjoint
transformation. When we refer to such a statement about
the adjoint transformation we will write « adjoint proposition »
(e.g., adjoint Prop. 10.2).

Remark 2. — In the preceding propositions we considered
only the measure di(z, t) or dp’(2’,t’). In the following sections
we will often need these propositions with the measure
dyg(z, t) = L’”’—Z—E—G—dp (z,t) (or dp'g(a’,t)) replacing

o B G _ _
dp(z, t). Whenever the statements pertain to p-ab. regularity,
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by virtue of Theorem 6.1, we still have p-ab. regularity with
the new measure, with bound M® < (C(n,B))1» M, or
< (C(n, B))71/?M,depending on whether the measureis changed
in the domain-space or the range-space. The only case when
we deal with p-s.-regularity is in Prop. 10.2 iii). By checking
directly the proof in this case (especially for the 2-s.-regularity)
one verifies immediately that p-s.-regularity is maintained
with dpg replacing dp, the evaluation of the bound being
changed as above.

§ 11. Inclusions. W% and $P as spaces of potentials.

In this section we give a description of inclusions between
spaces W2, L2 and $*». We also derive some representation
formulas for functions of W¢ and %*? which allow us to charac-
terize those spaces as spaces of Bessel potentials of certain

classes of distributions.
It will be convenient to introduce the space

[LA(RY x LA(R* x R*, dug)]
X -+ X [L(R") x LA(R* X R?, dg)]

n™tl —1 .
—————= times

(11.1) Az =

n—1
if @ is not an integer, « = m + f, m = [a], 0 < B < 1, and

(11.1,) AP :%p(Rn) X oo X Lp<Rn>

nmtl — .
if @ = m 1s an integer.

Elements of A} will be denoted by {¢;, w;} or by {¢} if «
is an integer, j being a multiindex, 0 < |j| < m. The norm
in A} is defined by the formula

(11.2)

ow bl =5 (7)() 3, Ueitooes + ot

Clearly, W2 is boundedly imbedded in Aj (with approxi-
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mate norm | |, , isometrically imbedded), the imbedding
being defined by

(11.3) o= Dyu; wyz, &) = -Ai[)glﬂpﬁ(uewm.

W¢ can be therefore considered as a (closed) subspace of Aj.
L; will denote the space of Bessel potentials of order
a of functions in L*» saturated rel. A, 1.e. the space of
all functions u for which there exists a function fe LP(R") such

that u(x) = Gy *f(z) almost everywhere. The standard norm
of u 1s deﬁned by
(11.4) [llla.p = IIfllnany

The space L) was investigated by Calderon [6]. An equi-
valent definition of L} as a space of distributions is that L§
1s the space of tempered distributions u whose inverse poten-
tial of order a, G_,u, is in L? (*%).

The space L, for p << oo, will be considered as an imperfect
completion of the space Cy with norm given by

(llle, = ||Gam—a* (1 — A)"ullur,

where m 1s an integer = oz/2 For p = o, the imperfect comple-
tion leads to the space Lg <; this is the space of all bounded
functions uw such that G_,u is continuous in R"u (o) and
vanishes at . Obviously Ly < cLy. For p =1 we introduce
also L;” as the space of tempered distributions w such that
G_,u is a Borel measure of finite absolute mass; we put
[}z =] G_qu|(R"). Obviously again Lz c Ly” c Lgfor 0 < < a.

The perfect completions corresponding to spaces Lg will
be introduced in § 13 and denoted by P*2.

As concerns inclusions between spaces W% and L we have
the following theorem (*¢).

Taeorem 11.1 — 1) If a is an integer then L; = W3 for
1<p<<ow.n) Ifaus notanmteger then LL > W¢ for 1 <p<2
and LEc W for 2 < p < 0. 1ii) If o' > a > 0, then W% c L}
and L§ < We,

Proof. — 1) Let « = m be an integer. f ue L2, 1 <p < o,
then u = G,*f, f e L?(R") and therefore by (5.7) and (6.13)

(%) G—qu is given in terms of Fourier transforms by (G_.u)™ = (1 + |E})*/2d.
(%) This theorem is contained in the results of Taibleson [19].
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the distribution derivatives Dyu, |j| < m, are in L?(R") and
there is a constant C independent of u such that

[ulmp = Cllfller = Cl[ullm-
Converselyif u € W} then (5.30) gives for f = G_,u the expres-

sion f= Y (7) (—1)" ¥ D,[G,*Dju] in sense of distributions
=0 17l=t

and therefore by (5.7) and (6.13), f € L(R") and there is a
constant C independent of u such that ||f||ee < Cluln,.

i) Let 1<p<2 a=m+p m=[a], 0<B <1, and
u e C7.Then G_,uis clearly defined pointwise by formula (5.28).
We write this formula in the form

(11.5) G_ou(z) = 1§o<,ln> 3 [(— 1DGarsya)
+ A . D(j?)] tGIBa(z — ) wj(a:, f) dP‘-p (2, )

R"JR"

with ¢;, w; as in (11.3). G_, can then be interpreted as the
result of a transformation of an element of AZ. In view of
the propositions 10.1 (for n’ = n), the adjoint Prop. 10.2 iii)
and Remark 2, § 10, there 1s a constant C independent of
u such that ||G_uu|lr < Clul,, for 1 < p < 2.

Let 2 < p < © and u = G,*f, fe L?. Then by Prop. 10.1,
Djuel? |j|<m, and there is a constant C independent of
u such that [|D;ull» < C||f|lr>. On the other hand the expres-
sion w; = I[)Itgx) 1s the result of the integral transformation
of Prop. 10.2 (n = n’) applied to f (with measure dy. replaced
by dug) and by Prop. 10.2 and Remark 2, §10, there is a constant
C independent of wu such that ”WJHL"(R <R, apg) = C|f]|r>.
This completes the proof of 11).

1) Let ue W§. Since Wg with increasing « form a decrea-
sing sequence of spaces we may assume without loss of gene-
rality that o’ is not an integer, o' = m’' 4 B, m’' = [a],
0 < p’< 1. Then by (5.28), u = G,=f where

w6 f=3 (7 >,Z [(— 1)DyGau_a*9,(2)
+ [ [ PPt 0, dug(a, ),
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¢; and w; as in (11.3) (with §’ instead of ). By virtue of Pro-
positions 10.1 (with n" = n), 10.2 i) (adjoint, with n’ = n)
and Remark 2, § 10, formula (11.6) is valid pointwise almost
everywhere and feLr.

On the other hand, if u e LZ, u= *f, fe L?, then by Pro-
position 10.1, Dju < L , |7l < &, and 111) 1s proved for « integer
If « 1s not an lnteger o= m -+ 3, then the expression
é—]l)#bé—(—) for |j| < m belongs to L?(R* X R", dug) by Propo-
sition 10.2 i) (with n’ = n) and Remark 2, § 10, with norm
bounded by C||f||» with C independent of f.

Remark. — It can be proved by examples that the inclusions
in 11) are proper for p == 2. It i1s well known that W% and L;
coincide for every a >0 (c.f. [2]).

We now proceed to prove the following theorem.

Taeorem 11.2. — If a >y and both o and o —7 are not
integers, then Wi = G,Wi™1, 1 < p < oo. More explictly,
the space, Wy consists of all functions u of the form u = Gy,
v € W§1, and there are constants C;, C; > 0, independent of u
such that

(117) C‘ll“']an—*{p-g Iu]ap 2]"]1—7p

Proof. — Let ue WZ. By propositions 10.2) and the last
remark of § 10, the inversion formula (5.28) is valid point-
wise almost everywhere if ¥ <<« and « is not an integer.
Let a=m4 B, m=[c], 0<B<L, a«a —y=m'+§

= [a—7v], 0< B’ < 1. Then for |j'| < m/,

(11.8)  DyG_yu(z) |
= (— 1)/ § <";>MZ_ [ o DS Gaasy(z — 2)0y(z)dz
b [ D =2) ) 0]
(11.9) AuDrGoyulz)

|t |

= (— 1)W1 z <l>|112 l[f A‘*"’Dﬁ'ﬁ)j'(l}tfﬁ;i(z—x) vj(x) do

+ At, At a:D_/UJ G2a—‘r( -
we o |l [P

@%@qwmm}
14
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where ¢;, w; have a meaning as in formula (11.3)

Noticing that dug(z, ) <~
Cm B B(1 —pB) for 0 < B <1, using Propositions 10.1,
102’i) adjoint 10.2 1), 104 and Remark 2, § 10, we get
G_yu e Wi and |G_yulsy,, < Clul,,, with

C=x{min(B, 1—8, §", 1—B")[BA—B)P[B(1—B)"}

Conversely, if v« W= then Gyv is given pointwise almost
everywhere by the formula

m' m
Gyo(z) = l§0< l>m ,[ 10 DGyo_o(z — 7)Dyo(a) da
Ay . DS Gyyy(z — ) A,Djo(z)
2 ~—dug(z, t) |.
e 14 e e )]
Using the same reasoning as above we conclude that G,» € W3

and |G|y, , < Clo|o—y,, With

C<x{min(B, 1—B, B, 1—B"[B(1—B)JWF[B'(1—p")JHr}2

This completes the proof.
In particular it follows from Theorem 11.2 that

Wrtd = G,WE  for O0<B<1
and m integer, and there is a constant C > 0 such that
CHelpp = |Ga#lmtp.p = Clol,p-

It follows from the estimates indicated in the proof that the
constant C increases unboundedly as 8 -0 or § — 1. For
1 < p << oo, this result can be improved by using singular
integrals. This is done by means of the following proposition.

dp(z, t) and recalling that

Prorosition A. — If K(z—y) ts a kernel such that for
feLP the integral Kf(z) = fR,. K(z—y)f(y) dy (possibly under-
stood as singular integral) exists pointwise almost everywhere
and there is a constant C independent of f such that

(11.10) 1Kf{ler = ClIf|le,

then for every v € WE, 0<<B<<1, Ko e WE and |Kv|g ,<Cl¢[g,,
with the same constant C as in (11.10).
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The proof follows immediately if we notice that A, Kf = KA,f
and that

g = e + [y 2 e bl .

We can now state the partlal improvement of Theorem 11.2 :

Traeorem 11.2". — There exists a constant C depending only
on p, n, the positive integer m and an upper bound of a such

that for 1 <p <<
CYolap < |Gutlatmp = C|9]ap

Proof. — Obviously it is enough to consider the case
0 a1, m=1. Put u—le u————Gl*v By (5.30)
with m = 1 we have

o(z) = (Gy 1) (z) — Z < G, *PE> (2).

0z 0y,

As 1n Theorem 11.1 1), this gives our present theorem for
a = 0 and, by Prop. A, also for 0 < o« << 1 with the same
constant C. We use then The01 em 8.1 i) to extend it to & = 1.

The next theorem (") is a counterpart of Theorem 11.2
for spaces $*2. In its proof we will use the following obvious
propositions

Prorosition B. — Consider two measure-spaces §{X, dpi,
{Y, dv} and a kernel K(z,y) p-ab.-r. with p-bound M, for
IK(z, y)l. Let

K'(z,3) = Az, y)K(z,y) with |A(z,y)| < C = const.
for all z, y. Then K’ is p-ab.-r. with p-bound < CM,,.

Prorosition C. — Consider three measure-spaces {X, du.{,
§Y,dv}, {T,dw{, and a kernel K(z,y,t) re X,y Y, te T mea-
surable in the product space XX YXT. Suppose that for each
fized t, K(z, y, t) ts p-ab. -r. with p-bound for |K(z, y, t)| uni-
formly bounded by M. Then, if the total mass »(T) is finite,

the kernel [K(z, y, t) do(t) is p-ab. -r. with p-bound < Mo(T).

(**) This theorem is a particular case of a result of Taibleson [19].
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Taeorem 11.3. — If a >v>0, 1 < p < o0, then
Gy Br? = B22,

More explicitly, $** is the space of all functions u of the form

u= G,» with o e B? and there exist constants C, C' >0
depending on «, v, k, k' (k, k' are integers, k' >, k> a)
such that

(11.11) Clolpr = 1Gay?lape = Clolypu-

Proof. — By Lemma 4.1 we may assume without loss of
generality that k= [«¢] + 4 and we may choose then X
so that k—k >a—y+1 and K>y + 1.

If v« BB then by Young’s inequality we get G,—v e L? and
|Ga—y?|lt? < ||¢||r>. Furthermore, for every t,

MGoyw = A Goy* Af 0.
Applying (9.17) (with [j| = 0) we get
Jae =M Gy (2)] e < x
and hence, by Young’s inequality

Sr 120 G llte dt < foo lel—A 1A ol e db,

which completes the proof of he second inequality in (11.11)
with C' < x.

Put now u = G,_¢». Hence v = Gy_,u. We use the formula
(56.22) which at first we know only to be valid in sense of
distributions (we replace B by « and « by « — y). By shifting
a suitable number of differences from G,y to u (or vice-versa)
in the convolutions we can rewrite the formula (still in sense

of distributions) as follows
1 ko kN[ k
> < >< ,>(— n*
LU =0 l l
(+U'<k

Ck(n" “)
2k—1—1'
[ [ Sl g, Gopyfz— 2yule) dede

Afk@_’. k)t IG2n+2a<t)
+< )( z'>ﬁnﬂu e

(K Gayy(z — 2)AF Ju(z)dadt].

(11.12)  Gy_qu(z) =
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We have here a linear combination with constant coeffi-
cients of formal integral transformations. Our aim is to show
that when |ul,,, << o each of these transforms is in L?(R*; dz}
and when we apply |¢|7TAf., to them we obtain functions in
LP(R™ X R*; du(z, t,)).

Consider first the transforms in (11.12) in the first sum
when [ 4+ I’ < k. Their kernels can be written in the form

(11.13) JeuK(z, 7, ) do(t)

with
K(.’E, Z, t) == f,*;’_,, zGa-}-Y(z —_— .’,U) z £ l 4 <1
dolt) = [N G de§ " TS
K(x’ Z, t) - ltl SAI 2=t zGa+Y< x)
do(t) = ‘t]_n—2¢+pAfk(t__—k)t (Gppaa(t) dt
f=mmn(l41I'—1,0q)

By (2.11) and in view of the exponential decrease at o of
Ganteas dw(t) has a finite total mass < x. The kernels |K(z, z, )|
are p-ab.- r. for (R*; dz) and (R"; dz) by virtue of Prop. 10.1
and 10.51) with bounds < x independent of t. Furthermore,
the kernels |t;|7Y|A¥ . K(z, z, t)| are p-ab. -r. by Prop. 10.2 1)
and 10.5 1) for (R*; dz) and (R* X R”; du(z, ¢,)) with bounds
independent of ¢. Hence, by Proposition C above, the trans-
forms in the first sum in (11.12) have norms | |, bounded
by f|ulv.

Consider now the second sum in (11.12) where [+ ' >k 1.

The corresponding transforms can be written

(11.14)  [fo [ AOK(z, t, (s, 1) dp(s, 1

where we put

for 2ZI1I4+1V<ZL Kk

w(z, t) = |t|*Af u(z — U't),
_a(l+l'—k)
Kz, t,9) =[] " A ~*Gopy(s—0)
_ a(2k—I—1")
A =10 " AEEGamaa(?)

We have here |A(t)] < x (by (2.11)), K(z, ¢, z) 1s p-ab. -r.
for (R* X R*; du(z, t) and (R", dz) (by adjoint Prop. 10.2 1)
for " =n and |j| =0) and |4,|7"Ak,K(2, z, t) is p-ab. -r.
for (R" X R*; du(z, t)) and (R*X R"; du(z, t;)) (by Prop. 10.4
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with n’ = n and |j| = 0). By Proposition B, this finishes the
proof of the first inequality in (11.11). By checking on the
bounds in all the propositions used in our proot we find the
following evaluations for the constants C and C’ in (11.11) (*%):

(11.15) 1/C < »y73, C<x for 1< p<L oo.

Taeorem 11.4 (*®). — If a is not an integer then ®*? = W,
1< p=<c. If a is an integer then $*Pc W2 for 1< p<2
and WeecB*? for 2<p < oo.

Proof. — The first part follows directly from Theorems 11.2
and 11.3 and the remark that for 0 < <1, ®Fr = W,
1 < p < . To prove the second part, observe thatif u  $*?,
a-integer, then u = G,_f., fee?BE’P, 0 <e<< 1, and the
norms |u|s,; and |fe, are equivalent. By the reproducing

formula (5.24) (with B =¢) and Propositions 10.1, 10.2 1)

adjoint we also have pointwise a.e..,

/‘ Ga+s x - y)f‘(
+ j Ag; yG’a.+s(x —_ y) M dy,s(y, t),
Bn

¢ l¢]*
Therefore derivatives Dju, |j| < « are given by the formula
Du(z) = [ 2 DGyl — y)fe(y)
f f A D Ga+e x — y) tfe(ey) d(-"e(y, t).
R" JR" |t|

It

The right-hand side of the last expression can be interpreted
as the sum of results of two integral transformations applied

t] €

to f. and we=A|t|E respectively. By Propositions 10.1,
10.2 1) adjoint, and 10.2 iii), the first transformation is abso-
lutely regular for |j| < «, the second is absolutely regular

for |j] < « and p-s.r., 1 < p <2 if |j| = «. Thus $*°c We,
if « is an integer and 1 < p < 2.

(*8) On the assumption that k and k’ are chosen as they were at the beginning
of the proof. For other choices of k and k' the evaluations should be changed by
using Lemma 4.1.

(*?) Besov obtained this theorem for 1 << p << co. The first part was obtained by
Taibleson without restrictions.
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To prove the opposite inclusion for 2 < p < oo, we remark
that if ue W¢ then by (5.29) (with m = «) we have at first
in sense of distributions u = G,_xf. where

1116) fiy) =3 (5)

=9

3 f DGy e(y — 2)Dju(z) dz.

L=t

Applying Prop. 10.1 we prove that this is a bona fide inte-
gral representation, that f; e L? and is given by (11.16) a.e..
By Theorem 11.3 it is sufficient to prove that f; € #=7, 2<p < o.
We know already that f,e1?; on the other hand A can

Jtff

be written as a linear combination of terms w(y, t) given by

the formula
f AtyDj Iarey_z)Du( z) dz.
t €

By Proposition 10.2, for [j| < «, w(y, t) is the result of
an absolutely regular integral transformation applied to
Dju; for |jl =a and 2 < p < oo it is the result of a p-s.r.
transformation. Hence w;e LP(R” X R* du) which completes
the proof.

If for fixed ky> ;>0 we choose a norm ||u||g=r oOn

Bwp equivalent to |ule,,s and then define

”u”BG’p = ”Gao_a_u ]B%.P

for u e $*7, « > 0, this norm, by Theorem 11.3 will be equiva-
lent to |ulqpx for @ > 0. If we restrict the choice of ||u|pwr
by the additional requirement that for p = 2 it coincides
with |uj,, = |ulq,2 We shall call the resulting norm, [|u||p=r

a standard norm on %%, The simplest such choices of ||u||s=r
seem to be the two following norms: the first, for a, =1,
leads to the standard norm:

(14.47)  [Julper = [|Gr—au]fe?

['(1 + n/2) —neplIAZ \ige
+W%ﬂﬁumwwmm

the second, for ay = 1/2, defined by ||u||s12r = |u,5, leads to
(A1.47")  ||ufls=r = [|Gyjp—at|lf?

201 1/2) ( -

+ <:1/j_ 2 jﬂn]t]_"‘P’sz,,_H(t)l|A,G1,2_¢u||‘£P dt.
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Recapitulating, we can state

Tueorem 11.5. — Consider $*? with a standard norm for
o = 0. The potential operator Gy is then an isometric isomor-
phism of ®*¢ onto $B*+v-e. For p=2, B2 = W& = L2, with
equality of standard norms in all these spaces.

Remark. — For any norm |[uf[p=» as defined above, and
function u(y) we can consider the function P(a) = ||u||p=»
(= o if ueB*?) for « > 0. Obviously P(a) << oo implies
®(a') < oo for o' << a. It can be proved without much diffi-
culty that 1° for all «, (I)( ) is continuous to the left; 20 if
P(a) < 0, for 0 < @ < o' then ® is continuous on this inter-
val. If we take for ||ul[s=» the norm (11.17) or (11.17’), then
®(a) is non-decreasing.

Consider the inverse potential operator G_, applied to
$e», This gives a space of distributions G_o(#*?) which, by
Theorem 11.3, is independent of «. We will denote this space
by B®?. Hence

(11.18) Bor = G,(B*?)  for  a«>0.

Since for 0 < < 1, Rer — W8, we obtain by Theorem
11.1 ii) in view of the fact that G_,(L%) = L2,

(11.19)
B*cl? for 1<pL2, B*?> P for 2<p= oo.

As a consequence, we have also

(11.20)
Forcl: for 1<p<2, BroLh for 2<p=< .

§ 12. A projection formula and conjugate spaces.

In this section we shall need some results of the theory of
pairings and associated norms (c.f. [4]). Let A and B be complex
Banach spaces and (v, w) be a bilinear hermitian complex
valued form on A X B (i.e. linear in ¢, antilinear in w). The
system [A, B, (, )] is called a pairing. A pairing is proper
if (v,, w) =0 for all we B implies ¢y =0 and (v, wy) =0
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for all ¢ € A implies wy = 0. The norms in A and B are admis-
sible with respect to the pairing [A, B, ( , )] if (v, w) is a
bounded functional on A for every fixed w e B and a bounded
functional on B for every fixed ¢ € A. Let [A, B, ( , )] be a pro-
per pairing and norms in A and B be admaissible.

The correspondence ¢— f(v) =(y, w) is a canonical linear
continuous mapping A — B* where B* is the anticonjugate
of B, i.e. the space of antilinear continuous functionals on B.
Similarly, w — (¢, w) is the canonical mapping of B into A*.
We say that in this pairing B is canonically isomorphic with
A* if every linear functional ¢ € A* can be represented in
the form ¢(¢) = (v, w?) with some fixed w?e B (since the
pairing is proper this w? is clearly unique). A bounded ope-
rator P*: B — B is called adjoint of a bounded operator
P: A— A with respect to the pairing [A, B, ¢, )] if
(P, wy = (v, P*w) for all ye A and w e B.

The adjoint may not exist for some operators in some
pairings. In the pairing [A, B, ( , )] every bounded operator
on A will possess an adjoint if and only if B is canonically
isomorphic to A*.

If A, is a closed subspace of a Banach space A then we
say that an operator P: A — A, is a projection of A onto A,
if P is bounded, P(A) = A, and P2 = P.

If a projection P of A onto A, has an adjoint P* then P*
is also a projection.

Taeorem 12.1. — Let [A, B, (, )] be a proper pairing of
Banach spaces, Ay, B, be closed subspaces of A and B, and
P,P* be adjoint projections of A onto A, and B onto B, respec-
tively. Then

1) The pairing [Ao, By, { , )] is proper.

1) If B is canonically isomorphic with the conjugate space
of A (in the pairing [A, B, ( , )]) then By is canonically iso-
morphic with the conjugate space of A, (in the pairing
[AO; BO’ < ’ >]

Proof. — 1) Let yoe Ay and (y,, P*w) =0 for all weB.
Then by definition (g, P*w} = (Poy, w) = (v, w) =0 for
all we B and since the pairing is proper, v = 0. The proof
is similar for w, e B,.

ii) Let ¢ be any bounded linear functional on A, By the
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Hahn-Banach theorem ¢ can be extended to some bounded
linear functional § on A. By assumption there is an element
w? e B such that §(v) = (v, w?) for all v € A. Hence for v € A,,
‘P(") = (v, w¥) = (Po, o) = (o, P* w%) = (v, w}),

w§ = Pw? e B,.
By 1) w¢ 1s unique.

We proceed now to apply Theorem 12.1 to the case when
A = AL, B = A7 (cf. §11). For {v;, w;{ € AL and {¢}, w;} € A%
and for {¢;{ € AL and {v;} e A}, if « is an integer, the bilinear
form ¢ , ), is defined by the formulas

(12.1)

Ao ity 1 i = 3 (77) 3, o)) do

ljl=t

+ /;.. /;l.. wi(x, t)ywi(z, t)dup(z, t)]

for @ not integer, m = [«], B = « —[a], and

(121 (§oid, §91}m :,§o<7>

if « 1s an integer a = m.
The pairing

(12.2) [A% A%, < Dl

is clearly proper, the norms in A4 and A% are admissible and
for 1 < p << o A% is in this pairing canonically isomorphic
to the conjugate space of Aj.

As indicated in § 11, for every p, 1 < p < oo, the space
W¢ with norm | ~|,, can be isometrically imbedded in the
space A%, the imbedding E,,: Wi -— A} being given by
the formulas

2 _ﬂ‘n v,(x)v,Tx) dx

ljl=t

(12.3) ofz) = Dju(z),  wx, 1) = ﬁ%%?—),
uewg7 j] < m = [a], B=a—/[a],
if « i1s not an integer, and

(12.3)  ¢fz) = Du(z), ueWp, |]|=m,

if « is an integer, &« = m.
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Consider now, for {¢;, w;} € A} or for fo;} e AL if a=m

is an integer, the transformation T, , defined by the formula

124) Tapfopmi =3 (7) 2| [ DPGuts — alofa)

IJI—

At Z: a:D Gza :L‘)
+ oS Ik e, 1) dpa(z, )

for « not an integer, and

(12.4) Tm,,,go,}(z)=l_o< ) S [ DDGyp(z — 2)0/(2) da

=t

for a integer, & = m.
If ue W2 then the reproducing formulas (5.27), (5.29) and
Propositions 10.1 and 10.2 give '

(12.5) T, Eapu(z) = u(x) almost everywhere.

Using propositions 10.1, 10.2, and 10.4 we conclude that
for « not an integer and 1 <p < oo, T, {v, wieWs if
fvj, w;} € AL and there is a constant C independent of {¢), w;}
such that '

(12.6) ~
ITa.p{"ﬁ Wl% la,pgcng"h WJ}”AQ for 1<p=Z .

On the other hand if « is an integer, « = m, then from (5.7)
and (6.13) it follows that f{¢;} € AL, implies T, ,{¢;} € Wr
and there is a constant C independent of {¢,{ such that

(12.6")
|Tmp§ } ]mp___c”g"j“lAp for 1I<p< .

We easily verify that
(12.7) (Eq,pTap)* = Eq pTap
in the pairing [A%, A%, (, )ol.
Taking into account (12.5), (12.6), (12.6') and (12.7) we get

Tureorem 12.2. — If either o is not an integer and 1 <p < oo,
oraisan mteger and 1 << p < oo, then the operator P, ,= E, pT
s a pro;ectwn of A% onto the subspace E, (W ). In the pairing
(12.2), P, , ts the adjoint operator of P
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Pairing (12.2) induces a corresponding pairing of the spaces

Wz and Wg,

(12.8) (W2, Wi, () )
with
(12.9) (u, 9)0 = (Eq,pu, Eq p¢)a

for ue W3, ve Wa.
Hence, using Theorems 12.1 and 12.2, we get

Tueorem 12.3. — If either a is not an integer and 1 <p<<oo
or o is an integer and 1 <<p <<, then in the pairing (12.8)
the space W, is canonically isomorphic to the conjugate space
of Wg.

Similar results can be obtained for spaces $*?. To obtain

an isomorphism of $*? with ($*P)* we have to choose a
suitable pairing (the isomorphism obviously depends on
the pairing). The quickest way is to use the isomorphism

G_yi1)2 between = and WY (see theorems 11.4 and 11.5)
and take advantage of the pairing [W}:, W} (, )] (see
(12.8) and (12.9)). We obtain thus the pairing

(12.10) (B2, B2, (G_at112%) Goat12%)1se]
and the theorem

Tueorem 12.4. — For 1< p <<, B* is canonically
isomorphic to ($*?)* in pairing (12.10).

Remark. — In analogy with our procedure in the case of
spaces W¢ it would seem more natural to use the following
construction for spaces %“’P. Put &»=L*(R") X L?(R* X R", d).
For {o, w| e & define ||}v, w{[[fr = |o[|f> + [|#][E%n"cn", 4. For
o >0, the space $*? with norm | |, k> «, is then isome-
trically imbedded in 4* by the mapping E{):

— fu, |t|*Afu}.
The spaces ¥ and %' are in natural pairing with scalar

product ({o, wi, {¢', #'|) = {vv dz + /Tw "dp(z, t). We
would expect now to find suitable ad]01nt projections of
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4 onto EX(®*P) and of ¥ onto EX,(#*F). These will be
obtained if we get suitable reproducing formulas for the
$*» which would play in the present case the same role
as the formulas (5.27) and (5.29) played in the case of spaces
Wg when we constructed the transformations T,, and the
projections E,,T,,. Such reproducing formulas exist; they
require the use of the reproducing (or pseudo-reproducing)
kernel for the space %*2 with the norm | |, (for W we
used the reproducing kernel Gy,(z — y) of the space Wg with
norm | |,,, this space being essentially the space P?%).
The required reproducing kernel is the inverse Fourier trans-

k41
form of (2m)=2(1 + CIE[2#)1 with C = =" C(n, a)AT_ s

The reason why we did not use this approach i1s that we would
need many properties of this kernel which are not readily
available.



CHAPTER III

PERFECT COMPLETION OF g% AND g%pPk,

§ 13. The spaces P>? and B2,

In this section we prove the existence of perfect functional
completions of P and $*P* which will be denoted PP
and B*? respectively. We give also a description of the excep-
tional sets of these classes and differentiability properties
(in the ordinary sense) of functions in these classes.

We recall that a functional space F rel. A is the perfect
completion of a normed functional class & rel. A, A <A, if Fis
a functional completion of F rel. ¥ and A is contained in
the exceptional class of any functional completion of . A
perfect functional completion, if such exists, 1s always unique.

We remind the reader that P and $*P* are formed by
functions in C;° with norms |u|,, or |u|,,, and their imper-
fect completions (rel. A,) are W2 and $*P respectively. We
also consider the class C; with the norm ||u||,, as defined
in L%, We define its perfect completion, which will be denoted
PP (L% is its imperfect completion rel ).

Since for « non-integer the norm in W¢% is equivalent to
the one in $*? (see Theorem 11.4) we will have

(13.1) B*» = P*? for « non-integer.

Since for integer m and 1 << p << oo the norm in Wj is
equivalent to the one in L, (see Theorem 11.1) we will have

(13.2) P™ = P for integer mand 1 << p << .

It 1s therefore enough to prove the existence of B*? and
P*? in order to have P*? except when « is an integer and
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p = 1. We will show that p11 exists, but the problem, of

existence of P™ for m integer > 1 remains open.
For p = oo all our incomplete spaces are proper functional
spaces and, as mentioned before, have proper functional

completions denoted by P**<, P#=< and B**< contained
in P==, P»~ and B*" respectively.

The exceptional classes for P*? and B*? will be denoted
A+P and B*P respectively. Since for 0 < oy << oy << g we

have L2 >®=P>1% (see Theorem 11.1iii)), the correspon-
ding norms on C% satisfy [|ulls,, < clulepe < ¢||ulla,, With
positive constants ¢, ¢’. Hence

(13.3) P%P > B%P > Par and AP 5 Bwp 5 Y P
for 0 < oy < ay < 0t3.

Since we will prove the existence of P!, the exceptional
class of which will be denoted A'* we have also

(13.3")  PulsPrisPast 9[arl 5 9l 5 Qe
for 0 < o <1< o,

The existence of P™1 for m an integer > 1 not being proved
as yet, we will use an « almost perfect » completion of F™1

which we will denote here (improperly!)i’)”"1 and which will
have an exceptional class given by

(13.4) g = () A=,
alm

This class is much smaller than ,. The existence of a comple-

tion of ™1 rel. 9™ is assured by the fact that there exists
a completion of ™1 rel. Y*! for every a << m (*), hence also

rel. 9™ (see Prop. 6, § 4 of [1]).
We can therefore write, extending (13.3'),

(13.5) Pael 5 Pml 5 P, Aol 5 %i”"l o Yl
for m an integer and 0 < oy < m < .
8 =

(39) This follows from the fact that there exists a completion rel. 2, namely WF,
and that there exists a completion of C;° with the weaker norm |[|u|,, 1 rel. =1 c .



288 N. ARONSZAJN, F. MULLA ET P. SZEPTYCKI

To simplify some statements we will use the notation Y*?
for the exceptional class of P*”? even in cases when P*? coin-

cides with P*? or B®? respectively. (However, P*? will be
considered with its own standard norm | |4 ,.)

We shall need the following facts from the theory of func-
tional spaces and functional completion.

A normed functional class F rel. Y with the norm || || is
said to have the global majoration property if there 1 s a cons-
tant M = 1 such that for every u € & there exists a u’ € F such
that Reu'(z ) = |u(z)| exc. A and [[W|| Myl If M=1
this property 1s referred to as the strong majoration property.

Denote by 8B the class of all sets B« E(E — set of definition
of ) for which there exists a ued such that |u(z)] > 1
on B exc. UA; let B, be the class of all countable unions of sets
of 8. For Be® we define 3(B) = inf||u||, with inf extended
overall ue d, |u(z)| = 1 on B exc. Y. For B € B; the capacity
c(B) is defined by ¢;(B) = inf X&(B,), the inf being extended
over all {B,} <8 such that UB,>B.

We have the following propositions :

Prorosition A. — If the normed functional class F satisfies
the global majoration property and has some functional comple-
tion, then it has a perfect functional completion relative to the
exceptional class of all sets B with ¢,(B) = 0. (c.f. [1], Th. 6.3.).

Proprosition B. — Let &, ¥, F, < JF,, be two normed func-
tional classes rel. A such that:
10 For every f e J,, the norms of [ in &, and F, coincide.

20 For every fe9,, there exists a sequence {f,} cTFy such
that lim ||f,—fl]] = 0 and lim f,(z) = f(z) exc. U.

Then F, and F, have the same functional completions.

The proof of Prop. B is simple and we omit it.

We turn now to the proof of existence of P*?, B*?,
1< p< oo, and P, We will notice first that in all our
imperfect completions L2, $*?, and W%, if a function u(z)
belongs to one of them, then so do all regularizations u, = uxe,
with some fixed regularizing function e and u, converges
strongly to u in the corresponding norm. Furthermore for
a function ¢ € C* such that ¢(z) = 1 when |z| < 1, ¢(ox)u(z)
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belongs to the same space and converges in norm to u,(x)
when o N\ 0. It follows that we can choose p, (0 and &, (0
such that ¢(o,x)u(z) converge in norm to u(z). Moreover,
if u(x) is continuous ¢(o,x)u.(x) will converge pointwise
everywhere to u(z).

To abbreviate, we will denote by % any of the imperfect
completions L%, ®*P and W¢ and by || || the corresponding
norm. What has been said above implies

1) A continuous function belonging to ¥ must belong to
any functional completion of Cg with norm || ||
We have furthermore

2) If for each u(x) € F the function u'(z) = |u(z)| also belongs
to  and ||| < ||u| () then C& with norm || || has a perfect

functional completion rel. to an exceptional class A formed by
sets A for which there exists an increasing Cauchy sequence of

positive continuous functions f,e% such that f,(z) // o for
zeA.

Proof. — By Prop. B the class F of continuous functions

belonging to # has the same functional completions as C¢.
Since F has the strong majoration property there exists by
Prop. A a common perfect completion of C;° and &. Also the
exceptional sets A for this completion are those of capacity
¢,(A) = 0. Since the sets of the class Y are obviously excep-
tional for any functional completion it remains to show that
if ¢,(A) =0 then Ae. In fact, ¢;(A) = 0 means that for
every k there exist sets A{® and functions f¥ € F such that

o

Ac|JA®,  SIfPI<2* and |f¥(2) =1

= for ze AP,
The sequence of functions f,(z) = X X |f{*(z)| shows that
A e Ql. i=1k=1

Taeorem 13.1 — The perfect completions B*? for 0 < a<<1
and P*P for 0 < a <1 exist and their exceptional classes
B and A*P are determined as in Prop. 2).

(31 This is a special form of strong majoration property.
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For $*?, « < 1, we can take the norm |u|ap, and the
condition in Prop. 2) is obviously satisfied since for

W) = lu(@)],  [Au(2)] < [Awu(e)].

The only remaining case of W} is settled by noticing that
if u(z) 1s absolutely continuous in any variable z, on an inter-

val, so 1s |u(z)] and | u(z)|| = ou(z) almost everywhere
on the interval. T z
Remark 1. — The exceptional class 911 was investigated

by W. H. Fleming [8] who proved that it is the class of
sets of (n— 1)-dimensional Hausdorff measure 0.

We will need the following mean-value theorems for Bessel
potentials, similar to Frostman’s theorems for Riesz poten-
tials; the theorems were proved in [2].

For any g(z) =0, g Lj,, we will consider the function

u(z) = Gag(z) fG (= —y)gly) dy

as defined everywhere by the integral — infinite when the
integral is infinite.

Mean Varve TaeorEMs. — There exists a constant C
depending only on « and n such that for each sphere S(z, r),
r<1,

T f G y) dy < CG,(z — ) for every z.
S(a.r)

) S e
gelj,. and g > 0.

) lim ——— 1 . G.g(y) dy = Gug(z) for every x when
rNo [5(2, 1) Js@n
geli,. and g = 0.

1v) El)i\rﬂ,(ep *Gog)(z) = gl\il}, G.g.(x) = Gug(x) for every x when

G.gly) dy < CG,g(z) for every z when

geLi,. and g =0 where e is any regularizing function.
Our next proposition will settle the question of existence
of P*? and B*? in all the remaining cases.

3) Consider two of our imperfect completions ¥ and %
such that for some « > 0, G,(%,) = F and
CH{Iflh = M1Gafll = ClIfllx
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for every fe &, with a constant C > 0. Suppose further that %,
satisfies the global majoration property in the form

(x) For every fe, there exists ' e ¥, such that f'(z) > |f ()
a.e. and ||f'|l, < M||f|l, with M independent of f.

Then: 1° F has property (x); 2° C in the norm || || of
F has a perfect functional completion F rel. A where A is the
class of sets A for which there exists a function ge %, g=>0
with Gug(x) = o for xeA; 3° F is formed by all functions
defined exc. A by the integrals f Go(z — y)f(y) dy with f < F,.

Proof. — 10 For ue take fej with u = G,f, then f’ by
(x) and put u’ = G,f’. Obv10usly u' > |u| and ||u'|| < MC?||y]|.
20 We show first that 9 is s-additive. If A =UA,, A, e
and g, is the corresponding function, then g = X27%|g/l[1 g
corresponds to A. Next we show that every A e must be
an exceptional set for any completion of Cy° in the norm of

. To this effect consider the function g e F;, g > 0, G,g(x) = o
for z e A. As before, we can find a sequence of functions

¢(oxx) (e, * Gog) € Cg which converge in norm of F to G,g.
By Mean-Value Theorem iv) these functions converge point-
wise to G,g(z) = oo for zeA.

To finish the proof of 20 and 3° we remark that each

fG (x —y)f(y) dy

in J is finite exc. 9, namely outside of the set A where

[ Galz —y)f'(y) dy = oo

(f' corresponds to f by (%)). It follows that in each equivalence
class rel. ¥, of F there exists one and only one equivalence
class of & rel. 9. Taking J with the norm of ¥ we see that &
is a functional class & forming a Banach space isometrically
isomorphic to the one formed by #; hence F is complete.
Since Cg < (%) it remains only to show that ¥ is a functional
space rel. . In fact, if {u,} <% and |[ju,/|—0 we choose

(22) The simplest way to see this is to write forueCy°, f =G _,u =Gy _(1—A)u
where A is the Laplacian, [ an integer > a/2.
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U, so that Xlfu,|[| << . If f,,keg1 with u, = Guf,, fa,
corresponds to f,- by (+) and g=2Xf, then u,(z)—=0
outside of the set A where G,g(z) = .

Taeorem 13.2. — The perfect completions P*? and B®*?
exist for all « >0 and p=>1. The exceptional classes A*P
and B*? are determined as in Prop. 3, 2° by taking in case of
P*? the isomorphism G,: LP — L& and in case of B*? the iso-
morphism G,_y: Ber - Ber with any ¥, 0 <y < .

A comment should be made in case of B*?. We first use
¥y <<1 to be assured of the strong majoration property in
$vP as in Prop. 2). Then by Prop. 3) 1° we obtain the global
majoration property for all @Y. Obviously, the perfect
completion and its exceptional class are independent of the
choice of v.

Remark 2. — The classes A*? = 9[*2 = B*2 were studied
extensively in [2]. Classes Y*? for p 5= 2 were investigated
by B. Fuglede [9].

For a function u e Lj,, the Lebesgue set is the set of points
z such that there exits a number u"(z) with

1
Ihm —————— u(y) — u'(z)| dy = 0.
i e Il s, Y ()| dy
The complement A, of the Lebesgue set is the Lebesgue excep-
tional set (L.-exc. set) of u on which the function u"(z) is not
defined (see the corresponding developments in [3]).
With an arbitrary bounded function g vanishing outside

of a compact and satisfying fgd:c: 1 define

= 11\3(1) f P‘"g< ) u(y) dy,

wherever the limit exists. The points  where the limit does
not exist form the exceptional set of u?- the corrected function
of u by g. The Lebesgue function u" serves as a « minimal »
corrected function since every u? is an extension of u".

u'(z) = u(z)a.e.

and the L.exc.set A, has measure 0.
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The following remark concerning the function u" is of
importance to us; it is an immediate consequence of the mean
value theorem 1) (c.f. [3]).

Remark 3. — a) If u(x) is represented a.e. by the integral
f Gu(z — y)f(y) dy then the integral represents u"(z) at every
pomt x where the integral exists and is finite.

) More generally if u is represented a.e. by the integral
fDG yY)f(y) dy, |j| < a, then the integral represents

u(x) wherever f [Goijil® —y) + Go(z — y)]f(y) dy exusts.

Treorem 13.3. — i) If u belongs to L% or $*? then u“ and
every correction u’ belong to P*P or B*P respectively. 1) If
ue WP, m an integer, u" and every correction u’ belong to

the almost perfect completion Pm1 rel, m a1,
alm

Proof. — Part 1) follows immediately from the Remark 3
and the representation of the functions in perfect comple-
tion. given in Prop. 3) 3°. Part ii) follows from 1) since
pm1c m P#1, For m = 11t is an open problem if actually

allm

u® is in the perfect completion P11 and if the L. exc. set is

in 1,

Remark 4. — The corrected functions and the minimal
corrected function were introduced with the idea of recap-
turing the « true » value of a function which might be «incor-
rectly » defined on a set of measure 0. The above theorem
shows that there 1s some factual background in this heuristic
idea. The corrections most often used are by spherical means
(g = w,/n for |z| < 1, = 0 for |z| > 1) or by regularizations
(g =ce).

From now on we consider a (non-singular) integral trans-
formation as defining a function wherever the integrals
occurring exist and are finite. An integral representation of

functions in an imperfect completion # will be called perfect

if it actually defines functions in the perfect completion .
In the preceding section we considered several representa-
tion formulas which represented almost everywhere, by inte-
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grals, functions in different imperfect completions & It is
important to know if these integrals give actually a perfect
representation of the corresponding functions in the perfect
completion . This is true in most cases and the key to this
result lies in the following theorem.

Tueorem 13.4 — As in Prop. 3) consider two spaces
G = Ga(:%) where F is L2 or B and ¥, is 1P or BP with
0 <<e<<1. Suppose further that an integral transform K
from some measure space {Z, dw(z)} (*) to {R", dy} transforms
p-ab. regularly LP(Z, dw(z)) into F, (**). Then for any function
w(z) € LP(Z, dw(z)) the integral

) [ Gale—y)K(z, y)w(z) dw(z) dy

represents perfectly a function u(z)eJ outside of a set of the
corresponding class .

Proof — By Prop. 3) 3° it 1s enough to show that
= [IK(z y)llw()ldeo(z) is in F. When § =L this

follows from p-ab. regularity of K. When ¥ = $* one has
also that |t|—A,,,K(z, y) i1s p-ab. -r. and since

1Beyy| Kz, 9)Il < 180, K(z, )l
the kernel [¢|—%A,,,|K(z, y)| is p-ab. -r. too.

Remark 5. — As examples of formulas to which our theo-
rem applies we note the reproducing formulas (5.21) (especially
as rearranged in (11.12)) (5.25), (5.27), (5.29), inversion for-
mulas (5.22) (rearranged as in (11.12)), (5.26), (5.28), the ope-
rator (12.4) in the projection E,,T,, and many others. Howe-
ver it does not apply to (5.30) or (12.4’) since these contain
some singular integral operators.

We pass now to differentiability of functions in our classes.
There are three basic questions in this connection.

I) Existence of distribution-derivatives as functions in the
right classes.

(23) {Z, dw(z) } may be {R™ dz} or { R™ X R™, dp(z, )} and so on with dimen-
sion m possibly different from n.
(24) This means when 51 = §P not only that K is p.-ab.-r. but also that the

kernel [f|¢A,,. K(z y) is also p.-ab.r. from {Z,dw(z)} to {R* X R, dpfy, t) } .
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We may consider the imperfect completions % The right
class for derivatives D; of functions in F is the class of the
same type (L, W or #) with the same exponent p and with
order a diminished by [j| units.

a) Classes W%. — These are the best from the present point
of view. Their definition implies that D;(Wg) < WiVl for
all p, 1 < p=< o and all j with |j| < a.

b) Classes $*P. — Practically as good as the preceding.
By theorems 11.3 and 11.4 we have with

&= %mln <—§—’ «— I]l)’ Ror = Ga—e‘%s'p = Ga—ze—-liiGUH E%s.p

and
DjBi? = GogeryyD;WHH* € Gogeyy Wit = SV,

With our definition of B®? (see § 11) the inclusion is true even
for |j| = « but B%” is a functional space only for p < 2 and
for p > 2 it contains distributions that are not functions.

¢) Classes L§. — Everything i1s right for 1 <p << .
For ue L} we use the representation

Dyu(z) = [Garyye —y) [ DGy —2)f(z) dz dy

for fe L?. The inner integral is a singular integral (see (5.7)

and (6.13)). Hence D,(L{)<Li_; for 1<p<oo 7l < a.

But when p =1, or p = o, the inclusion is never valid.

We have still obviously Dy(L&)c ()| Lg= (| W for
. B<a—ljl p<a—ljl

lj]l < a; also DLy c®*Vt* For [j| =a, DjL};) contains

distributions which are not functions, whereas

LUI ﬂ Lloc

1<g<»

II) Representation of derivatives by differentiation under
integral sign. Perfect representation.

If the function u is represented by one of our integral
transforms, which, by our theorems, puts it in one of the

classes L, W, ®, of order « at most, then we cannot apply
D; to the kernel for |j| = « and obtain still a non-singular



296 N. ARONSZAJN, F. MULLA ET P, SZEPTYCKI

integral transform. (Sometimes, when |j| =a we get a singular
integral transform of the type (5.7)). Therefore we will assume
|/| < a. Our considerations are valid also for |j| = 0.

The case 1 < p << oo. — The only relevant classes are L2

and B*r. If ueRor (or Lf) then a.e. u = G,_+f and
Dju = DjGa_g*f

with fe®%, 0 <e¢< min(1, @« —|j|), (or u = Gu*f and
Dju = D;Gy*f with feL?); in both cases the representation
of Dju is perfect in view of Remark 3 b and Theorem 13.3 1).

The case p=1. — If ue$B*! the results are exactly the
same as in the preceding case.

If u e W%, « an integer, we do not know if the representation
is of the kind treated in Theorem 13.4. However, we know
that Dju e W™/ and the representation is almost perfect,
1.e. valid outside of a set in m A1,

<a—lji

If uel; we know that in general Dju ¢ L;_;. However,
if the representation is u = G,f, f € L1, we get, in view of
inequality (9.1) that D;u is defined by the integral outside of
a set e Vi1,

The case p = oo. — In this case all functions in our classes
and all their derivatives of order << a are continuous and
bounded. The derivatives are represented by the correspon-
ding integrals everywhere.

II1) Pointwise differentiation.

We will introduce a notion of pointwise derivative, some-
what more restrictive than usual. We will say that u defined
outside of some exceptional set A has a pointwise derivative
in some direction, say the direction of z, — axis, at the point
y if in some interval y, —a <z, <y, + a, a >0, uly, z,)
ts defined and absolutely continuous and

.1 ’
Da: u(y) = lim _Ah:y,,u(y ’ yn)

" h>0 h

exists and is finite. If ue L}, and the so defined D, u exists
a.e. and D, uel], then D, u is the distribution derivative
of u.
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By repeating the operation we obtain any higher order
pointwise derivative D;u. It is clear that it is necessary to
define u much more precisely than exc. U, in order that the
derivatives D;u exist in pointwise sense.

We will consider the perfect completions P*? P*? and
B*? and prove that for w in any one of them the pointwise
derivatives D;u exist for |j| < a outside of a set of the corres-
ponding class 9eVbr, 2P or Belr and belong to
Pa/lp, Paihp and BeVi? respectively. The only exceptions
will be p =1 for all classes and p = o for P*>

We prove first a few inclusions

’

(13.6) For O<o'<a and ~>L> 1 _2—e

P q P n
P»Pc P*9 P c 9,

b

In fact, by Young’s inequality (see [2], § 10, Prop. 1)) we
have G, ,feL? if fel?, hence G,f= Gy *(Goof)<=P*".
The inclusion between exceptional classes follows from the
one between the spaces.

(13.7) For p<gq, AxP > Y1,

It 1s enough to prove this for bounded sets. Suppose
A cS5S(0, R) and A e A*%. It follows from Prop. 3) 2° for the
isomorphism G,: Lf— LI, that Ac[z: G,f(z) = ] for
some fe L4 f> 0. Let y(z) be the -characteristic function
of S(0, R). Put i = yf, fo = (1 — )f- Then G,f; is a regular
analytic function in S(0, R), and hence A c[z: G,fy(z) = =].
Since f; € L?, (13.7) follows.

Lemma., — 10 Let AeA*? (or A eB*P), a > 1. Then all
straight lines parallel to the z,-azis and meeting A form a set
e Y% 1P (or e Be-1F),

20 Let A e A». Then all straight lines parallel to the z,-axis
and meeting A form a set of Lebesgue measure 0.

Proof. — 1° By proposition 3) 2° there exists a function
¢ =0 such that A = [z: G,p(x) = o] with gel? or
a—1

2

A =[z:G,_.9(x) = o] with e = min[ ) —1—] and ¢ e B,

2
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Put ¢,(/, z,) = fng(x', z, + 7) dt for a positive integer
N. We have

llgallve = 2N[lgllee,  [JAgallr < 2N[|Ag]lee.
Therefore ¢, eL? or ¢, e®*? respectively. Put
AP = [z: Gup(z) = 0]

and AV = [z: Go1¢,(2) = ] (or AN = [z: G,_.p:(2) = 0]
and A{Y = [z: G,—.49;(z) = ©]). Then AP e Y*? and
AMeY*1P (or B*? and B* 1P respectively). Consider a
point ye AuAMuA®. By (9.1) we have

2 Gylw— y).§ [Ga(z — y) + Gaa(z — )]

oz,

hence for any h, |h| <N,
1Ga3(y’s ya + a?(y Yn)l

< _
ff' Yy — 2y, — 2z, + 7)|¢(2, x,) dr dx
chR (y — 2, y,,— <px z, + 1) dtv dz

+ﬁnG¢_1y———xftpx x,,-’r-'v)d'vdx]
= o[Gat1(y) + Gaata(y)] <

(or similarly

1Gaet(y, Yn + k) — Gaep(y)] < c[Ga—ef1(y) + Ga—e—161(y)] < ).
It follows that for y outside of the set

Av AP0 AP) e ge1v
N=1
(or B*1P) the whole straight line parallel to z,-axis and
passing through y lies outside of A.

20 By Prop. 2) there exists an increasing sequence of conti-
nuous positive functions u, forming a Cauchy sequence in
W; such that A e [z: u,(z) / «]. Since the u, are continuous
we can find a set A; of measure 0 formed by straight lines
parallel to z,-axis such that

h
u(z’y 2, + h) — uy(z) = f % w (2, z, + ) dr
for all k, h and x outside of A,. ¢
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If there was a set of positive measure of straight lines
parallel to z,-axis and meeting A there would be also a set

(z', z,+7) .pd'r

n

. 0 .
< MP for some constant M and all £k <s1nceb— U, 1s a

n

Cauchy sequence in L?). Also in this last set there would
have to be a point y where |u,(y)] << N for all k. On the
corresponding line we would have

luwy’s ya + B)| < N + MR
and the line would not meet A.

TaeorEmM 13.5. — 10 The case 1 < p << wo. If ueP*?
(or B*P) and |j| < & the pointwise derivative D;u exists exc.
Yote (or B*VIP) and belongs to Pk (or Br-Vip); if
7]l =a, Du exists exc. Yy and elP for ueP*r = Per,

20 The case p = 1. If ue P*, P*1 or B*1, and l7] < @, Dju
exists exc. ﬂ AP and belongs to m PBL; if |jl=a=1

L p<a—lil B<a—ll
and u e P¥ Dyu exists exc. Wy and belongs to L. 3° The case

p =. If u belongs to P>, P*= or B** and 7/l < e, Du
exists everywhere and belongs to B*it= Pelile or Be-lk®
respectively; if |j| = «, and u<P*", then Dyu exists exc. U,
and belongs to L*.

Proof. — 10 Clearly it is enough to consider the case |j| = 1.
Suppose first 1 << a. We confine ourselves to the case u e B*?
(the case ue P*? 1s slightly simpler, both are similar to the
case p = 2 treated in [2]). Since u(z) = G,_f(z) exc. B*?
with 2¢ = min(e —1,1) and fe®** we can take the set
A € B* 1P of straight lines parallel to z,-axis such that

u(@) = Go_f(x)

outside of A as in the above Lemma; then we write
71»( u(@', z, + h) — u(a, ,))
b , ,
—ff __y’x"—yn)f(ysyn+7)d1dy.
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The integrand is majorated by
1 ’ ’ ’ ’ ’
67," [Ga—s(x - Y, xn—yn) + Ga—-l—E(x -Y, xn’_yn)]f(y ’ y,,—{—’t).

Introducing
’ 1 h ’
T y) = sup 5 [V, 3n + )l e

we check immediately that

]Al?<y’ yn)] é sup %f; lAtf(y,, Yn + T)l dr.

Applying Hardy-Littlewood inequality we get [ e®°
hence outside the set where G,_.f(2) + Ga_e_sf () = 00 and

. . 0 . v .
set A - which form a set in B* 1P - b—u(x) exists and 1is
xn

. 0 . . .
given by <$ G¢>*f which is a perfect representation of a
function in B*1-7,
If @ =1, we use a sequence {¢,} c Cy converging in P?

to u exc. Y». For almost all lines ;—— ¢, converges in Lf-
z

n

norm. If we assume that X|¢, — @;44]1,, << o© the conver-
gence is dominated by

P)
ZE ?1(37) e Lp,

K 0
/o u(e) — g 9|+
hence almost everywhere

lim % (u(a', 2, + ) — u(2, x,))
h=0
— limim - (94(a’, @ k) — 94(a’, )

k=o h=0Q h

which finishes this part of the proof.
20 We use the preceding part and the inclusions (13.6)

and (13.7) to show that D;u for |j| <a exists exc. m 91
p<a—ljl

and is represented by any of the relevant representation for-

mulas differentiated under the sign of integral; but such a
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differentiated formula in all cases represents a function in
PB1, For |j|=a=1and u e P! the proof is as in case 10.
p<a—|il
30 This is obvious except when || = « and u e P** when
we proceed as in 10,

§ 14. Restrictions and extensions of functions of P> », B%: P,

We shall apply here the results of § 10 and § 13 to charac-
terize the restrictions of functions of B*? and P*? to hyper-
planes and extensions of functions of B*? from hyperplanes
to the whole space. Results presented here were obtained in
a somehow less precise form by Besov [5] (for B#?) and Stein
[18] (for P*P). The corresponding results for P=P can be
obtained from the ones described here, in view of its inclusion

relations with B*? and P*? (§ 13).

We begin with the characterization of restrictions of func-
tions of B*»,
By Theorem 13.2, if ueB*? and y is a fixed number,

0<y<min (1, a), (*) then u =fGa_Y(x——y)f(y) dy exc.

PP with fe B (= W}) and the norms Ifly, and |u]apk
(k> «) are equivalent. For almost all z we have

) = Garf(a) + [ ‘”—ﬁw— w(y,1) dit(y, 0
where w(y, t) = |t|YAf(y), and consequently,

(14.1) w(@) = [3uGary(z—y f( ) dy
+ ff‘lﬂ Ln (Hi:lY y) W(y’ t) dp«r(y, t):

the latter formula being valid in view of Theorem 13.4 exc.
B*P. Formula 14.1 is suitable for defining restrictions of u
to hyperplanes. As before, for n'-integer, 0 < n’ < n, 2’ will
denote the projection of the point z onto the hyperplane

(%5) We could put y = —;— min (1, «).
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"

- =2x,=0, n” =n—n'. Assume that a >
< o and define the restriction of u to RY,

2) uw(2) = g Gagyla’ _ﬁy)ﬂ )dy
+ ﬁ fn H‘Yt[r —¥) w(y, t) duy(y, t),

with f and w as in formula (14.1)

Hence u’ is the sum of results of integral transformations
of Props. 10.1 and 10.3 adjoint applied to feLP(R") and
we LF[R" X R", du,(y, t)] respectively. By Props. 10.1, 10.3
adjoint, and Remark 2 of § 10, we conclude that u’ is defined
a.e. on R”, belongs to L?(R™) and |u'|ir@wy < c|f]y, With a
constant ¢ 1ndependent of f. Similarly, the difference quotient

”
w'(t, 2')=|t] P A}‘; u'(@'), kK >a—

results of the transformations of Props. 10.2 and 10.4 applied
to fand w respectively, and by Props. 10.21), 10.4, and Remark
2 of § 10, 1t belongs to L?(R* X R”, du'(/, t;)] and

|9 |weqey < elflys

with some constant independent of f. We conclude that
w e Fe—'I#p(R™) and

(14.3) Iulla—n"/p.p.k’ = C]u]a,p.k

Ty

1

IAE
Ny

[N

(

, 1s the sum of

with k£ > a and some constant ¢ independent of w.

It remains to prove that u’eB*™/P»(R”). In fact, u(x)
1s a pointwise limit outside of A € B*? of a Cauchy sequence
of continuous functions u,e $*?(R"). Hence their restric-
tions u, form by (14.3) a Cauchy sequence of continuous
functions in ®*"/»»(R) converging pointwise to u’ outside
of AnR*. We must now prove that A n R" e $*—"/PP(R").
In the proof of Prop. 3), 20, § 13, it was shown that there
exists a sequence {¢,} cC% Cauchy in %$*?(R") such that
Ac[z: lim ¢ (z) = oo]. Their restrictions form a Cauchy
sequence of continuous functions ¢ e B /PP(R”) and
on AnR"Y ¢(z') > o, hence AnR"e®B*"/PP(R"). We

have proved thus
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Taeorem 14.1. — If ueB*P(R"), a>—;, 1< p < o,

then the poiniwise restriction u’ of uto R™ belongs to B>~ /PP(R™)
and the restriction mapping is linear and bounded.

We shall prove now that this restriction mapping is a map-
ping onto. Let u/(z') « B® P(R"') Similarly as in (14.1) we can
write with some v, 0 <y < mln (1, B) (*®) and an f' e W}(R")

with the norms |u'|g,, and e u1valent
B.p, lve €q
(144) (@) = GEyef
At yGﬁ—FY"E —y) &' (.t o
[ o f P =Y iy, ¢) dily's ©)

exc. BF? (in R") where w'(y’,t) = |t'|"TA/f'(y’). Observe,
that by the definition of the kernel G{” we have

et n
(145) G*(a") = GE(|2']) = (4m)"" F<F—<;>~—> Gar(l2'])
"L oo Gatr(|2']).

where G, denotes the usual n-dimensional kernel.
Define now the extention u of the function ' by the for-
mula

(14.6) u(x) = cvpiy f Gn+{3+y( Y)f'(y) dy
[ [ S w0y dyty, 1) |

Clearly u is analytic outside the hyperplane R" and
u(@') = u'(2’) exc. BF? (in R™).

Let a = + 2 and k be an integer, k> a. Applying
p

Props. 10.1 adjoint, 10.2 1) adjoint, and Remark 2 of § 10, we
verify that wel?(R") and ||ull> < c|u'|gpn (K > ), with
some constant ¢ independent of w'. Similarly, by
Prop. 10.3 and 10.4 adjoint, the difference quotient
lt|~*Afu(z) = w(z,t) is in LP[R* X R*, du(z,¢)] and

(26) We could put y =—;-min 1, B).
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|l#]e7apy = clw'|gp With ¢ independent of u'. Since (14.6)
is of type (») of Theorem 13.4, this proves

THEOREM 142. — If W' eBFPR™), B3>0, 1<p<
then u' can be canonically extended by (14.6) to a functwn
u e BB+IPP(R™) the extension mapping being linear and
bounded.

We state now the following theorem concerning spaces
pr:

Tueorem 14.3. —1) [fu e PP a >

then the restriction u’ of u to R™ belongs to B*"PP(R™) the,
restriction mapping being linear and bounded.

i) If W eBFP(RY), >0, n" >0, 1 < p< o, then u
can be extended to a functton uePp'*"’“’ the extenswn map-
ping being linear and bounded.

Proof. — Let ueP*P(R"), then by Theorem 13.2,

u(@) = [ Galz — y)f(y) dy
exc. Y*?, f el
Define

r;;n">0,1<p§oo,

w(2') = J Gole’ —y)f(y) dy-
By Prop. 10.1, u’ is defined a.e. on R", belongs to LP(R")
and ||u/||rr < dJ|fl|er With a constant ¢ independent of f. On

the other hand, by Prop. 10.2 ii) for &’ > « —nT the diffe-

rence quotient
Pr N 1yt kl AG«(-'”—H
W(xy t)—lth A jR,. It]a-—n/p f()

belongs to LP[R™ X R, du'(z’, ¢')] and ||w'||te@uy < d|fllee
with some constant ¢ independent of f. This proves that
u' e B*—P(R"), To show that u’ is actually in Be—"/»»(R")
we proceed as in the last part of Theorem 14.1

i) Let u' « B*?(R") and let u be given by (14.6). Then
u = Ggpypf with

f(@) = cw,pix [ fuw Grewro (w—y')f’(y') dy’
Dy Gy E—Y) 0
f f ]t]Y W(y,t)d,uw(y,t)],
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and by Prop. 10.1 adjoint, 10.2 11) adjoint, and Remark 2
of § 10, fe L? and |[f|jwr < ¢|f’|y,,- In view of the definition
of f' (as in (14.6)) this completes the proof.

We mention finally the case of the spaces pm1 m-integer,
about which no information can be obtained from the theorems
proved above. E. Gagliardo proved (c.f. [11]) that restrictions

of functions of P(R*) to R* are in L}(R™). His reasoning
can be extended (by completion of Cg’) to prove that restric-
tions of functions of P™(R") to R™ are in Pm1(R"),
m—n"=>0, Po1 = L1,
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