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ABSTRACT

In this paper bounds on minimum distance are derived for
hlock parity check codes using modulo q checking arithmetic.
Asymptotic expressions for the bounds on minimum distance
indicate that the achievable minimum distance for a parity
check code using modulo gq checking arithmetic falls short of
vhat is attainable using block codes of arbitrary construction.
In contrast, parity check codes using the arithmetic of GF(q),
the Galois field of gq elements, have their minimum distance
sounded by expressions asymptotically identical to those for
arbitrary block codes.

Parity check codes using modulo q arithmetic, while deficient
in Hamming distance properties, may prove to be powerful in
situations where the natural restrictions upon the likely
class of errors fit in with the modulo q arithmetic. A simple
example involving the correction of - 1 level errors on an
3 level channel is given; the problem is easily handled using
nodulo 8 checking arithmetic, and proves completely intractable
vhen GF(8) checking arithmetic is used.
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Section I

By way of introduction to the block parity check codes

on the alphabet of gq symbols with which this paper concerns

itself, the first paragraphs of this section present a brief

sketch of the essentials of block coding.

It is easiest to begin a discussion of block codes by

considering binary block codes of length n. Imagine that a

person is attempting to transmit reliably one of M different

nessages over a noisy binary channel by sending one of NM

specially selected binary sequences of length n (n-tuples).

In his effort to achieve reliable communication in the presence

&gt;f channel noise which will unpredictably change some O's into

l's and vice versa, he builds a certain amount of redundancy

into his scheme for sending messages, i.e., his rate of trans-

nission as defined by R = log, M /n is less than l. This

jeliberate use of a block code of length n when, strictly

speaking, a block code of length nR would have been adequate,

is a procedure which should be expected to offer some protection

against the incorrect decoding of messages by their recipient

3s a result of channel noise. Indeed, the coding theorem

states that one may communicate over a discrete memoryless

channel with arbitrarily small probability of error by using

nlock codes of increasingly longer block length, as long as

the rate is less than a quantity known as the channel capacity.

The capacity, which is a measure of how much information the

channel may reliably transmit, depends only upon the probability

of a transmitted "O" being received as a "1" and the probability



of a "1" being received as a "O" in the case of a binary

channel.

The concept of Hamming distance is a fundamental one in

understanding the error-correcting abilities of codes. The

Hamming distance between two sequences is defined to be the

number of places in which the two sequences differ. If a code

is so constructed that the minimum Hamming distance between

any two code words is 2r+l, then it is certain that any message

may be correctly decoded if r or fewer errors have occurred

on transmission. The recipient of the coded message can

achieve this capability by comparing the received sequence

50 the list of possible messages in his code word dictionary.

snd selecting as the message sent that one which is closest

to the received sequence in Hamming distance.

A common approach to the construction of redundant binary

block codes is to picture that the first nR digits are chosen

to represent the information to be transmitted, i.e., each of

the M WS messages has as its first nR digits one of the

nR-tuples. The remaining n(1l-R) digits are chosen in accordance

vith n(1-R) parity check equations expressing the dependency

of the check digits upon the information digits. Such a code

is called a parity check code; a simple example of one will

make the concept more clear. Suppose that we wish to transmit

any of il different messages in such a way that correct decoding

may be accomplished if one or less errors have occurred on

transmission. Using a code with block length of 77, where the

first four digits, X)XpXzX) are the information digits the

following set of parity check equations for determining



the check digits XcXgXn will lead to the construction of the

desired single-error-correcting code:

Xr ® Xx- © X;, ® x = O

 Tf xy 0x, x «+ 3

X.- ® XxX © ¥ 6 Xn:

wher ® denotes modulo 2 addition

For example, if the information digits of the message to

be sent are 1000, the redundant sequence 1000011 will be

transmitted. The recipient of the message can now make use

of the parity check equations in his decoding procedure. He

applies the three parity check equations to the received

sequence; a list of the outcomes of these parity checks,

called the syndrome, is made. If 1000011 were received, the

syndrome would be (0,0,0).

It can be shown that a sequence is a code word in a binary

parity check code if and only if its syndrome is zero. A

received sequence may be thought of as the sum of two binary

sequences, m + e, where m is the message and e is the "error

sequence" added on (component by component, modulo 2), having

1's in those places that have been changed by channel noise

and O's elsewhere.

The syndrome can be shown to be independent of the message

transmitted, and determined wholly by the error sequence

occurring on transmission over the channel. For the code

riven above there is a unique correspondence between syndrome

and error pattern for each of the eight syndromes: (0,0,0),...

(1,1,1). Calculation of the syndrome results in discovery and



correction of the single error, resulting in recovery of the

axact sequence transmitted.

[t is convenient to represent the parity check equations

in terms of a matrix consisting of n(l-R) row vectors. The

single—-error—-correcting code described above has as its

parity check matrix:

1

0 1 C

In general, a vector is a code word if and only if its "dot

product" with each of the n(1-R) rows of the parity check

matrix is zero. More formally the operation is the ordinary

jot product of two vectors comprised of n-tuples over the

yalois field of two elements, GF(2).

Tt may be shown that all binary code words satisfying a

riven set of parity check equations form a group under the

operation of modulo 2 vector addition.* Such a code is called

a group code, and has the important property that any code word

is the "difference" (or sum; in modulo 2 arithmetic, addition

2nd subtraction are the same) of two other code words, and

sherefore has as its Hamming weight the Hamming distance

between the two code words. For a group code the minimum

jistance must be equal to the weight of the minimum weight

nonzero code word.

* A group consists of a set of elements and a defined operation
spon the elements satisfying four axioms:
1) Closure: if a and b are in the set, then a+b is also in the set.
2) Associative law: a + (b+c) = (a+b) + ¢
3) Identity element: There is an element O, such that a+0O=a
for all elements in the set
+) Unique inverse: There exists a unique inverse element for each
3 guch that a + (=a) = 0.



These basic ideas regarding binary parity check codes may

be easily extended to parity check codes with characters built

on the alphabet of q symbols: O,1,...9-1e

A parity check code on the alphabet of gq symbols with block

length n and rate R is defined to consist of vectors m, :

m, = (mq “on om.) which satisfy the n(1-R) independent

relations:
 7"

[-1) ) mus = 0 J =1,25¢00.n(1-R)
The vector uy = (uggs oo “Uyp) is the jth row of the parity

check matrix of the code; it too is composed of n-tuples from

he gq symbol alphabet.

Equations I-1) assume the existence of both an addition

and a multiplication operation defined on the q alphabet

symbols. These operations constitute the checking arithmetic

&gt;f the code. It should be noted that if g=2, and the checking

arithmetic consists of modulo 2 addition and multiplication,

equations I-1) are exactly equivalent to the previously

advanced definition of a binary parity check code. If the

operations of the checking arithmetic obey the distributive

law: (a+b)c = ac + bc, then it can be shown that the parity

check code is indeed a group code for which minimum distance

may be equated with minimum weight.

For block codes in general, the minimum distance between

code words may be bounded from above by the Sphere Packing

and Plotkin bounds and from below by the Gilbert bound. These

bounds — derived in Appendix A. Analogous bounds for parity

check codes using the checking arithmetic of GF(q), the Galois

field of q elements. are derived in Appendix B. The expressions



for these bounds in Appendices A and B are seen to agree

asymptotically as block length n approaches infinity. In

this sense the GF(q) checking arithmetic is an efficient one.

3F(q) only exists if q is a prime number to an integral power.

In Section II bounds on minimum distance are derived for

parity check codes using modulo gq checking arithmetic (this

is different from GF(q) arithmetic as long as q is not a prime

number). When q is equal to a prime number to an integral power.

hoth GF(q) and modulo q checking arithmetic are available as

choices for the construction of parity check codes. Modulo g

arithmetic will frequently seem to be a more natural choice.

For example, in multiple level channels sending voltage-quantized

pulses to convey information, nearly all likely error patterns

vill be the result of additive noise causing a one level

juantization error modulo q; two level errors and up will be

axtremely unlikely if the spacing between quantization levels

is appreciably greater than the rms noise level. Appendix C

presents a simple example where quantization errors of 1 level

in an 8 level channel may be easily corrected with modulo 8

checking arithmetic, but present a hopeless problem when GF(8)

checking arithmetic is used.

The results of the analysis of Section II are disappointing

in that the asymptotic expressions for the bounds on minimum

listance indicate that the achievable minimum distance for a

parity check code using modulo q checking arithmetic falls

short of what is attainable for block codes in general. In

terms of Hamming distance properties, modulo q checking

arithmetic is inefficient and is to be avoided. Its power

lies in its application to situations where restrictions



spon the likely class of errors, which make Hamming distance

1 poor measure of error-correcting capability, fit in naturally

vith the modulo q arithmetic.



Section IT

In this section we shall derive bounds upon the minimum

distance for parity check codes employing modulo g checking

arithmetic. It is easily verified that the q integers (alphabet

symbols) O,1l,...0-1 form a ring under the two commutative

operations of modulo q addition and modulo q multiplication.

Also the distributive laws are obeyed: a(b+c) = ab + ac;

(a+b)ec = ac + bec. Therefore a code using modulo q checking

arithmetic is a true group code for which the minimum weight

for a code word is equivalent to the minimum distance of the

code. Before proceeding with the actual analysis, a few

pasic definitions and theorems regarding modulo gq arithmetic

aust be introduced.

Definition: In the ring of integers modulo q, any nonzero

integer which is either a factor of q or has as a factor a

factor of q is considered to be a trivial number. (Unity is

not considered to be a trivial number.)

Definition: The symbol LY (a) represents the number of trivial

aumbers in the set 0,1,...q-1. The remaining g - .(a) = 1

nonzero integers are considered to be nontrivial numbers.

Theorem II-1:

The product ab of two integers modulo q is trivial if

cither a or b is trivial; it is nontrivial if both a and b

are nontrivial.

Proof: The proof of this theorem follows immediately

from the definitions of trivial and nontrivial numbers.

Theorem TII-2:



If a is nontrivial, then the gq-1 products ab, b=1l,2,...9-1,

are all different and all nonzero.

Proof: ab cannot equal zero modulo Ok A10t a factor

&gt;f q. Now suppose that:

ab = ab! modulo a

Phen:

ab - 2b'=0

But, by the distributive property ab - ab' = a(b - b') =0

Thus b = b' = 0 and b must equal b'

corollary:

Each nontrivial number a has a unique multiplicative

nverse a~1 such that aa™T =1

Theorem II-5:

The nontrivial numbers form a group under modulo q multiplication.

Proof: Closure of the set follows from Theorem II-1l. The

identity element is 1. The existence of a unique inverse

for each member of the set is stated in the corollary to

Theorem II-2.

Definition: (a), the order of the trivial integer a in the

ring of integers modulo q., is the smallest integer such that:

afl (a) = 0 modulo gq

Theorem IT-4:

{2 (a) is a factor oi

Proof: Since a is a trivial number it contains a factor

of q which shall be denoted as g;, such that q=g;g,. 2,(a)

must contain g, as a factor if ald (q) is to equal zero modulo

1. But it would be impossible for §2,(a) to equal 2g5, 385s

as these are all greater than g,. Thus (2_(a) equals g, and



™

J

is a factor of q.

Definition: f(q) is the smallest factor of q.

Corollary to Theorem II-4:

fla)&lt;2,02) = a/f(q)

Theorem II-5:

The trivial number a has §25(a) distinct multiples.

Proof: From the definition of {2 (a), it follows that the

ralue of the product ab depends ohly upon the value of b

nodulo §25Ca)
Definition: A trivial vector is one having only trivial

numbers for its nonzero components. A nontrivial vector has

at least one nontrivial component.

Theorem II-6:

If the trivial vector u has components based on the ring

of integers modulo q =p, a prime number to an integral power,

shen at least one scalar multiple of u is equal to zero.

Proof: In the ring of integers modulo gq =pY, all the

srivial numbers are multiples of P. Thus if a is trivial.

la = 0. Therefore Pt § = 0.

Theorem II-7:

Suppose that the vectors Uy ye oo U, having components based

on the ring of integers modulo q =P are linearly independent,

L.e., a.u. does not equal to zero unless all the a. are; i7i E i
sequal to*Zero. Then the vector u* = \ au. is trivial if and

lL.
only if all the a; are trivial. A=

Proof: If all the a; are trivial, then:

YL. x ]. oy

gl

\ a.1 VepT-loy



This could not happen unless u* were a trivial vector. On

the other hand, assume that u* is trivial. Then:

-1 -1

A= :

This implies that all the py ia, are equal to zero; thus all

she a. are trivial numbers.

Now we may derive bounds upon the minimum distance of parity

check codes using modulo q checking arithmetic ( q # a prime

number). For the sake of simplicity the symbols f, /, and §2_

shall be used, their functional dependency on q being implicitly

understood.

Sphere Packing Upper Bound

The alphabet contains the symbol gq/f, which has only f

distinct multiples, There are i) sequences of weight d made

up of 4 (g/f)'s and n-d O's. The n(1l-R) parity check equations

are capable of producing only go(1-R) different syndromes when

checking upon sequences of this type. Thus if:

3 - ¢n(1-R)
at least two sequences of this type must have the same syndrome.

The difference between these two sequences, a vector of weight

&lt; 2d, must be a code word, as its syndrome is the difference

of the two identical syndromes, i.e., the vector of n(1l-R)

O's. The minimum distance is upperbounded by the smallest d

satisfying the relation:

II-1) 20] &gt; #n(1-R)

Using equation A-1l, Appendix A, the asymptotic form of TII-1

0s block length n approaches infinity is obtained:



» —y

QZ
[I-2) R= 1 - BH (S/7

N =d/n; Hp() = -xlogex - (1l-x)loge(1-x)

Equation II-2 states the asymptote to the upper bound on

he distance parameter S as a function of the rate R.

The Plotkin Upper Bound

The proof of the Plotkin Bound is given in Appendix A. The

results are summarized below:

IT-3) R «1 - d-1 - _log qd= g-1) n

The asymptotic form of II-3) is:

[IT-4) R =1- 4.0gq-

The Gilbert Lower Bound

Ne now consider the problem of constructing the check matrix

of a code using modulo g checking arithmetic having block

length n, minimum distance of at least 4d and a rate of at least

R. The check matrix will be constructed so as to have n(l-R)

rows (the rate is exactly R if all the n(1l-R) parity checks

are independent; otherwise it is greater than R) and n columns

lesignated as Vio ces Ve No linear combination of d-1 or

fewer columns may equal 0, since this would imply the existence

of a code word of weight d-1 or less. We must analyze separately

CWO cases.

L) q=P", a prime number to an integral power

An exhaustive search procedure must be carried out for the

selection of columns for the check matrix in such a way that no

linear combination of d-1 or fewer columns equals zero. At

the beginning of the selection procedure all (i. + 1yR(1-R)



trivial n(1-R)-tuples must be discarded. The inclusion of a

trivial column in the check matrix would, by Theorem II-6,

imply the existence of a weight one word in the code.

One of the nontrivial n(l-R)-tuples is selected as the first

column of the check matrix. We then select the second column

from those vectors remaining after excluding as ineligible

1ll those vectors v' for which:

bv' = avy for all a, b chosen from 1,”

hereby preventing a relationship of the kind a v, + av, = 0.

In general, if the column vectors Vis cor Vo sy I&lt; d-2, are

among those already selected for the check matrix, then in

order to make it impossible for any combination of m+l vectors

to add up to zero, those vectors v* for which:
4

|

II-5) Dbv* = PAA

ace e(d=—l

all combinations of the

1,24...9-1

211 choices of b from:

1,2,...9-1

3 chosen from:

J

nust be excluded from eligibility as columns of the check

matrix.

If b is nontrivial, then II-5) reduces 50

\ (v4 )v, = Yt
CJ

This we must excliilde all vectors that are linear combinations

of VigeeesV By virtue of Theorem II-7 L of these com-

pinations result in trivial vectors(which were discarded at

the very beginning of the procedure) and the remaining

(q-1)" - po combinations result in nontrivial vectors.

The insertion of a trivial value of b into II-5) must now



Tq

be considered. It is best to visualize II-5) as consisting of

n(1-R) component equations. For b trivial, only those vy

combinations of Vis coe Vo yielding trivial vectors can possibly

produce solutions in II-5). For any particular trivial value

of b, solutions can only occur if each of the n(1l-R) components

ofSey, is one of the $24 multiples of b. At the very

vorstall yn trivial combinations may produce yn distinct

vectors in this category. For a given vector v in this category

there is a multiplicity of v* satisfying bv* = v. Suppose

that d is the kth component of v, and that ¢ is the smallest

integer such that bc = d modulo aq. Then the kth component

of v* will satisfy II-5) if it takes on any of the values:

3, C +80 c + 2bs .+y a total of q/(), possible values in all.

'herefore there may be as many as (0/2, PR) possible values

&gt;f v* satisfying II-5) for each of the vn trivial combinations

of Vy,4...V,, for each trivial value of b.

Thus it is concluded that if the vectors Vigees eV are

in the check matrix, the number of vectors that must be ex-

cluded is upperbounded by:

(g-1)" =p © pl 1-R) he\ a
 1

bhtrivial

As long as the total of the number of columns selected for

the matrix plus the number excluded is upperbounded by a

juantity less than gB(1-R) another column may be added. In

the worst possible case all those vectors excluded for the

ifferent possible combinations of the V's in the matrix might

ne distinct. Thus a code of block length n, with rate of at



yw

least R and minimum distance of at least 4d can surely be

constructed if:

IT-6)

1-2
-1 j7

=I

YN (a/o PAR) §. LIL n(1-R
b trivial &gt; ’ | ] Sige

IT-6) may be simplified in form and slightly weakened by

observing that the smallest value of {2 is f. The condition

for the existence of a code having block length n, rate of at

least R and minimum distance of at least 4 is then:

[I-7)

{ \
n-1 J j

3) (amb)? =v HE| | J y,d+1 n(l-= eh : =

J

n(1-R) = (p+1)17R

The asymptctic form of II-7) is:

1-8) R = 1 = HQ) - Ologe V/

S=d/n 3  H.(x) = -xlogex - (1-x)log,(1-x)

2) g£ PY
The general argument used for the case where q = PY shall

oe used, but with some significant changes. We shall follow

essentially the same search procedure for constructing the

check matrix. The procedure is begun by excluding from

21ligibility as columns of the check matrix all trivial n(1l-R)-tuples.

This is not strictly necessary; some of the trivial n(1l-R)-tuples,



-

Tn

Bee H modulo 10, have no multiples equal to zero. This

represents a slight weakening of the bound which will not be

reflected in its asymptotic form since the trivial vectors

form an infinitesimal fraction of the total number of n(l-R)-tuples

as n approaches infinity.

Consider now how many vectors must be excluded if Vise oo Vo

are among those chosen as columns of the check matrix. Theoren

ITI-7) may no longer be invoked to claim that only Vo of the

linear combinations of Vis . Vo are trivial; at the worst all

(q-1)" combinations result in trivial vectors, each one of

them accounting for the exclusion of (a/C PR) distinct

vectors. Thus the number of vectors excluded if Vo coed V,

are in the matrix is upperbounded by:

(0/5 PER) (q-1)®
(_

b trivial

he condition for the existence of a code having block

length n, rate of at least R and minimum distance of at least

l ie:

IT-9)

1-2
‘n--

J
gg!i=1

(0/2, PB (g-1)9
o&gt; trivial

| | n(1l-Rq ) _ (p4+1)R(1-R)

The asymptotic form of II-9) is:

[T-10) BR = 1 - H.(O) - Olog.(a-1)

Figures II-1 and II-2 are plots of the asymptotic bounds on

ninimum distance for parity check codes on the alphabet of four



symbols using GF(4) and modulo 4 checking arithmetic respectively.

These curves show a certain superiority of the arbitrary

codes and those using GF(4) checking arithmetic over those

using modulo 4 checking arithmetic. They are superior in the

sense that the asymptotes to the upper and lower bounds upon

ninimum distance for them are greater than the corresponding

bounds for modulo 4 codes for R&gt; .08. For R&lt;« .08, both

lasses of codes have the Plotkin bound in common,

Thus figures II-1 and II-2 provide an indication that GF(4)

parity check codes are "better" than modulo 4 check codes.

This is not an airtight certainty however; for all values of R,

the upper bound ono) for codes using modulo 4 checking arithmetic

Ls greater than the lower bound on 3 for GF(4) check codes.

Calculations were done for the cases of q =6,8, and 10.

[t was found that for values of R greater than .41, .14, and .06

respectively, that the upper bound on the minimum distance

for modulo q parity check codes was less than the lower bound

for GF(q) and arbitrary codes, demonstrating a clear cut

jeficiency in Hamming distance properties for modulo q parity

~heck codes for these rates and alphabet sizes.
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Figure II-1

Bounds upon minimum distance for parity check codes using

3F(4) checking arithmetic.
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Figure II-2

Bounds upon minimum distance for parity check codes using

modulo 4 checking arithmetic.
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Appendix A

Bounds on minimum distance shall now be derived for arbitrary

plock codes of length n on the alphabet of gq symbols consisting

of M messages (rate, R, = log M /n). The following asymptotic

result derived on page 216 of Reference 1 shall be needed

in order to express the bounds on minimum distance in their

asymptotic form:

A-1) 3) !
oI

- Te

fn 1| 3) Ary

N=d/n : a is

n Ong ~(1-91e(1-0)

L8H (5)

°ny number : H_(O) i" -3nS-(1-)1n(1-H

The Plotkin Bound

This bound shall be derived so as to be valid for all codes,

whether arbitrary or of specified structure. Consider thatall

M code words are written down so as to form an M x n matrix. In

each column of this matrix there are x; occurrences of, the

symbol i; i=04l,.s.e3-1. These x; are constrained by &gt;x, =M
Finding the maximum possible sum of the distances between the

3 different pairings of characters in any column and multiplying

by n gives the maximum possible sum of the distances between

zode words, a necessary quantity in obtaining the bound.

In any given column, there are | "distances", which must



2"

&gt;e either O or 1. The sum of these distances is:
-1

a

The factor of %* accounts for the fact that each of the different

pairings is counted twice in the above expression. Application

of LaGrange's method of the indeterminate multiplier shows that

the expression is maximized when x; = 1/M for all i. (It may

be shown that equality of all the Xs insures that the code is @

group code; conversely any code which is a group code,e.g., 2

parity check code using modulo q checking arithmetic, has

this distance maximizing property.) Thus the maximum value

of the sum of the distances in a particular column is I q-1)
The maximum possible sum of the distances between code words

is therefore:

2-2) )att = aM(g-1)
/ a

The minimum distance between code words,d, must be no greater

than the maximum possible average distance between code words,

i.e., the quantity of expression A-2) divided by y 3

1-3) 4d, _nM(g-1l)&lt; M-=1)g

Let B(n,d) represent the maximum number of code words

possible in a code of length n having minimum distance d.

If the B(n,d) words were to be separated into q sets on the

basis of the last character in each word, at least one set

would contain B(n,d) or more code words. Throwing away

She last character of every word in this set would yield a

new code of length n-l1 and minimum distance d. Thus:

A-4) B(n.d) &lt;qgB(n-1,4)

Repeated application of A-=4) results ir:



&gt;

A~5) B(n,d) &lt; ¢®B(n-a,d)

Equation A-3%) may be rearranged and written as:

A-6) MM. qa - n(q-1)] &lt; qd

A-6) noid for B(m,d) the largest possible value of M.

Substituting the value n = _gd - 1 into A-6) :
_ laa - 2

wD Blige) ow
Using A-5), with a = n - _qd-1 , we obtain

q=-

n - (qd-1)/(a-1)

\-8) B(n,d) - od q

or the alternate form:

A-9) R&lt;« 1 - d-1 - log qd
n(q-1) n

The asymptotic form of A-4}) for large n is:

A-10) R= 1 = 9.0
q=-1

The Sphere Packing Bound
3

Consider that a code is to be constructed having minimum

listance 4d, an even number. An n-tuple is arbitrarily selected.

and all 2) (a-1)" sequences at a distance of 4/2 - 1 or less

from it are deleted; the process is continued until the space

is exhausted. Under the most favorable circumstances possible

the entire space of q® sequences would be completely filled

vith nonoverlapping spheres of radius 4/2 - 1. Except for a

few special corxbinations of M and n, a perfect solution to the

sphere packing problem will not exist. The minimum distance

for the code so constructed must be less than the smallest



l For which:

y 2 oPDl (q=1) —- 11) |) (a

I'he asymptotic form of A-11 is:

1-12) R = 1 - H (/2) -(&amp;V/2)log,(a-1)

The Gilbert Bound’

1 procedure is now considered which must certainly lead

50 the construction of a code with minimum distance d. A

sequence is arbitrarily selected, and all 2-0)? sequences
at a distance of 4 or less from it are deleted; the process

is continued until the space is exhausted. We can certainly

select M message vectors in this way if:

1-13) (1) | (a1) &lt;q"

The asymptotic form of A-13) is:

1-14) R = 1 - BH (O) - Olog,(a-1)
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Appendix B

The Sphere Packing Bound

There axel 3) (2-1) sequences of weight d in the space
Of n-tuples over the field of q elements. n(1-R) parity

check equations are capable of producing only gB(1-R) syndromes.

&gt;

Thus if:

Band &gt; qr R)

at least two sequences have the same syndrome. The difference

between these two sequences, a vector of weight &lt;2d4, must be

a code word, as its syndrome is the difference of the two syndromes

i.e., the vector of n(l-R) O's. The minimum distance is upper-

bounded by the smallest d satisfying the relation:

B-1) 2] (en S q2(1-R)
The asymptotic form of B-1) is:

3-2) R = 1 = H_(/2) - (/2)log,(a-1)

-

The Gilbert Bound

An exhaustive search procedure is now outlined which leads

3

5o the construction of a code with minimum distance of at least

1 and rate of at least R. First select any nonzero n(l-R)-tuple

to be a column of the parity check matrix of the code. Then

select any nonzero n(l-R)-tuple not a multiple of it as the

next column, Continue in this manner, selecting the jth

column so that it is not a linear combination of any d-2 or

fewer columns already chosen. If this procedure is followed

no d = 1 or fewer columns of the matrix finally constructed



ran be linearly related, i.e., no linear combination of d-l

»r fewer columns can be equal to the vector of all zeros.

Therefore no weight d-1 or less sequence may be a code word,

and the code weight must be at least d. There certainly

sxists a code of block length n having a rate of at least R

and a minimum distance of at least 4 if:
I-A

) .

3) ) v1 . (a-1)Y =&lt; 2 1-R) - 1
/_3\ Jd

f=
Phe asymptotic form of B=7) is--

B=4) R =1 =- H,() - Olog,(a-1)
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Appendix C

Consider that messages are being sent over an eight level

channel where the most likely form of error is a jump of IL 1 1evel

modulo q. Figure C-1l below shows graphically these most likely

srror transitions:

Figure C-1

A code of block length 3 correcting single errors of the

type shown in figure C-1 can be designed so as to send any of

32 messages over the channel using a simple modulo 8 arithmetic

check scheme. The first and second digits, aq and a, are

information digits; the third digit is determined by ap + 2a, + 3%a-=0.,

Table C-1 below shows the simple way in which the syndrome

of the single parity check equation is related to the error

pattern imposed upon the transmitted message.

Table C-1

Error Pattern

no error

+ 1 level in first digit

+ 1 level in second digit

+ 1 level in third digit

1 level in third digit

1 level in second digit

i level in first digit



If we tried using GF(8) checking arithmetic we would find it

impossible to construct a code having two information digits

and only one check digit capable of correcting single errors

of £ 1 level. This is due to the structure of the additive

croup of GF(8), which is shown as Table C-2 below. It is

seen that if the transmitted sequence is distorted by virtue

of the first digit being changed from a 2 to a 3, the error

pattern is 500, whereas if a 4 is sent and a 5 received the

srror pattern is 700. It is the impossibility of classifying

all the likely variants of a transmitted message as being due

bo a small number of "added on" error patterns which makes

she problem insoluble under GF(8) checking arithmetic.

Table C-2 _ The AAditive Grouvn of GF(8)

~  ~—~ {i
— o

-

5

A ty
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