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ABSTRACT
Many recent studies focus on developing mechanisms to explain
the black-box behaviors of neural networks (NNs). However, lit-
tle work has been done to extract the potential hidden semantics
(mathematical representation) of a neural network. A succinct and
explicit mathematical representation of a NN model could improve
the understanding and interpretation of its behaviors. To address
this need, we propose a novel symbolic regression method for neu-
ral works (called SRNet) to discover the mathematical expressions
of a NN. SRNet creates a Cartesian genetic programming (NNCGP)
to represent the hidden semantics of a single layer in a NN. It then
leverages a multi-chromosome NNCGP to represent hidden seman-
tics of all layers of the NN. The method uses a (1+𝜆) evolutionary
strategy (called MNNCGP-ES) to extract the final mathematical
expressions of all layers in the NN. Experiments on 12 symbolic
regression benchmarks and 5 classification benchmarks show that
SRNet not only can reveal the complex relationships between each
layer of a NN but also can extract the mathematical representation
of the whole NN. Compared with LIME and MAPLE, SRNet has
higher interpolation accuracy and trends to approximate the real
model on the practical dataset1.

CCS CONCEPTS
• Computing methodologies→ Genetic programming.

∗Corresponding author.
1Code and appendix at https://kgae-cup.github.io/SRNet
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1 INTRODUCTION
Neural networks (NNs) have been successfully applied in many
problems, such as CNN for object recognition [28], RNN for time
series analysis [11], and Bert for natural language processing (NLP)
[4]. However, neural networks are often seen as black-boxes be-
cause their input-output (IO) relationships are difficult for a human
to understand [13]. Sometimes, it is almost impossible to interpret
the NN behaviours when models make unexpected predictions on
some datasets, such as adversarial examples [33] and white noise
images [24]. Some of the recent work has been centred on research-
ing and explaining the black box behaviours, as summarized in
several survey papers [1, 31].

In this paper, we aim to develop a new symbolic regression-based
method to explore hidden semantics in NNs. Here, a typical hidden
semantics interpretation method refers to explaining a NN with an
explicit math function. If a function 𝑓 (𝑥 (𝑖) ) explains a single hidden
layer ℎ(𝑥 (𝑖) ) on a certain input-output

(
𝑥 (𝑖) , 𝑦 (𝑖)

)
or a small range

of inputs-outputs, it is called local explanation [38], such as LIME
[29] and MAPLE [26]. If a function 𝑓 (𝑥) is able to explain a hidden
layer ℎ(𝑥) on the whole dataset, it is called global explanation,
such as Visualization method [3, 19] and Net2vec [10]. Although
these methods show some degree of success in extracting hidden
semantics from NN, they have the following three limitations. (1)
Local explanation methods can give a mathematical expression,
such as a linear model and a decision tree, for each (𝑥 (𝑖) , 𝑦 (𝑖) ).
However, they cannot obtain a general expression for the whole
dataset. Although most global explanation methods can visualize

982

https://orcid.org/0000-0001-5763-239X
https://orcid.org/0000-0001-8217-2305
https://orcid.org/0000-0002-3900-643X
https://doi.org/10.1145/3512290.3528758
https://doi.org/10.1145/3512290.3528758
https://doi.org/10.1145/3512290.3528758


GECCO ’22, July 9–13, 2022, Boston, MA, USA Yuanzhen Luo, Qiang Lu, Xilei Hu, Jake Luo, and Zhiguang Wang

NNs on the whole dataset, they cannot give a mathematical expres-
sion for explaining the dataset. (2) These local or global methods
often leverage pre-defined interpretable models to explain the hid-
den semantics of NNs. For example, LIME can use linear models,
decision trees, or falling rule lists as interpretable models. How-
ever, these pre-defined models may not capture hidden semantics
in some situations because the real characteristics of a NN model
are often unknown, and applying a predefined model to explain the
networks may be inappropriate. (3) These methods cannot generate
a mathematical expression that can represent the hidden semantics
of all layers in a NN.

To overcome these limitations, this paper leverages the sym-
bolic regression (SR) method to explain a NN. In SR, for a given
dataset {𝑥,𝑦}, the algorithm can find a symbolic function 𝑓 (𝑥) = 𝑦′
that minimizes the distance between 𝑦 and 𝑦′ in the mathematical
expression space. SR has great flexibility in generating mathemat-
ical expressions; hence, it does not need a predefined model to
capture the relationships in the dataset. However, classical SR meth-
ods, such as GP [15, 32], GEP [8, 18, 37] and linear GP [2], usually
handle the symbolic function 𝑓 (𝑥) with a single output 𝑦′, i.e., 𝑦′ is
a number and not a vector. They cannot represent the relationship
𝑔(𝑊𝑖ℎ𝑖−1 + 𝑏) of each layer 𝑖 in a NN because each layer’s output
is a vector, matrix, or tensor. Therefore, when these GPs explain
NN [6, 9], they can only give a mathematical expression to show
the semantics of the whole NN with a single output value, not each
layer in the NN. Although Cartesian Genetic Programming (CGP)
[23] supports multiple outputs, CGP cannot represent semantics
in a NN. Because each CGP output corresponds to a hidden node,
and it cannot provide a general model 𝑓 that represents hidden se-
mantics in the layer. To obtain a general model, we assume that the
relationship between input and output in a layer (or a NN) has the
mathematical expression format𝑤𝑠

𝑖
𝑓𝑖 (ℎ𝑠𝑖−1) + 𝑏𝑖 , where𝑤𝑖 and 𝑏𝑖

may be a number, vector, matrix, or tensor, and 𝑓𝑖 is a mathematical
function that represents the hidden semantics of the layer.

Figure 1: SRNet for exploring hidden semantics in NN.

Based on the above assumption, this paper proposes a novel SR
method (called SRNet) to mine hidden semantics of all layers in a
NN simultaneously, as shown in Figure 1. SRNet is an evolutionary
computing algorithm. In each evolution, SRNet first leverages the
Cartesian Genetic Programming (CGP) [21, 22] to find each layer’s

mathematical function 𝑓𝑖 (ℎ𝑠𝑖−1). It then uses the Newton-Raphson
method [30] (or L-BFGS method [17]) for few (or many) variables
to obtain 𝑤𝑠

𝑖
and 𝑏𝑖 so that ℎ𝑠

𝑖
= 𝑤𝑠

𝑖
𝑓𝑖 (ℎ𝑠𝑖−1) + 𝑏𝑖 approximates

the output ℎ𝑖 of the layer 𝑖 in a NN. At the end of the evolution,
SRNet will capture hidden semantics of all layers in a NN when
ℎ𝑠
𝑖
≈ ℎ𝑖 (including 𝑦𝑠 ≈ 𝑦). The main contributions in the paper are

summarized as follows:
• The paper proposes a new method called SRNet to explain
hidden semantics of all layers in a NN. SRNet generates a
mathematical expression in the format of 𝑤𝑠

𝑖
𝑓𝑖 (ℎ𝑠𝑖−1) + 𝑏𝑖

that can be used to explain a NN.
• To speed up SRNet, we create a multi-chromosome CGP [35]
evolutionary strategy embedded in the Newton-Raphson
method.
• Experiments show that the proposed SRNet can capture hid-
den semantics in NN in 12 SR benchmarks and 5 classification
benchmarks. Compared with LIME and MAPLE, SRNet has
higher interpolation accuracy and trends to approximate the
real model on the practical dataset.

The remainder of this paper is organized as follows. In Section 2,
we introduce the background knowledge about Cartesian Genetic
Programming. Then, we propose SRNet to explore hidden semantics
in NNs in Section 3. Section 4 and 5 report the experimental results.
We conclude the paper in Section 6.

2 CARTESIAN GENETIC PROGRAMMING
CGP is a directed acyclic graph-based genetic programming algo-
rithm for addressing the SR problem [23]. In CGP, the graph consists
of a two-dimensional grid of computational nodes, as shown in Fig-
ure 2. These nodes are classified into three categories: input, output,
and function. The input (or output) nodes represent the input (or
output) values 𝑥 (or 𝑜), which is encoded into an integer, such as
𝑥0 encoded by "1" and 𝑂𝐴 encoded by "4". The function nodes are
computational expressions. Each function node has three parts,
input, computational expression, and output, encoded by a series of
integers. As each node has only one output, the output code is used
to index the node. For example, a function node "+" is regarded
as the code "⟨0012⟩". In this code, the first integer 0 is the code of
the function "+". The two middle integers "0" and "1" represent two
inputs of the function "+", and they are also the outputs of two
previous nodes. The last integer "2" is the index of the node.

In the example CGP diagram, there is no edge between any two
nodes in the same column. Two nodes at different columns can
be linked if one’s input code equals the other’s output code. A
genotype is used to represent a CGP, as shown in Figure 2. The
genotype contains two categories of nodes: the functional nodes
and the output nodes. As the genotype has multiple output nodes,
the genotype can describe multiple computational expressions. For
example, the genotype in Figure 2 generates three mathematical
expressions, 𝑂𝐴 = −𝑥1, 𝑂𝐵 = 2𝑥0𝑥1 + 𝑥21 , and 2𝑥0 + 𝑥1.

CGP usually leverages the (1 + 𝜆) evolutionary strategy [14, 27]
to find the best fitted mathematical expression. In each evolution,
(1 + 𝜆) EA utilizes mutation to generate 𝜆 offsprings. For CGP, the
mutation randomly chooses a gene location and changes the allele
at the location to another valid random value. A valid value is from
the function look-up table if a computational expression gene is
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Figure 2: An example of CGP. a) genotype. b) phenotype.

chosen for mutation. If an input gene is chosen, a valid value is from
the output set of its previous nodes. The mutation does not change
the output gene. For example, in Figure 2, a mutation changes the
input gene "1" of the node "7" to "3". Then, the output 𝑂𝐵 becomes
"0".

The multi-chromosome Cartesian genetic programming (MCGP)
[35] encodes multiple chromosomes into a single genotype. Each
chromosome code is similar to the genotype of CGP. So, MCGP
can provide a solution to a large problem by dividing it into many
smaller sub-problems. For simultaneously exploring hidden seman-
tics of all layers in a NN, MCGP encodes each layer semantics as
a chromosome into a genotype. Thus, a chromosome represents
the semantics of one layer, and the genotype represents all NN
layers’ semantics. After MCGP uses the (1 + 𝜆) multi-chromosome
evolutionary strategy [36] to acquire a best-fitted individual, it also
obtains these semantics.

3 SRNET
This section proposes the SRNet, a method based on MCGP [35] to
simultaneously explain the hidden semantics of layers in a NN. As
shown in Figure 1, SRNet can find a group of ℎ𝑠

𝑖
= 𝑤𝑠

𝑖
𝑓𝑖 (ℎ𝑠𝑖−1) + 𝑏𝑖

that approximates each NN layer output ℎ𝑖 , i.e.,

{ℎ𝑠0, ..., ℎ
𝑠
𝑛} = arg𝑚𝑖𝑛

ℎ𝑠
𝑖
∈F

𝑛∑︁
𝑖=0
L(ℎ𝑖 , ℎ𝑠𝑖 ) . (1)

To find the group {ℎ𝑠
𝑖
} quickly, SRNet needs to address the following

problems: 1) how to encode these ℎ𝑠
𝑖
s, and 2) how to find functions

to explain hidden semantics in a NN. Section 3.1 shows our solu-
tion to the first problem, and section 3.2 provides a multi-NNCGP
evolutionary strategy to address the second problem.

3.1 SRNet Encoding
The hidden semantics ℎ𝑠

𝑖
of each layer in a NN are represented as

𝑤𝑠
𝑖 𝑓𝑖 (ℎ

𝑠
𝑖−1) + 𝑏𝑖 , (2)

where 𝑓𝑖 (ℎ𝑠𝑖−1) is a mathematical expression that represents the
general semantics in the layer 𝑖 , and𝑤𝑠

𝑖
and 𝑏𝑖 are a weight vector,

matrix, or a tensor, as shown in Figure 3.
To capture a NN layer’s semantics ℎ𝑠

𝑖
, we define that the neural

network CGP (NNCGP) consists of three components, including

Figure 3: SRNet encoded by Multiple NNCGPs

general semantic model, constant, and operator. The general seman-
tic model is used to generate 𝑓𝑖 (ℎ𝑠𝑖−1). It has three parts, 𝑘 inputs,
𝑐 × 𝑟 functions and an output. 2) The constant component includes
the weight vector𝑤𝑠

𝑖
and the bias vector𝑏𝑖 , where |𝑤𝑠

𝑖
| = |𝑏𝑖 | = |ℎ𝑠𝑖 |.

3) The operator component consists of the two functions, "×" and
"+".

SRNet uses multiple NNCGPs (called MNNCGP) to encode geno-
type. Since a NNCGP can represent one layer’s semantic, multiple
NNCGPs can be used to capture hidden semantics of all layers in a
NN. These NNCGPs are regarded as chromosomes that constitute
a genotype. In the genotype, each NNCGP𝑖 ’s output ℎ𝑠𝑖 is the input
of its next NNCGP𝑖+1.

3.2 Evolution Strategy
SRNet leverages a multi-NNCGP evolutionary strategy embedded
by the Newton-Raphson method (called MNNCGP-ES) to find the
best-fitted genotype that represents hidden semantics of all layers
in a NN. MNNCGP-ES is similar to the (1 + 𝜆) multi-chromosome
evolutionary strategy [36]. MNNCGP-ES includes the following
operations: mutation, fitness evaluation, and selection. Mutation,
with a certain probability, change each allele in MMCGP to another
valid random value [23].

3.2.1 Fitness Evaluation. To evaluate a genotype encoded by MN-
NCGP, the fitness function is defined as the following equation,

fitness =
1
𝑁

𝑁−1∑︁
𝑖=0
L(ℎ𝑖 , ℎ𝑠𝑖 ) + L𝑜 (𝑦,𝑦

𝑠 ) (3)

where L is the mean squared error (MSE) of each middle layer. L𝑜
is an error function of the output layer. It is a cross-entropy loss in
the classification task, while it is MSE in the regression task. ℎ𝑖 (ℎ𝑠𝑖 )
is the output of the 𝑖th layer in a NN (NNCGP𝑖 ). 𝑦 and 𝑦𝑠 are the
outputs of the NN and SRNet, respectively.

Equation 2 indicates that obtaining ℎ𝑠
𝑖
needs two computations,

as shown in Figure 3. One is 𝑓 (ℎ𝑠
𝑖−1) that generates an output by the

CGP code. The other is the parameter computation that obtains the
constant vectors,𝑤𝑠

𝑖
and 𝑏𝑖 , by the Newton-Raphson method that
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performs an update operation according to the following equation.

𝑝 = 𝑝 − 𝐻−1 (𝑝)∇𝑙 (𝑝), (4)

where 𝑝 is 𝑤𝑠
𝑖
or 𝑏𝑖 , 𝐻 (𝑝) is Hessian, ∇𝑙 (𝑝) is the gradient of the

loss function ℎ𝑖 − (𝑤𝑠
𝑖
𝑓 (ℎ𝑠

𝑖−1) + 𝑏𝑖 ). The Hessian is difficult to
obtain if it is a high-dimensional matrix (i.e., many neurons). There-
fore, to solve this problem, the Limited-memory Broyden-Fletcher-
Goldfarb-Shanno algorithm (L-BFGS) [17] is used for limited mem-
ory and time-saving.

Figure 4: Selecting chromosomes at each points from all in-
dividuals as a "super" individual.

3.2.2 Selection. Selection aims at generating a ’super’ individual
from the population. The ’super’ individual consists of a set of super
chromosomes that have the best fitness at each position from all
individuals, i.e.,𝑚𝑖𝑛 L(ℎ𝑖 , ℎ𝑠𝑖 ), as shown in Figure 4. Since these
chromosomes constitute an input-output sequence where each
chromosome output is the input of its next chromosome, they need
to be selected in the order of their positions in the population. After
evaluating the finesses of the chromosomes at a certain position
(𝑐0) of the population, the selection picks up the chromosome that
has the best fitness score as the super chromosome (𝑠0). Then, it
evaluates chromosome at the next position(𝑐1) with 𝑠0 as input.
Moreover, it obtains a chromosome with the best fitness as the next
super chromosome (𝑠1). Repeating the above evaluation policies re-
sults in a group of selected chromosomes {𝑠0, 𝑠1, ...}. These selected
chromosomes form a super individual.

However, for high-dimensional problems, evaluating the finesses
of the chromosomes is very time-consumingwhen using theNewton-
Raphsonmethod. So, L-BFGS is used to replace theNewton-Raphson
method to compute the two weight vectors (𝑤𝑠

𝑖
and 𝑏𝑖 ) of all indi-

viduals. L-BFGS can speed up the fitness evaluation.

3.2.3 MNNCGP-ES. The MNNCGP-ES pseudocode is listed in Al-
gorithm 1. MNNCGP-ES combines the fitness evaluation and the
selection method mentioned before, using the (1 + 𝜆) evolution
strategy to evolve generation-by-generation to obtain the optimal
individual.

4 EXPERIMENTS
To validate the SRNet’s ability to explain hidden semantics in the
neural network (NN), we tested the SRNet on the built NNs of 12

Algorithm 1 MNNCGP-ES

Input: D𝑠 (𝒉0,𝒉1, . . . ,𝒉𝒏), 𝜆
Output: a best-fitted individual
1: randomly initializes 𝜆 individuals with MNNCGP
2: while 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 > 1𝑒 − 4 and max generation not reached do
3: //obtain an new parent 𝑠 by the selection operation
4: 𝑠 ← NULL
5: calculate each chromosome’s output ℎ𝑠

𝑖
at the position 𝑖 ac-

cording to Equations 2 and 4;
6: obtain the chromosome 𝑐𝑘

𝑖
by Equation 3

7: 𝑠 ← 𝑠 ∪ 𝑐𝑘
𝑖

8: execute 𝜆 mutations on 𝑠 to generate 𝜆 offsprings.
9: end while
10: Return the best-fitted parent 𝑠 according to the fitness com-

puted by Equation 3.

symbolic regression benchmarks as well as 5 classification bench-
marks, listed in Table 1. Moreover, the sample sizes and feature
sizes of the 17 benchmarks are illustrated in Figure 5.

0 10000 20000 30000 40000 50000
No. of Samples

0

5

10

15

20
No

. o
f F

ea
tu

re
s

Regression
Classification

Figure 5: The sizes of samples and features in 17 benchmarks

Table 2 lists the parameters of the three algorithms, LIME,MAPLE,
and SRNet. All parameters of the three algorithms are fixed on all
benchmarks.

4.1 Regression Task
To validate the SRNet’s ability to explore hidden semantics of NN in
the regression task, we chose 12 symbolic regression benchmarks
𝐾0 − 𝐾5 and 𝐹0 − 𝐹5. The benchmarks 𝐾0 − 𝐾5 were chosen from
the commonly used SR Benchmarks [20], while 𝐹0 − 𝐹5 are from
physical laws [34]. We generated 12 datasets (called true datasets)
according to these benchmarks. Each of these datasets has different
sample sizes (see ’Training Dataset’ in Table 1). For example, for the
𝐾1 problem in Table 1, we randomly sampled 200 𝑥 and 𝑦 values
in the range of [−1, 1], respectively. Moreover, combining these
values can generate 200 samples for the 𝐾1 dataset. For each of the
12 datasets, we randomly took 80% samples from it as the training
dataset, and the other as the test dataset. Then, we built 12 Multi-
Layer Perception neural networks (MLP) with a sigmoid activation
function using the training datasets. The training parameters are
listed in Table 1. For example, for 𝐾1, we created an MLP with two
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Alias Function/Name Training Dataset MLP
𝐾0 𝑠𝑖𝑛(𝑥) + 𝑠𝑖𝑛(𝑥 + 𝑥2) [−1, 1, 200] [3, 3] s0.01
𝐾1 2𝑠𝑖𝑛(𝑥)𝑐𝑜𝑠 (𝑦) [−1, 1, 200] [3, 3] s0.1
𝐾2 3 + 2.13𝑙𝑛 |𝑥 | [−50, 50, 200] [5, 5] s0.03
𝐾3 1

1+𝑥−4 +
1

1+𝑦4 [−5, 5, 104] [4, 4, 4] a0.03

𝐾4 30𝑥𝑦
(𝑥−10)𝑧2

𝑥,𝑦 : [−1, 1, 103]
𝑧 : [1, 2, 103] [4, 4] a0.003

𝐾5 𝑥𝑦 + 𝑠𝑖𝑛((𝑥 − 1)
(𝑦 − 1)) [−3, 3, 20] [5, 5] a0.003

𝐹0 𝑚0√︃
1− 𝑣2

𝑐2

𝑚0 : [1, 5, 104]
𝑣 : [1, 2, 104]
𝑐 : [3, 10, 104]

[3, 3] a0.01

𝐹1 𝑞1𝑞2
𝑟

4𝜋𝜖𝑟 3 [1, 5, 104] [3, 3] a0.01
𝐹2 𝐺𝑚1𝑚2 ( 1𝑟2 −

1
𝑟1
) [1, 5, 104] [3, 3] a0.01

𝐹3 1
2𝑘𝑥

2 [1, 5, 104] [3, 3] a0.01

𝐹4 −6.4𝐺4

𝑐5
1
𝑟 5
(𝑚1𝑚2)2

(𝑚1 +𝑚2)
𝑚1,𝑚2 : [1, 5, 104]
𝐺, 𝑐, 𝑟 : [1, 2, 104] [5, 5] a0.03

𝐹5

𝑞

4𝜋𝜖𝑦2 [4𝜋𝜖𝑉𝑒𝑑−
𝑞𝑑𝑦3

(𝑦2−𝑑2)2
]

𝑞,𝑉𝑒 , 𝜖 : [1, 5, 104]
𝑑 : [4, 6, 104]
𝑦 : [1, 3, 104]

[3, 3] a0.03

𝑃0 adult 48842 [100, 100] s0.01
𝑃1 analcatdata_aids 50 [200, 100, 100]

s0.01
𝑃2 agaricus_lepiota 8145 [100, 100] s0.01
𝑃3 breast 699 [100, 100] s0.03
𝑃4 car 1728 [100, 100, 100]

s0.01
Table 1: The dataset of training 17 MLPs. In each cell of the
column ’MLP’, the integer list is the number of neurons in
each hidden layer, ’a’ or ’s’ is the Adam or SGD optimization
method, respectively, float number being the learning rate.

Name Parameter Value

LIME

Number of Features
Number of Samples
Distance Metric
Regressor Model

10
5000

Euclidean
Ridge

MAPLE

Number of Estimators
Max Features

Min Samples Leafs
Regularization
Ensemble Model
Regressor Model
Classifier Model

200
0.5
10

0.001
Random Forest

Ridge
Logistic Regressor

SRNet

Number of Rows
Number of Cols
Function Set

Number of Constants
Population Size
Max Generations

Mutation Probability

10
10

+,−,×,÷, 𝑠𝑞𝑟𝑡, 𝑠𝑞𝑢𝑎𝑟𝑒, sin, cos, 𝑙𝑛, tan, 𝑒𝑥𝑝
1
200
5000
0.4

Table 2: Algorithm parameters

hidden layers where each layer had three hidden nodes. The MLP
was trained by the SGD optimization method with a learning rate
of 0.01.

After each MLP was trained, we collected each NN layer’s input
and output data of the 12 MLPs as the NN explanation datasets. We
then ran the MNNCGP-ES, LIME, and MAPLE 30 times on each NN
explanation dataset.

4.2 Classification Task
To validate the SRNet’s ability to explore hidden semantics of NN in
the classification task, we chose 5 classification benchmarks named
𝑃0 − 𝑃4 from the PMLB [25] with the different number of samples
and features (see Figure 5). The column ’Training Dataset’ on the
rows "P0-P4" indicates the number of samples, as shown in Table
1. Training 5 MLPs is similar to the regression task except for the
function "softmax" that replaces their output functions.

−2 −1 0 1 2

−2

−1

0

1

2

(a)

−2 −1 0 1 2

(b)

Figure 6: (a) The decision boundary of a classification model
with 4 classes. (b) sampling around decision boundaries. The
marker ’X’ is represented as the new sample around the deci-
sion boundaries.

After training these classification MLPs, we need to compare
SRNet with their decision boundaries, not their outputs. Because
the MLP’s outputs on the training datasets are sparse and do not
fully represent the NN’s classification ability, as shown in Figure
6(a). Using these outputs to train SRNet may result in wrong results.
To obtain the decision boundaries of the trained MLP, we leverage
a uniform sample method around its decision boundary (called
USDB). USDB first evaluates the range of the training dataset. It
then randomly samples 𝑛 points in the range. It finally selects 𝑠
points with the shortest distance to the decision boundary according
to Equation 5 [7, 16].

𝑑 (𝑥𝑖 , 𝐵) =
𝐶∑︁
𝑘

|𝑝𝑘 (𝑥𝑖 ) −
1
𝐶
| (5)

, where 𝑥𝑖 is a sample, 𝐵 is the decision boundary of a NN, and𝐶 is
the number of sample classifications. 𝑝𝑘 is the probability that the
𝑥𝑖 belongs to the 𝑘th classification, which is the NN output owing
to its activation function "softmax".

After each classification MLP was trained, we utilized USDB to
generate samples around the decision boundary of the MLP. We
then fed these samples into the MLP and collected each NN layer’s
input and output as the MLP explanation dataset. We finally ran
the MNNCGP-ES, LIME, and MAPLE 30 times on the explanation
dataset.
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5 RESULT AND ANALYSIS
5.1 Regression Task
In the following regression tasks we only show results on the four
benchmarks,𝐾0,𝐾1, 𝐹0, and 𝐹1. The regression results on all bench-
marks are in the supplementary material.

0 2000 4000

0.2055

0.1028

0.0000

K0

0 2000 4000

0.9498

0.4749

0.0000

K1

0 2000 4000

2.862

1.431

0.000

F0

0 2000 4000

0.04206

0.02103

0.00000

F1

Figure 7: MNNCGP-ES convergence curve.
5.1.1 Fitness Convergence. Figure 7 illustrates the convergence
curve of the fitness scores of MNNCGP-ES on each MLP for the
regression tasks. The blue line is the average fitness score in 30
experiments. It gradually decreases at the beginning and trends to
a flat curve. It means that, statistically, MNNCGP-ES could find the
mathematical expressions that approximate the hidden semantics
of each layer in NNs according to Equation 3, as shown in Table
3. It also indicates the feasibility to use the combination of these
mathematical expressions to represent the whole semantics of each
MLP, as shown in Table 4.

Dataset 𝒉𝒔0(𝒙) 𝒉𝒔1(𝒉
𝒔
0) 𝒉𝒔2(𝒉

𝒔
1) 𝒚𝒔

𝐾0

𝑠𝑖𝑛(0.26𝑥+
𝑠𝑖𝑛(𝑠𝑖𝑛(𝑥))−

0.068)
(6.74e-04)

0.88 − cos (ℎ𝑠0)0
(7.54e-05) −

−𝑠𝑖𝑛(𝑠𝑖𝑛((ℎ𝑠0)0
−0.36))

(2.37e-04)

𝐾1

5.15e-05𝑥1−
0.0072𝑠𝑖𝑛(𝑥0)−

5.15e-05
(5.34e-02)

−(ℎ𝑠0)0 + (ℎ
𝑠
0)2

(1.39e-03) −

−(ℎ𝑠1)0+
(ℎ𝑠1)2+
0.0011

(6.88e-02)

𝐹0
𝑐𝑜𝑠 (( 0.67𝑥1𝑥2

+
log (𝑥0)))
(6.35e-03)

−(ℎ𝑠0)1+
cos

(
(ℎ𝑠0)2

)
(1.04e-02)

−
𝑡𝑎𝑛((𝑡𝑎𝑛(((ℎ𝑠1)0
−0.33)) + 0.11))

(9.63e-02)

𝐹1 log

(
𝑥0𝑥1

𝑥2𝑥
3
2
3

)
(9.59e-03)

(ℎ𝑠0)
4
1

(2.46e-04) − (ℎ𝑠1)0 + sin
(
(ℎ𝑠1)0

)
(1.45e-03)

Table 3: The mathematical expressions of each layer in NNs.
Not all ranges of fitness scores (light blue areas) become smaller

as the MNNCGP-ES runs, such as 𝑘1. However, the low bounds
of these lines always become smaller and trend to be zero at the
later stage. It means that the more episodes the MNNCGP-ES runs,
the more likely MNNCGP-ES is able to find the mathematical ex-
pressions that can be used to explain the hidden semantics of a
NN. The slow decrease of fitness curves also indicates the need
to run MNNCGP-ES with sufficient times to obtain the best-fitted
mathematical expressions.

5.1.2 Semantics Evaluation. The results show that the proposed
SRNet method can acquire a fitted mathematical expression to
explain hidden semantics of each layer, as shown in Table 3. Each of
these mathematical expressions represents the general semantics 𝑓𝑖
in the expression𝑤𝑠

𝑖
𝑓𝑖 (ℎ𝑠𝑖−1) + 𝑏𝑖 (Equation 2). The number below

each 𝑓𝑖 is its fitness. For example, for 𝐾1, MNNCGP-ES finds the

Dataset 𝑶𝒔 (𝒙)

𝐾0
0.29 − 4.01𝑠𝑖𝑛((𝑠𝑖𝑛((2.36𝑐𝑜𝑠 ((0.41𝑠𝑖𝑛((0.26𝑥+

sin (sin (𝑥)) − 0.068)) + 0.49)) − 2.03))))
(6.11e-04)

𝐾1 −0.01𝑥1 + 1.69 sin (𝑥0) + 0.0021
(9.62e-02)

𝐹0
3.05 − 7.00𝑡𝑎𝑛((𝑡𝑎𝑛((0.58 cos

(
log (𝑚0) + 0.67𝑣

𝑐

)
−

0.76 cos
(
0.22 cos

(
log (𝑚0) + 0.67𝑣

𝑐

)
− 1.01

)
+ 0.35)) − 0.11))

(1.05e-01)

𝐹1
0.022

(
0.46 log

(
𝑞1𝑞2

𝑒𝑟
3
2

)
+ 1

)4
+ 3.22 sin

(
0.0068

(
0.46 log

(
𝑞1𝑞2

𝑒𝑟
3
2

)
+ 1

)4
− 0.00072

)
+0.0059

(6.37e-03)

Table 4: The mathematical expression of each whole NN.
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Figure 8: The outputs of the SRNet layer vs the NN layer with
9 random input values.

general semantics −(ℎ𝑠0)0+ (ℎ
𝑠
0)2 at the second hidden layer ℎ1. The

fitness of𝑤𝑠
𝑖
× (−(ℎ𝑠0)0 + (ℎ

𝑠
0)2) +𝑏𝑖 is 1.39𝑒 − 03. All fitness values

in the hidden layers are less than 0.1. It means that 𝑓𝑖 captured by
MNNCGP-ES can represent (approximate) the semantics of each
hidden layer in a NN.

Figure 8 shows the details of mathematical expressions that
MNNCGP-ES finds. The expressions approximate the output of each
layer in a NN. To evaluate each layer, we input 9 random values
into the mathematical expression and the hidden nodes in the NN,
respectively. We then obtained 9 heat maps to show the difference
between the output of the mathematical expression and that of the
NN hidden nodes. For example, the sub-figure "𝐾1 −ℎ1" represents
the 𝐾1 outputs of SRNet vs NN in the layer ℎ1 with 9 random input
values. In the first heatmap in "𝐾1−ℎ1", [0.6, 0.6, 0.3] are the outputs
of three hidden nodes in the NN layer ℎ1 with the first input value,
while [0.9, 0.9, 0.3] are the output of the mathematical expression
in the SRNet layer ℎ1. So, Figure 8 explains why a mathematical
expression has low fitness, and another has high fitness. Comparing
𝐾1−ℎ1 with𝐾0−ℎ1 in Figure 8, the outputs between NN and SRNet
in𝐾0−ℎ1 are closer than the output between them in𝐾1−ℎ1. Thus,
the fitness "7.54𝑒 − 05" of "0.88 − 𝑐𝑜𝑠 (ℎ𝑠0)0" is less than "1.39𝑒 − 03"
of " −(ℎ𝑠0)0 + (ℎ

𝑠
0)2" in Table 3.

For the output layers in the NNs, the last column 𝑦𝑠 in Table
3 lists the mathematical expressions to present the outputs. Their
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fitness scores of the output layer are better than the scores of the
previous layers. There are two formulas of 𝐾5 and 𝐹5 whose fitness
scores are greater than 1 (See appendix). The reason causing the
higher scores at the output layers is that, in a NN, the network
structure of the outer layer is different from the hidden layers. The
computation function on the output layer is 𝑦 = 𝑊𝑖+1ℎ𝑖 + 𝑏𝑖+1,
while that on the hidden layer is ℎ𝑖 = 𝑊𝑖ℎ𝑖−1 + 𝑏𝑖 . Since 𝑦 is a
number and ℎ𝑖 is a vector, 𝑦 = 𝑊𝑖+1ℎ𝑖 + 𝑏𝑖+1 is a multivariate
linear equation. However, 𝑦𝑠 = 𝑤𝑠

𝑖+1 𝑓𝑖+1 (ℎ
𝑠
𝑖
) + 𝑏𝑖+1 on the output

layer in SRNet is one-variable linear equation because 𝑤𝑠
𝑖+1 and

𝑏𝑖+1 are two numbers, not vectors. Although MNNCGP-ES can
find a fitted mathematical function 𝑓𝑖+1 to represent the NN layers,
the one-variable linear equation is still hard to approximate the
multi-variable linear equation in the layers.

Table 4 lists the mathematical expressions that represent the
whole NN semantics for the regression tasks. Each of final expres-
sions is obtained by combining the mathematical expressions in
different layers shown in Table 3. The complexity and length of
the mathematical expressions could increase substantially, such
as the mathematical expression in 𝐹1, due to the combination of
expressions on every layer. If there are more layers in a NN, the
length of the mathematical expression could be longer. Although
the math representation generated by SRNet could be lengthy, it
provides a straightforward expression to show all layers’ hidden
semantics of the whole NN.

5.1.3 Performance Comparison. To evaluate the SRNet performance
on regression tasks, we ran and compared SRNet, LIME [29], and
MAPLE [26] on an interpolation dataset and an extrapolation dataset.
The interpolation dataset consists of the NN input-output values.
In contrast, the extrapolation dataset consists of the data sampled
directly from the original symbolic expression in the column "Func-
tion" in Table 1. The interpolation domain is the same as the range of
the training dataset shown in Table 1. The size of the extrapolation
domain is five times that of the interpolation domain.

Figure 9 illustrates the curves (or distribution points) of the
true dataset, as well as the results of NN(MLP)s, SRNet, LIME, and
MAPLE, on different symbolic regression benchmarks. For the high
dimension datasets, it is not easy to visualize the curves. So, the
curves are projected into samples on multiple planes. The curves
between two vertical blue lines represent interpolated results, while
those outside the two lines are the extrapolated results.

The interpolated results show that SRNet can find the mathemat-
ical expressions close to MLP on most of these benchmarks. SRNet
can find smoother results than LIME, while it can find results closer
to MLP compared with MAPLE. The extrapolated results show
that LIME can find the model closest to MLP because LIME is the
local explanation method that generates a model for local (sev-
eral) samples. For a extrapolate dataset, LIME divides the datasets
into many groups of local samples and generates a model for each
group of samples. Therefore, it needs many local models to explain
the extrapolated dataset and cannot provide a general model to
describe the whole dataset. Unlike LIME, SRNet finds the mathe-
matical expression that represents the whole dataset. In addition,
it can trend towards the true dataset generated by the symbolic
regression benchmark. The SRNet could help us judge why a NN
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Figure 9: SRNet vs LIME vs MAPLE on the interpolation and
extrapolation domain. The area between two blue vertical
lines is the interpolation domain. The other area is the ex-
trapolation domain
fails to predict some test data. Under the assumption that the math-
ematical expression found by SRNet can represent the real model
on the practical dataset. For example, on the benchmark 𝐾1, if a NN
is unable to predict certain output, the prediction result could be
compared with the output of −0.01𝑥1 + 1.69 sin (𝑥0) + 0.0021 found
by SRNet. The difference between the NN output and SRNet can be
used to analyze the gap between the NN and the real model.

5.2 Classification Task
In the following classification tasks we only show the results on
the two benchmarks, 𝑃0, and 𝑃1. The classification results on all
benchmarks are included in the supplementary material.

5.2.1 Fitness Convergence. Figure 10 shows the fitness conver-
gences curves of the SRNet for the classification tasks on the two
benchmarks, 𝑃0 and 𝑃2. SRNet converges rapidly, especially within
about 100th generations. As MNNCGP-ES runs L-BFGS to obtain
weight vectors (𝑤𝑠

𝑖
and 𝑏𝑖 ) of all individuals (𝑤𝑠

𝑖
𝑓𝑖 (ℎ𝑠𝑖−1) +𝑏𝑖 ) every

50 generations, MNNCGP-ES only runs L-BFGS two times, and it
can converge to an accurate result. The reason is that SRNet does
not need a whole dataset to be trained, but a thousand samples
around the decision boundary of a NN. For example, on the bench-
mark 𝑃0, although it has 48842 points, these points are only used to
train a classification NN. After training the NN, USDB ( Section 4.2)
randomly samples 1000 points around the classification NN. Then,
the 1000 points are used to train SRNet. So, the process of training
SRNet in the classification task is fast.

0 2500 5000

1.036

0.518

0.000

P0

0 2500 5000

1.405

0.702

0.000

P2

Figure 10: MNNCGP-ES convergence curve.

5.2.2 Semantics Evaluation. Table 5 lists a mathematical expres-
sion of each NN layer obtained by SRNet for the two classification
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Figure 11: LIME vs MAPLE vs SRNet on 𝑃2 decision boundary.
The blue or orange points are the two categories of samples
in the benchmark 𝑃2. The sub-figure on the upper left (lower
right) is partially enlarged

tasks, 𝑃0 (adult) and 𝑃2 (agaricus_lepiota). Moreover, Table 6 shows
the final mathematical expressions obtained by SRNet. For the adult
dataset, the two mathematical expressions, 𝑃𝑟0 and 𝑃𝑟1, represent
the prediction probability of SRNet for class 0 (adult makes over
$50K a year) and class 1 (adult makes below $50k a year), respec-
tively. Moreover, 𝑃𝑟0 and 𝑃𝑟1 indicate that the classification results
only depends on the three features, 𝑥6 (relationship), 𝑥7 (race), and
𝑥9 (capital-gain). In addition, they provide a mathematical explana-
tion of how the trained NN classifies data. For the agaricus_lepiota
dataset, SRNet gives a simple linear model as the explanation of the
classification NN, as shown in 𝑃2 in Table 6. According to 𝑃𝑟0 and
𝑃𝑟1, the classification NN mainly focused on the four features, 𝑥10
(stalk-root), 𝑥20 (population), 𝑥8 (gill-color) and 𝑥9 (stalk-shape). In
this case, SRNet degenerates into a simple linear model. So, when
SRNet explains a NN on the classification task, it not only shows
how the NN computes on the dataset, but also represents which
features (variables) the NN focuses on.

Dataset 𝒉𝒔0(𝒙) 𝒉𝒔1(𝒉
𝒔
0) 𝒉𝒔2(𝒉

𝒔
1) 𝒚𝒔

𝑃0 −𝑥6 + 𝑥7 + 𝑥9
(1.58e-02)

(ℎ𝑠0)85
(3.09e-04) -

(ℎ𝑠1)41
(ℎ𝑠1)31
(0.0)

𝑃2 −𝑥10 − 𝑥20 + 𝑥8 + 𝑥9
(2.08e-02)

(ℎ𝑠0)63
(5.58e-03) - (ℎ𝑠1)33

(2.91e-01)
Table 5: The mathematical expression of each layer in NNs.

5.2.3 performance comparison. Table 7 lists their average (+ std)
prediction accuracy on the train and test dataset. Interestingly,
SRNet is better than LIME and MAPLE on most classification tasks
and only fails on the ’agaricus_lepiota’ (𝑃2) task. The fail reason
is that the dataset ’agaricus_lepiota’ has 22 input features, making
1000 points sampled by USDB very sparse in the high-dimensional
space. However, SRNet still shows better or competitive accuracy
in the other four classification tasks than LIME and MAPLE.

Although LIME and MAPLE have good performance in explain-
ing local classification samples, their decision boundaries cannot
approximate the MLP’s decision boundary. The reason is that they
only leverage a linear model to explain several local samples, as
shown in red lines and purple lines in Figure 11. So, once the MLP’s
decision boundary is a complex curve at some local samples, the line

Dataset 𝑶𝒔 (𝒙)

𝑃0
𝑃𝑟0 = −14.16 − 0.00043𝑥6−0.00043𝑥7−0.00043𝑥9+0.42

−0.0025𝑥6+0.0025𝑥7+0.0025𝑥9+0.489
𝑃𝑟1 = 14.57 + 0.00047𝑥6−0.00047𝑥7−0.00047𝑥9+0.46

−0.0025𝑥6+0.0025𝑥7+0.0025𝑥9+0.49
(8.05e-03)

𝑃2
𝑃𝑟0 = 0.66𝑥10 + 0.66𝑥20 − 0.66𝑥8 − 0.66𝑥9 − 1.57
𝑃𝑟1 = −0.53𝑥10 − 0.53𝑥20 + 0.53𝑥8 + 0.53𝑥9 + 1.17

(3.04e-01)

Table 6: The mathematical expressions of the whole NN.

Dataset Method Train Test

𝑃0(adult)
LIME
MAPLE
SRNet

84.47 ± 2.3%
98.47 ± 1.51%
100 ± 0%

71.33 ± 1.78%
92.11 ± 0.80%
100 ± 0%

𝑃1(analcatdata_aids)
LIME
MAPLE
SRNet

85.18 ± 0.11%
93.78 ± 0.23%
91.89 ± 8.11%

90.89 ± 0.62%
100 ± 0%
100 ± 0%

𝑃2(agaricus_lepiota)
LIME
MAPLE
SRNet

88.28 ± 0.16%
99.22 ± 0.04%
75.82 ± 0%

93.81 ± 0.30%
98.16 ± 0.12%
75.60 ± 0%

𝑃3(breast)
LIME
MAPLE
SRNet

100 ± 0%
100 ± 0%
100 ± 0%

100 ± 0%
100 ± 0%
100 ± 0%

𝑃4(car)
LIME
MAPLE
SRNet

100 ± 0%
100 ± 0%
100 ± 0%

100 ± 0%
100 ± 0%
100 ± 0%

Table 7: LIME vs MAPLE vs SRNet.

generated by LIME or MAPLE cannot approximate it. In contrast,
SRNet can approximate the complex decision boundary of MLP on
all samples. Therefore, SRNet is more suitable for explaining NN
on the classification task than LIME and MAPLE.

6 CONCLUSION
This paper proposes a new evolutionary algorithm called SRNet to
address the NN’s black box problem. SRNet leverages MNNCGP-
ES to find the mathematical expressions that can represent each
NN layer’s hidden semantics. The combination of every layer’s
expression represents the whole NN. Compared with the models
found by LIME and MAPLE, the mathematical expression provided
by SRNet is closer to the NNs in the interpolated domain. The
experiment also shows the SRNet models trend to approximate the
real data model that used trains NN. The close alignment of SRNet
with the real model and its explicit mathematical expression can
be used to facilitate the explanation of NN prediction behaviours,
such as regression and classification.

As the number of layers in a NN increases, the combined mathe-
matical expression obtained by SRNet becomes complex. The com-
plex mathematical expression could be difficult to understand. In
addition, the high dimensional input and output of a layer in NN
will degrade the accuracy of SRNet. The depth (more layers) and
high dimension are the two key features of contemporary NNs,
such as CNN [12] and BERT [5]. In the future work, we will fo-
cus on improving SRNet on the two key features to explain the
contemporary NNs.
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