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ABSTRACT 

Researchers are unlocking the potential of Continuous Fiber Reinforced Composites for 

producing components with greater strength-to-weight ratios than state of the art metal alloys and 

unidirectional composites. The key is the emerging technology of topology optimization and 

advances in additive manufacturing. Topology optimization can fine tune component geometry 

and fiber placement all while satisfying stress constraints. However, the technology cannot yet 

robustly guarantee manufacturability. For this reason, substantial post-processing of an optimized 

design consisting of manual fiber replacement and subsequent Finite Element Analysis (FEA) is 

still required.  

To automate this post-processing in two dimensions, two (2) algorithms were developed. 

The first one is aimed at filling the space of a topologically optimized component with fibers of 

prescribed thickness. The objective is to produce flawless fiber paths, meaning no self-

intersections, no tight turns, and no overlapping between fibers. It does so by leveraging concepts 

from elementary geometry and the Signed Distance Function of a topologically optimized domain. 

The manufacturable fiber paths are represented using Non-Uniform Rational Basis Splines, which 

can be readily conveyed to a 3D-printer as  

The second algorithm then calls a meshing routine to spatially discretize the topologically 

optimized domain. It takes input from the first algorithm to automatically create and append, 

orientations and material flags to the spatial elements produced by the meshing routine. Finally, it 

generates output that is then input to FEA software. The software is written in the C-programming 

language using the PETSc library. A load case is validated against MSC NASTRAN. 
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1. INTRODUCTION:  

Additive Manufacturing (AM) is a broad label that applies to all construction techniques 

whereby a component is created by appending material together. This contrasts the rather 

traditional subtractive manufacturing whereby a component is extracted from a larger block by 

removing material from said block. However, “AM”, the label, nowadays is almost exclusively 

colloquially used to refer to 3D printing.  AM, broadly speaking, is being touted for its ability to 

reduce waste, save energy, and produce components that its subtractive counterpart cannot [1]. 

Within AM is a subset, the additive manufacturing of composite materials in which 

components are made by appending composite materials together. For example, take a traditional 

unidirectional laminate layup (Figure 1). Yet, within AM of composite materials is yet another 

subset, that of Continuous Fiber-Reinforced Composites (CFRC). This last subset of CFRC is the 

subject of this work. In the AM of CFRC, 3D printing techniques are used to lay fibers that attain 

local orientations as opposed to global ones. With that being said, the discussion of AM is now 

narrowed to 3D printing only, that is, the acronym CFRC is taken to mean “3D-printed continuous-

fiber reinforced composite” (see Figure 2).  

The motivation for using CFRCs to eventually phase-out currently used materials stems from 

the ever-present quest of increasing the strength-to-weight ratio of a component [2]. This is 

because increases in strength-to-weight correlate with decreases in costs due to maintenance and 

fuel usage in vehicles. The trend began with the replacement of raw metals (i.e., iron) with metal 

alloys (i.e., steels, aluminum alloys, titanium alloys). Metal alloys exhibit superior strength to raw 

metals but remain substantially heavy (like the former). The elastic constitution of metals is 

isotropic, meaning that the response to stress is invariant with orientation [2]. The layman should 
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take this to mean that the direction in which an isotropic substance is stressed is irrelevant to the 

mechanics of deformation. 

 

Figure 1: Laminate layup. Taken from [3] 

 

Figure 2: A 3D printer nozzle depositing 

molten plastic. Taken from [4]. 

1.1 Limitations of Isotropic Materials (Namely Metals) 

The isotropy of metal alloys limits the efficiency of an all-metal component because there is 

no way to address localized stresses in a component via the substance itself. The only way is to 

add structural supports (which inherently make the structure heavier) or through redesigning the 

geometry of the component. For this reason, industries like the automotive and aerospace ones 

have historically leveraged unidirectional composites to make their vehicles lighter [5].  

This is because unidirectional composites have an anisotropic elastic constitution, meaning 

that the direction in which the substance is stressed affects the mechanics of deformation (see 

Figure 3). This allows designers to tune the orientation of the substance to address localized 

stresses thus, making it possible to avoid structural reinforcements [2]. This benefit has led the 

aerospace industry to historically benefit from substantial savings in weight, number of 

components and Man Maintenance Hours per Flight Hour (MMH/FH) as shown in Figure 4. 
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Figure 3: Strength dependency of unidirectional lamina with orientation. Taken from [3] 

 

Figure 4: Relative reductions in cost-related aspects of aircraft during early adoption of 

composites. Taken from [2] . 
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1.2 Structural Superiority of Continuous Fibers Over Unidirectional Ones 

Unidirectional composites, however, are limited by what is in their name: A single 

direction. If a designer wants to strengthen a local portion of a component via tuning of the one 

global direction of a unidirectional fiber, they may inadvertently compromise the strength at a 

different location. This issue is addressed by CFRCs, as the fibers can now attain local orientations 

that can address all the component’s localized stresses (see Figure 5). For this reason, CFRCs are 

said to produce tailored performance [4]. 

 

 

Figure 5: TO-CFRC components. Taken from [4] 
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In general composites are lighter and stronger (on a per pound basis) than metals. However, 

advances in material science are bringing the raw strengths of fibers used in CFRC closer to those 

of metal alloys. Thus, CFRC are presently, particularly relevant in the furthering of the automotive 

and aerospace industries. [6] 

 

Figure 6: Absolute tensile strength and stiffness of select materials. [7] 

Therefore, CFRCs are the next type of material in the quest of increasing the strength to 

weight ratios. They are, however, not mainstream in the manufacturing industry yet. The reason is 

two-fold: Firstly, issues stemming from thermoplastic effects on the elastic properties of the CFRC 

as most are manufactured via melting process. Secondly, issues stemming from the anisotropy of 

CFRCs [6]. Here is a short list of some but not all issues that are currently holding back the 

mainstream adoption of additively manufactured CFRC: 
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Table 1: Some issues holding AM-CFRC back 

Manufacturing-Related Anisotropy-Related 

1. Voids. 

2. Glass transition 

3. Support structures 

4. Imposition of manufacturing 

constraints on component design. 

1. Determination of local fiber 

orientations. 

2. Unintuitive failure points. 

3. Difficulty in factoring local 

anisotropy into analysis. 

4. Analysis is inherently expensive. 

 

This work is predominantly concerned with addressing point 4 of the “manufacturing-related” 

issues and point 3 of the “anisotropy-related” issues. However, discussion of points 1, 2, and 4 of 

the “anisotropy-related” column is furthered as they are closely related. For information on the 

“manufacturing-related” problems the reader is referred to the work by [8] for information avoid 

the adverse effects of voids, to the work by [5] for information about the “Glass transition” and 

other thermal physics-related effects,  and the work by [9] for information about the support 

structures. 

1.3 It All Stems from Topology Optimization 

The issue of determining the fiber orientations is being addressed by those investigating the 

field of topology optimization. The technology is rather mature for the optimization of isotropic 

materials and can be traced back to at least the year 1988 [10]. The natural objective function for 

optimizing structural design is the so-called compliance, a measure of how much a structure 

deforms under loading [11]. Minimization of this quantity alone leads to designs that do not satisfy 

stress-based constraints, such as prevention of structural failure. To bring topology optimization 

closer to practicality stress-based design optimization has been pursued [12]. 
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Topology optimization, however, becomes more challenging when the material is anisotropic 

(like composite materials) and when one considers the thermoplastic physics of the most common 

materials used to additively manufacture CFRCs. This issue is twofold: firstly, the topology 

optimization must now factor additional design variables (the orientations of the fibers) which 

increases computational cost, and the material is deposited only after melting it. This melting is 

responsible for the intermediate structure of a component that is being manufactured to sag under 

its own weight [9]. The deformation of the component due to sagging can be avoided by installing 

intermediate support structures. 

For this reason, researchers are attempting to mitigate the effect of the sagging phenomenon 

into their topology optimization schemes by adding constraints and objective functions that 

prevent sagging and reduce the amount of support structures. In the work by [1], an objective 

function that minimizes the overhang angle of surfaces is investigated, and a constraint that 

guarantees that support structures are accessible (for removal) is included. Another work, that by 

[11] explored formulating an objective function based on the volume of the support structures 

needed to address sagging. At any rate, because of all issues discussed so far, topologically 

optimized designs currently require substantial post-processing, which is more akin to a 

“reckoning” than a “polishing”. 

1.4 Topology Optimization Meets Reality 

Firstly, the topologically optimized shape must now be filled with fibers, which have thickness 

and potentially sharp corners at their endpoints. The sharp corners create discontinuous filling of 

the space allocated to the component, which then leads to the creation of voids [13]. The thickness 

of the fibers makes it so that an optimized fiber path must be locally obfuscated to accommodate 

for the printer’s turn radius. The thickness can also require obfuscation of a fiber path if the latter 
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gets too close (but not quite to) self-intersecting. Clearly, the thickness limits the extent to which 

the optimized design can be preserved during the manufacturing process [14]. And while these 

defects can be patched by filling the ensuing voids, the fact remains: The design has been altered 

from what topology optimization output. 

 

Figure 7: Example of a tight turn 

Common design features that are not manufacturable are tight turns and short fibers. Tight 

turns are changes in a path that would make the 3D printer’s nozzle deposit material over the same 

region multiple times in a local fashion. Short fibers are those with length either less than the 

nozzle radius or less than the nozzle’s displacement resolution (i.e., the shortest step that the nozzle 

can take). Overlap is another issue whereby fibers are placed too close to each other such that the 

printer’s nozzle deposits material over the same region multiple times in a global fashion [13]. 
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Figure 8: Example of overlapping fibers (Courtesy of 9T Labs). 

 

1.5 Analysis of Continuous Fibers is Expensive 

Because of imposing manufacturability, a standalone Finite Element Analysis (FEA) is 

required to assess whether the manufacturable component would indeed satisfy the original design 

requirements [7]. Speaking of FEA, topology optimization already requires intermittent FEA as 

an intermediate step [10] [14] [12]. This is because fundamentally, topology optimization entails 

iteratively tuning the shape and measuring the response in the compliance. To find the latter, FEA 

is required every time the shape is tuned. To make matters worse, the FEA required for CFRC is 

substantially more intensive than that for isotropic materials or that for unidirectional composites.  
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Figure 9:A topologically optimized design that was severely obfuscated to ensure 

manufacturability (Courtesy of 9T Labs). 

This is because of differences in the assembly of the global stiffness matrix in the FEA for 

continuous fibers versus that in FEA of unidirectional composites and isotropic materials. For 

isotropic materials, a single stiffness tensor is constructed and applied to all finite elements. For a 

unidirectional composite, the stiffness tensor is also created but must be transformed to account 

for the orientation of the global fiber (albeit, once). For a CFRC, the stiffness tensor must be 

transformed to account for the local orientation of every element [2]. The transformation operation 

is particularly expensive because in practice it must be deployed as a triple matrix product. The 

sizes of these matrices are 3 by 3 in 2D simulations, and 6 by 6 in 3D simulations [13]. 

1.6 Creating the Input File is Cumbersome 

Despite the computational cost, analysis of CFRC is feasible. However, generating the fiber 

orientations and appending them to the finite elements is not fully automated. State of the art 

software like MSC Nastran can accommodate analysis of CFRC if an appropriate Bulk Data File 

(BDF) is generated [15]. For example, one can define “PCOMP” entries in the BDF file and then 

include one angle relative to the global axis per element. MSC Nastran can then complete the FEA 

but the entire premise hinges on the generation of the BDF file. This was the case for [7] when 
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they reconciled experimental test results of a CFRC coupon with FEA. They had to generate a 

custom BDF writer on a relatively simple, structured domain. Doing so for an arbitrary domain is 

not mainstream. 

1.7 Objectives of this Research 

This work does not discuss the inner details of topology optimization, rather it is aimed as 

expediting the conversion from an optimized design to a manufacturable one. That is, this work is 

concerned with seeking to automate the tedious post-processing that comes after a topology 

optimization scheme. The post-processing has two major steps: fiber placement, and FEA input 

file generation, both of which are not yet fully automated in a mainstream way. The objectives of 

this work are, therefore, as follows: 

1.7.1 Automatic Generation of Manufacturable Fiber Paths 

 The fiber placement is all about thickening the fiber paths to reflect their actual shape. The 

fibers are not directly obtained from a topology optimization scheme, rather, from a mathematical 

entity called the Signed Distance Function (SDF). This is because topology optimization is not yet 

mature enough to automatically tune the fiber orientations. The SDF, however, is a very efficient 

initial guess for generating the fibers. All the nuances pertaining to manufacturable fiber placement 

are addressed in Algorithm 1 of this work. 

1.7.2 Automatic Generation of FEA File for Manufacturable Component 

Once the fibers are placed, the final structural integrity check is performed via Finite Element 

Analysis (FEA) of the manufacturable component. The creation of an input file for FEA as part of 

reconciliation between simulation and experimentation often entails manual preprocessing. This 

task ought to be automated. 
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1.7.3 Prototype a High-Performance FEA Script 

Because the analysis of continuous fibers is expense and most commercial software do not yet 

have mature interfaces for analyzing CFRCs, the prospect of completing an automatic fiber angle 

generation software brings with it the question of how to analyze it. It quickly follows that some 

kind of interface between the first two algorithms and an FEA routine must be established. 

Furthermore, within the grander TO scheme, FEA is an intermittent step as part of the countless 

iterations in the former. Therefore, this work also explores the prospects of contributing towards 

the speedy analysis of CFRCs to possibly assist the field of TO in the future. This is accomplished 

via a script written in the C-programming language using the high-performance computing library, 

PETSc. 
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2. GENERATION OF MANUFACTURABLE FIBERS (ALGORITHM 1) 

The objective of Algorithm 1 is to produce fiber paths that are flawless from the manufacturing 

perspective. This entails creating parametric curves (i.e., centerlines) that satisfy the following four 

(4) criteria. Firstly, the curves are offset by half of the intended filament thickness do not self-

intersect. Secondly, the offset that constitutes the inside of the fiber does not make tight turns 

(minimum turn radius). Thirdly, no center line shall produce a short fiber (minimum print 

distance). Fourthly, no fiber shall overlap another. 

The flow diagram for the manufacturability algorithm (which addresses the four (4) 

requirements just listed) developed in this work is shown in Figure 10 below. The steps are 

numerous, however, fundamentally it can be broken down into eight (8) concepts which are 

explained in greater detail through the remainder of this section.  

1) Signed distance function and its level sets. 

2) Representing the level sets as discrete curves. 

3) Offsetting. 

4) Interpolation noise suppression 

5) Short fiber filtering. 

6) Defect detection. 

7) Defect correction 

8) NURBS representation of fiber centerline. 

2.1 Description 

The essence of Algorithm 1 is that the SDF will be used to produce an initial shape for the 

inside of the thickened fibers. Due to the numerical nature of the SDF, an interpolation scheme is 

required to obtain the “insides” of the fibers. Due to numerical nuances, the initial “insides” are 

produced with unacceptable defects such as wiggles, tight turns, or shattered contours.  In response 
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to said flaws, a repertoire of algorithms based on elementary geometry are deployed on the 

“insides” to produce acceptable curves.  When the “insides” are corrected, they are offset outward 

by half of the fiber thickness to create an initial guess for the fiber centerline. This centerline, 

which at that stage consists of discrete xy-coordinates, is then used to construct a so-called NURBS 

curve, which is a standard mathematical artifact used to convey shapes. Said NURBS are the final 

product of Algorithm 1.  

 

Figure 10: Flow diagram of fiber manufacturability algorithm 

2.2 Level Sets of the SDF 

In this work, it is assumed that a topology optimization scheme has been deployed to 

completion and that the final boundaries are provided as discrete sequences of xy coordinates. The 

layman can think of the boundaries as being either an outer shape or individual holes . Any 

component must have an all-enclosing boundary which the layman may refer to as the “outer 

shape.” Any interior boundaries perceptible due to abscense of material are “holes” (see Figure 11 
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for an example). Together, the outer shape and the collection of holes (if any) constitute the 

domain. 

 

Figure 11: Outer shape vs. holes in the context of distinguishing boundaries. 

2.2.1 The SDF in a nutshell 

For the purposes of generating manufacturable fiber paths, the boundaries are used to generate 

the so-called Signed Distance Function (SDF). This is a scalar field that returns the orthogonal 

distance of any point inside the domain to the boundaries [14]. The SDF is defined for outside 

points also with the convention that inside points received a positive value whereas the outside 

points receive a negative value (see Figure 12.b).  In this work, only the interior points are of 

concern.  
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(a) (b) 

 
(c) 

Figure 12: Signed Distance Function of a circular domain. Taken from [14] 

In practice geometries vary in complexity. They can be as simple as the closed circular domain 

shown in Figure 12 or they can be composite in the sense that they are produced as the intersection 

or exclusion of other shapes. Figure 11, for example, showcases a composite domain consisting of 

inclusion as well as exclusion zones. The holes are exclusion zones always (they are never part of 

the domain). Because of this distinction, composite shapes are typically conveyed in terms of 

Boolean operations between geometric shapes such as “add”, “subtract”, “intersect”, etc. 

2.2.2 Three-dimensional rendering of the SDF 

The signed distance function can be graphed along a third axis to produce “mountain” like 

graphs like the one shown in Figure 12.b, or more pertinently to this work, the one shown in Figure 

13. The layman should build the following intuition regarding the SDF: Imagine fronts emanating 

from the boundaries that offset inward at the same constant rate. At the places where the fronts 

coalesce, a peak is formed. The more distance the fronts get to travel before coalescing, and the 

more fronts involved in the collision, the greater the peak. As an example, use the colormap given 

in Figure 13 (a) to gauge the heights.  
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(a) 

 
(b) 

Figure 13: (a): Scalar field of the SDF evaluated over the domain in  Figure 11, units are [cm]. 

(b): A perspective projection of the L-shape shown to illustrate the heights. 

 

Figure 14: Active vs. inactive boundaries in the context of the signed distance function. 

Note that the SDF requires the input of the offsetting boundaries. For example, the SDF 

shown in Figure 13 does not form circular peaks around the circular holes. This is because when 
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generating it, the boundaries of the circular holes were not included. Thus, the layman should think 

of the possibility of toggling the boundaries between states of activity and inactivity (see Figure 

14). For purposes of manufacturability and performance, inclusion of the circular holes as active 

boundaries weakens the component because it introduces stress concentrations (hence they are 

toggled off).  

2.2.3 Level Set Extraction 

At any rate, once the SDF is evaluated, one can extract so-called level sets, contours that 

correspond to constant values of the SDF. These can be thought of as being obtained by slicing the 

SDF at equally spaced heights with a plane as shown (progressively) by the collection of Figure 

15 through Figure 26. The objective of this slicing procedure is to compute the intersection of the 

cutting plane with the SDF at each query level. When this is done for all query levels, one obtains 

curves like the ones shown in Figure 12.c or more pertinently, the ones shown in Figure 27. 

The exact intersection between the cutting planes and the SDF cannot be computed in practice 

because the SDF does not have an analytic solution for sophisticated shapes. Elementary shapes 

like conic sections (i.e., circles, ellipses, parabolas, and hyperbolas) have analytic solutions to the 

SDF, but arbitrary contours like the composite domain shown in  Figure 11 do not. For this reason, 

a numerical scheme for generating the SDF is warranted. In this work, a stencil is created over the 

domain and the SDF is then made available (through third party code) as three-dimensional 

discrete data. The contours shown in Figure 27are obtained by calling MATLAB®’s “contour” 

function on the discrete data. This function by default applies a linear interpolation scheme to 

produce the approximate intersection of the cutting planes with the discrete SDF. 
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Figure 15: Level 0 

 

Figure 16: Level 1 

 

Figure 17: Level 2 

 

Figure 18: Level 3 

 

Figure 19: Level 4 

 

Figure 20: Level 5 



20 

 

 

Figure 21: Level 6 

 

Figure 22: Level 7 

 

Figure 23: Level 8 

 

Figure 24: Level 9 

 

Figure 25: Level 10 

 

Figure 26: Level 11 
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Figure 27: Level sets extracted from the SDF shown in Figure 13.  

 

To conclude discussion of Concept 1, carefully inspect  Figure 27. To the naked eye, the 

contours might seem reasonably accurate, however, zoomed-in views will reveal a vast array of 

issues. Figure 28 highlights regions where flaws are located (labelled “A” through “H”). Zoomed-

in views are provided by Figure 29 through Figure 36. The bulk of these illustrated issues has a 

twofold classification: Interpolation noise, and interpolation obfuscation. The former issue is 

addressed in the discussion of Concept 4: Noise suppression, and the latter is partially addressed 

by the combined discussions of Concept 2, Concept 3, and Concept 5. The obfuscation issue is not 

fully addressed in this work and will be the subject of future research. 
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Figure 28: Sample flaws produces by the SDF. 

 

Figure 29: Zoom "A" into Figure 28 
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Figure 30: Zoom "B" into Figure 28 

 

Figure 31: Zoom "C" into Figure 28 
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Figure 32: Zoom "D" into Figure 28 

 

Figure 33: Zoom "E" into Figure 28 
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Figure 34: Zoom "F" into Figure 28 

 

Figure 35: Zoom "G" into Figure 28 
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Figure 36: Zoom "H" into Figure 28 

2.3 Polyline of representation of SDF levels  

The level sets obtained by interpolation of the SDF at the query heights produces Figure 27. 

These contours consist of xy-coordinate data which alone are meaningless. The first step to create 

fiber paths from this data is to quantify aspects of the discrete curve implied by the xy data. 

Qualitatively, there are two questions that need to be answered: Firstly, is the fiber short? Secondly, 

is the level set oriented inward or outward? The second question is addressed in this section. The 

answer to the first question requires build-up that starts here and will conclude with the discussion 

of Concept 5. In the interim, the discussion of Concept 2 centers around two quantities: perimeter 

and signed area. The former is important for filtering the short fibers and the latter is important to 

carry out the offset operation. Furthermore, it is important to distinguish open contours from closed 
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contours (Figure 37). Here, the question of making a computer program determine these geometric 

aspects is discussed. 

2.3.1 Closed vs. Open Polylines 

Programmatically speaking, both types of polylines are identical in terms of their input: A 

number “n” indicating the number of points, and a sequence of “n” xy coordinate pairs. When the 

level sets are closed, a suitable mathematical representation is that of a polygon, which is a polyline 

with identical start and end point. When the polylines are open, one may still think of a polygon 

but must bear in mind that the first and last point of the sequence are not connected. To handle the 

distinction (open vs. closed curves) and to implement a repertoire of numerical operations on 

discrete curves, a data structure called “polygon.m” was developed in MATLAB®.  

 

 

(a) (b) 

Figure 37: Closed (a) vs. Open (b) polylines. 

2.3.2 Polyline Perimeter 

The quantity used to assess whether a center line constitutes a short fiber is the perimeter, a 

measure of the length of a curve. For both open and closed polylines the perimeter is given by the 

sum of the Euclidean distance of all their edges. If the polyline is closed, there is an implied edge 
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defined as the connection of the first and last xy-coordinate pairs of the input sequence. This is not 

the case for an open curve. Define the Euclidean distance between two points “a” and “b” in two 

dimensions as: 

 𝐿(𝑃𝑎 , 𝑃𝑏) = √(𝑥𝑎 − 𝑥𝑏)2 + (𝑦𝑎 − 𝑦𝑏)2 (1) 

Then the perimeter of a discrete open curve with n points number “1” through “n” is: 

 

𝑃open = ∑ 𝐿(𝑃𝑖, 𝑃𝑖+1)

𝑛−1

𝑖=1

 (2) 

Then, the perimeter of a discrete closed curve also with n points number “1” through “n” is: 

 𝑃closed = 𝐿(𝑃1, 𝑃𝑛) + 𝑃open (3) 

Where L(P1, Pn) is the last edge for a closed discrete curve, which by definition is absent for the 

open curve. That is, if the open curve in Figure 37 had been flagged as closed, the dashed line 

would seize to be phantom and would have instead been drawn as a solid line. 

2.3.3 Polyline Signed Area 

One of the key steps in creating the center line is the offset operation, which consists of defining 

a new curve (referred to here as “inheritor”) from an already existing curve (referred to here as 

“progenitor”) by displacing the original points in a direction normal to the curve. The newly 

displaced points form the defining sequence of the so-called inheritor and were all displaced by 

an equal amount. This operation can be performed inwards or outwards. For clarity, inspect  Figure 

38 below and note that the inheritor may exhibit self-intersections depending on the direction of 

the offset. 
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(a) 

 
(b) 

Figure 38: Inward vs. outward discrete curve offset for (a) an open polyline and (b) a closed 

polyline.  

The offset operation can be blindly carried out by computing the normal vectors to the curve 

from the xy sequence using cross products. Doing so, however, leaves the user at the mercy of the 

sequence’s orientation. That is, the order in which the points are listed in the xy sequence (which 

can be interpreted as clockwise or anticlockwise) determines the direction of the offset [16]. See 

the red arrows shown in Figure 39 and Figure 40 for clarity. Now, one may compute the unit 

normal blindly and reverse the direction of the normal as needed (to toggle between inward and 

outward offset directions). To make the process automatic, a program needs to determine the 

orientation. 

A quantity that can be used to readily answer this question is the signed area of a polygon. This 

is computed using the so-called shoelace formula:  

 

𝐴 =
1

2
∑(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

𝑛−1

𝑖=0

 (4) 

This formula forms triangles by using points Pi, Pi+1 and the origin as the corners and then 

computes the magnitude of the cross production of the sides opi and opi+1. If the signed area is 

positive, then the polygon is oriented inwards, conversely, if the signed area is negative, then the 
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polygon is oriented outwards. In Figure 39 and Figure 40 two sequences of xy coordinates defining 

the same closed shape are shown. The sequences contain identical entries but in one sequence the 

order is reversed. The slender blue triangles are representative of the shoelace formula. Red arrows 

show the ordering of the xy-coordinates.  

 

Figure 39: A positively oriented polygon 

 

Figure 40: The polygon in Figure 39 with reversed orientation. 
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Without the signed area, the only other way to determine orientation is in a “post-mortem” way 

by first blindly offsetting the polygon to obtain the inheritor and then comparing its size against 

that of the progenitor (think of Figure 38). If the offset occurred in the wrong direction, one would 

have to re-offset the polygon in the opposite direction. The signed area computation requires 2 

multiplications and 1 addition per point, whereas offsetting from scratch requires 6 multiplications, 

12 additions, and 1 division per point (this will be shown in the discussion of Concept 3). For this 

reason, the signed area is found for all level sets to determine their orientation as it is the lowest-

cost alternative [16].   

2.4 Polyline Offset 

With an appropriate way to measure and determine the orientation of the level sets discussed 

in Concept 1, one may formulate the offset procedure. Let (nx)i and (ny)i denote the x and y 

components of the unit normal at some side i of the polygon. Then, for some edge “i” said 

quantities are given by: 

 
𝑛 = [

(𝑛𝑥)𝑖

(𝑛𝑦)
𝑖

] =
1

𝐿(𝑃𝑖, 𝑃𝑖+1)
[
𝑦𝑖 − 𝑦𝑖+1

𝑥𝑖+1 − 𝑥𝑖
] (5) 

Where L(Pi, Pi+1) is given by Equation (1).  Note that because these are the components of 

a unit vector, the following is true about (nx)i and (ny)i: 

 ‖𝑛‖ = (𝑛𝑥)𝑖
2 + (𝑛𝑦)

𝑖

2
= 1  (6) 
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Figure 41: Nomenclature for an edge's normal and midpoint. 

The pair of (nx)i and (ny)i encode a direction, which alone is meaningless. To be able to 

perform the offset operation lines need to be defined out of these unit vectors. For that, a pair of 

xy coordinates is needed per pair of (nx)i and (ny)i. Denote said points as Mi (for “middle”) with 

components (Mx)i and (My)i and define them as: 

 
𝑀𝑖 = [

(𝑀𝑥)𝑖

(𝑀𝑦)
𝑖

] =
1

2
[
𝑥𝑖+1 + 𝑥𝑖

𝑦𝑖+1 + 𝑦𝑖
] (7) 

The quantities discussed in Equation(5), Equation(6), and Equation (7)are visualized in Figure 41. 

2.4.1 Extrusion in the direction of normals 

Equation (7) is defined for edges except the phantom one (1 ≤ i ≤ n - 1), that is, if one is talking 

about a discrete open curve. If the curve is closed, one must consider the middle point of the last 

edge (i = n): 

 
𝑀𝑛 = [

(𝑀𝑥)𝑛

(𝑀𝑦)
𝑛

] =
1

2
[
𝑥1 + 𝑥𝑛

𝑦1 + 𝑦𝑛
] (8) 
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Offset lines are now defined as: 

 𝑂𝑖 = 𝑀𝑖 + 𝑑𝑛𝑖 (9) 

Where Oi is an intermediate offset point produced by displacing along the n direction by 

some distance d starting from point Mi. As it concerns this work, d = t/2 always. The reason the 

offset is of half the fiber thickness is because the resulting inheritor polygon will define the 

centerline of the fiber. These Oi will be used as the staging points to define intersection lines. 

Denote the intersection lines as Li and define them as: 

 𝐿𝑖 = 𝑂𝑖 + 𝑧𝑖(𝑃𝑖+1 − 𝑃𝑖) (10) 

Where zi is a parameter. To compute the “ith” point of the inheritor polygon, one must, for 

all points on the progenitor polygon, intersect Li with Li+1. The intersection requires the following 

two equalities: 

 𝑂𝑖
𝑥 + 𝑧𝑖(𝑥𝑖+1 − 𝑥𝑖) = 𝑂𝑖+1

𝑥 + 𝑧𝑖+1(𝑥𝑖+2 − 𝑥𝑖+1) (11) 

 𝑂𝑖
𝑦

+ 𝑧𝑖(𝑦𝑖+1 − 𝑦𝑖) = 𝑂𝑖+1
𝑦

+ 𝑧𝑖+1(𝑦𝑖+2 − 𝑦𝑖+1) (12) 

This system can be solved by first eliminating the parameter zi and then solving for the 

parameter zi+1. The result is: 

 
𝑧𝑖 =

𝑂𝑖+1
𝑥 − 𝑂𝑖

𝑥 + 𝑧𝑖+1(𝑥𝑖+2 − 𝑥𝑖+1)

𝑥𝑖+1 − 𝑥𝑖
 (13) 

Substitution of zi into either Equation (11) or Equation  (12)  produces zi+1. Doing so with 

Equation (11)  yields: 
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𝑧𝑖+1 =

(𝑂𝑖+1
𝑦

− 𝑂𝑖
𝑦
)(𝑥𝑖+1 − 𝑥𝑖) − (𝑂𝑖+1

𝑥 − 𝑂𝑖
𝑥)(𝑦𝑖+1 − 𝑦𝑖)

(𝑥𝑖+2 − 𝑥𝑖+1)(𝑦𝑖+1 − 𝑦𝑖) − (𝑦𝑖+2 + 𝑦𝑖+1)(𝑥𝑖+1 − 𝑥𝑖)
 (14) 

With zi+1 now known; it can be plugged back into Equation (10) to thus yield point “i+1” 

on the inheritor polygon. The process is repeated for all points on the progenitor polygon. The 

graphical interpretation of the process entailed by Equation (9) through Equation (14) is illustrated 

in Figure 42. 

The point labelled “Li = Li+1” defines a point on the inheritor curve and each of the arrows 

shown adheres to the convention in Figure 41. The point-wise offset operation illustrated in Figure 

42 is valid for all points in a closed curve. For an open curve, the first offset point is taken to be 

O1, and the last offset point is taken to be On. Once the offset curve is produced, the perimeter can 

be measured and determine if the fiber is short. If the inheritor curve does not have a perimeter 

that is too short, then, one proceeds to the NURBS representation discussed in Concept 7. 

 

Figure 42: The Offset operation. 
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2.5 Suppression of Interpolation Sharpness and Noise 

In an ideal world, one only needs Concepts 1 through 3 to generate the center lines of the fibers. 

However, as evidenced by the flaws showcased in Figure 28, additional measures must be taken. 

Here, a process to address the “noise” and “sharpness” problems (see Figure 34 and Figure 35) is 

discussed. The concept is that of numerical diffusion, a process typically described in literature by 

labels such as “smoothing,” “averaging,” or “regression.” To characterize numerical diffusion, the 

ideas of “noise” and “sharpness” are briefly entertained. 

2.5.1 Numerical Diffusion as a noise suppressor 

“Noise” is a term used to refer to perceived dispersion, imperfections, or randomness in a 

discrete data set. Take for example, the practice of generating a mesh from data generated by 3D 

laser scanning of an object. Because the laser’s light is affected by fluctuations in its own medium, 

the data it generates for the mesh is distorted [17]. Take Figure 43 as an example, there (a) shows 

the result of the raw laser scan whereas (b) shows the result of applying a “smoothing” scheme. 

2.5.2 Numerical Diffusion as a smoother 

“Smoothing” should be thought of as the antonym of “sharpening.” Take for example a very 

coarse, or jagged but nonetheless exact feature like the ones shown in Figure 44 (a). Even though 

the features are exact, locally, they are akin to the approximation of a continuous, “average” 

feature. If one displaces the points that make up the exact sharp feature by what would appear to 

be a local tendency towards an average, one gets the Figure 44 (b). 
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(a) (b) 

Figure 43: Example of noise in mesh generation (a) and noise suppression (b). Adapted from 

[17] 

 
(a) 

 
(b) 

Figure 44: Sharp features (a) and their “smoothed” counterparts (b). Adapted from [18] 

2.5.3 Laplacian Smoothing 

Numerical diffusion can be implemented in many forms. Here, the special case of Laplacian 

smoothing is discussed. Figure 43 and Figure 44 are examples of applying a discrete Laplacian 

operator of some kind based on some aspect of the geometry. There are many ways to apply the 
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Laplacian operator (see the work by [18] for four ways of doing so). Here, only the so-called 

Explicit Classic Laplacian scheme is considered: 

 𝑃̂𝑖 = 𝑃𝑖 + 𝜆∇2𝑃𝑖   (15) 

Where λ is the scalar multiple (chosen by the user), ∇2 is the Laplacian operator, P is some point 

on the discrete curve, and the subscript i denotes the point’s position in a sequence. Equation (15) 

is in analytic form. In practice ∇2 is always approximated numerically. To make matters even more 

open-ended there are multiple ways to compute ∇2. In Figure 43 the so-called graph Laplacian is 

used to produce ∇2, whereas in Figure 44 the so-called mesh Laplacian is used instead.  

2.5.4 Finite Difference Laplacian Smoothing 

The distinctions in the last subsection are beyond the scope of the work but are mentioned for 

the sake of completeness. For the SDF contours, the finite difference Laplacian is used to estimate 

∇2: 

 

∇2(𝑃𝑖) = ∇ ⋅ ∇(𝑃𝑖) ≈ ∑ 𝑐𝑗𝑃𝑗

𝑛−1
2

+𝑠

𝑗=
𝑛−1
2

−𝑠

, 𝑛 = 3,5,7, … (16) 

Where n is the number of stencil points (assumed to be an odd integer equal to three or 

greater), and s is an integer shift that equals zero for central differences, equals –(n - 1)/2 for 

forward differences, equals +(n - 1)/2 for backward differences, and can equal any integer values 

between –(n - 1)/2  and +(n - 1)/2  for lopsided differences. The reason that n is assumed to be at 

least three is because that is the minimum number of stencil points needed to approximate a second 

order derivative (like the Laplacian) using a central scheme. The forward, central, and backward 

schemes for the Laplacian using n = 3 are shown next: 
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 ∇2(𝑃𝑖) ≈ 𝑃𝑖 − 2𝑃𝑖+1 + 𝑃𝑖+2 (17) 

 ∇2(𝑃𝑖) ≈ 𝑃𝑖−1 − 2𝑃𝑖 + 𝑃𝑖+1 (18) 

 ∇2(𝑃𝑖) ≈ 𝑃𝑖−2 − 2𝑃𝑖−1 + 𝑃𝑖 (19) 

Lopsided schemes for the finite difference Laplacian require n = 5 or higher. Regardless, 

most fibers consist of closed discrete curves, therefore central difference schemes are used the 

most. Some fibers, however, are open, hence the need for the parameter s, as it is unnatural to 

consider the first point of an open curve to be part of the neighborhood of the last point (and vice 

versa). 

2.5.5 Finite Difference Schema for n ≥ 5 

Equation (17), Equation (18), and Equation (19) are first, second, and first order schema 

respectively involving a stencil of three points. Higher order schemes exist and were deemed 

necessary as part of this work because of three (4) issues associated with Laplacian Smoothing: 

“Stalling,” Feature loss, “Shrinkage”, and numerical instability. A fifth issue, that of open-curve 

warping was encountered and will be illustrated but not addressed. All for issues are discussed in 

the subsections after the next one. The justification for high-order scheme will be made in the next 

subsection in the form of examples, for now, a quick way to derive them is presented. 

In literature, the finite difference coefficients are typically derived using Taylor expansions 

over an evenly spaced stencil [19] [20]. This approach is limiting when deriving high-order schema 

because it entails solving a linear system [21]. The solution to said system produces the desired 

coefficients for the desired scheme but it also produces the coefficients for other, unneeded 

schema. An alternative way to derive them is with Lagrange Interpolating Polynomials (LIP) 

which do not require inversion of a linear system. 
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Introducing the LIP, they are the weighted sum of the Lagrange constituents of a given 

sequence of indeterminates (x) and another sequence of determinates (y) [19]. Denote the 

Lagrange polynomial as L(x) and its constituents as ϕ(x). Then: 

 

𝐿(𝑥) = ∑𝑦𝑗𝜙𝑗(𝑥)

𝑁

𝑗=1

 (20) 

 
𝜙𝑗(𝑥) =

∏ (𝑥 − 𝑥𝑖)𝑖≠𝑗

∏ (𝑥𝑗 − 𝑥𝑖)𝑖≠𝑗

,   (21) 

That is, the Lagrange polynomial is a sum of its constituents weighed by the values of the 

determinates. Each basis constituent ϕ(x) is associated with an interpolation point. At any rate, one 

may derive a finite difference scheme for the kth
 derivative using n stencil at some location x = x0 

points by evaluating: 

 𝑑𝑘𝑃𝑛(𝑥)

𝑑𝑥𝑘
≈ ∑𝑃𝑗 (

𝑑𝑘𝜙

𝑑𝑥𝑘
|
𝑥=𝑥0

)

𝑛

𝑗=0

 (22) 

That is, the cj from Equation (16) is the sequence of the kth
 derivatives of the Lagrange basis 

constituents [21]. 

 
𝑐𝑗 =

𝑑𝑘𝜙

𝑑𝑥𝑘
|
𝑥=𝑥0

 (23) 

To use Equation (22) one must input the coordinate sequence Pj. The differences in the 

coordinates will imply even or uneven spacing and that will be reflected by symmetry or 

asymmetry respectively in the weights cj. Here, use of Equation (22) is relegated to sequences of 

the form: 
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[−
n − 1

2
,−

n − 1

2
+ 1,… ,−1,0, +1,… ,

n − 1

2
− 1,

n − 1

2
] 

To produce central schemes, or of the form: 

[−
n − 1

2
+ s, −

n − 1

2
+ 1 + s,… , s − 1, s, s + 1,… , s +

n − 1

2
− 1, s +

n − 1

2
] 

To produce forward, backward, and lopsided schemes, where s is the same parameter seen 

in Equation (16). To recover the finite difference schemes with even spacing in which Δx = 1, set 

x0 = 0. This instructs the LIP that the interpolation is centered around the origin. Thus, in this 

work, during the Laplacian smoothing operation, a local origin is defined for all points on the 

discrete SDF level sets.  

2.5.6 Numerical characterization of Laplacian Smoothing on polylines 

With the help of Lagrange interpolation polynomials, any high-order finite difference scheme 

can now be quickly derived. In this subsection, a simple test case is presented to showcase the 

relative performance of schemes with n = 3, n = 5, and n = 7. The test consists of generating a 

regular 80-sided polygon whose edges all have length of 2 as shown in Figure 45 (a). The polygon 

is then subjected to Gaussian noise by adding random numbers between 0 and 0.75 to its xy 

coordinates to produce something like in Figure 45 (b).  

The following metrics are tracked over multiple “passes” of Equation (15), the Explicit 

Classic Laplacian using finite differences: The polygon’s area, perimeter, x-coordinate of centroid, 

and y-coordinate of centroid. The results are summarized by Table 2 through Table 5. All percent 

changes are relative to the polygon’s original values: Area of 509, Perimeter of 160, and x and y 

coordinates of centroid of 0. The centroid of a polygon is computed using variants of the shoelace 

formula (Equation (24) and Equation (25)). 
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𝑥𝑐 =
1

6𝐴
∑(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)(𝑥𝑖 + 𝑥𝑖+1)

𝑛−1

𝑖=0

 (24) 

 

𝑦𝑐 =
1

6𝐴
∑(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)(𝑦𝑖 + 𝑦𝑖+1)

𝑛−1

𝑖=0

 (25) 

 

 
(a) 

 
(b) 

Figure 45: Test polygon (a), Test polygon subject to Gaussian Noise (b). 

These results hint at the shrinkage phenomenon as evidenced consistent percent decrease 

in the polygon’s area. The same trend is observed in the polygon’s perimeter. The change in area 

appears to be proportional to the value of λ and not necessarily affected by the choice of scheme. 

The changes in the perimeter appear to be influenced by both the scheme and the value of λ. 

Finally, the xy-coordinates of the centroid shift slightly in response to the Explicit Laplacian. 

Therefore, this operation is characteristic of scaling, and to some extent translation. 
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Table 2: Percent changes in polygon's area  

λ N Pass 5 Pass 10 Pass 15 Pass 20 

0.5 3 -2.454 -5.417 -8.291 -11.079 

0.3 5 -1.494 -3.300 -5.070 -6.807 

0.3 7 -1.492 -3.298 -5.066 -6.802 

0.1 7 -0.509 -1.132 -1.744 -2.350 

 

Table 3: Percent changes in polygon's perimeter 

λ N Pass 5 Pass 10 Pass 15 Pass 20 

0.5 3 -3.010 -4.907 -6.535 -8.064 

0.3 5 -2.257 -3.222 -4.126 -5.013 

0.3 7 -2.961 -4.106 -5.020 -5.901 

0.1 7 -2.882 -3.447 -3.820 -4.149 

 

Table 4: Percent changes in polygon's x-coordinate of centroid 

λ N Pass 5 Pass 10 Pass 15 Pass 20 

0.5 3 -0.3958 -0.8615 -1.2650 -1.6298 

0.3 5 -0.4984 -0.7453 -0.9239 -1.0831 

0.3 7 -0.4864 -0.7454 -0.9025 -1.0460 

0.1 7 -0.8225 -1.0310 -1.1466 -1.2360 

 

Table 5: Percent Changes in polygon's y-coordinate of centroid 

λ N Pass 5 Pass 10 Pass 15 Pass 20 

0.5 3 +0.0912 -0.1446 -0.3898 -0.6292 

0.3 5 +0.2176 +0.0330 -0.1704 -0.3720 

0.3 7 +0.2883 +0.1047 -0.1079 -0.3204 

0.1 7 -0.2554 -0.1973 -0.2134 -0.2642 
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2.5.7 Shrinkage 

This is a phenomenon built into the Laplacian smoothing itself and is well documented in all 

applications that use it. Simply put, the overall shape of a curve will globally shrink. Figure 46 

showcases this phenomenon on one of the shorter SDF contours. The finite difference Laplacian 

smoothing scheme used there was central with λ = 0.3 and 7 stencil points.  Shrinkage is 

exacerbated mainly by the choice of λ. The more the operation is repeated (compounded by 

arbitrarily high choices for λ) the more pronounced the effect is [18]. In Figure 46, the red curve 

is the original SDF level set. The contour numbers denote how many passes of the Explicit 

Laplacian were carried out to get to said contours. This can potentially deviate the fibers 

substantially from the topologically optimized design. 

 

 

Figure 46: Example of Shrinkage due to Laplacian smoothing. 
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2.5.8 Feature Loss 

In this work, Laplacian smoothing was originally hypothesized as a suitable technique to 

address the tight turn problem. However, during testing, fibers that were clearly sharp (like those 

in Figure 32 and Figure 34) showed substantial improvement in their turns, however, the number 

of passes required was in the dozens per fiber. This made the process slow, but seemingly 

worthwhile at first.  

Unfortunately, the fibers can become substantially morphed to the point where they deviate 

unacceptably from the original topologically optimized design. Furthermore, for most of the fibers, 

the tight turns represented less than 10% of the overall fiber, which rendered Laplacian smoothing 

highly inefficient. This is because it was deployed as a global as opposed to a local operation.  To 

exemplify the feature loss phenomenon, Figure 47 and its exploded views (Figure 48 and Figure 

49) were created. 

 

Figure 47: Example of Feature loss due to Laplacian Smoothing 
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Figure 48: Zoom "A" into Figure 47 

 

Figure 49: Zoom "B" into Figure 47 
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2.5.9 Numerical Instability 

Broadly speaking, the term “numerical stability” refers to whether the rounding or truncation 

errors in a numeric scheme remain bounded through its iterations [20]. Here, the term is used to 

characterize a potential danger of Laplacian smoothing and that is the potential for unbounded 

distortion of the original shape. This is exemplified by a 3-point stencil using λ = 0.55 in Figure 

50.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 50: A numerically unstable example Explicit Laplacian scheme with λ = 0.55, n = 3.  
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In this example, the polygon gets progressively distorted to the point where it is essentially 

obliterated after 20 passes. The instability showcased in Figure 50 is driven by the value of λ and 

exacerbates with number of stencil points. In Figure 51, an additional two stencil points were used, 

and the instability grew so quickly that the extent of the polygon’s destruction is now akin to a 

seemingly random point generation.  

 
(a) 

 
(b) 

Figure 51: A numerically unstable example with λ = 0.55, n = 5.  

The phenomenon exhibited in Figure 50 and Figure 51 is an example of Laplacian growth and 

has been documented in fields of physical simulation involving diffusion equations [22]. Laplacian 

growth must be avoided at all costs to guarantee that the preparation of the progenitor polyline 

leading up to the offset operation is flawless. This phenomenon guides an intuition of selecting 

arbitrarily low values of λ and applying a minimal number of passes. Stability analysis was beyond 

the scope of this work, so no guidelines for gauging a stability limit for λ are presented here. The 

smoothing of the progenitor polylines was thus carried out through trial and error. 
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2.5.10 Stalling: The Onset of Laplacian Growth 

When the choice for λ was sufficiently close to the stability threshold of the scheme, the 

convergence rate on the “smoothing” aspect of the Laplacian smoothing is susceptible to slow 

downs. This can be described as subsequent iterations of the Explicit Laplacian undoing the 

progress of the previous iteration. One would think of it as damped oscillations between values, 

however, in practice it can easily be a delayed numerical explosion. There were extreme cases 

where the slowdown is so lethargic, that the shrinkage phenomenon begins to dominate before any 

meaningful smoothing takes place.  

Consider the following retrial of the distorted polyline in Figure 45 with a central scheme of 

with 3 stencil points at first with λ = 0.35, and then with λ = 0.501. The results after 100 passes of 

the Explicit Laplacian are Figure 52 and Figure 53 respectively. The former quickly recovers the 

circularity of the original polyline and should have only received 10 passes. The latter exhibits 

noise well into the 100th pass, and is thus “stalled,” meaning that one was better off not even 

deploying the scheme in the first place. 

The phenomenon is characterized by the formation of ripples, which really mark the onset of 

Laplacian Growth. When the ripples form, it is only a matter of time before Laplacian growth takes 

place and becomes appreciable to the naked eye. Quantification and characterization of this 

rippling phenomenon and that of Laplacian growth is beyond the scope of this work. 
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Figure 52: A hundred passes of Laplacian smoothing on Figure 45 (a) (λ = 0.35) 

 

Figure 53: A hundred passes of Laplacian smoothing on Figure 45 (a) (λ = 0.501) 
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2.5.11 Open polyline warping 

During testing, of Laplacian smoothing of open polylines with forward, backward, and 

lopsided schemes at the endpoints a phenomenon whereby the translation problem and distortion 

problems are exacerbated was encountered. Numerically, this is due to ∇2 being disproportionately 

larger on one end of the curve than at the other. The effect can be characterized as the open polyline 

being warped, or strongly pulled from one end while seemingly fixed to the other end. The stencil 

had five (5) points and the schemes were derived using the LIP. The finite difference schemes used 

to perform the Explicit Laplacian are summarized in Table 6 through Table 10 . 

Three (3) examples of the warping of polylines are shown in Figure 54 through Figure 56. In 

all of said figures, the “(a)” label shows the pre-Laplacian shape, and the “(b)” labels show the 

successive degeneration of the curve as passes of the Laplacian scheme were performed.  In total, 

all three shapes received 100 passes of the Explicit Laplacian with λ = 0.1. This phenomenon was 

not fully understood during testing was avoided by forfeiting all use of the forward, backward, and 

lopsided schemes. 

Table 6: Forward difference scheme for ∇2 with 5-point stencil 

cj +35/12 -26/3 +19/2 -14/3 +11/12 

ID i i + 1 i+2 i +3 i +4 

stencil      

 

Table 7:Lopsised forward difference scheme for ∇2 with 5-point stencil 

cj +11/12 -5/3 +1/2 +1/3 -1/12 

ID i- 1 i i+1 i +2 i +3 

stencil      

 

Table 8: Central difference scheme for ∇2 with 5-point stencil 
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cj -1/12 +5/3 -5/2 +5/3 -1/12 

ID i- 2 i - 1 i i +1 i +2 

stencil      

 

Table 9: Lopsided backward difference scheme for ∇2 with 5-point stencil 

cj -1/12 +1/3 +1/2 -5/3 +11/12 

ID i- 3 i - 2 i-1 i i +1 

stencil      

 

Table 10: Backward difference scheme for ∇2 with 5-point stencil 

cj +11/12 -14/3 +19/2 -26/3 +35/12 

ID i- 4 i - 3 i-2 i -1 i 

stencil      

 

 

(a) 

 

(b) 

Figure 54: Open polyline warping example 1 
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(a) 

 
(b) 

Figure 55: Open polyline warping example 3 

(a) 

 

(b) 

Figure 56: Open polyline warping example 3 
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2.6 Defect detection 

Application of the noise suppression principles covered so far, brings Algorithm 1 closer to 

fulfilling its objective. Despite implementation of noise suppression, the offset operation is not yet 

safe to perform. Look back at Figure 38 and notice the self-intersecting clips on both inward curves 

(there are two obvious ones in (b), but there is a small one at the bottom-left corner of the open 

curve shown in (a)). Notice that the progenitor curves in Figure 38 are in fact smooth. The self-

intersections are due to the progenitor turning too tightly. If a 3D printer nozzle were to travel such 

a centerline, it would create an overflow of molten plastic. Tight turning must be avoided and will 

be addressed now. 

2.6.1 Rollercoaster Algorithm 

The SDF contours produced back in Concept 1 are meant to be the insides of the fibers. The 

strategy then is to offset them outward to almost eliminate the risk of producing self-intersecting 

“clips” (see Figure 38). There are two considerations though. The first one is that the centerline 

produced by the outward offset is not the actual path, it will be used to construct something called 

“NURBS” discussed in the next concept. The second consideration is the fact that even if a curve 

is technically smooth, its turn radius might be too small for the printer to traverse. 

In this work, a technique for detecting sharp turns before offsetting the progenitor polygon and 

thickening the centerline NURBS has been developed. This is beneficial because creation of 

flawed NURBS centerlines and subsequent (yet to be developed) correction procedures are 

avoided entirely. The intuition for this algorithm was derived from the work by [23] in which they 

rolled a circle along a progenitor 2D NURBS to diagnose (in a “post-mortem” fashion) self-

intersections in the offsets (see  Figure 57).  
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(a) (b) (c) 

Figure 57: Circular sweep along a progenitor NURBS for generation of offset curved (a). Post-

mortem diagnosis of self-intersections (b) is followed by a trimming procedure (c). Adapted from 

[23]. 

Seong, Elber, and Kim then proceed to develop their trimming algorithm in which the self-

intersections are filtered to produce non-intersecting domains. Their algorithm is unsuitable for the 

manufacturability of fiber paths because the pair of trimmed offset curves no longer feature 

constant thickness. Instead of rolling the circle along a progenitor NURBS, the algorithm 

developed here will roll the circle on the inside of a progenitor polygon. To do so, an auxiliary 

inheritor polygon, termed here as “Rails”, is offset inwards by some amount and then the circle 

travels it. This is illustrated in Figure 58, where the black lines are representative of the SDF 

contours (which are already supposed to be the inside of the fiber. 

The formulation for the circle’s center is identical to the procedure discussed in Concept 3, 

except that the offset distance is some value R instead of half the fiber thickness. The circle’s center 

essentially travels an intermediate offset polygon. The ensuing sequence of displacements is akin 

to the circle riding the inside of the polygon, hence the analogy to a rollercoaster. As its re-centers, 

the circle is used to check whether it includes points on the progenitor polygon. The inclusion test 

of a circle vs. a point is whether: 
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 (𝑥𝑐 − 𝑥𝑖)
2 + (𝑦𝑐 − 𝑦𝑖)

2 < 𝑅2 (26) 

 

Figure 58: "Rollercoaster" algorithm 

To prevent the inclusion detection operation from becoming an O(n2) endeavor, the polygon’s 

coordinates are first sorted in ascending order along their x coordinates. This allows the rolling 

circle to perform local, instead of global inclusion checks which reduces the complexity to O(n 

log(n)). Prior to the rolling, a flag buffer is allocated to denote which points were included by the 

circle. The buffer is initialized to a value of “+1” for all points. During the rolling operation, the 

registers of the flag buffer corresponding to points found to be in the circle are set to “-1” After 

the rollercoaster ride is over, the flag buffer is inspected for continuous bands of “-1” to thus 

identify tight turns. Here three examples of rollercoaster’s flag buffer are explained. Note that 

because the numbering of the vertices coincides with the numbering of the edges (as in vertex “1” 
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is at the beginning of edge “1”), the points that form the tight turns are, the one immediately before 

the first “-1” in a band, and the one at the end of the band (i.e., the very last “-1” in the band). 

Table 11: Rollercoaster flag buffer example 1 

ID 1 2 3 4 5 6 7 8 9 10 

Flag +1 +1 -1 -1 -1 -1 +1 +1 +1 +1 

 

 This first buffer has a single distinct band of “-1’s”, thus, the points corresponding to IDs 2 

and 6 flagged as the band for the tight turn and then input into a blending routine discussed in the 

next subsection. 

Table 12: Rollercoaster flag buffer example 2 

ID 1 2 3 4 5 6 7 8 9 10 

Flag -1 -1 -1 +1 +1 +1 -1 -1 -1 +1 

 

In this next example, two bands of “-1’s” are present. Whether they form tight turns will depend 

on whether the curve is open or closed. If the curve is closed, then the blending routine must be 

given points 10 and 3. If the curve is open, then the first band may be neglected. The second band 

entails a tight turn formed by points 6 and 9. 

Table 13: Rollercoaster flag buffer example 3 

ID 1 2 3 4 5 6 7 8 9 10 

Flag -1 -1 +1 +1 -1 -1 -1 +1 -1 -1 

 

In this third example, there is a middle band of “-1’s” which is treated just like before, so the 

points with IDs 4 and 7 are sent to the blender. Pay close attention to the disjoint -1’s at the 

beginning and the end. If the curve is closed, that means that the beginning and end points form a 
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tight turn, thus, points 9, 10, 1, and 2, form a tight turn.  The blender must thus be fed the 

coordinates of points 8 and 2. 

2.6.2 Limitations of the Rollercoaster 

The algorithm is relatively cheap and effective, but not quite perfect. During testing, the 

Rollercoaster algorithm exhibited two weaknesses. Firstly, it can potentially fail when deployed 

on highly concave polygons that wind into themselves. Secondly, it can fail to fully flag a tight 

turn (as in, several points on a tight turn are flagged but it misses at least one point to not fully flag 

a band). As an example of these failure conditions, inspect Figure 59 and its exploded views 

(Figure 60 through Figure 62) 

The reason that the rollercoaster algorithm does not bode well with highly concave polygons 

is because it is inherently an inclusion-based flagger. All it does is check for points that fall inside 

the circle. It does not leverage the curvature of the SDF contour to recognize that regions of a 

concave discrete curve like the one showcased in Figure 62 are in fact not part of a tight curve. It 

is possible to detect these “false positives” by taking the dot product of the direction implied by 

the first segment in the band with the direction of the segment at the end of the band. If the dot 

product is positive, then the band is a false positive and no blending should take place. 
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Figure 59: An example of a highly concave SDF contour 

 

Figure 60: Zoom “A” into Figure 50 
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Figure 61: Zoom “B” into Figure 59 

 

Figure 62: Zoom “C” into Figure 59 
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The failure to flag a tight turn is related to the circle’s placement as it travels the inside of the 

curve. The circle’s center is offset inwards from the midpoint by the prescribed radius. This, by 

definition, makes the circle tangent to the progenitor curve. Then, for edges that do not sufficiently 

“turn”, the circle will not encompass their respective points. This is illustrated by the sequence of 

images (a) through (f) in Figure 63. 

(a) (b) (c) 

(d) (e) (f) 

Figure 63: Rollercoaster failing to fully flag a tight turn. 

This phenomenon is consistently reflected in the flag buffer as what would appear as two 

distinct bands of -1’s with a single +1 in the middle. A remedy for this was found by “sinking” the 

offset of the rollercoaster circle’s center by a small amount (say, 5% of the naïve offset). This 

drastically improves the performance of the flagging of tight turns. Although, it exacerbates the 

extent to which a false positive is flagged. 
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Table 14: Rollercoaster flag buffer example during failure to flag. 

ID 1 2 3 4 5 6 7 8 9 10 

Flag +1 -1 -1 -1 +1 -1 -1 -1 +1 +1 

 

2.7 Defect Correction 

The last matter that pertains to manufacturability is the question of how to blend defects. In 

this work, two types of defects were encountered: Tight turns and self-intersections. Both can be 

detected by the rollercoaster algorithm using a sort-assisted search. Regardless, the target blend 

region is specified as two integer IDs, that of the point immediately before the defect, and that of 

the point immediately after the defect. A suitable blending curve must overwrite all points in 

between said integer ID’s to finally make the offset operation from Concept 3 safe.  

2.7.1 Circular Fillets 

For the purposes of this work, the simplest way to correct a defect is using circular fillets, as 

the mathematical formulation is simple and the motion it entails on the printer’s nozzle is the limit 

case for how tight it can turn. The idea is to use start and endpoints of the target segments to define 

lines and find where in between said lines a circle of desired radius can fit. Denote the line 

segments as S1 and S2: 

 
𝑆1 = [

𝑥1(𝑡1)

𝑦1(𝑡1)
] = [

𝑥1
𝑠 + 𝑡1(𝑥1

𝑒 − 𝑥1
𝑠)

𝑦1
𝑠 + 𝑡1(𝑦1

𝑒 − 𝑦1
𝑠)

] (27) 

 
𝑆2 = [

𝑥2(𝑡2)

𝑦2(𝑡2)
] = [

𝑥2
𝑠 + 𝑡2(𝑥2

𝑒 − 𝑥2
2)

𝑦2
𝑠 + 𝑡2(𝑦2

𝑒 − 𝑦2
𝑠)

] (28) 

Where the superscript “s” denotes a starting location, the superscript “e” denotes an ending 

location, and t1 and t2 are parameters that indicate the percentage along the segment. For either 

segment, when t equals 0, the coordinates x(t) and y(t) evaluate to the starting point. When t equals 
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1, the coordinates evaluate to the endpoint. The condition for a circular fillet is satisfied when the 

normals extruded from both S1 and S2 by the desired radius coincide. This can be written as two 

equations: 

 
𝑥1

𝑠 + 𝑡1Δ𝑥1 − 𝑅
Δ𝑦1

‖𝑆1‖
= 𝑥2

𝑠 + 𝑡2Δ𝑥2 − 𝑅
Δ𝑦2

‖𝑆2‖
 (29) 

 
𝑦1

𝑠 + 𝑡1Δ𝑦1 + 𝑅
Δ𝑥1

‖𝑆1‖
= 𝑦2

𝑠 + 𝑡2Δ𝑦2 + 𝑅
Δ𝑥2

‖𝑆2‖
 (30) 

This forms a linear system in t1 and t2 which has the solution of the form: 

 
𝑡1 =

𝐴4𝐵1 − 𝐴2𝐵2

|𝐴|
 (31) 

 
𝑡2 =

𝐴1𝐵2 − 𝐴3𝐵1

|𝐴|
 (32) 

Where the constants A1, A2, A3, A4, |A|, B1, and B2 are given by: 

 𝐴1 = 𝑥1
𝑒 − 𝑥1

𝑠   (33) 

 𝐴2 = 𝑥2
𝑠 − 𝑥2

𝑒  (34) 

 𝐴3 = 𝑦1
𝑒 − 𝑦1

𝑠 (35) 

 𝐴4 = 𝑦2
𝑠 − 𝑦2

𝑒 (36) 

 |𝐴| = 𝐴1𝐴4 − 𝐴3𝐴2 (37) 

 
𝐵1 = 𝑥2

𝑠 − 𝑥1
𝑠 + 𝑅 (

𝛥𝑦1

‖𝑆1‖
−

𝛥𝑦2

‖𝑆2‖
) (38) 

 
𝐵2 = 𝑦2

𝑠 − 𝑦1
𝑠 + 𝑅 (

𝛥𝑥2

‖𝑆2‖
−

𝛥𝑥1

‖𝑆1‖
) (39) 
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2.7.2 Limitations of the Circular Fillet 

There are two problems with using circular fillets as a blending curve. The first one is that, 

even though an analytic solution exists (meaning that the system is deterministic), the problem is 

in practice ill-posed. There are four (4) possible circles that can be computed because two lines 

that cross create four quadrants as seen in Figure 64. In the example illustrated there S1 is the 

segment between P1 (x1 = 0, y1 = 0) and P2 (x2 = 2, y2 = 2), S2 is the segment betweenP3 (x3 = -1, 

y3 = 3) and P4 (x4 = 1, y = -1), and the target fillet radius was R = 1. 

 

Figure 64: Four possible circles from which to generate fillets 

The issue of selecting the correct side is addressed by specifying a direction that points towards 

the tight turn from the midpoint between the target segments. The dot products of this direction 

with the unit normals of both segments is computed. The condition for selecting the correct fillet 

out of the four possibilities is that the dot products both be negative. If a dot product is negative, 
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the corresponding segment (S1 or S2) must have its orientation reversed, meaning that the s and e 

subscripts are swapped in Equation (27) and Equation (28) if S1 and or S2 need reversal 

respectively. 

The second limitation of the circular fillet is that it may require values for t1 and or t2 that are 

greater than one or less than zero. When this occurs, it means that it is impossible to fit a circular 

fillet through the segments. The fillet exists only as a mathematical construct that blends two 

imaginary infinite lines in this case. For the purposes of fiber manufacturability, the only way to 

keep on using circular fillets is by expanding the target band until the fillet is possible between the 

segments. To avoid further distortion of the curve due to successive circular filleting, the Least-

Eccentric Ellipse (LEE) is discussed next. 

2.7.3 Least Eccentric Ellipse (LEE) fillet 

Circles are not flexible enough to accommodate four constraints, as they are defined by three 

quantities: a radius, an x-center, and a y-center. The next more flexible curve available is the 

ellipse, which can be defined by five quantities: an x center coordinate, a y center coordinate, a 

minor axis (b), a major axis (a), and an orientation (θ). This allows an ellipse to intersect two points 

with prescribed tangent directions, thus, elliptical fillets can be produced such that the target 

segments are kept.  
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Figure 65: Infinite number of ellipses that blend two segments. Taken from [24] 

The problem of finding an ellipse that intersects two points with prescribed tangency is 

underdetermined, meaning that infinitely many solutions exist (see Figure 65). The next most 

reasonable condition to impose is that the ellipse be as round as possible (to make the fillet closer 

to its circular counterpart). The roundest possible ellipse is that with minimum eccentricity 

(denoted with e) and in the context of finding elliptical fillets is termed Least-Eccentricity Ellipse 

[24]. The formulation of said ellipse is cumbersome but well studied. For details, the reader is 

referred to the work by Fermiani, Chuang, and Razdan. Using their procedure, however, the 

blending ellipse can be readily defined. Now, one must generate the blending arc, (i.e., the fillet). 

2.7.4 Creation of LEE arcs 

First, two segments (S1 and S2) are queried from the output of the rollercoaster algorithm. These 

segments provide the coincident points and the tangent directions. This information and the LEE 

formulas define the ellipse. The question is, how does one generate the appropriate elliptical arc? 
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To answer that question, first one needs a way to generate points on the ellipse. The formula used 

to do so is the polar parametrization [25]: 

 
𝑟(𝜃) =

𝑏

√1 − (𝑒 cos(𝜃))2
 (40) 

Where r is the radial distance from the ellipse’s center to the ellipse with bearing θ 

measured counterclockwise from the major axis. By Inputting values of θ into equation (40), 

discrete points on the LEE can be generated if the orientation of the major and minor radii of the 

ellipse are known. The next question is, what range of θ values should be input? Obviously, the 

range of angles to input must correspond to the blending points. Therefore, vectors from the 

blending points to the center can be computed and then an angular measure is obtained using the 

dot product (Equation (41) below). 

 𝑐 ⋅ 𝑑 = 𝑐𝑥𝑑𝑥 + 𝑐𝑦𝑑𝑦 = ‖𝑐‖‖𝑑‖ cos(𝜃𝑐𝑑) (41) 

Where c and d are two arbitrary 2D vectors, ‖c‖ and ‖d‖ are their Euclidean lengths (or 

“magnitudes”) respectively, and θcd is the angle between them. Represent the blending points P1 

and P2 by their coordinate pairs x1, y1 and x2, y2. Denote the center of the ellipse and orientation of 

the major axis by the pairs xc, yc and ax, ay respectively. Now form the vectors from the blending 

points to the center as follows: 

 
𝑉1 = [

𝑉𝑥1

𝑉𝑦1
] = [

𝑥𝑐 − 𝑥1

𝑦𝑐 − 𝑥2
] (42) 

 
𝑉2 = [

𝑉𝑥2

𝑉𝑦2
] = [

𝑥𝑐 − 𝑥
2

𝑦𝑐 − 𝑦2
] (43) 
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Figure 66: Examples of elliptical arcs 

Then, solve for two angles by plugging into the rearranged versions of Equation (41) shown 

below. Note that ax and ay are components of a unit vector, thus ‖a‖ = 1 (and note the bounds on 

the angles): 

 
𝜃1 = cos−1 (

𝑎𝑥𝑉𝑥1 + 𝑎𝑦𝑉𝑦1

‖𝑉1‖
) , 𝜃1 ≤ 𝜋 (44) 

 
𝜃2 = cos−1 (

𝑎𝑥𝑉𝑥2 + 𝑎𝑦𝑉𝑦2

‖𝑉2‖
) , 𝜃2 ≤ 𝜋 (45) 

The angles θ1 and θ2 are those subtended between the lines connecting the blending points to 

the center and the line along the orientation of the major axis respectively. These angles, however, 

are alone useless because they are akin to a direction without a starting point. At this stage, all that 

one knows is that V1 and V2 make angles θ1 and θ2 respectively with the major axis. This limitation 

is a consequence of the definition of the inverse cosine function (cos-1), it can only return values 

between 0 and π. 
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To produce the elliptical arc, one must know on what sides of the major axis angles θ1 and θ2 

lie. To “orient” the angles θ1 and θ2 one can use the orientation of the minor axis (denoted by the 

pair of unit vector components bx and by). Dot products of V1 and V2 with the minor axis reveal 

whether θ1 and θ2 (respectively) are on the side in the direction of the minor axis or opposite to the 

direction of the minor axis. This allows one to put signs on the angles θ1 and θ2 depending on the 

values of the dot products. The dot product formulas are now modified: 

 
𝜃1  = − sgn(𝑉1 ⋅ 𝑏) cos−1 (

𝑎𝑥𝑉𝑥1 + 𝑎𝑦𝑉𝑦1

‖𝑉1‖
) , −𝜋 ≤ 𝜃1 ≤ 𝜋 (46) 

 
𝜃2 = −sgn(𝑉2 ⋅ 𝑏) cos−1 (

𝑎𝑥𝑉𝑥2 + 𝑎𝑦𝑉𝑦2

‖𝑉2‖
) , −𝜋 ≤ 𝜃2 ≤ 𝜋 (47) 

Where “sgn” is the sign function, which as the name suggests returns the sign of the input 

(either “+1” or “-1”). This lets one know whether the angles θ1 and θ2 are “above” or “below” the 

major axis. At this stage, one knows the range of angular values to plug into equation (40) to 

generate the elliptical arc. Points on the arc are then generated via: 

 
𝑥̅ = [

𝑥
𝑦] = 𝑟(𝜃) [

‖𝑏‖𝑏𝑦 cos(𝜃) − ‖𝑎‖𝑎𝑦 sin(𝜃)

‖𝑏‖𝑏𝑥 cos(𝜃) − ‖𝑎‖𝑎𝑥 sin(𝜃)
] (48) 

Where the angle θ is between θ1 and θ2, and r is obtained from Equation (40). Below 

(Figure 66) is an example of an ellipse in which three distinct arcs were generated using the 

procedure described by Equation (27) through Equation (29). Notice that the arc’s generation 

depends on the angle subtended by points P1 and P2, which can be anywhere. The dotted lines 

show the angles subtended by arbitrary points when traced back to the ellipse’s center. 

There is, however, yet another ambiguity: There are two possible arcs that can be generated 

from this information. There is a short arc and then there is the long arc (Figure 67). For purposes 
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of preventing tight turns in fiber paths, the long arc is useless and only the short arc is desired. To 

guarantee that P1 and P2 produce the short arc, add 2π to θ1 and θ2 (individually) only if they are 

negative. Then find the difference between the angles. If the difference is greater than π, thus 

Equation (48) is now primed to generate the long arc. In that case, subtract 2π from the greater of 

θ1 and θ2 (after the initial addition of 2π) and proceed to evaluate Equation (48). 

(a) (b) 

Figure 67: Short (a) vs. Long (b) arc 

At last, LEE fillets can now be created between two segments. Figure 68 and Figure 69 are 

examples of tight turns (flagged by the rollercoaster algorithm as green squares) blended with LEE 

fillets. Said figures showcase the culmination of applying concepts 1 through 6 to the flaws shown 

in Figure 32 and Figure 33 respectively. 
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Figure 68: Applying Rollercoaster detection and LEE fillets to correct Figure 32 

 

Figure 69: Applying Rollercoaster detection and LEE fillets to correct Figure 33 
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Figure 70: Applying Rollercoaster detection and LEE fillets to correct Figure 34. 

 

Figure 71: Applying Rollercoaster detection and LEE fillets to correct Figure 31 
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2.8 Parametric Representation of the Centerline Polyline  

It is only after the incorporation of Concept 6 that the offset operation discussed in Concept 3 

is finally safe to perform. Doing so produces a discrete curve that will be a candidate for defining 

the centerline of the fibers. One final caveat needs to be discussed to conclude discussion of 

Algorithm 1, and that is the question of how the fibers will be input to a 3D printing software to 

create the component. 

2.8.1 Non-Uniform Rational Basis Splines (NURBS) 

Quick recapitulation: The SDF level sets form the coordinates of what is termed the progenitor 

curve. This is a curve that will be offset to produce an approximation of the centerline path. Said 

approximation is termed the inheritor curve, as its geometric properties are determined from the 

progenitor. The intermediate objective of the offset operation is to generate the control curve for a 

grander geometric object, a so-called NURBS. The reason NURBS are brought to the picture is 

because they are the industry standard for communication of sophisticated parametric geometries 

in industry [26]. 

As a prerequisite for understanding NURBS, the reader should be familiar with the concept of 

a polynomial and that of a spline. If so, then think of NURBS as a weighted sum of splines, if not, 

then the reader is referred to “The NURBS Book” written by Les Piegl and Wayne Tiller for a 

background on both and then some. NURBS, just like with splines, are constructed from a 

sequence of “knots” and another sequence of “control points.” Typically, splines feature as many 

knots as control points, but this is not the case with NURBS as they feature more knots than control 

points [20]. Furthermore, NURBS require an additional sequence, that of so-called weights which 

act as local attractors or repulsors. NURBS are written as: 
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𝐶(𝑢) =

∑ 𝑤𝑖𝑃𝑖𝑁𝑖,𝑝(𝑢)𝑛
𝑖=0

∑ 𝑤𝑖𝑁𝑖,𝑝(𝑢)𝑛
𝑖=0

 (49) 

Where C is the NURBS curve, u is the knot parameter, Pi is a control point, wi is the weight 

given to Pi, Ni,p is a basis spline of order p associated with Pi. Figure 72 shown an example of a 

NURBS with a sequence of six (6) control points with the weight of the fourth point (labelled 3 as 

the numbering is zero-based) being changed. 

 

Figure 72: Effect of weights on a NURBS curve. Taken from [27] 

2.8.2 Basis Splines 

  NURBS are characterized further by the degree p of the basis splines.  The basis splines of 

degree p (denoted Ni,p) are defined recursively via the Cox-De Boor formula in terms of lower 

degree basis splines: 

 𝑁𝑖,𝑝(𝑢) =
𝑢 − 𝑢𝑖

𝑢𝑖+𝑝 − 𝑢𝑖
𝑁𝑖,𝑝−1(𝑢) +

𝑢𝑖+𝑝+1 − 𝑢

𝑢𝑖+𝑝+1 − 𝑢𝑖+1
𝑁𝑖+1,𝑝−1(𝑢) (50) 

Where the zeroth-degree basis splines are given by: 
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 𝑁𝑖,0(𝑢) = {
1
0
,

𝑖𝑓 𝑢𝑖 ≤ 𝑖 ≤ 𝑢𝑖+1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (51) 

The basis splines can be constructed from the knot sequence and a given value of p using. 

Equation(51)  and Equation (50). As an example take the following knot sequence u  = 

[1,1,1,2,3,4,5,5,6,6,6] and p = 2, then the corresponding  basis splines  are shown in Figure 73. 

 

Figure 73: Example basis splines. Recreated from [26] 

The knot sequence can have a few repeated entries, with the number of repetitions depending 

on the value of p. The only strict requirement for the knot sequence is that it be nondecreasing. 

Knot value repetition is discouraged as it makes the NURBS prone to forming cusp-like sharp 

turns. 

2.8.3 Knot Sequence for Fiber Paths 

When assembling a NURBS out of a control curve with n points, there must be n + p + 1 knots. 

The number of weights and basis splines is also n. In this work, the NURBS used to represent the 

centerline has a knot space that is evenly spanned. That is, the knot sequence looks like: 

𝑢𝑖 = [0,0,0, …0,0, 𝑎, 𝑏, … , 𝑧, … ,11,1] 

Where the zeros and ones are consecutively repeated at the beginning and end respectively 

p times and a, b, …, z are nonzero.  This repletion is needed because the basis splines do not 

partition unity at the endpoints otherwise. The latter term, “partition of unity” should be thought 
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of by the layman as a scheme’s ability to interpolate. If the scheme (NURBS in this case) does not 

partition unity, well, it cannot be used as an interpolation technique. Regardless, because the knot 

span is evenly spaced, the knot sequences in this work are of the form: 

 

𝑢𝑖 = {

0
𝑖 − 𝑝 − 1

𝑛 − 1
1

,
0 ≤ 𝑖 ≤ 𝑝 + 1
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑛 ≤ 𝑖 ≤ 𝑛 + 𝑝 + 1
 (52) 
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3.  CREATION OF FEA INPUT FILE (ALGORITHM 2) 

With the manufacturable fibers now available, it is time to generate a case file for FEA. Using 

the NURBS centerlines, a geometry-based scheme for assigning mesh elements material properties 

and fiber orientations is developed. The flow diagram for Algorithm 2 is shown in Figure 74. 

Algorithm 2 is substantially simpler than Algorithm 1, as it can be broken down into five concepts. 

1) Meshing 

2) NURBS evaluation 

3) NURBS thickening 

4) NURBS offset quadrangulation 

5) Point-in-polygon  

 

3.1 Description 

The original topology optimization produced boundaries which define the shape of the 

optimized component. This shape is unaffected by Algorithm 1, so in Algorithm 2, the first step is 

to generate a spatial discretization of said boundaries. The mesh, however, lacks material and 

orientation information. To append this, auxiliary data to the input file, another geometry-based 

scheme that leverages the NURBS created in Algorithm 1 is developed. The NURBS are first 

thickened to produce the thickened fibers proper. The thickened fibers will consist of two NURBS 

offsets, called upper and lower offsets. Both offsets are evaluated at as many discrete locations as 

the centerline NURBS, therefore, the upper and the lower can be represented as polylines with 

equal number of xy-coordinates. The subsequent pairs of points along the upper and lower are used 

to create quadrilaterals that are overlayed on top of the mesh’s elements. The idea is to check for 

all elements of the mesh are inside the quadrangles and append the fiber material ID to them, and 

the local NURBS orientation at the quadrangle. The quantity that determines whether an element 
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is inside the quadrilateral is the element’s centroid. If the centroid is inside the quadrilateral, the 

element receives its auxiliary data from the local NURBS orientation.  This process is carried out 

by solving a classic computational geometry problem, the point-in-polygon. Once all elements 

have been scanned, the data produced by Algorithm 2 can be used to customize the format of the 

FEA input file. 

 

Figure 74: Flow diagram of Algorithm 2 

3.2 Meshing 

“Meshing” is a colloquial term used in field physical simulation to refer to the idea of 

discretizing a space. The idea of spatial discretization is to take a domain Ω and partition into 

smaller elements Ωe such that the union of the partitions is equivalent to the original domain. This 

is written as: 

 

Ω = ⋃Ω𝑒

𝑛𝑒𝑙

𝑒=1

 (53) 
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Where nel is the number of elements that make up the spatial discretization. Recall the 

domain shown in Figure 11. This was meshed according to an advancing front algorithm 

conceptually like the SDF of Concept 1, Algorithm 1 and is shown in Figure 75. Recall Figure 14, 

which was used to discuss the difference between active vs. inactive boundaries. The meshing 

algorithm had all boundaries toggled as active.  

 

Figure 75: Mesh of the test geometry 

The mesh used in Algorithm 2 consists of triangles only, that is all Ωe in Equation (53) are 

triangles. The mesh generator was part MATLAB’s PDE Toolbox. Pertinent to Concepts 9 and 10 
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of Algorithm 2, the only relevant aspect of a triangular mesh is the collection of centroids of the 

elements.  The centroid of any triangle is simply the unweighted average of its coordinates: 

 
𝑥𝑐,𝑖 =

1

3
(𝑥𝑖,1 + 𝑥𝑖,2 + 𝑥𝑖,3) (54) 

 
𝑦𝑐,𝑖 =

1

3
(𝑦𝑖,1 + 𝑦𝑖,2 + 𝑦𝑖,3) (55) 

Where i is an index used to denote a triangular element. 

3.3 Centerline NURBS evaluation 

Recall the NURBS curve introduced in Concept 7 of Algorithm 1. Defining sequence of control 

points, knots, and weights, produces a rational curve C(u). The sequences alone define an idealized 

continuous shape, however, there is a matter of querying values of C(u) at discrete values of u. In 

this work, a granularity parameter “g,” defined as the number of uniformly spaced query points 

between knot spans is used.  When g is zero, C(u) is evaluated at the values of the knots that make 

up the defining sequence. Values of g greater than 0 will quickly refine the discrete evaluation of 

C(u). 

g = 1 g = 2 

g = 4 g = 8 

Figure 76: Effect of the granularity parameter on the fineness of a NURBS 
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3.4 Centerline NURBS Thickening  

The NURBS centerline is deemed to be the actual path followed by the printer’s nozzle. That 

is, the inheritor curve that was produced by Algorithm 1 was but a steppingstone. Therefore, any 

thickness should be offset on both sides of the centerline NURBS. In a sense, the SDF contours 

created in Algorithm 1 are discarded and now replaced by one of the NURBS offsets when talking 

about the “inside” of a fiber. 

3.4.1 NURBS Thickening as Two Analytic Offsets 

The NURBS thickening operation is conceptually like the offset operation discussed in Concept 

3 of Algorithm 1 in the sense that progenitor curves were used to produce inheritor curves. Here, 

a progenitor NURBS is used to create two inheritor discrete curves, termed upper and lower. Both 

the upper and the lower are produced by a NURBS offset operation, that is, the NURBS thickening 

is simply a pair of NURBS offsets. In principle, a NURBS offset is identical to that of a discrete 

curve. The key difference is that the unit normal vectors are obtained from C(u) and the resulting 

Oi points become the offset instead of the intersection of Li with Li+1 (recall Figure 42). The 

NURBS offset is defined as: 

 𝐶0(𝑢) = 𝐶(𝑢) + 𝑑𝑁(𝑢) (56) 

Where C0(u) is the discrete offset curve, d is an offset distance, and N is the function for 

the unit normal vectors along C(u).  When the function for N(u) known, the NURBS offset 

operation proceeds by evaluating Equation (56) over the entirety of the evaluated NURBS 

centerline. The intuition for the naming of the offset curves lower and upper, is the fact that 

Equation (56) is first evaluated with d = -t/2 and then with d = +t/2 respectively. 
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3.4.2 Parametric Unit Tangent and Unit Normal 

The simplest way to obtain N(u) is by taking the first derivative of C(u) across the x and y 

dimensions. The intermediate result is a vector tangent to C(u) that is colloquially referred to as 

“velocity.” The magnitude of this vector is not the unit; therefore, it must be normalized. N(u) then 

can be evaluated by rotating the normalized tangent vector by 90 degrees either counterclockwise 

or clockwise. The unit tangent vector to C(u), denoted T(u) is obtained via: 

 
𝑇(𝑢) = [

𝑇𝑥(𝑢)

𝑇𝑦(𝑢)
] =

1

√[𝐶𝑥
′(𝑢)]2 + [𝐶𝑦

′ (𝑢)]
2
[
𝐶𝑥

′(𝑢)

𝐶𝑦
′ (𝑢)

] 
(57) 

Where the primes on Cx(u) and Cy(u) denote derivatives with respect to the knot parameter u. 

Then, N(u) follows from a 90-degree rotation (counterclockwise in this example): 

 
𝑁(𝑢) = [

𝑁𝑥(𝑢)

𝑁𝑦(𝑢)
] = [

0 1
−1 0

] [
𝑇𝑥(𝑢)

𝑇𝑦(𝑢)
] = [

−𝑇𝑦(𝑢)

+𝑇𝑥(𝑢)
] (58) 

In Figure 77 T(u) and N(u) are shown for a spiraling NURBS. Recall the figures that showcased 

Rollercoaster detection and LEE blending (Figure 68 through Figure 71), the thickened fibers there 

are the product of the NURBS offsetting procedure described here. 
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Figure 77: Illustration of N(u) in red and T(u) in black. 

3.4.3 Concerning the Extension to 3D in Future Work 

The unit vectors T(u) and N(u), when input to the vector cross-product operation produce a 

vector B(u), called the binormal vector. The trio of T(u), N(u), and B(u) form the so-called Frenet-

Serret frame (named after its discoverers). Implicit in the formulation of Equation (58) is that B(u) 

is known, namely, it was assumed to point out of the 2D plane according to a right-handed 

coordinate system. The reader is warned that Equation (58) does not extend to 3D and is more of 

a low-cost alternative to Equation (59) below, the “correct” way of finding N(u). 

 
𝑁(𝑢) =

𝑑𝑇(𝑢)

𝑑𝑢
= −

𝐶𝑥
″(𝑢) + 𝐶𝑦

″(𝑢)

([𝐶𝑥
′(𝑢)]2 + [𝐶𝑦

′ (𝑢)]
2
)

3
2

[
𝐶𝑥

″(𝑢)

𝐶𝑦
″(𝑢)

] 
(59) 



83 

 

However, use of this formula in 2D is discouraged because NURBS are rational 

expressions which make the ensuing algebra formidable to write and expensive to evaluate. 

Equation (59) holds for 3D space will be needed if any curvature or torsion analysis is required in 

future work. Equation 

3.5 NURBS Quadrangulation and Overlay 

With NURBS centerlines now thickened, the fibers are fully represented. Thanks to the prior. 

treatment of the SDF contours, the NURBS-represented fiber paths are now supposed to be 

flawless. However, one must now reconcile the mesh created in section 3.1 with the thickened 

NURBS from section 3.3. Specifically, one must use the fibers to assign material IDs and local 

orientations to the mesh element. To do so, a “quadrangulate and overlay” scheme is developed. 

The gist of it is that the points on the upper and lower are used to define quadrangles that are 

literally overlayed onto the mesh. The purpose of this quadrangulation is to establish the local 

properties of the elements based on the fiber segments that are overlayed on top of them.  

The quadrangulate and overlay scheme is illustrated by Figure 78 and its exploded views 

(Figure 79through Figure 86). The exploded views coincide with those shown in Figure 29 through 

Figure 36. The element centroids computed using Equation (54) and Equation (55) are painted red. 
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Figure 78: Quadrangulated fibers overlayed on top of mesh 
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Figure 79: Zoom “A” into Figure 78 

 

Figure 80: Zoom “B” into Figure 78 
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Figure 81: Zoom “C” into Figure 78 

 

Figure 82: Zoom “D” into Figure 78 
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Figure 83: Zoom “E” into Figure 78 

 

Figure 84: Zoom “F” into Figure 78 
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Figure 85: Zoom “G” into Figure 78 

 

Figure 86: Zoom “H” into Figure 78t 
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3.5.1 Description of Fiber Segments 

To describe the quadrangles, take four (4) points and call them A, B, C, D denoted by the 

coordinated pairs xA, yA, and xB, yB, and xC, yC, and xD, yD respectively. Points A and B are every 

two adjacent points on the upper offset, and points C and D are any to adjacent points on the lower 

offset. More explicitly, points A and C are labelled “i” on their respective curves, and points B and 

D are labelled “i+1” on their respective curves. The idea is to form quadrilateral ABCD for every 

pair of “i” and “i+1” points across the NURBS offsets. Then one can find the elements whose 

centroids fall within the quadrilateral. Said elements receive a material flag corresponding to the 

fiber’s material, and an angle. See Figure 87 for an illustration. 

 

Figure 87: Assigning angles to elements from NURBS quadrangulation 

3.6 Point-In-Polygon  

Now, say one has point P, the centroid of a finite element computed using Equation  (57) and 

Equation (58). One must determine whether the centroid is within a particular quadrilateral ABCD 

as shown in Figure 87. There are multiple ways to determine this. One way is through ray casting, 

which entails assuming a direction (say, E) such that one forms the line PE. One uses this 
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imaginary line to perform intersection checks with the sides of ABCD. That is PE is checked for 

intersection against segments AB, BC, CD, and DA. If the number of intersections is odd, then the 

point is inside ABCD, else, the point is outside [16]. Take Figure 88 as an example. There, the 

point on the inside has been given three possible rays, all of which intersect one side (odd number 

of intersections). The points on the outside can be given a ray direction but it will either not 

intersect any sides or intersect two sides (i.e., not an odd number of intersections. 

 

Figure 88: Ray casting on a quadrangle 

 

Figure 89: Ray casting on an arbitrary polygon 
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The problem that is being discussed here is known in computer science as the point in polygon 

problem and has been documented for a long a time. It remains an active field of research as 

polygons of arbitrarily complex shapes are being used an investigated in industry. [28] 

3.6.1 Cost of Ray Cast for Point-In-Polygon 

The ray casting technique is robust and will generalize to any concave polygon (see Figure 

89), however, it is expensive because of the intersection checks. One intersection check essentially 

constitutes the evaluation of Equation (10) through Equation (14). Each intersection check entails 

12 addition operations, 5 multiplication operations, 2 division operations, and 4 logical 

comparisons (because one must ensure that both zi and zi +1 are less than or equal to 1 and greater 

than or equal to 0). However, that is one intersection check, one must check all four sides, thus, 

the total effort for ray casting a single elemental centroid against a NURBS quadrangle is 48 

addition operations,20 multiplication operations, 8 division operations, and 16 logical 

comparisons. 

3.6.2 A Lower Cost Alternative to Ray Casting 

Since the inclusion of point P is assessed against convex quadrilaterals, the following simpler 

approach can be used: Form segments AP, BP, CP, and DP. And compute the following dot 

products: AB⋅AP, AD⋅AP, BA⋅BP, BC⋅BP, CB⋅CP, CD⋅CP, DC⋅DP, and DA⋅DP. If all eight (8) of 

the dot products are positive, then point P is inside, if any of the eight dot products is negative, P 

is outside. The intuition for this logic is that the vectors defined in the dot products all point from 

the vertices of ABCD to the point. Since the NURBS quadrangles are convex, the two vectors that 

any one vertex A, or B, or C, or D makes with the quadrilateral ABCD are both mostly in the 

direction of the vector towards an interior point. This approach works only for nearly rectangular 

polygons and does not generalize to convex or concave polygons like ray casting does. The cost of 
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this approach is 8 additions, 16 multiplications, 0 divisions, and 8 logical comparisons. Across the 

four different operations, this is a 66% reduction in addition operations, 60% reduction in 

multiplications, 100% reduction in division operations and 50% reduction in logical comparisons 

when compared against ray casting. 

3.6.3 Sort-Assisted Search with Axis-Aligned Bounding Boxes 

Even though a simple point vs. quadrilateral inclusion test is available there is a time 

complexity issue at hand that stems from the fact that one (and a computer) cannot distinguish 

overall shape or proximity of the points P to some quadrilateral from simply looking at a sequence 

of xy coordinates. Without knowing some aspect of the shape, one’s only recourse is to perform a 

crippling O(nm) task, where n is the number of elements, and m is the number of quadrilaterals. If 

the element size is approximately equal to the fiber thickness, then m ≈ n. 

 

Figure 90: AABB (in red) used to reduce number of point-in-polygon tests. 

To speed up this task, the search is sort-assisted in the same way that the rollercoaster algorithm 

was. However, in the rollercoaster one was dealing with a simple circle. The radius and center of 
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the circle were used to filter out the points that were obviously nowhere near the circle, thus, a 

reduced number of inclusion checks were performed. Said exclusion technique was powered by 

an implicit Axis-Aligned Bounding Box (AABB). Here, the same concept will be re-leveraged as 

it is more important than before. The AABB is instead constructed by finding the maximum and 

minimum coordinates of the quadrilateral.  

 

Figure 91: Algorithm 2 deployed on the test mesh. 

The centroids of the triangular elements are first sorted according to their x-coordinates. 

The x-bounds of the AABB are then used to determine a substantially narrow (when compared to 

the entirety of the mesh) range of centroids that are candidates for the point-in-polygon test. Within 

this subset of the centroids, the y-bounds of the AABB are then used to throw out any centroids 

that are not within the AABB. The remainder of the centroids, will, be inside the AABB and are 

thus reasonable to have the point-in-polygon check done on them. Applying Algorithm 2 to the 
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test mesh results in Figure 91, where the negative angles were added to +180 degrees to ensure 

that the Euler angles are nonnegative. 

3.6.4 A Caveat with the Simplified Point-In-Polygon Approach 

The point-in-polygon procedure described in section 3.5.2 is not robust, as it is prone to fail 

when the point lies arbitrarily close to one of the quadrangle’s edges. This is because implied to 

the algorithm’s success is that the quadrangle be in fact a rectangle, meaning that all interior angles 

are of ninety degrees. The NURBS quadrangles are not perfect rectangles, so, the fringe case 

whereby the centroid of an element lies essentially on one of the sides of the quadrangle makes 

the simplified point-in-polygon procedure failure-prone. The fringe case is illustrated in Figure 92. 

Despite the lack of robustness, it successfully flagged most elements with the fiber material ID 

and the local NURBS orientation. The fringe case occurs mostly when the NURBS quadrangles 

are formed near a turn. See Figure 93 as an example where a quadrangulated curve makes weaving 

turns. The quadrangles are mostly orthogonal except at the turns where they become trapezoidal. 

There, the low-cost point-in-polygon test from section 3.5.2 is not valid. 

 
(a) 

 
(b) 
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Figure 92: Fringe case for simplified point-in-polygon method 

 

Figure 93: A quadrangulated, thickened, polyline. 
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4. THE PARALLEL FEA SCRIPT 

Algorithm 2 produces a mesh with auxiliary data, namely the Euler angles and the material 

tags of the elements. This information must be used to construct analysis that will reveal the 

performance of the TO design after imposing manufacturability. The code used to do this is 

conceptually discussed mostly in terms of the mathematics that it is based on and the relevant 

PETSc abstractions.  

4.1 A Primer on Continuum Mechanics 

For analysis purposes, the CFRC components are modelled as a continuum, which is a 

space with no voids. To begin the analysis, one needs to enforce the relevant laws of physics 

inside the domain(Ω) and its boundary (Γ). Said laws are Newton’s 2nd Law of motion (N2L), the 

law of conservation of momentum (Cauchy’s 2nd Law of motion).  

4.1.1 The Elasticity Equation 

N2L states that the time rate of change of momentum equals the sum of the forces. In 

structural analysis, the two most common forces are the external tractions (T) and the body 

forces (B). If one denotes the mass with m and the velocity with v, then by N2L one writes: 

 
𝑇 + 𝐵 =

𝜕(𝑚𝑣)

𝜕𝑡
 (60) 

However, the finite element method in structural analysis is based on continuum 

mechanics, so the above statement must be rewritten in terms of tensors. This is done as: 

 
𝐵 = ∫𝜌𝑓𝑖𝑑Ω

Ω

 (61) 

 
𝑇 = ∫𝜎𝑖𝑗𝑛̂𝑗𝑑Γ

Γ

 (62) 
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 𝜕(𝑚𝑣)

𝜕𝑡
=

𝜕

𝜕𝑡
∫𝜌𝑣𝑖𝑑Ω
Ω

 (63) 

Where σij is the rank-2 Cauchy stress tensor, ρ is the medium’s density (a rank-0 tensor), f 

are the body forces (rank-1 tensor), and n is the outward unit normal to the boundary Γ. Using 

the divergence theorem, one can rewrite the traction force which is currently written as a 

boundary integral as a domain integral instead: 

 
∫𝜎𝑖𝑗𝑛̂𝑗𝑑Γ
Γ

= ∫∇ ⋅ 𝜎𝑖𝑗𝑑Ω
Ω

 (64) 

This allows for all terms in the original N2L statement to be integrals over the domain, 

allowing one to drop the integrals and write: 

 ∇ ⋅ 𝜎𝑖𝑗 + 𝜌𝑓𝑖 = 𝜌𝑣̅̅̅̇̅  (65) 

This is the so-called elasticity equation, and it is a Partial Differential Equation (PDE) 

valued over a rank-1 tensor field, that of force. Typically, the body forces are known, and the 

linear momentum is prescribed as a set of boundary or initial conditions. However, no 

meaningful a priori knowledge of the stress tensor is available. Furthermore, because the 

equation involves a rank-2 tensor, the system is underdetermined. In 3D, this entails 9 unknowns 

but only 3 equations. 

4.1.2 Constitutive Modelling 

To close the system, the stress is assumed to be a function of one of the other known 

quantities. In structural analysis, this is done by making the stress tensor a function of the rank-1 

displacement field (whose derivatives relate to the velocity tensor).  This is done implicitly via 

the Generalized Hooke’s Law: 
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 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘ℓ𝐸𝑘ℓ (66) 

Where Cijkl is the rank-4 stiffness tensor (linear), and Ekl is the rank-2 Lagrange strain 

tensor. The latter is a function of the displacement field: 

 
𝐸𝑖𝑗 =

1

2
(ui,j + uj,i + ui,kuk,j) (67) 

This tensor is nonlinear and for simplicity is often linearized: 

 
𝜀𝑖𝑗 =

1

2
(ui,j + uj,i) (68) 

Where 𝜀kl is the small strain tensor. Regardless, the stiffness tensor is assumed to be 

constant and is readily generated by using engineering constants peculiar to the material that 

composes the medium.  

 

Figure 94: Typical illustration of the stress tensor. Taken from [2] 

4.1.3 Symmetry of Stress, Strain, and Stiffness Tensors 

Three more aspects of these equations are mentioned to wrap-up the discussion on 

physical modelling. Firstly, due to angular momentum considerations, the Cauchy stress tensor is 
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symmetric. Secondly, the definition of the Lagrange strain tensor makes it also symmetric (and 

that remains true for the small strain tensor). Due to these symmetries, the stiffness tensor is 

symmetric in two indices (Cijkl = Cijlk = Cjikl = Cjilk).  

4.1.4 Beware the Infinitesimal Strain Assumption 

Thirdly, the derivation of strain involves the so-called Eulerian and Lagrangian coordinate 

systems. All linear structural analysis assume that deformations are small, thus justifying taking 

both coordinate systems to be identical. The reader is warned that the equations presented thus 

far are “as is.” In fact, there are multiple measures of strain and even nonlinear Hooke’s laws. 

For more information on tensors and continuum mechanics, the reader is referred to the book by 

Thomas Mase, Ronald Smelser, and George Mase [29]. 

4.1.5 Compliance Tensor 

The special case of Cijkl from the generalized Hooke’s Law is a constant tensor defined in 

terms of the so-called engineering constants. These are macroscopic parameters that characterize 

the mechanical response of a medium to static loading. They are catalogued in literature and 

measured in laboratory tests. The values of the stiffness tensor are not readily measurable 

though. The standard procedure to construct it is to first assemble its inverse, the compliance 

tensor from the engineering constants. Due to the two-fold symmetry of Cijkl, the compliance 

tensor is written as a 6x6 matrix in 3D: 
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𝑆𝑖𝑗𝑘𝑙 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 +

1

𝐸1
−

𝜈21

𝐸2
−

𝜈31

𝐸3
+

𝜂23,1

𝐺23
+

𝜂13,1

𝐺13
+

𝜂12,1

𝐺12

−
𝜈12

𝐸1
+

1

𝐸2
−

𝜈32

𝐸3
+

𝜂23,2

𝐺23
+

𝜂13,2

𝐺13
+

𝜂12,2

𝐺12

−
𝜈13

𝐸1
−

𝜈23

𝐸2
+

1

𝐸3
+

𝜂23,3

𝐺23
+

𝜂13,3

𝐺13
+

𝜂12,3

𝐺12

+
𝜂1,23

𝐸1
+

𝜂2,23

𝐸2
+

𝜂3,23

𝐸3
+

1

𝐺23
+

𝜇23,13

𝐺13
+

𝜇23,12

𝐺12

+
𝜂1,13

𝐸1
+

𝜂2,13

𝐸2
+

𝜂3,23

𝐸3
+

𝜇13,23

𝐺23
+

1

𝐺13
+

𝜇13,12

𝐺12

+
𝜂1,12

𝐸1
+

𝜂2,12

𝐸2
+

𝜂3,12

𝐸3
+

𝜇12,23

𝐺23
+

𝜇12,13

𝐺13
+

1

𝐺12 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 (69) 

Where the quantities Ei are the Young’s Moduli, νij are the Poisson’s ratios, Gij are the 

Shear Moduli, ηij,k and  ηk,ji are the Lekhnitskii ratios, and μij,kl or μkl,ij are the Chentsov ratios [2]. 

These are the so-called engineering constants for the case of the linear elastic solid and must be 

fetched from a materials database for each material that is to be simulated. The engineering 

constants characterize certain behaviors in the elastic response for varying degrees of anisotropy 

in the linearly elastic medium (see Figure 95). 

 

Figure 95: Compliance components and their effect on anisotropy. Taken from [2] 
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The linearly elastic solids can be classified according to their degree of anisotropy. 

Labels ranging from isotropic, transversely orthotropic, orthotropic, monoclinic, and fully 

anisotropic are used to refer to special cases of the compliance tensor Sijkl, where the former most 

is least anisotropic and latter most is most anisotropic [29] [3]. In this work, only the orthotropic 

case is considered, which is characterized by μkl,ij  = μij,kl  = ηij,k  = ηk,ji  = 0, that is no shear-shear 

or shear-extension coupling is considered [2]. 

4.1.6 Plane Stress 

The compliance tensor was introduced in its 3D but will be reduced to a meaningful 2D form 

as per the scope of this work. When reducing the dimensionality of a structural analysis from 3D 

to 2D, one of two customary approaches is taken, either that of plane stress or plane strain [30]. 

In this work the former is used, which entails σ3 = τ13 = τ23 = 0. Thus, all stresses are contained 

within the 1-2 plane. This allows one to reduce the compliance tensor from a 6x6 matrix to a 3x3 

one: 

 

𝑆𝑖𝑗𝑘𝑙 =

[
 
 
 
 
 
 +

1

𝐸1
−

𝜈21

𝐸2
+

𝜂12,1

𝐺12

−
𝜈12

𝐸1
+

1

𝐸2
+

𝜂12,2

𝐺12

+
𝜂1,12

𝐸1
+

𝜂2,12

𝐸2
+

1

𝐺12 ]
 
 
 
 
 
 

 (70) 

In the orthotropic case, the stiffness tensor becomes (after setting the Lekhnitskii ratios to 

zero): 

 

𝐶𝑖𝑗𝑘ℓ =

[
 
 
 
 

𝐸1

1 − 𝜈12𝜈21

𝜈12𝐸2

1 − 𝜈12𝜈21
0

𝜈12𝐸2

1 − 𝜈12𝜈21

𝐸2

1 − 𝜈12𝜈21
0

0 0 𝐺12]
 
 
 
 

= 𝐶 (71) 
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The engineering constants are measured in a reference coordinate system that is in general 

offset from the global axis used to enforce the elasticity equation. For this reason, it is necessary 

to write the equivalent stiffness tensor in the global frame. This is the underlying reason for 

requiring the elements of the mesh to get a local angle from the NURBS centerline in Algorithm 

2. Euler Angles, such as the ones appended to the finite elements from the NURBS centerlines. 

4.1.7 Tensor Coordinate Transforms 

The stiffness tensor Cijkl is of rank 4, so as per tensor coordinate transformation rules, it must 

be multiplied by four direction cosine tensors of rank 2 to change coordinate frames: 

 𝐶𝑝𝑞𝑟𝑡 = 𝑄𝑖𝑝𝑄𝑗𝑞𝑄𝑘𝑟𝑄ℓ𝑡𝐶𝑖𝑗𝑘ℓ (72) 

Raw conversion of a rank-4 stiffness tensor is cumbersome. A more “digestible” way of 

doing so is to use the Generalized Hooke’s Law: 

 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘ℓ𝜀𝑘ℓ (73) 

Transforming the rank -2 strain and stress tensors: 

 𝑄𝑖𝑥𝑄𝑗𝑦𝜎𝑥𝑦 = 𝐶𝑖𝑗𝑘ℓ𝑄𝑘𝑥𝑄ℓ𝑦𝜀𝑥𝑦 (74) 

That is, the stress and strain tensors in some arbitrary i,j  basis can be written in the global 

x,y counterpart. Rearranging Equation (86) one gets: 

 𝜎𝑥𝑦 = 𝑄𝑖𝑥
−1𝑄𝑗𝑦

−1𝐶𝑖𝑗𝑘ℓ𝑄𝑘𝑥𝑄ℓ𝑦𝜀𝑥′𝑦′ 

𝜎𝑥𝑦 = 𝐶𝑥𝑥′𝑦𝑦′𝜀𝑥′𝑦′ 

(75) 

The question now is, what are the direction cosine tensors Qij? For a rotation in 2D 

encoded by a single Euler angle, Qij can be written as a 2x2 matrix as: 
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𝑄𝑖𝑗 = [

+c(𝜃) +s(𝜃)

− s(𝜃) + c(𝜃)
] , 𝑐(𝜃) = cos(𝜃) , 𝑠(𝜃) = sin(𝜃) (76) 

However, the tensor product of two direction cosines QijQpq is not the same as a matrix 

multiplication, rather, it must be produces via tensor enumeration. Doing so produces a rank-4 

tensor which may be written as a 4x4 matrix [31]: 

 

𝑄𝑖𝑗𝑄𝑝𝑞 =

[
 
 
 
 

+c2(𝜃) +𝑐(𝜃)𝑠(𝜃) −𝑐(𝜃)𝑠(𝜃) +c2(𝜃)

+𝑠(𝜃)𝑐(𝜃) +𝑠2(𝜃) −𝑠2(𝜃) +𝑠(𝜃)𝑐(𝜃)

−𝑠(𝜃)𝑐(𝜃) −𝑠2(𝜃) +𝑠2(𝜃) −𝑠(𝜃)𝑐(𝜃)

+c2(𝜃) +𝑐(𝜃)𝑠(𝜃) −𝑠(𝜃)𝑐(𝜃) +c2(𝜃) ]
 
 
 
 

 (77) 

Because of the symmetries of the stiffness, stress, and strain tensor, a simplified version 

of QijQpq (which can partake in matrix multiplication) can be used [2] [31]: 

 

𝑄𝑖𝑗𝑄𝑝𝑞 = [

+ c2(𝜃) +𝑠2(𝜃) −2 s(𝜃) 𝑐(𝜃)

+𝑠2(𝜃) + c2(𝜃) +2 s(𝜃) 𝑐(𝜃)

s(𝜃) 𝑐(𝜃) − s(𝜃) 𝑐(𝜃) c2(𝜃) − s2(𝜃)

] = 𝐵(𝜃) (78) 

Thus, the stress-strain relations in the global frame are written in matrix form as: 

 

[

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑥𝑦

] = 𝐵(𝜃)

[
 
 
 
 

𝐸1

1 − 𝜈12𝜈21

𝜈12𝐸2

1 − 𝜈12𝜈21
0

𝜈12𝐸2

1 − 𝜈12𝜈21

𝐸2

1 − 𝜈12𝜈21
0

0 0 𝐺12]
 
 
 
 

𝑅𝐵−1(𝜃)𝑅−1 [

𝜀𝑥𝑥

𝜀𝑦𝑦

𝛾𝑥𝑦

] (79) 

Where R is named Reuter’s matrix and is needed to account for the often-given 

engineering strain which is different from the tensor strain (γxy = 2εxy) [2]. 

 
𝑅 = [

1 0 0
0 1 0
0 0 2

] , 𝑅−1 = [
1 0 0
0 1 0
0 0 0.5

] (80) 

4.2 A Primer on the Finite Element Method (FEM) 

The FEM is a special case of a grander family of numeric schemes called variational 

methods. In formulating the FEM, a standard variational procedure is followed whereby the so-
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called weak form of the model PDE is found and the field variables that one is solving for are 

written in terms of interpolation schemes. The interpolation schemes are deployed over a spatial 

discretization of the domain (such as the mesh shown in Figure 75), such that a minimum 

continuity requirement is satisfied. This entire process culminates in the construction of a linear 

system of equations that returns the solution field over the discretized domain [30]. 

4.2.1 Interpolation 

The staple of the FEM is to write the field variables as weighted sums of interpolating 

polynomials where the weighting factors are observations of the field variable itself: 

 
𝑢𝑖 = ∑𝑢𝑗

ℎ𝜙𝑗

𝑛

𝑗=1

 (81) 

Where u is some field variable (i.e., the displacement field), uh is some known value of 

the field variable at some discrete location, and ϕi is an interpolating function (almost exclusively 

a polynomial basis). The polynomial basis must be an interpolator, meaning that it must satisfy 

the so-called partition of unity [19]: 

 
∑𝜙𝑖

𝑛

𝑖=1

= 1 (82) 

Furthermore, the interpolating polynomial basis must satisfy certain differentiability 

requirements that are set by the weak form. If the weak form is a first order PDE, then the 

interpolation basis must have at least one nonzero derivative. If the weak form is a second order 

PDE, then the interpolation basis must have at least two nonzero derivatives [30]. 
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4.2.2 Weak Form of the Elasticity Equation 

The so-called weak form is an equivalent equation to the so-called strong form of Equation 

(65), as its solution field also satisfies the boundary conditions of the latter. The benefit of 

working with the weak form (and the reason it is called weak) is that it is of lower order of 

differentiability. To derive the weak form, it is standard to multiply both sides of any strong form 

(for any physical modelling) by some test tensor (w) and integrating over the domain: 

 
∫ ∇j ⋅ (𝜎𝑖𝑗)𝑤𝑖𝑑Ω 
Ω

+ ∫𝜌𝑓𝑖𝑤𝑖𝑑Ω
Ω

= ∫(𝜌𝑣̅̅̅̇̅ )𝑖𝑤𝑖 𝑑Ω
Ω

 (83) 

The test tensor is some arbitrary field whose only constraint is to vanish at the boundary 

Γ. It is otherwise arbitrary. Using integration by parts, the stress term can be rewritten as: 

 
[𝑤𝑖σ𝑖𝑗]Γ − ∫𝜎𝑖𝑗𝑤𝑖,𝑗𝑑Ω 

Ω

+ ∫𝜌𝑓𝑖𝑤𝑖𝑑Ω
Ω

= ∫(𝜌𝑣̅̅̅̇̅ )𝑖𝑤𝑖 𝑑Ω
Ω

 (84) 

Using the constitutive modelling, the physical laws, and the small strain tensor, the 

elasticity equation is rewritten as: 

 
[𝑤𝑖𝑇]Γ −

1

2
∫𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝑤𝑘,ℓ𝑑Ω 
Ω

+ ∫𝜌𝑓𝑖𝑤𝑖𝑑Ω
Ω

= ∫(𝜌𝑣̅̅̅̇̅ )𝑖𝑤𝑖 𝑑Ω
Ω

 (85) 

Where in the boundary term, the stress tensor is replaced by some known traction applied 

on the boundary. The question now is, what is the test tensor w? The answer is that the FEM user 

gets to decide. Of the many choices the most widespread is: 

 
𝑤𝑖 = ∑𝑤𝑗

ℎ𝜙𝑗

𝑛

𝑗=1

 (86) 
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4.2.3 Spatial Discretization and Polynomial Basis 

There is now a question about the space over which the interpolation takes place. In this 

work the domain is two-dimensional, and the spatial discretization consists exclusively of three-

node triangles. Also, so far no intuition about the polynomial basis has been provided. This is 

because the interpolation scheme depends on the shape of the spatial discretization. For three-

node triangles the so-called barycentric coordinates are used as the basis functions: 

 

𝜙𝑖 = [

𝜙1

𝜙2

𝜙3

] = [
𝐿1

𝐿2

𝐿3

] = [
𝐿1

𝐿2

1 − 𝐿1 − 𝐿2

] = [
𝜉
𝜂

1 − 𝜉 − 𝜂
] (87) 

Where L1, L2, L3 are the opposing areas that correspond to nodes 1 through three in a 

triangle. Evidently, the basis ϕi for the 3-node triangle is linear (as the weak form of the elasticity 

equation is a first order PDE) and adds up to 1. The reader is advised that other spatial 

discretizations exist for 2D such as quadrilaterals, or in 3D, tetrahedrons, hexahedrons, and 

triangular prisms. The choice of discretization changes the form of the ϕi. 

4.2.4 Interpolation Over Three-Node Triangles 

The interpolation scheme must be reconciled with the weak form by rewriting of the 

small strain tensor εij in terms of the interpolating polynomial basis: 

 

[

𝜀𝑥𝑥

𝜀𝑦𝑦

𝜀𝑥𝑦

] =

[
 
 
 
 
 
 

𝜕𝑢𝑥

𝜕𝑥
𝜕𝑢𝑦

𝜕𝑦

1

2
(
𝜕𝑢𝑥

𝜕𝑦
+

𝜕𝑢𝑦

𝜕𝑥
)
]
 
 
 
 
 
 

≈

[
 
 
 
 
 
 
 
 

∑
𝑑𝜙i

𝑑𝑥
𝑢𝑥

𝑁

𝑖=1

 

∑
𝑑𝜙i

𝑑𝑦
𝑢𝑦

𝑁

𝑖=1

1

2
∑(

𝑑𝜙i

𝑑𝑦
𝑢𝑥 +

𝑑𝜙i

𝑑𝑥
𝑣𝑦)

𝑁

𝑖=1 ]
 
 
 
 
 
 
 
 

 (88) 

This can be written in matrix form for 3-node triangles as: 
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[

𝜀𝑥𝑥

𝜀𝑦𝑦

𝜀𝑥𝑦

] = 𝐷𝑢 =

[
 
 
 
 
 
 

𝑑𝜙1

𝑑𝑥
0

𝑑𝜙2

𝑑𝑥
0

𝑑𝜙3

𝑑𝑥
0

0
𝑑𝜙1

𝑑𝑦
0

𝑑𝜙2

𝑑𝑦
0

𝑑𝜙3

𝑑𝑦
1

2

𝑑𝜙1

𝑑𝑦

1

2

𝑑𝜙1

𝑑𝑥

1

2

𝑑𝜙2

𝑑𝑦

1

2

𝑑𝜙2

𝑑𝑥

1

2

𝑑𝜙3

𝑑𝑦

1

2

𝑑𝜙3

𝑑𝑥 ]
 
 
 
 
 
 

[
 
 
 
 
 
 
𝑢𝑥

1

𝑢𝑦
1

𝑢𝑥
2

𝑢𝑦
2

𝑢𝑥
3

𝑢𝑦
3]
 
 
 
 
 
 

 (89) 

Where the tensor index i = 1,2 has been renumbered as i = x, y. This expression is 

substituted into Equation (85) for εij and its transpose for wi,j. 

4.2.5 Integration of the Weighted Integral 

Equation (85) is a discretized version of the weak form of the elasticity equation written as 

weighted integrals. The integrals themselves must be evaluated, however, there is a problem: The 

basis polynomials are written in a coordinate system (the barycentric one) that is not the global 

xy. A transformation from the barycentric system to the xy is needed. The derivatives of the 

shape functions w.r.t to x and y can be written in terms of L1 and L2 via the chain rule: 

 

∇x𝜙 =

[
 
 
 
𝑑𝜙𝑖

𝑑𝑥
𝑑𝜙𝑖

𝑑𝑦 ]
 
 
 

=

[
 
 
 
𝑑𝜙𝑖

𝑑𝐿1

𝑑𝐿1

𝑑𝑥
+

𝑑𝜙𝑖

𝑑𝐿2

𝑑𝐿2

𝑑𝑥
𝑑𝜙𝑖

𝑑𝐿1

𝑑𝐿1

𝑑𝑦
+

𝑑𝜙𝑖

𝑑𝐿2

𝑑𝐿2

𝑑𝑦 ]
 
 
 

, 𝑖 = 1,2,3, (90) 

Derivatives of ϕi w.r.t to L1 and L2 are readily available from Equation (87) for 3-node 

triangles: 

 𝑑𝜙1

𝑑𝐿1
=

𝑑𝜙2

𝑑𝐿2
= 1 

𝑑𝜙1

𝑑𝐿2
=

𝑑𝜙2

𝑑𝐿1
= 0 

𝑑𝜙3

𝑑𝐿1
=

𝑑𝜙3

𝑑𝐿2
= −1 

(91) 
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Figure 96: Mapping from reference geometry to arbitrary one. Taken from [30] 

Because the basis polynomials partition unity, they and the triangle’s nodes can be used 

to form a linearly independent basis for that spans the 2D space: 

 

𝑥𝑖 = [
𝑥
𝑦] = ∑[

𝑥𝑗
𝑒𝜙𝑗

𝑒

𝑦𝑗
𝑒𝜙𝑗

𝑒]

3

𝑗=1

 (92) 

The derivatives of the barycentric coordinates w.r.t to x and y (dL1/dx, dL1/dy, dL2/dx, and 

dL2/dy) can be found by taking derivatives w.r.t L1 and L2 from x and y from the above 

expression: 

 

𝑥𝑖,𝑗 = ∇ [
𝑥
𝑦] =

[
 
 
 
𝑑𝑥

𝑑𝐿1

𝑑𝑦

𝑑𝐿1

𝑑𝑥

𝑑𝐿2

𝑑𝑦

𝑑𝐿2]
 
 
 

= ∑

[
 
 
 
 𝑥𝑗

𝑒
𝑑𝜙𝑗

𝑒

𝑑𝐿1
𝑦𝑗

𝑒
𝑑𝜙𝑗

𝑒

𝑑𝐿1

𝑥𝑗
𝑒
𝑑𝜙𝑗

𝑒

𝑑𝐿2
𝑦𝑗

𝑒
𝑑𝜙𝑗

𝑒

𝑑𝐿2 ]
 
 
 
 3

𝑗=1

= 𝐽𝑒 (93) 

Where the matrix J is called the Jacobian, which is a linear map from the barycentric 

coordinate system to the x-y one. Inversion of this system yields the derivatives needed to 

assemble the rectangular matrix needed for the strains. 

 

𝐽𝑒
−1 =

[
 
 
 
𝑑𝐿1

𝑑𝑥

𝑑𝐿2

𝑑𝑥
𝑑𝐿1

𝑑𝑦

𝑑𝐿2

𝑑𝑦 ]
 
 
 

 (94) 
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4.3 PETSc 

With the lengthy theoretical discussion now concluded, it is time to discuss how PETSc is 

used to implement ALL the math discussed so far in this last, third chapter. The acronym PETSc 

stands for “Portable Extensible Toolkit for Scientific computing.” It is an Automatic Program 

Interface (API) written for the C and Fortran programming languages by the PETSc development 

team based of the Argonne National Laboratory. As of writing, PETSc is on version 3.18 and 

remains under active development with the most current version available for public inspection 

in GitLab®. PETSc is open-source software released under the 3-clause BSD license [32]. 

The objective of PETSc is to provide abstractions for mathematical objects used in all field 

of Science, Technology, Engineering, and Mathematics (STEM). Examples of such abstractions 

include (but are not limited to) vectors, matrices, linear and nonlinear solvers, finite elements, 

meshes, graph representations and partitioners, and optimization solvers, etc. Therefore, PETSc 

is a scientific computing library. However, its much grander selling point is that parallelism is 

seamlessly built into the abstractions through the Message Passing Interface (MPI). That is, 

PETSc is meant to become an all-encompassing high-performance computing library to further 

STEM. See FIGURE to gauge the ambition. 
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Figure 97: PETSc's arsenal of abstractions. Taken from [32] 

Of the abstractions shown above, the ones circled in red are the ones used in this work. 

Describing them in detail is beyond the scope of this work as that falls in the realms of 

computational science applied to numeric linear algebra and general computer programming. 

One abstraction and one of its specializations though, the Domain Management (DM) in “Plex” 

mode is worthy of discussion as it pertains to the parallel assembly of the global finite element 

stiffness matrix. This is discussed next. 

4.3.1 DM-Plex 

DM is an abstraction meant to manage spatial discretizations (i.e., meshes). Meshes have 

a two-fold classification: structured vs. unstructured. In the former, spatial elements have an 
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implied, highly regular ordering scheme and typically consist of quadrilaterals in 2D or 

hexahedra in 3D. Unstructured meshes on the other hand, have a completely irregular order as is 

the case in the mesh shown in Figure 75. 

 DM-Plex is used to encode the order of the unstructured mesh in the form of a graph, 

which is a collection of interrelated nodes. The nodes themselves are a mathematical abstraction 

meant to represent anything. Relations between the nodes are denoted by arrows. DM-Plex 

implements a very specific graph, one that is directed and acyclic, meaning that the arrows 

cannot be traveled backwards, and that it is impossible to traverse nodes from some arbitrary 

starting node according to the arrows and end up back at the same node. 

 DM-Plex organizes its Directed, Acyclic Graph (DAG) into either three (3) levels for 2D 

domains or four (4) levels for 3D domains. One level corresponds to nodes that represent an 

element’s vertices (such as the three corners in the triangular finite elements). Another level 

corresponds to the edges that make up element. Yet another level is reserved for surfaces in the 

3D case. The last possible level is reserved for the elements themselves. See Figure 98 for an 

example 

 
(a) 

 
(b) 

Figure 98: A tetrahedron (a) and its DAG (b) in DM-Plex. Taken from [33] 
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 The relationship between all constituents of a spatial discretization is thus encoded 

compactly in a DAG. DM-Plex offers its users query routines that return the nodes to which any 

one particular node relates to.  

4.3.2 DAG Query Routines 

There are two types of query routines which the layman can think of as “explicit” and 

“implicit.” Those are (in PETSc terminology) the cone, the support, the star, and the closure. 

The cone of a node is the set of all its connected points one level above. The support of a node is 

the set of all its connected points one level below. The star of a node is the set of all nodes across 

all levels below it that recursively or implicitly trace back to the node.  Finally, the closure of a 

node is the set of all nodes across all levels above that recursively or implicitly relate back to the 

node. See Figure 99 for details 

These query operations are critical in the assembly of the global stiffness matrix. Elemental 

stiffness matrices rely heavily on the closure of a node that represents an element. This is 

because the spatial coordinates of the nodes are required to assemble the Jacobian tensors 

Equation (94). The support operation is critical for the imposition of boundary conditions 

because those are applied on the boundary edges for 2D. An integration scheme over the edges is 

carried out to obtain nodal forces that must be distributed in the linear system over the rows that 

correspond to the affected nodes. 
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Cone of node 5 

(a) 

 
Support of node 4 

(b) 

 
Star of node 4 

(c) 

 
Closure of node 5 

(d) 

Figure 99: Illustration of DM-Plex's query routines. Adapted from [33] 

In this work, the cone operation is used as part of a memory allocation scheme. The star 

operation is not explicitly used in this work; however, it is critical in the back end of the graph 

partitioning step. 

4.3.3 Considerations of MPI Parallelism 

 The unstructured mesh is thus represented in DM-Plex via the DAG. However, there 

remains a question of how to make the overall FEA process faster. This is the stage of this work 

were PETSc’s MPI parallelism is leveraged. In FEA, there are three critical stages that can be 

partitioned across computer processors to speed up the task: The assembly of the stiffness 

matrix, to iterative inversion to the global stiffness matrix, and the post-processing [33].  
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By far, the most expensive of the three is the assembly of the global stiffness matrix. 

Addition of MPI processes leads to linear decreases in the time required to assemble the matrix. 

This, however, is at the expense of having to partition the memory for the global stiffness matrix 

and right-hand-side vector. This is illustrated in Figure 100, were the green and blue chunks are 

memory that is local to a process, but the blue chunks need to be communicated to other 

processes. The memory partitions are visible to their respective MPI processes, so additional 

communication must take place at the solver stage [34]. 

 

Figure 100: Illustration of PETSc’s parallel partition of matrix. Taken from [34] 

This inter-processor communication was not needed in the serial case and consequently 

slows down the speed of the solver. However, the losses at the solver are offset by the gains in 

the assembly phase up to a point. Both the losses and gains at the solver and assembly phases 

respectively are increased by adding MPI processes [34]. Therefore, there is an optimal number 

of processors to be used for a given mesh [33]. 
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4.3.4 Graph Partitioning 

DM-Plex first collects the DAG and corresponding geometric information to a single MPI 

process in the Random-Access Memory (RAM). For additional processes to assist in the task of 

FEA, they must be able to see the contents of the DAG and mesh. MPI, however, does not allow 

for one process to access the memory allocated for another process. MPI, however, allows for 

processes to communicate information between them. To partition the FEA task, therefore, the 

original MPI process must communicate information about the mesh and DAG to other 

processes so that they can make copies [34]. 

In the interim, a parallel task in MPI has the prospect of increasing memory usage over the 

serial counterpart. A memory deallocation is in place to avoid unnecessary copying and thus 

make the parallel case consume almost as much memory as the serial one. This, however, is not 

truly possible because the mesh and DAG cannot be evenly distributed across all MPI processes 

in any respect. Therefore, copies of parts of the mesh and DAG, so-called ghost data is created 

and kept with the MPI processes so that together (with their short-sighted memory access) they 

can reconstruct the entire FEA problem [35]. 

The task of partitioning the mesh and DAG (particularly for unstructured meshes) is not 

straightforward. For this reason, graph partitioners have been developed to parallelize physical 

simulations [35]. PETSc’s DM-Plex interfaces with graph partitioners such as PT-SCOTCH, 

ParMetis, and Chaco to enable the partition of the DAG over an arbitrary number of MPI 

processes [32]. To illustrate graph partitioning, consider the simple mesh and its DAG shown in 

Figure 101: 



116 

 

 
(a) 

 
(b) 

Figure 101: A simple 2D mesh and its DAG before partitioning. Taken from [35] 

Together, the two three-node triangles form a simple mesh and DAG, which upon 

partitioning over two MPI processes could look like FIGURE. There, the two processes are 

labelled “0” and “1”. Vertices 8,7 on process 0 and vertices 3 and 2 on process 1 are copies of 

the same nodes respectively. Therefore, two of them are stored as ghosts. The same goes for 

process 0’s edge “4” and process 1’s edge “7.” A more pertinent example of graph partitioning is 

Figure 103. 
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Figure 102: The partitioned version of the mesh and DAG in Figure 101. Taken from [35] 

 

Figure 103: DM-Plex graph partitioning on the test mesh (10 MPI processes) 
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4.3.5 Characteristics of the PETSc Script 

The discussion on DM-Plex is concluded. PETSc is a vast library and further discussion on its 

constituents deviates from the scope of this research excessively. For more information, the 

interested reader is referred to the PETSc website [32]. This subsection is concluded by 

highlighting some of the noteworthy inner workings of the script used in this work. 

- Uses the PT-SCOTCH graph partitioner using a “balancing” strategy meaning that the 

partitioner attempts to give each process as close the same number of elements as 

possible. 

- Computes the Jacobian and its inverse for all elements in each process. 

o For static FEA cases, these are not stored as they are needed only once. 

o In topology optimization, the same mesh is reused, so provisions to remember 

them are included for use in grander analysis schemes. 

- Computes one stiffness matrix per material. 

- Does not store the transformed stiffness matrices. Doing so would require the storage of a 

dense 3x3 matrix for each element. 

o Rebuilds them as needed inside an assembly loop. 

- Computes the element stiffness matrices using PETSc’s specialized MatRARt() routine. 

o Uses PETSc’s Index Sets (IS) to insert them into the global stiffness matrix. 

- Allocation of the global stiffness matrix is entrusted to PETSc’s DMCreateMatrix() 

routine which allocates the matrix from the DAG. 

- Uses the KSPMINRES solver with the PCGAMG preconditioner. 



119 

 

4.3.6 Validation Against MSC NASTRAN 

Chapter 4 concludes with sample results of a test load case (Figure 104) on the custom mesh 

shown in Algorithm 2 after appending the Euler angles. Results for displacement and stress 

fields are visualized with the open-source application ParaView®. The same case was run with in 

MSC NASTRAN. Several fields (displacement, strain, and stress) were evaluated and both 

software came within at most 2% of each other. These (except strain) are shown in Figure 105 

through Figure 109. The results of this benchmark test are summarized in Table 15. 

 

Figure 104: Load case and material properties 
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Figure 105: X-displacement (ux) field (PETSc) 

 

Figure 106: Y-displacement (uy) field. (PETSc) 
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Figure 107: XX Stress tensor component (σxx) field. (PETSc) 

 

Figure 108: YY-Stress tensor component (σyy) field (PETSc) 
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Figure 109: XY-Stress tensor component (σxy) field (PETSc) 

Table 15: Load case results 

Quantity Symbol Units PETSc 
MSC 

NASTRAN 

Percent 

Difference 

x-

displacement 

ux [m] -7.90e-7 – 

+7.87e-8 

-7.78e-7 – 

+7.72e-8 

1.61%–

1.94% 

y-

displacement 

uy [m] -8.24e-7–

+1.31e-7 

-8.16e-7–

+1.29e-7 

1.00%–

1.81% 

xx-strain 

tensor 

εxx N/A -1.37e-5–

+1.34e-5 

-1.35e-5–

+1.33e-5 

1.20%–

1.36% 

yy-strain 

tensor 

εyy N/A -1.50e-5–

+1.75e-5 

-1.48e-5–

+1.72e-5 

1.38%–

1.50% 

xy-strain 

tensor 

εxy N/A -2.42e-5–

+1.35e-5 

-2.38e-5–

+1.33e-5 

1.51%–

1.50% 

xx-stress 

tensor 

σxx [Pa] -1.27e+5–

+1.44e+5 

-1.26e+5–

+1.42e+5 

0.96%–

1.49% 

yy-stress 

tensor 

σyy [Pa] -2.80e+5–

+9.03e+5 

-2.77e+5–

+8.93e+5 

0.95%–

1.15% 

xy-stress 

tensor 

σxy [Pa] -2.12e+5–

+8.73e+4 

-2.09e+5–

+8.59e+4 

1.21%–

1.63% 
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The results presented in Table 15 are given as “minimum/maximum” values. That is, the 

extremal values in the tensor fields are presented. The percentage differences were computed 

relative to the MSC NASTRAN values, that is: 

 Δ = 100% (
𝑧MSC NASTRAN − 𝑧PETSc

𝑧MSC NASTRAN
) (95) 

 Where z is any of the tensor field components listed in the second column in Table 15. The 

extremal values of the tensor fields presented so far are within 2% of each for both software, but a 

more comprehensive comparison is also showcasing the tensor fields output by MSC NASTRAN. 

This is done next to conclude chapter 3. 

 

Figure 110: X-displacement (ux) field (MSC NASTRAN) 
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Figure 111: Y-displacement (ux) field (MSC NASTRAN) 

 

Figure 112: XX-Stress tensor component (σxx) field (MSC NASTRAN) 
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Figure 113: YY-Stress tensor component (σyy) field (MSC NASTRAN) 

 
Figure 114: XY-Stress tensor component (σxy) field (MSC NASTRAN) 



126 

 

5. CONCLUDING REMARKS 

In this work, two algorithms meant to guarantee the manufacturability of topologically 

optimized designs were developed and presented. Algorithm 1 enforces the manufacturability of 

the design solely from the TO boundary, desired fiber thickness, and turning tolerance of the 

printer. Algorithm 1 can best be described as a constrained space-filling algorithm based on the 

SDF. Algorithm 2 is a routine that generates input for FEA routines. It takes as input the NURBS 

generated by Algorithm 1, and the boundaries generated by TO to accurately assign auxiliary data 

to a mesh. Said data consists of Euler angles derived from the local NURBS orientation which are 

then assigned in bulk to the elements whose centroids are within the NURBS offset quadrangles. 

Finally, a parallel PETSc script that implements the Finite Element Method applied to linear 

elasticity as derived from continuum mechanics was showcased. This script is custom to take as 

input the product of Algorithm 2. The latter was used to generate FEA input files for both MSC 

NASTRAN and the PETSc script. Both software ran a load case and were within 2% of each other 

over various queried tensor fields. 

5.1 Regarding Algorithm 1’s SDF Level Sets 

The SDF contours are essentially the backbone for this work. However, the performance of 

both algorithms has a substantial dependency on the quality of the interpolated SDF contours. 

Issues stemming from SDF coarseness were diagnosed early on by the “islands” shown in Figure 

29, and Figure 31. These “islands” should not be confused with short fibers, which are otherwise 

well-defined contours produced from successful interpolation of the SDF. The existence of the 

“islands” is attributed to data coarseness. Other issues pertaining to data coarseness manifested 

during the early stages of Algorithm 2, when the NURBS curves were offset to produce the fibers. 

The most obvious case was shown in Figure 85 where some of the quadrangles were unnaturally 
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larger or smaller than their more uniform counterparts. This was due to irregularities in the SDF 

contour as it unevenly distributed the control points. Data coarseness should be mitigated by 

generating the SDF contours with a finer stencil. This, however, makes the SDF’s generation more 

expensive. A future iteration of this work will not use the SDF at all and will instead offset the 

active contours directly. This will avoid the data coarseness problem but will require 

implementation of priority queues and polygon vs. polygon intersection detection and 

decomposition. 

5.2 Regarding Algorithm 1’s Laplacian Smoothing 

The Laplacian smoothing technique was investigated as a potential fix to the data coarseness 

problem exhibited by the SDF contours. It was effective at eradicating the “wiggle” type noise 

which made the offset operation on polylines possible. Despite the myriad of problems associated 

with it (shrinkage, feature loss, warping, and numerical instability), Laplacian smoothing was a 

valuable tool. The proposed advancing front scheme in Section 4.1 should eliminate the need for 

Laplacian smoothing altogether. The Laplacian smoothing technique won’t be immediately 

discarded though, as it can potentially be a competitor to the LEE as a blending technique if 

localized smoothing is used as opposed to globalized smoothing. The topic of Laplacian smoothing 

is too broad (it is an active field of research) and not enough time could be allocated to fully 

understand it for purposes of fiber placement. The use of the Explicit Laplacian scheme has one 

open-ended question: The choice for λ has to seemingly be arbitrarily low. In future work, other 

Laplacian schemes, such as the Implicit Laplacian scheme could be explored. Also, a method 

whereby the shrinkage and translation changes are undone should be explored. 
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5.3 Regarding Algorithm 1’s Rollercoaster 

The rollercoaster’s initial iteration featured readily understandable flaws that were mostly 

addressed. The failure to fully flag a tight turn was effectively addressed by prescribing the “sink” 

distance. The flagging of regions of a concave curve was not really addressed but a corrective 

procedure was implemented to detect the false positives in the flag buffer. There is one element of 

open-endedness and that is the sink distance. The sink distance was prescribed heuristically as a 

scaling factor when offsetting the “rail tracks”. During testing, a sink factor of 0.95 substantially 

improved results over the naïve base offset distance. That, however, was not perfect, as bands 

consisting of two -1’s were still encountered. A more deterministic approach would attempt to 

leverage the curvature of the contour. 

 Curvature as a metric was neglected because it does not have a universally accepted definition 

for polylines. It can, however, be estimated according to simple schemes such as the one based on 

angle presented by [36], the one based on area by [37] or via the reciprocal of the radius of 

subsequent three-point circles among many other proposed schema. The point being, that the 

successor to the rollercoaster algorithm or its replacement should incorporate curvature as a metric 

to avoid the false flagging altogether and to flag the entirety of the tight turn more comprehensibly 

without needing such “jury-rig” measures as the sink distance or the dot product check. 

 

5.4 Regarding Algorithm 2’s Quadrangulation and Overlay 

The quadrangulation scheme does its job, but there is a more efficient way to do it. The need 

for the overlay scheme stems for a technical limitation within MATLAB’s PDE toolbox, and that 

is that the NURBS quadrangles overwhelm the toolbox’s composite domain routine.  There are 

simply too many! Even though quadrangles are a simple shape, Composition of a unified domain 
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via Boolean addition of many shapes that overlap and form voids between them is computationally 

nightmarish. During preliminary testing, a quadrangulated fiber was fed to MATLAB’s PDE 

toolbox to extract a mesh that locally conformed to the fiber. The entirety of the overlay and search 

procedure was avoided, as the quadrangles were meshed as if they were a subdomain. This created 

a relational mechanism whereby the elements inside the quadrangle were readily queried and had 

their properties assigned immediately. There was no need for the sort-assisted search. 

Because of the technical limitations with overly complicated union domains, the 

quadrangulation step coupled with the advancing fronts proposed in Section 4.1 should be 

augmented to produce a mesh concurrently. That is, the creation of a custom meshing routine for 

the placement of the fibers is in order. This must offset the active domains by the fiber thickness, 

quadrangulate, and mesh the quadrangles before proceeding with further offsets. 

5.5 Regarding Algorithm 2’s Point-In-Polygon Tests 

The scheme must switch to one of the classical point-in-polygon schemes such as area-based, 

angle-based, or triangle- based, as the assumption that the NURBS quadrangles are orthogonal is 

not valid. This was elucidated with the so-called “fringe” case. 
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