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ABSTRACT OF DISSERTATION

Application of multi-scale computational techniques to complex materials systems

The applications of computational materials science are ever-increasing, connecting
fields far beyond traditional subfields in materials science. This dissertation demon-
strates the broad scope of multi-scale computational techniques by investigating mul-
tiple unrelated complex material systems, namely scandate thermionic cathodes and
the metallic foam component of micrometeoroid and orbital debris (MMOD) shield-
ing. Sc-containing “scandate” cathodes have been widely reported to exhibit superior
properties compared to previous thermionic cathodes; however, knowledge of their
precise operating mechanism remains elusive. Here, quantum mechanical calculations
were utilized to map the phase space of stable, highly-faceted and chemically-complex
W nanoparticles, accounting for both finite temperature and chemical environment.
The precise processing conditions required to form the characteristic W nanoparticle
observed experimentally were then distilled. Metallic foams, a central component
of MMOD shielding, also represent a highly-complex materials system, albeit at a
far higher length scale than W nanoparticles. The non-periodic, randomly-oriented
constituent ligaments of metallic foams and similar materials create a significant vari-
ability in properties that is generally difficult to model. Rather than homogenizing
the material such that its unique characteristic structural features are neglected, here,
a stochastic modeling approach is applied that integrates complex geometric structure
and utilizes continuum calculations to predict the resulting probabilistic distributions
of elastic properties. Though different in many aspects, scandate cathodes and metal-
lic foams are united by complexity that is impractical, even dangerous, to ignore and
well-suited to exploration with multi-scale computational methods.

KEYWORDS: multi-scale, stochastic, complexity, electronic structure, mechanics

Mujan N. Seif

December 16, 2022



Application of multi-scale computational techniques to complex materials systems

By
Mujan N. Seif

Dr. Matthew J. Beck
Director of Dissertation

Dr. Matthew J. Beck
Director of Graduate Studies

December 16, 2022

Date



“That the powerful play goes on, and you may contribute a verse.”
–Walt Whitman, Leaves of Grass, 1892.

“One does not substitute oneself for the past, one merely adds to it a new link.”
–Paul Cézanne, 1839-1906.

“If I have seen further it is by standing on the shoulders of Giants.”
–Isaac Newton to Robert Hooke, 1675.
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Chapter 1: Introduction

1.1 Objectives

The term “complex materials systems” can certainly be broadly defined, but moving

forward will refer to structures that are impossible to describe as infinite, regular

crystals, as one could describe many alloys and ceramics. The overarching objective

of this dissertation is to demonstrate how computational materials science approaches

can be used to embrace a material’s complexity and move away from oversimplifica-

tions that negate unique microstructural features. A related objective is to highlight

the broad scope of computational methods with respect to both subject and scale. In

the next several chapters, a number of materials—e.g. metallic nanoparticles, scan-

date cathodes, nanoporous gold, and metallic foam—are investigated at a range of

length scales—e.g. the atomic scale, where electronic structure dominates behavior,

and the continuum scale, where the atomic structure of the material is assumed to

be uniform and inconsequential. Such a broad set of results is only possible with an

arsenal of computational approaches!

1.2 Outline

In Part I, efforts are focused on systems directly related to scandate cathodes, a class

of Sc-containing thermionic cathodes observed to exhibit a greater current density

at lower temperature than state-of-the-art, generally M-type, thermionic cathodes.

Systems comprising W surfaces covered by a range of adsorbates (combinations Ba,

Sc, O) in a range of configurations were evaluated for their absolute surface energies,

relative surface energies, and work functions. While traditional methods for comput-

ing surface energy must be done at the ground state, the work presented here utilizes

a method that allows for finite temperature to be incorporated. With temperature-

dependent surface energies, temperature-dependent Wulff shapes can also be com-

puted. From these calculations, “particle configuration maps”—graphical maps of

the equilibrium shape and surface chemistry of particles over a range of temperatures

and environmental conditions—were constructed. In a sense, this is a Wulff construc-

tion procedure, albeit with relative stability of surface configurations incorporated.

An “inverse” Wulff construction approach is also presented, where previous knowledge

of microstructure and emission performance obtained with experimental methods is
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used as computational input to search for the possible chemical conditions present

during cathode activation and operation. Calculations show that small deviations

from these conditions result in large changes in cathode work function (and therefore

thermionic emission). The yet-unknown role of Sc in enhancing emission performance

is hypothesized to not directly modify surface work functions, but rather to control

chemical conditions to stabilize (Sc-free) low work function surface configurations.

In Part II, nanoporous gold is studied as a prototypical nanoporous material, and

Duocel aluminum foam is studied specifically for its use in MMOD shielding. In

assessing each material, the common theme is predicting mesoscale scale properties.

Mesoscale in this dissertation is defined as the length scale at which local, individual

features (e.g. nodes, ligaments) no longer determine properties, but, at the same

time, macroscopic bulk properties have yet to emerge. Because these length scales

are unique to each material, it is not possible (or prudent) to designate mesoscale

as “nano”-scale or even “micro”-scale. That is, mesoscale should not necessarily be

associated with nanometers or microns or any other lengths. When nanoporous gold is

the model system, feature-scale and mesoscale behavior manifests at the nanometer

scale while macroscopic properties are observed on the micron scale. Conversely,

mesoscale behavior in Duocel originates at the micron and millimeter scale. These

are massive lengths compared to nanoporous gold. In fact, the feature-scale in Duocel

is already three orders of magnitude longer than the macroscopic scale of nanoporous

gold. The results in these studies illustrate that average mesoscale properties do

not adequately capture the surrounding scatter, variability, or uncertainty associated

with complex, stochastic microstructures.

As an important note, the reader will find this dissertation easier to follow if the

meaning of symbols are only considered within a chapter or part. For example, the

Greek letter epsilon (ϵ) refers to an eigenvalue in the context of quantum mechan-

ics; however, it refers to strain in the context of solid mechanics. Substitutes were

considered, but it was decided that inserting characters too distant from the classic,

well-known symbols would cause significantly more confusion. Broadly, symbols used

in Part I will not have the same meaning in Part II.

Copyright© Mujan N. Seif, 2022.
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Chapter 2: A brief history

2.1 Atomic bombs, solitaire, and the first materials science calculation:

The Monte Carlo method

Materials science has been studied since homonins learned to sharpen stone 3.3 million

years ago; however, it was not until the 20th century that the distinct field of compu-

tational materials science emerged. In the wake of WWII, physicists at Los Alamos

National Laboratory in the late 1940s were investigating neutron diffusion in the core

of a nuclear weapon. Despite having critical data, e.g. the average distance a neutron

would travel in a substance before it collided with an atomic nucleus, computing the

energy the neutron was likely to give off following a collision proved impossible to

solve using conventional, deterministic mathematical methods. Eventually, a game

of solitaire gave the solution.

While an earlier variant of Monte Carlo was used to solve Buffon’s Needle Problem

in the 18th century (Ref. [1]), Stanislow Ulam formulated the modern Monte Carlo

Method in 1946 while recovering from an illness and playing solitaire in bed. The

following is from a 1987 tribute: “The question was ’what are the chances that a

Canfield solitaire laid out with 52 cards will come out successfully?’ After spending

a lot of time trying to estimate them by pure combinatorial calculations, [Ulam]

wondered whether a more practical method than ‘abstract thinking‘ might not be

to lay it out say one hundred times and simply observe and count the number of

successful plays.” He then “described the idea to John von Neumann and [Ulam and

von Neumann] began to plan actual calculations” [2]. Since this project was top

secret, their work required a code name. Nicholas Metropolis, a colleague at Los

Alamos, suggested “Monte Carlo,” referring to the Monte Carlo Casino in Monaco

[3]. Metropolis would later explain that an uncle of Ulam had a habit of borrowing

money from relatives because he “just had to go to Monte Carlo” [3]. Considering

Ulam’s original bedridden motivation, the name was embraced and has endured to

this day! Von Neumann, Metropolis and others then programmed ENIAC (Electronic

Numerical Integrator and Computer)—the first programmable, electronic, general-

purpose digital computer, developed at the University of Pennsylvania in 1945 [3]—

to perform the first fully automated Monte Carlo calculations, of a fission weapon

core, in the spring of 1948 [4]. Interestingly, Emilio Segré, another colleague at

Los Alamos, revealed in 1980 that his doctoral advisor, Enrico Fermi, had invented
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[but not named] the Monte Carlo method fifteen years earlier while studying the

moderation of neutrons in Rome, though he did not publish anything on the topic

[5]. Most would still argue that Fermi had a rather successful career.

From these beginnings as a method of modeling the motion of a handful of sub-

atomic particles, the use of computation as a tool for explaining material behavior

has exploded in popularity. However, the use of computational materials science

approaches to investigate complex systems remains less prevalent. The reason is

obvious—it is extremely difficult! It often requires applying well-known accepted

approaches in new ways or combining aspects of multiple methods. The following

sections describe computational methods utilized in this dissertation to investigate

materials with a great deal of inherent complexity and little uniformity.

2.2 The density functional framework

Density functional theory (DFT) has a rich history rooted in the formulation of quan-

tum mechanics. In turn, quantum mechanics would surely never have been developed

without—to name only a fraction of important contributors—the early wave theory

of light proposed by Robert Hooke and Christiaan Huygens in the 17th century [6],

Thomas Young’s double slit experiment in 1802 [7], the formation of the kinetic the-

ory of gases by James Clerk Maxwell [8] and Ludwig Boltzmann [9] in the late 19th

century, and the discovery of the electron by J.J. Thomson in 1897 [10]. Quantum

mechanics as a field might be said to have began with Max Planck’s 1900 solution

to the black-body radiation problem discovered by Gustav Kirchhoff in 1859. Planck

proposed that energy is radiated and absorbed in discrete quanta, or energy packets,

yielding a calculation that precisely matched the observed patterns of black-body

radiation [11]. Amusing in hindsight, Planck considered this quantum hypothesis to

be a mathematical trick to get the right answer rather than a revolutionary discov-

ery [12]. Incidentally, the word “quantum” is Latin is for “how much” or “portion.”

Following Plank’s hypothesis literally, Albert Einstein developed the idea in 1905 to

show that an electromagnetic wave such as light could also be described as a par-

ticle, now called a photon, with a discrete amount of energy that depends on its

frequency [13]. Neils Bohr and Ernest Rutherford, both students of J.J. Thomson,

also utilized Planck’s hypothesis to develop the Bohr or Rutherford-Bohr model of

the hydrogen atom, which successfully predicted the spectral lines of hydrogen in

1913 [14]. In 1923, Louis de Broglie postulated that all matter has wave properties,

a statement now known as the de Broglie hypothesis [15]. Within only a few years,
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Werner Heisenberg, Max Born, and Pascual Jordan [16] developed matrix mechanics

and the Austrian physicist Erwin Schrödinger invented wave mechanics [17]. Soon

following these developments, the field of quantum physics received wider acceptance

at the eminent Fifth Solvay Conference in 1927.

Density functional theory has its roots in the Thomas-Fermi model [18, 19], which

is a quantum mechanical theory for the electronic structure of many-body systems

developed after the introduction of the Schrödinger equation [20] and the Hartree-

Fock method [21, 22, 23] in the late 1920s. DFT was formally established by Walter

Kohn and Pierre Hohenburg with the introduction of the Hohenburg-Kohn theorems

in the 1960s [24]. The first Hohenburg-Kohn theorem demonstrates that the ground-

state properties of a many-electron system are uniquely determined by an electron

density that depends on only three spatial coordinates. The second Hohenburg-Kohn

theorem defines an energy functional for the system and proves that the ground-state

electron density minimizes this energy functional. The Hohenburg-Kohn theorems

would soon be further developed by Walter Kohn and Lu Jeu Sham, work which

would later win the Nobel Prize in Chemistry in 1998. Within Kohn-Sham DFT, the

intractable many-body problem of interacting electrons in a static external potential

is reduced to a tractable problem of non-interacting electrons moving in an effective

potential [25].

A few decades after the formation of DFT, density functional perturbation theory

(DFPT) arose as a particularly powerful and flexible theoretical technique within the

density functional framework. DFPT can be utilized to calculate system responses to

external perturbations, which had previously been explored by methods that involved

obtaining the system response through a series of single-point energy calculations car-

ried out at varying strengths of the external perturbation. The two main formalisms

of DFPT are attributed to Stefano Baroni [26] and Xavier Gonze [27]; although the

two may be shown to be equivalent, there are differences in the implementation that

may result in one method being preferable to another. The Baroni formalism is

centered upon obtaining a series of equations that may be solved self-consistently

using Green’s function methods. In contrast, the Gonze formalism is based upon a

perturbative expansion of the Kohn-Sham energy functional.

Combined, density functional theory and density functional perturbation theory

are outstanding tools for evaluating materials at the atomic scale. In this disserta-

tion, the dual-method approach is used to answer questions about highly-complex

surfaces directly related to their thermodynamic stability, response to environment,

and electronic behavior at high, finite temperatures.
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2.3 The finite element method

Although the term “finite element method (FEM)” was not coined by Ray Clough

until 1960 [28], a number of pioneering studies were critical to its development. In

the 1940s, Richard Courant [29] and Alexandre Hrennikoff [30] formulated bar ele-

ment assemblages to simulate plane stress systems. The next decade saw the ma-

trix generalization of structural theory, wherein the analysis was formulated as a

form of coordinate transformation. The earliest known references to the assembly of

structural elements by a matrix coordination transformation were made by Helmut

Falkenheimer [31] and Börge Langefors [32] in the 1950s. In 1953, computerized FEM

was developed at the Boeing Airplane Company to evaluate the stiffness of a delta

airplane wing for use in flutter analysis. The first complete statement on the matrix

formulation of structural theory, which clearly outlined the parallel procedures of the

force and displacement methods, was published by John Argyris and Sydney Kelsey

in 1960 [33]. It was this work which demonstrated that the concepts of classical

structural analysis can be generalized for application to assemblages of any type of

structural elements. Decades later, FEM has become the computational workhorse

for engineering design analysis, as it a possible approach for solving any problem that

can be described by partial differential equations e.g., structural mechanics, fluid flow,

thermal conduction, electromagnetics, etc.

In this dissertation, FEM allows for the evaluation of materials with complexity

at the microstructure, rather than atomic, length scale. Unlike DFT/DFPT, where

changes in electronic structure are of great importance, at the continuum scale of

FEM, electronic structure is presumed to be simple and unchanging. Efforts were

therefore spent understanding the relationship between intrinisic structural complex-

ity, geometric features, and major defects.

Copyright© Mujan N. Seif, 2022.
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Atomistic scale
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Chapter 3: Quantum mechanical methods

3.1 Density functional theory

“I think I can safely say that nobody understands quantum mechanics.”

— Richard P. Feynman, The Messenger Lectures, 1964

3.1.1 Schrödinger, Hartree, and Fock

Density functional theory (DFT) originates with the truly astonishing formulation of

quantum mechanics at the beginning of the 20th century. Axiomatic to the theory

of quantum mechanics is the notion that the probabilities of the possible results of

measurements made on a quantum system can be derived from a complex function.

This function shares many characteristics with classical waves, and is therefore known

as a wave function, denoted as ψ or Ψ. A number of physical properties—position,

momentum, time, spin—of the particle or system may be extracted from the wave

function through the application of an operator.

The total energy operator, or Hamiltonian, for a single particle in an external

potential field, ν(r) is

h = −1

2
∇2 + ν(r) (3.1)

Applying this operator gives the full time-independent, single-particle Schrödinger

equation. The solutions of this equation define a set of allowed eigenfunctions and

their eigenvalues:

hψi(rσ) = ϵiψi(rσ) (3.2)

The quantities r and σ denote coordinates in space and the spin quantum number,

respectively. For fermions (and therefore electrons), the spin quantum number has

the value ±1
2
.

For a system of N electrons, the Schrödinger equation may be written as:

HΨ = EΨ (3.3)

The total energy operator, the Hamiltonian, is denoted H. The ground state energy

of the system is E. A common approximation for the solution of Eq. 3.3 is the Born-

Oppenheimer Approximation [34]. Here, it is posited that, in a system of interacting

electrons and nuclei, the nuclei must have much smaller velocities than the electrons
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due to their far greater mass. On the time scale of nuclear motion, one can therefore

consider the electrons to relax to a ground state given by the Hamiltonian.

Further defining the Hamiltonian, Eq. 3.3 becomes

HΨ = (T + Vext + Vee)Ψ = EΨ (3.4)

where T is the kinetic energy operator (the first term in Eq. 3.1), Vext is an externally

applied potential field, and Vee represents an effective potential defined as the net

effects of all electron-electron interactions in the system. Given the wave function

Ψ(r1σ1, . . . , rNσN)–having 3N + N degrees of freedom–the probability of finding an

electron with spin σ at a point r–is

nσ(r) = N

∫
· · ·
∫ ∫

|Ψ(r1σ1, . . . , rNσN)|2dr2dr3 . . . drN (3.5)

Computation of the Hamiltonian for a many-body system is prohibitively chal-

lenging. The electron-electron interaction term requires that the individual electron

wave function cannot be found without simultaneously considering the individual

electron wave functions associated with all the other electrons. Hartree-Fock the-

ory addresses this with an approximation of the wave function that is antisymmetric

with respect to an interchange of any two electron positions, as required by the Pauli

exclusion principle:

Ψ(r1σ1, . . . , riσi, . . . , rjσj, . . . , rNσN) = −Ψ(r1σ1, . . . , riσi, . . . , rjσj, . . . , rNσN)

(3.6)

This expression of the wave function is the Hartree product. The Slater determinant

of N spin-orbitals can then be constructed:

ΨHF (x1, . . . ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ψ1(x1) ψ1(x2) . . . ψ1(xN)

ψ2(x1) ψ2(x2) . . . ψ2(xN)
...

...
. . .

...

ψN(x1) ψN(x2) . . . ψN(xN)

∣∣∣∣∣∣∣∣∣∣
(3.7)

where the single electron eigenfuctions, ψi(xi) = ψi(riσi), are the solutions of an effec-

tive one-particle Hamiltonian representing a single electron in an effective potential

constructed from the electrostatic field of all other electrons in the system, thereby

eliminating any self-interaction.
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This gives the Hartree-Fock Hamiltonian:

HHF = −1

2
∇2

i + ν(r) + νH(r) + νi,σx (r) (3.8)

where ν(r) + νi,σx (r) is the Hartree-Fock approximation for Vee. The quantity νH(r)

is the Hartree term:

νH(r) =
∑
j

∫
dr′

|ψj(r
′)|2

|r− r′|
ψi(r) (3.9)

As written, the term includes an unphysical self-interaction of electrons when j =

i.The final term is the exchange term, which results from the inclusion of the Pauli

principle and the assumed determinantal form of the wave function:

νi,σx (r) = −
∑
j

δσiσj

∫
dr′

ψ∗
j (r

′)ψi(r
′)

|r− r′|
ψj(r) (3.10)

Hartree-Fock theory, by assuming a single-determinant form for the wave function,

neglects correlation between electrons. The electrons are subject to an average non-

local potential arising from the other electrons, which can lead to a poor description

of the electronic structure [35]. Although qualitatively correct in many materials

and compounds, Hartree-Fock theory is insufficient to make accurate quantitative

predictions.

3.1.2 Hohenberg-Kohn, Kohn-Sham, and DFT

The Hohenberg-Kohn theorems [24] postulate that the full potential acting on the

system is uniquely determined by the ground state electron density, n0(r) of an N

electron system. The exact ground electron density may be determined variationally

by minimizing the functional E[n(r)]:

minn(r)E[n] = minn(r)

(
T [n] + Veff [n]

)
(3.11)

where Veff = Vext + VH + VXC . As discussed previously, T and Vext are the kinetic

energy and Coulomb interaction with any external applied potential, respectively.

The quantity VH is the Hartree interaction of the electrons and, finally, VXC is the

exchange-correlation functional, consisting of any remaining pieces of Vee. The com-

plex Hamiltonian based on 3N+N degrees of freedom of the full quantum mechanical

wave function has thus been reduced to a functional dependent on only the three real

spatial coordinates. While this restatement of the Schrödinger Hamiltonian forms the

10



foundation of DFT, the powerful Hohenberg-Kohn theorems do not offer a method

of computing the ground state density of a system in practice.

Kohn and Sham [25] later simplified solving the Hohenberg-Kohn theorems by

showing that the task of finding the right electron density can be expressed in a way

that involves solving a set of equations in which each equation only involves a single

electron. The Kohn-Sham Hamiltonian has the form

HKS = −1

2
∇2 + V (r) + VH(r) + VXC(r) (3.12)

and the Schrödinger-like Kohn-Sham equations are[
− 1

2
∇2 + V (r) + VH(r) + VXC(r)

]
ψi = Eiψi (3.13)

where the exchange-correlation term, VXC , is:

VXC(r) =
δEXC(r)

δn(r)
(3.14)

Expressed without specifying the exchange-correlation term, the Kohn-Sham Hamil-

tonian is the exact Hamiltonian for the ground state of a many-body system. Al-

though T , Vext, and VH are known, the general form of VXC , and therefore νXC(r), is

unknown. Therefore, approximations for this quantity are required in order to utilize

DFT and the Kohn-Sham Hamiltonian.

The first approximation of the true exchange-correlation potential, proposed in

Hohenberg and Kohn’s original DFT paper [24], is the local density approximation

(LDA). The LDA consists of locally approximating the true exchange-correlation

energy of a system by the exchange-correlation energy associated with a homogeneous

electron gas of the same density. The homogeneous gas is the only system for which

the form of the exchange-correlation energy is known exactly. Depending on only the

local density, the total energy is commonly written as:

ELDA
XC [n(r)] =

∫
n(r)ϵXC [n(r)]dr (3.15)

where ELDA
XC [n(r)] is the exchange-correlation energy density corresponding to a ho-

mogeneous electron gas of density n(r). Despite its simplicity, the LDA works well

for solid systems and has been used in solid state calculations.

However, because the LDA assumes a uniform density, it has a tendency to un-

derestimate the exchange energy and over-estimate the correlation energy [36]. The
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errors due to the exchange and correlation parts tend to compensate each other to a

certain degree; however, to actively correct for this tendency, it is common to expand

in terms of the gradient of the density in order to account for the non-homogeneity

of the true electron density. This allows corrections based on the changes in density

away from the coordinate. These expansions are referred to as generalized gradient

approximations (GGA) [36, 37, 38].

3.1.3 Solving the Kohn-Sham equations

While the Kohn-Sham Hamiltonian provides a mathematical framework of the ground

state energy of any system of N electrons in the presence of an applied potential

field in only three degrees of freedom, computation of the Kohn-Sham orbitals and

eigenvalues is inherently difficult. Defining the effective potential terms in Eq. 3.12

requires knowledge of the charge density, which requires knowledge of the Kohn-Sham

orbitals, which themselves must be calculated using the as yet unknown Kohn-Sham

Hamiltonian. To address this complexity, the following procedure for an iterative, or

self-consistent, method was implemented:

1. Define an initial, trial electron density, n(r)

2. Calculate the effective potential, Veff

3. Solve the Kohn-Sham equations defined using the trial electron density to find

the single-particle wave functions, ψi(r)

4. Calculate the electron density defined by the Kohn-Sham single-particle wave

functions from Step 3,

nKS(r) =
N∑
i

|ψi(r)|2

5. Compare the calculated electron density, nKS(r), with the electron density used

in solving the Kohn-Sham equations, nKS(r). If the two densities are the same

(i.e. within some tolerance), the ground state electron density has been found.

If the two densities are different, then the trial electron density must be updated,

generally by mixing this output density with densities from previous iterations

[39]. The process then begins again from Step 2.

When studying the electronic structure of condensed matter systems, massive

numbers of electrons, on the order of 1028 per mole of atoms, are being investigated.

Naturally, even numerically with the aid of computationally resources, it is not feasible
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to solve the Kohn-Sham equations for all points in such an enormous space. However,

many extended systems are periodic in structure, corresponding to one of the fourteen

Bravais lattices. Therefore, a periodic system that is, in practice, infinite (e.g. a

crystal), can be represented as a periodic cell and calculations are only required on

electrons associated with the periodic cell.

Bloch’s theorem [40] shows that the wave function, ψn, of an electron band n for

a periodic system can be expressed as a combination of two parts: a plane wave part

and a periodic cell part:

ψn(r) = un(r)e
ik·r (3.16)

where the plane wave part has the wave vector, k, which is confined to the first

Brillouin zone. The periodic part has the same periodicity of the lattice, un(r+R) =

un(r), where R is a lattice vector.

The wave function within the periodic cell can then be described by a plane wave

basis set. The periodic part of the wave function can then be written as:

un(r) =
∑
G

cn,Ge
iGr (3.17)

where cn,G is the set of plane wave coefficients and G are the reciprocal lattice vectors

that satisfy the relation G ·R = 2πm, where m is an integer. Combining Eq. 3.16 and

Eq. 3.17, the Kohn-Sham orbitals can be written as an infinite sum of plane waves:

ψn(r) =
∑
G

cn,(k+G)e
i(k+G)·r (3.18)

where cn,(k+G) are the coefficients of the plane waves describing the wave function.

Efficient k-point sampling schemes have been developed, such as the one given by

Monkhorst and Pack [41]. Here, the symmetry of the lattice can be used to reduce

the number of k-points required. The Brillouin zone is made irreducible by applying

the point group symmetries of the lattice, leaving no k-point related by symmetry

[35]. The sum over G vectors in Eq. 3.18 is infinite in order to fully describe the

wave function; in practice, a finite end to the sum must be selected. For most wave

functions, there will be a scale below which the wave function can be described as

smoothly varying. This means that the coefficients cn,(k+G) will become small for

large |k+G|. The cutoff point is referred to as the plane wave kinetic energy cutoff:

Ecut ≥
1

2
|k+G)|2 (3.19)
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The use of plane waves as a basis set is advantageous in a number of ways. In

terms of the accuracy required for the system in question, one can always improve the

accuracy by increasing the plane wave cutoff energy and therefore tending towards

the complete basis set. Real space quantities, such as potentials, can be easily trans-

formed to reciprocal space using standard numerical techniques, in order to obtain

the plane wave coefficients. Derivatives in real space become multiplications in recip-

rocal space, so quantities such as the kinetic energy of the Kohn-Sham orbitals can

be easily evaluated. Finally, as plane waves treat all regions of space equally, they

can be applied generally, even for non-periodic systems, if an appropriate periodic

supercell is used [35].

3.1.4 The pseudopotential approximation

Electrons in the vicinity of the nuclei will be under the influence of a steep Coulomb

potential and have rapidly varying wave functions in the nuclear regions. This re-

quires a correspondingly large number of plane waves to adequately describe the wave

function and the nuclear potential. This expense is reduced by the pseudopotential

approximation [42, 43, 44], which reduces the required number of plane waves by

many orders of magnitude.

Electrons in condensed matter can be considered to belong to one of two categories:

core or valence. Core electrons are localised in the vicinity of the nucleus. Valence

electrons are those outside the core region and for most situations are responsible for

the physical properties of a system. As the core electrons are generally unaffected by

external potentials, they, along with the nuclear potential, can be replaced to create

a relatively weak pseudopotential. This pseudopotential acts on a set of pseudo wave

functions that, outside of a specified core radius, are identical to the wave functions

where all the electrons are taken into account. As these pseudo wave functions have no

nodes in the core region, the number of plane waves required to describe the system

are reduced by many orders of magnitude. This reduces the number of required

Kohn-Sham orbitals, and subsequently the computational expense.

3.1.5 Minimization of the total energy

The Kohn-Sham equations (Eq. 3.13) become a matrix diagonalization problem when

expressed in terms of plane waves. Unfortunately, numerical algorithms for matrix

diagonalization do not scale well for large matrices, limiting the number of plane waves

and number of atoms in the periodic cell that can be studied. Alternative methods
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involve direct minimization of Eq. 3.11, the Kohn-Sham total energy functional. This

is done through variation of the plane wave coefficients of the Kohn-Sham orbitals

while ensuring that each band is orthogonal to the others [35]. Among those methods

one of the most efficient is the conjugate gradients technique [45]. This procedure

begins by taking an initial search direction to be that with the steepest gradient for

the function and variable in question. That line is then followed to find the minimum.

Subsequent search directions are then chosen such that they are independent of any

previous minimisation directions. This guarantees the minimum will be found in the

same number of steps as there are dimensions in the system.

3.2 Density functional perturbation theory

As discussed in the previous section, density functional theory has been used success-

fully to calculate the ground state properties of electronic systems. As the method

provides only the ground state density and total energy, there are numerous examples

of failures related to electronic excited states. However, if the system is perturbed

very lightly such that it remains close to its electronic ground state, one can eas-

ily apply the traditional quantum formalism for perturbation theory, giving rise to

density functional perturbation theory (DFPT) [46].

3.2.1 Response functions

Many materials properties originate from an external perturbation to the system.

Response functions are derivatives of the total energy with respect to applied per-

turbation(s). Common perturbations include atomic displacements, homogeneous

external electric or magnetic fields, and strain. Physical properties related to the

derivatives of the total energy include [47]:

1st order: forces, stress, dipole moment

2nd order: phonon dynamical matrix, elastic constants,

dielectric susceptibility, Born effective charges,

piezoelectricity, internal strain

3rd order: non-linear dielectric susceptibility,

phonon-phonon interaction, Grüneisen parameters,

Raman susceptibilities
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3.2.2 Perturbation theory

General perturbation theory begins with the identification of a small parameter, λ,

characterizing the change in the unperturbed Hamiltonian of the system H(0) due to

some external potential Vext:

H = H(0) + λVext (3.20)

It is assumed that the unperturbed Schrödinger equation, shown below,

H(0)ψi = Eiψi (3.21)

can be solved for H(0). Perturbation theory aims to solve the perturbed Schrödinger

equation, which as an eigenvalue equation reads:

Hψi = Eiψi (3.22)

The fundamental hypothesis of perturbation theory is that all physical quantities can

be expanded in Taylor series with respect to λ, and that these series are well-defined

and will converge [46]. A perturbation of the Hamiltonian will change the resulting

eigenstates and eigenvalues, generically to arbitrary order in λ. The quantities H, E,

and ψ can be expanded about λ:

H = H(0) + λH(1) (3.23)

ψi = ψ
(0)
i + λψ

(1)
i + λ2ψ

(2)
i + . . . (3.24)

Ei = E
(0)
i + λE

(1)
i + λ2E

(2)
i + . . . (3.25)

By substituting Eqs. 3.23, 3.24 and 3.25 into Eq. 3.22, one obtains the expanded

perturbed Schrödinger equation:

H(0)ψ
(0)
i + λ(H(1)ψ

(0)
i +H(0)ψ

(1)
i ) + λ2(H(1)ψ

(1)
i +H(0)ψ

(2)
i ) + . . .

= E
(0)
i ψ

(0)
i + λ(E

(1)
i ψ

(0)
i + E

(0)
i ψ

(1)
i ) + λ2(E

(2)
i ψ

(0)
i + E

(1)
i ψ

(1)
i + E

(0)
i ψ

(2)
i ) + . . .

(3.26)

Eq. 3.26 can then be solved order by order in λ.
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At order λ0 (no perturbation):

H(0)ψ
(0)
i = E

(0)
i ψ

(0)
i (3.27)

At order λ1 (first order of perturbation):

H(1)ψ
(0)
i +H(0)ψ

(1)
i = E

(1)
i ψ

(0)
i + E

(0)
i ψ

(1)
i (3.28)

At order λ2 (second order of perturbation):

H(1)ψ
(1)
i +H(0)ψ

(2)
i = E

(2)
i ψ

(0)
i + E

(1)
i ψ

(1)
i + E

(0)
i ψ

(2)
i (3.29)

In Dirac notation, taking the scalar product of Eq. 3.28 with ψ
(0)
i yields:

⟨ψ(0)
i |H(1)|ψ(0)

i ⟩+ ⟨ψ(0)
i |H(0)|ψ(1)

i ⟩ = E
(1)
i ⟨ψ(0)

i |ψ(0)
i ⟩+ E

(0)
i ⟨ψ(0)

i |ψ(1)
i ⟩ (3.30)

As ⟨ψ(0)
i |H(0) = ⟨ψ(0)

i |E(0)
i and ⟨ψ(0)

i |ψ(0)
i ⟩ = 1, one is left with:

E
(1)
i = ⟨ψ(0)

i |H(1)|ψ(0)
i ⟩ (3.31)

This is the Hellmann-Feynman theorem [48, 49], which states that the first deriva-

tive of the eigenvalues of the Hamiltonian H(λ) is given by the expectation value of

the derivative of the Hamiltonian with respect to the parameter λ. This is an ex-

tremely powerful statement, as it shows that first-order corrections to the energy can

be computed from the unperturbed wave functions and from the first-order change

in the external potential.

To compute the second order derivative of the total energy, one begins with

Eq. 3.29, and again applies the scalar product with ψ
(0)
i , which yields [47]:

E
(2)
i =

1

2
(⟨ψ(0)

i |H(1) − E
(1)
i |ψ(1)

i ⟩+ ⟨ψ(1)
i |H(1) − E

(1)
i |ψ(0)

i ⟩) (3.32)

Using the first order normalization condition ⟨ψ(0)
i |ψ(1)

i ⟩+⟨ψ(1)
i |ψ(0)

i ⟩ = 0, one obtains:

E
(2)
i =

1

2
(⟨ψ(0)

i |H(1)|ψ(1)
i ⟩+ ⟨ψ(1)

i |H(1)|ψ(0)
i ⟩) (3.33)

While no knowledge of ψ
(2)
i is required to compute E

(2)
i , knowledge of ψ

(1)
i is. This

requires returning to the first order perturbation Schrödinger equation, Eq. 3.28. The
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terms containing |ψ(1)
i ⟩ are gathered, such that:

(H(0) − E
(0)
i )|ψ(1)

i ⟩ = −(H(1) − E
(1)
i )|ψ(0)

i ⟩ (3.34)

This is the Sternheimer equation [50], which is equivalent to the common matrix

equation Ax = y.

3.2.3 Basic equations in DFPT

As shown in the previous section, the basic ansatz behind DFPT is that quantities

may be recast as perturbation series:

X(λ) = X(0) + λX(1) + λ2X(2) + . . .

where X(λ) is a generic physical quantity that could be, for example, the Kohn-Sham

orbitals, Kohn-Sham energy, or electronic density. The variation in the Kohn-Sham

orbitals may be determined by solution of the Sternheimer equation:

(H
(0)
KS − E

(0)
i )|ψ(1)

i ⟩ = −(H
(1)
KS − E

(1)
i )|ψ(0)

i ⟩ (3.35)

The first order correction to the electronic energy can be computed as:

E(1) =
Ne∑
i=1

⟨ψ(0)
i |H(1)|ψ(0)

i ⟩ =
Ne∑
i=1

⟨ψ(0)
i |(T + Vext)

(1)|ψ(0)
i ⟩+ dEHXC

[n(0)]

dλ

∣∣∣∣∣
λ=0

(3.36)

which is the Hellmann-Feynman theorem for DFT. This expression includes H
(1)
KS, the

first order change in the Kohn-Sham Hamiltonian, which can be written:

H
(1)
KS = T (1) + V

(1)
ext +

∫
∂2EHXC

∂n(r)∂n(r’)

∣∣∣∣
n(0)

n(1)(r’)dr’ (3.37)

In turn, this quantity requires the first order electron density, n(1):

n(r;λ) =
Ne∑
i=1

ψ∗
i (r;λ)ψi(r;λ) (3.38)

Still, the first order change to the wave function, ψ
(0)
i , must be found. Rather than

inverting the (H
(0)
KS − E

(0)
i ) operator from Eq. 3.35, the problem can be solved by
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expanding ψ
(1)
i ⟩ in the basis of ψ

(0)
i ⟩, which is orthonormal and complete:

ψ
(1)
i ⟩ =

∑
j

c
(1)
ij |ψ

(0)
i ⟩ (3.39)

where the expansion coefficient c
(1)
ij is given by:

c
(1)
ij =

⟨ψ(0)
i |H(1)

KS|ψ
(0)
i ⟩

E
(0)
i − E

(0)
j

(3.40)

These equations form a set of self-consistent equations that must be solved in

order to determine the behaviour of the perturbed system. For an N-electron system,

the linear dependence of the first order Kohn-Sham Hamiltonian upon the first order

density and subsequently the first order Kohn-Sham orbitals, leads to a coupling of

the N equations.

Copyright© Mujan N. Seif, 2022.
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Chapter 4: Wulff shape prediction from surface excess free energies

4.1 Motivation

Proposed applications for nanoparticles are numerous and span seemingly unrelated

fields, including drug delivery [51, 52, 53, 54, 55, 56, 57, 58, 59], catalysis [60, 61,

62, 63, 64], and electron devices [65, 66, 67, 68, 69]. In nearly all applications,

nanoparticle shape is known to have a significant impact on particle properties and

behavior [70, 71]. Therefore, the ability to predict, or even tailor, particle shape is

crucial for improving properties and performance. Both equilibrium particle shape

and shape evolution during fabrication are controlled by details of a particle’s exposed

surfaces—details which are, in turn, controlled by the chemical, thermodynamic, and

mechanical conditions or environment in which a particle is found [72, 73, 74, 75, 76].

The connections between the conditions in which a particle is found—e.g., chemi-

cal environment and/or temperature—and particle shape are complex, as reflected in

the diversity of possible surface configurations at the atomic-scale. In this chapter, the

calculation of temperature- and chemical environment-dependent surface excess free

energies from density functional theory (DFT) is demonstrated. From these quanti-

ties, maps of equilibrium nanoparticle shapes are distilled, relating surface chemistry,

temperature, and chemical environment. While the approach described here can be

applied to the prediction and optimization of equilibrium nanoparticle shapes gen-

erally, this chapter focuses on systems relevant to thermionic, or “hot”, cathodes.

State-of-the-art Sc-containing (“scandate”) cathodes have been shown to exhibit sig-

nificantly improved performance as compared to related “B-type” cathodes [77, 78].

Both scandate and B-type cathodes consist of pellets of loosely sintered W crystallites

(500-1000 nm in diameter) with Ba-containing mixed oxide powders in the pores of

the pellet. The addition of Sc (to form a scandate cathode) both enhances perfor-

mance and results in W crystallites with a highly characteristic shape after annealing

at high temperatures (∼ 1150◦C for on the order of 24 hours) [79].

Significant current research is focused on understanding the origin of this charac-

teristic (001)-, (110)-, and (112)-terminated W crystallite shape and the roles that

surface composition and annealing temperature play in its stabilization [80, 81, 82,

79, 83]. The work presented in this chapter directly supports these studies by ex-

amining temperature- and chemical environment-dependent surface free energies and

reporting “particle configuration maps” for B-type conditions: particles with bare,
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O-terminated, and BaxO-terminated W (001), (110), and (112) surfaces.

As-fabricated nanoparticle shapes are the product of kinetic and thermodynamic

factors governing surface configuration and behavior, with kinetics playing a particu-

larly important role in solution processing [72]. For nanoparticles in high-temperature

or gas-phase applications, thermodynamic factors increasingly control surface con-

figurations, and therefore the stability and evolution of particle shape. Numer-

ous experimental studies have examined the effect of temperature on stable parti-

cle shape [84, 85, 86, 87, 88, 89, 90, 91]. Though the thermodynamic effects of

chemical environment are often challenging to distinguish from kinetic effects, signif-

icant recent effort has focused on effects of gas-phase environments on particle shape

[92, 93, 94, 95, 96, 97, 98], including a large subset that have focused on the role of

oxygen availability [83, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110].

Density functional theory (DFT), described in Chapter 3, allows accurate cal-

culation of ground state, or “zero-temperature”, atomic-scale structures and ener-

gies of possible surface configurations. Alone, these temperature- and environment-

independent results can be used to approximate stable particle shapes in qualitatively

described chemical environments by treating the reference energies of environmental

species as free parameters [97]. Temperature effects due to changes in the chemical en-

vironment can be approximated by treating the temperature dependence of these ref-

erence energies as that of an ideal gas [109, 111]. Measured thermochemical data [112]

has been used for the reference energies of gas-phase environmental species allowing

improved comparisons to measurable temperatures and chemical environments (via

partial pressures). This combination of DFT-calculated properties of the solid and

surface and thermochemical data for the gas-phase environment has been widely used

to predict the stability of particular surface configurations [102, 108, 110, 113, 114].

Despite the incorporation of temperature-dependent environmental properties, all of

these predictions for particle shape and/or surface stability are still limited in that

“zero-temperature” DFT calculations of the solid and its surfaces neglect entropic

contributions—that is, such calculations do not yield the surface free energies that

ultimately govern particle shape.

Separately, density functional perturbation theory (DFPT) has been widely ap-

plied to compute the properties of phonons from DFT, including the phonon density

of states and vibrational contributions to entropy [115, 116, 117]. This has allowed di-

rect calculation of both bulk reference free energies [113, 114] and surface free energies

[116, 118, 119, 120]. Calculations of this type are generally limited to a small number

of surface configurations, and do not address equilibrium particle shape or chemical
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effects due to a particle’s environment. Recently DFPT has been used to augment

thermochemical data (applicable to isolated molecules) by adding a correction for

changes in vibrational entropy of environmental species due to surface adsorption

[119]. In addition, a recent paper has used DFPT calculated surface free energies to

predict the Wulff shape of W in pure vacuum conditions (that is, absent any chem-

ical environment) [120]. In the following, these approaches are extended to directly

compute temperature- and chemical environment-dependent equilibrium shapes for

W particles exposed to O and/or Ba. Configurational entropy arising from adsorbate

diffusion on solid surfaces is also addressed. This approach allows formulation of

maps of equilibrium particle shape under realistic experimental conditions–including

those relevant to the optimization and application of W-based thermionic cathodes

[79, 80, 81, 82, 83].

4.2 Methods

4.2.1 Thermodynamic approach to surface energy calculation

In the thermodynamic limit, a particle will assume the shape that minimizes the

total surface excess free energy. This equilibrium shape is called the Wulff shape,

and can be deduced, via the Wulff construction, from knowledge of the surface excess

free energies of any surface configurations that may appear [72, 121]. A “surface

configuration” is a specific composition and arrangement of atoms at, near, or on a

particular surface. For crystals, surface configurations are first classified by their pla-

nar orientation relative to the underlying crystal’s principle axes. Facets are regions

of appreciable surface area sharing a common, identifiable orientation. Patterns of

atoms present at a surface facet may be reconstructions of the underlying bulk struc-

ture, have compositions that differ from the bulk, and/or be decorated with atomic

or molecular adsorbates. Full determination of the true Wulff shape requires knowl-

edge of the free energies of the non-finite set of all possible surface configurations.

In practice, only a small subset of all possible configurations have any meaningful

likelihood of being expressed by a real particle: essentially configurations that are

minimal, or highly regular, reconstructions of the underlying crystal structure (most

likely driven by changes that satisfy broken surface bonds), and/or configurations

with environmentally-determined atoms or molecules incorporated or adsorbed at

high-symmetry or broken bond sites on the surface.

A key challenge in applying the Wulff construction with DFT-computed surface

energies is that, alone, DFT only yields ground-state, zero-temperature energies that
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do not account for entropy or zero-point vibrational energy [EDFT ≡ E (T = 0)]. In

addition, DFT computed energies characterize particles in a perfect vacuum [EDFT ≡
E (P = 0)]. More formally, for Ĝ (T, P ) = U − T Ŝ + PV , where the hatted notation

(x̂) highlights that x depends on temperature:

EDFT ≡ G (T = 0, P = 0) = U

Therefore, EDFT values are not free energies, as required in the Wulff construction.

Free energies require accounting for entropy and zero-point energies. At elevated

temperatures the contribution of entropy to the total free energy grows dramati-

cally. At temperatures below a crystal’s melting temperature, vibrational entropy

(ŜV ) and vibrational zero-point energy (EV ZP ) will be the major components of this

contribution [122]. For surfaces where not every equivalent surface site is occupied,

configurational entropy (SC) arising from the exchange of positions of surface adsor-

bates and vacancies is included. With EDFT , one may write:

Ĝ = EDFT + F̂V − TSC (4.1)

where F̂V = EV ZP − T ŜV

Here, the combination of DFPT-computed vibrational entropy and zero-point energy

takes the form of a Helmholtz free energy. SC is computed according to SC = kBlnΩC ,

where ΩC counts the number of arrangements of vacant and occupied surface adsorp-

tion sites for a given surface configuration, and SC is normalized by the slab area.

This term is zero for surfaces where all equivalent surface sites are occupied and for

bulk systems.

Surface excess free energies1 as a function of temperature (γ̂) are then simply the

excess free energy present in a system containing a surface, relative to the energy of

all species in their (bulk) reference state. In the present calculations, double-sided

semi-infinite slabs are used to represent surface facets. The surface energy per unit

area (γ̂α) of a particular surface configuration (α), containing ni atoms of various

species i, each having reference energy µi, is thus:

Ĝslab, α =
∑
i

µ̂ini + 2Aαγ̂α

1Since the definition of free energy has now been explicitly described, the remainder of this
dissertation will use the term “surface energy” to mean “surface excess free energy” for the sake of
brevity.
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The factor of two is included to account for the two sides of the slab, each with an

area Aα. The quantity µ̂i is the chemical potential (Gibbs free energy per atom) of

the each species i in its reference state.

Combining with Eq. 4.1:

Ĝslab, α = EDFT, α + EV ZP, α − T (ŜV, α + SC, α)

=
∑

µ̂iNi + 2Aαγ̂α

Or:

γ̂α =
EDFT, α + EV ZP, α − T (ŜV, α + SC, α)−

∑
µ̂iNi

2Aα

(4.2)

Finally, the equilibrium particle shape, or Wulff shape, is that which minimizes

the total surface energy at fixed volume, where:

Γ̂ =
∑
α

γ̂αAα (4.3)

The Wulff construction[123] is the geometrical equivalent of Eq. 4.3, that is, that

Γ̂ is minimized for the convex hull of all surface configurations, α, each constructed

a distance proportional to γ̂α from the origin. That is, Γ̂ is minimized for the closed

shape formed when hα = λγ̂α for hα, the height from the origin of each surface

configuration α, and λ, a scaling factor. A deeper discussion of the Wulff construction

is given in Chapter 5.

4.2.2 Calculation details

In this chapter, the commercial plane wave pseudopotential code, VASP (Vienna Ab

initio Simulation Package) [124], was used for all DFT calculations. Pseudopotentials

based on the Perdew-Burke-Ernzerhof (PBE) formalism of the generalized gradient

approximation (GGA) [125] with projector augmented wave method (PAW) [126]

were used for all atoms. The W (5p66s25d4), Ba (5s65p66s2), and O (2s22p4) elec-

trons were included in the respective valences. Brillouin zone sampling was done

with Monkhorst-Pack k-point meshes with densities at least 30 k-points/Å−1 in each

direction for each calculation. Atomic positions were relaxed according to calcu-

lated interatomic forces until the total energy was converged to better than 1× 10−7

eV/atom. The plane wave expansion of the wave function was truncated at 520 eV.

For the bulk systems relevant to this chapter—W, WO3, Ba, and BaO—reference

energies were determined by converging µ̂i with respect to system size. Supercells
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ranging in size up to 3 × 3 × 3, 2 × 2 × 2, 3 × 3 × 3, and 2 × 2 × 2 bulk unit

cells were considered for W, WO3, Ba, and BaO respectively. The facet orientations

(001), (110), and (112) were considered based on previous characterization results

for scandate cathodes and were represented as periodic semi-infinite W slabs with

thicknesses of 13, 9, and 19 atomic layers (∼20.6 Å, ∼19.12 Å, and ∼23.4 Å of W,

respectively. Slabs were separated by a minimum vacuum spacing of 32-40 Å. For

each surface, the W slab was left bare or decorated with various configurations of

adsorbed O or Ba and O atoms, following Zhou et al. [83]. In addition, the [2 × 2]

reconstructed and [2 × 2] supercell of ideal-terminated W (001) surfaces were both

considered [120, 127], as was a newly identified [2× 2] “zig-zag” reconstruction of the

BaxO/W (112) surface (see Fig. 4.8 in the next section).

The quantities F̂V and EV ZP were calculated using PHONOPY, an open source soft-

ware package that leverages VASP for DFPT calculations [115]. Phonon properties

were calculated in the harmonic approximation and were computed separately for bulk

and surface slab systems. The software package Wulffmaker [121], which implements

the Wulff construction in a user-friendly interface, was used to draw representations

of the Wulff shape for selected sets of calculated γ̂α values.

4.3 Results and Discussion

4.3.1 Temperature-dependent bulk reference free energies

To compute the surface energies required to determine the Wulff shape, temperature-

dependent bulk reference free energies were required. While single primitive cells are

sufficient to resolve zero-temperature, ground-state properties of bulk crystals, free

energies accounting for vibrational entropy require supercells large enough to capture

the set of activated phonons.

Fig. 4.1 shows computed bulk free energies per atom of W (from Eq. 4.1) for

different W structures as a function of temperature. Comparison of the quantities

F̂V of a primitive W cell (equivalent to 1 × 1 × 1), 3 × 3 × 3 W super cell, W

(001) slab, W (110) slab, and W (112) determined convergence with respect to cell

volume. As shown in Fig. 4.1, the primitive W unit cell (represented by the black

curve) significantly underestimates the contribution of ŜV , leading to a nominally

constant µ̂W , even at elevated temperatures. The other structures produced similar

F̂V curves, confirming that structures larger than a primitive cell are required to

adequately describe activated phonons. The largest supercell (3× 3× 3) was selected

as the converged µ̂W and its F̂V curve was used as the W reference for all computed
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Figure 4.1: µ̂W as a function of temperature for five W structures: two cubic cells
and three slabs. Reproduced with permission from Ref. [128].
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Figure 4.3: Surface energies and correlated equilibrium Wulff shapes of W surfaces
at three temperatures: 300 K, 1000 K, 2000 K. Reproduced with permission from
Ref. [128].

surface energies. The same approach–computing F̂V from supercells of increasing

dimensions until convergence–was used to compute µ̂i curves for WO3, Ba, and BaO.

Supercells with dimensions 2 × 2 × 2, 3 × 3 × 3, and 2 × 2 × 2 were selected as

converged references for these species, respectively, and are reported as a function of

temperature in Fig. 4.2.

4.3.2 Temperature-dependent W surface energies

Surface energies as a function of temperature for W (001), (110), and (112) surfaces

(that is, W in a pure vacuum) are shown in Fig. 4.3, as well as a selection of result-

ing Wulff shapes at 300, 1000, and 2000 K. These surface energies do not include a

configurational entropy term, since uniform terminations with no vacancies are ex-

pected on bare metal surfaces. At all temperatures, the surface energy of W (110) is

lower than that of both the W (001) and W (112) surfaces. This result is consistent

with previous experiment [129, 130, 131, 132, 133, 134] and calculation [120, 135],

which find that W particle shapes are dominated by (110) surfaces. Considering W

(001) in isolation, the 2 × 2 reconstructed surface has the lowest free energy at all

temperatures. At 0 K, the reconstructed W (001) surface is 6.82 meV lower than

the ideal-terminated configuration, similar to the 6.87 meV (0.11 J/m2) lower en-

ergy reported in Ref. [120]. The ideal and reconstructed W (001) surfaces are shown

in Fig. 4.4. The W (112) surface has a lower surface energy than W (001) at all
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(a) (b)

Figure 4.4: The W (001) surface with (a) an ideal termination and (b) the lower
energy reconstruction. Reproduced with permission from Ref. [128].

considered temperatures, and at temperatures below ∼1000 K the W (112) has low

enough surface energy that it would be expected to appear on particles exhibiting

the equilibrium shape. At these temperatures achieving the equilibrium shape may

be kinetically constrained, though increasing “rounding” of (110)/(110) edges due to

the appearance of (112) facets should be expected. At all temperatures corners at

the intersection of three (110)-type planes should be expected to be truncated with

small (001) facets.

4.3.3 M/MOx stability

The equilibrium shape of W particles in a chemical environment containing O, or Ba

and O, and specifically the equilibrium W particle shape as a function of both tem-

perature and O2 partial pressure is considered here. The BaxO/W system is highly

relevant for thermionic (“hot”) dispenser cathodes. Extensive studies have shown

that Ba cations adsorbed atop O-terminated W surfaces in so-called B-type cath-

odes dramatically enhance thermionic emission compared to previous generations of

thermionic cathodes [80, 83, 136, 128]. In addition, recent studies have shown that

B-type cathodes can be further enhanced with the addition of Sc. These scandate

cathodes exhibit extremely high emitted current densities, and also a characteris-

tic (001), (110), (112)-terminated shape, highlighting a direct connection between

equilibrium shape and device performance during operation [79].

Experiment has shown that while O is present during cathode operation, its avail-

ability is not sufficient to oxidize W particles to WO3, even after annealing at elevated

temperature (1300 K and higher) for hundreds or thousands of hours [79]. Both BaO

and metallic Ba are observed to be present inside the sealed environments in which

cathodes operate, implying enough O is available to oxidize at least a significant frac-
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Figure 4.5: The regions of stability for a metal and its respective oxide as a function
of temperature for W and Ba. Reproduced with permission from Ref. [128].

tion of available Ba [137]. These observations of the presence of certain bulk phases

represent limits on the chemical potential of O in the W particle’s environment. For

a general oxidation reaction at equilibrium, when a bulk metal M is in equilibrium

with its oxide MOX :

µ̂M +XµO = µ̂MOX

or µO =
µ̂MOX

− µ̂M

X
(4.4)

When either the metal or the oxide are favored, these become inequalities, with

µ̂M +XµO lower when the metal is stable, and µ̂MOX
lower when the oxide is favored.

For a Ba-, O-, and W-containing system relevant to cathodes, where both metallic W

and oxidized Ba (BaO) are present, the expressions µ̂W+3µO < µ̂WO3 and µ̂Ba+µO ≥
µ̂BaO are true for W and Ba, respectively. Rearranging, this gives limits on the value

of µO implied by experiment:

µO <
µ̂WO3 − µ̂W

3

and µO ≥ µ̂BaO − µ̂Ba

Fig. 4.5 shows these limits on µO—effectively the equilibrium phase boundaries be-

tween W/WO3 and Ba/BaO—at 0, 300, 1450, and 2000 K, as derived for computed

bulk free energies (chemical potentials) of W, WO3, Ba, and BaO (see Figs. 4.1

and 4.2).
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Figure 4.6: Four combinations of PO2 and T are highlighted in (c). These pairs are
extended to (a) and (b), which show γ̂ as a function of µO at two temperatures: 1500
K and 1950 K. The minimum γ̂ surfaces were used to construct four Wulff shapes, each
exhibiting varying degrees of (001), (110), and (112) facets, highlighting the critical
dependence of γ̂ on both T and µO. Figs. (d) and (f) are both comprised only of W
facets, and appear quite similar except for the slight appearance of (112) in Fig. (d).
Fig. (g) prominently exhibits all three facets, and is comprised of the Ba0.50O-top/W
(001), Ba0.25O-tri/W (110), and is the Ba0.50O-top/W (112) configurations. Fig. (e)
does not exhibit the (110) facet, only including the Ba0.50O-top/W (001) and Ba0.50O-
top/W (112) configurations. At both of these temperatures, W (001) refers to the
reconstruction. Reproduced with permission from Ref. [128].
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4.3.4 W particles in a Ba/O-containing environment

To assess W particle shapes relevant in cathode environments, the properties of var-

ious BaxO/W (hkl), O/W (hkl), and W (hkl) surface configurations were computed:

Ba0.50O-top/W (001), Ba0.25O-tri/W (110), Ba0.50O-top/W (112) ([2 × 1] row and

[2 × 2] zig-zag), O-top/W (001), O-top/W (110), O-top/W (112), W (001) (ideal-

terminated and 2 × 2 reconstructed), W (110), and W (112)2. These surfaces were

considered because they represent the collection of thermodynamically-stable, lowest

surface energy configurations as determined in previous zero-temperature calculations

by Zhou et al. [83] for W particles in environments containing Ba and O.

The quantities F̂V and SC values for each of these surfaces were computed, which,

when combined with the temperature-dependent bulk chemical potentials already

discussed, determine temperature- and chemical environment-dependent surface en-

ergies. In computing F̂V , phonon density of states (pDOS) was required for both

bulk and slab systems. Plots of pDOS for the nine examined surface configurations

are presented in Fig. 4.7. Analysis of the pDOS for surface slabs provides a test of

the mechanical stability of the surface configurations considered beyond relaxation

of structures according to their interatomic forces, as stable structures are local en-

ergy minima, and therefore have no imaginary phonon modes. After first relaxing

all surfaces according to their interatomic forces until total energies were converged

to within 1× 10−7 eV, DFPT calculations show no imaginary phonon modes for any

of the bare W, O/W, or BaxO/W surfaces except (i) the ideal-terminated W (001)

and (ii) the Ba0.50O-top/W (112) surface. In the case of ideal-terminated W (001),

Figure 4.7: Phonon density of states for each of the surfaces examined here. Repro-
duced with permission from Ref. [128].

2Throughout this dissertation, surface configuration designations follow those in Refs. [128] and
[83], which indicate metal-oxygen dipoles atop a W facet. For example, Ba0.50O-top/W (001)
indicates a 0.50 monolayer (ML) coverage of Ba cations atop a 1.0 ML of O located directly atop
the outermost W atoms of a (001) slab.
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(a) (b)

Figure 4.8: The Ba0.50O-top/W (112) [2×2] with Ba atoms in a (a) “row” pattern
and a (b) “zig-zag” pattern. W atoms are gray, O atoms red, and Ba atoms green.
Reproduced with permission from Ref. [128].

imaginary modes with frequencies ranging from 6.0×109 to 2.3×1012 Hz simply reflect

that the [2 × 2] reconstruction, rather than the ideal-terminated surface, is stable,

and the (relaxed) reconstructed surface is found to have no imaginary modes. The

case of Ba0.50O-top/W (112) is more complicated, with the (relaxed) [2 × 1] “row”

reconstruction reported by Zhou et al. [83] found to exhibit a single imaginary mode

with a frequency of 8.55×108 Hz. The Ba atoms in this surface are in alternating

rows, and the imaginary mode involves an in-plane shift by the surface Ba towards

a neighboring (unoccupied) surface site. Further analysis of up to [4 × 2] Ba0.50O-

top/W (112) surfaces shows that a [2 × 2] “zig-zag” pattern of Ba atoms yields a

reconstruction with slightly lower energy (by ∼1 eV/Å2), but that also exhibits a low

frequency imaginary mode (2.32×1010 Hz). A comparison of the two Ba0.50O-top/W

(112) configurations are shown in Fig. 4.8.

Despite DFPT finding this mode to be imaginary (indicating that the surface

configuration is not a local minimum), direct, discrete calculation of the energy of

the Ba0.50O-top/W (112) “zig-zag” with displacements (of varying magnitude) in the

hyperdirection of this mode find the relaxed structure to be the lowest in energy.

Because both [2 × 1] and [2 × 2] “zig-zag” structures are relaxed structures, both

imaginary modes are relatively low frequency (implying a slowly varying potential

energy surface), and direct calculation of the energy of relaxed “zig-zag” structures

displaced according to the imaginary mode confirm a minimum energy configuration,

it is hypothesized that the arrangement of Ba atoms on O/W (112) is not unique

(at least at any finite temperature). Rather, the calculation is sampling a range of

close-lying energy minima (e.g. combinations of “row” and “zig-zag” configurations),

suggesting significant disorder in Ba arrangement on this surface and possibly fast Ba

surface diffusion. Further examination of the kinetics of this surface are warranted,
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but beyond the scope of this dissertation. In computing equilibrium crystal shapes,

the low-energy [2× 2] “zig-zag” structure was utilized, though the similar energetics

(both zero temperature EDFT and temperature-dependent F̂V are within ∼1% of

each other) of the [2× 2] and [2× 1] yield qualitatively indistinguishable equilibrium

shapes.

Combining all computed bulk and surface energies, Fig. 4.6 summarizes the effects

of varying temperature and µO by showing equilibrium W crystal shapes [Figs. 4.6a,

b, f, and g] at T = 1950 and 1500 K and µO = −11 and −8.75 eV. Figs. 4.6c and

e show the µO-dependent surface energies at the two temperatures, and Fig. 4.6d

indicates the relative positions of the selected (T, µO) points in phase space. Surface

energies for the nine surface configurations [γ̂α (µO)] are shown as red, green, and

blue curves in Figs. 4.6c and e. Fig. 4.6c shows surface energies at 1950 K, and

Fig. 4.6e at 1500 K. Red curves correspond to (001) surface configurations, blue

curves to (110) configurations, and green curves to (112) configurations. At both of

these temperatures, Ba0.50O-top/W (112) [2×2] and [2×1] exhibit comparable surface

energies, and are thus not distinguished in this discussion. W (001) refers to the [2×2]

reconstruction. The M/MOX equilibrium values of µO are shown as the solid magenta

(Ba/BaO) and cyan (W/WO3) vertical bars. The γ̂α (µO) curves are discontinuous

at these bulk phase boundaries, as would be expected based on Eq. 4.2.

Fig. 4.6d shows a diagram akin to a temperature–pressure phase diagram. Oxy-

gen partial pressure is represented by µO, the O chemical potential, or, equivalently,

the chemical availability of O in the system. Selecting two µO points in each of

the 1500 K and 1950 K plots of γ̂α (µO) [blue/orange and gray/purple vertical high-

lights in Figs. 4.6c and e] is equivalent to selecting four distinct (T, µO) points on

the temperature–pressure diagram, Fig. 4.6c. Figs. 4.6a, b and Figs. 4.6f, g show

the equilibrium shapes of W particles at the four different (T, µO) points. Vibra-

tional entropy is consistently a far more significant component of surface entropy

than configurational entropy, though this varies significantly as temperature varies.

For example, for the Ba0.50O-top/W (001), at 100 K, vibrational entropy is calculated

to be 516× greater than configurational entropy; at 2000 K, this ratio increases to

6542× (vibrational entropy remaining greater). Excluding configurational entropy

would have a minor effect on the conclusions drawn from these calculations.

The equilibrium particle shape (Wulff shape) at any particular values of T =

T ∗ and µO = µ∗
O is determined by carrying out the Wulff construction with the

set of γ̂α (T
∗, µ∗

O) values. The Wulff construction yields not only the equilibrium

shape, but also information as to the specific surface configurations (orientation,
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Figure 4.9: Prominent surface facets for W nanoparticles as a function of temperature,
µO, and adsorbed Ba/O species. WO3 exists at all temperatures given a µO >∼-
8.25 eV. At low µO and high µO (before it fully oxides to WO3) the nanoparticle
is predominantly (110) terminated. At low µO, the surface is bare; at high µO, the
surface is Ba-O-terminated. At moderate µO, the nanoparticle is dominated by the
(112) facet. With the addition of Ba to the O-W system, there is no µO or temperature
wherein a O-terminated configuration is featured on the nanoparticle. Reproduced
with permission from Ref. [128].

composition, and surface atom arrangement) that are expressed by W particles at

the given conditions. Therefore, the content of Fig. 4.6 can be expanded into a

“particle configuration map” indicating both the shape of W particles and the details

of the chemistry of the particles’ surfaces at every temperature and µO.

Fig. 4.9 is a particle configuration map for W particles in a Ba/O-containing

environment as a function of µO. Each box represents a point in (T, µO) space, with

the box’s color and shading indicating the presence of particular surface configurations

in the Wulff shape. Red, blue, and green again represent (001), (110), and (112)

facets, respectively, and solid, hatched, and checked boxes represent W, O/W, and
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BaxO/W (hkl) surface configurations, respectively. The area of a particular color and

shading within a box (representing a particular surface configuration) corresponds to

the total particle area expressed by the surface configuration at equilibrium. For

example, if a box is 60% solid blue and 40% solid red, particles under the correlating

conditions would have surface areas comprised of 60% W (110) and 40% W (001).

Empty white boxes indicate conditions wherein the W particle will oxidize to form

WO3.

Examining Fig. 4.9, it can be observed that at low O2 partial pressure (most neg-

ative µO), W surfaces (solid color boxes) are preferred, with (110) dominating at all

temperatures. This is fully consistent with results for W particles in vacuum, as dis-

cussed above, and the fact that strongly negative µO implies extremely low availability

(low partial pressures) of O (or O2). As µO increases—that is, as the partial pres-

sure of O2 increases—BaxO-terminated facets begin to appear at all temperatures.

Once µO reaches about -10.25 eV, depending on T , W particles have (i) completely

changed shape from principally (110)-terminated to primarily (112)-terminated [with

some (001) appearing at elevated temperatures], and (ii) have changed from W to

BaxO-terminated. At sufficiently high µO, as the bulk W/WO3 phase boundary is

approached, both BaxO-terminated (001) and (112) facets disappear, replaced by

BaxO-terminated (110) facets.

4.3.5 W particles in an O-containing environment

Intriguingly, O-terminated facets never have sufficiently low surface energy to appear

with appreciable area on W particles in environments containing both Ba and O. The

present results, though, allow construction of a similar particle configuration map to

Fig. 4.9, but for environments where Ba is absent—that is, environments containing

only O. This is accomplished by including only bare and O-terminated surfaces in

the Wulff construction. Fig. 4.10 is a particle configuration map for W particles in

O-only environments as a function of temperature and µO. Colors and box shadings

are the same as in Fig. 4.9.

Comparison of Figs. 4.9 and 4.10 makes immediately clear that the addition of Ba

dramatically changes the shape and chemistry of W particle surfaces. In the absence

of Ba, W nanoparticles are either O/W (110), or, below a minimum µ̂O, W (110),

with a small fraction of W (001) or W (112) present. The addition of Ba suppresses

the appearance of W (hkl) surfaces to more O-poor environments, introducing a wide

range of µO values at which BaxO-terminated surfaces dominate. In addition, the

availability of Ba dramatically stabilizes (112) facets, which is of critical importance
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Figure 4.10: Prominent surface facets for W nanoparticles as a function of temper-
ature, µO, and adsorbed O species. WO3 exists at almost all temperatures given a
µO > -7.75 eV. While the nanoparticles are terminated with the (110) facet at almost
all temperatures and µO, the facet is O-terminated given a µO from -9.5 to -8.75 eV,
depending on the temperature. Reproduced with permission from Ref. [128].

to thermionic cathodes. It should be noted that while significant amounts of W

(112) are stable at low temperatures, as mentioned in the earlier discussion about

pure W particles, these shapes likely are kinetically constrained, and likely appear as

(110)-terminated particles with (112)-rounded (110)/(110) edges. In aggregate, these

results show that both careful control of O2 availability and the presence of Ba can

produce the essential (112) faceting on W nanocrystals in scandate cathodes.

4.4 Summary

In this chapter, DFT and DFPT calculations were utilized to compute bulk refer-

ence free energies and surface excess free energies accounting for vibrational and,

where appropriate, configurational entropies of solid particles and particle surfaces.

The calculations have been applied to a set of bare and decorated crystal surfaces
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relevant to thermionic cathodes, critical components in vacuum electronics. Using

these temperature- and chemical potential-dependent surface free energies, particle

configuration maps that highlight the shape and surface chemistry of particles at

equilibrium over a range of temperatures and environmental conditions (represented

by the chemical potential of environmentally available species) have been constructed.

Such maps, constructed here for W particles in O- or Ba/O-containing environments,

demonstrate the critical role that the availability of Ba plays in controlling both the

shape and chemistry of W particle surfaces at application-relevant conditions. In

particular, the (112) facets widely observed in thermionic cathodes are shown to only

be present when Ba is available, as these facets are not appreciably expressed on

W particles in O-only environments. These findings, derived from the specific parti-

cle configuration maps computed here, demonstrate the broad power of DFT+DFPT

computed particle configuration maps: revealing connections between and insight into

particle behavior and properties as a function of experimentally-relevant conditions.

Copyright© Mujan N. Seif, 2022.
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Chapter 5: Scandate cathode operating conditions from observed Wulff

shapes

5.1 Motivation

In Chapter 4, a method combining DFT and DFPT to calculate surface excess free

energies and predict stable nanoparticle shapes at different chemical conditions and

temperatures was presented. This “forward” prediction of particle shape is use-

ful for designing synthesis and processing conditions likely to yield desired particle

shapes—assuming such conditions can be directly controlled and made uniform at

the nanoscale during particle formation. However, in many situations, even though

macroscopic or average conditions can be controlled and the resulting nanoparticle

shapes can be observed, the details of local, nanoscale conditions in effect during

particle evolution are unclear. In these cases a “reverse” deduction of local condi-

tions (that can then be mapped back to controllable macroscopic conditions) from

observed particle shapes would be a powerful approach for revealing the detailed

processing-structure-performance relationships governing nanoparticle formation and

behavior.

Introduced in the previous chapter, Sc-containing (“scandate”) thermionic cath-

odes represent an application-focused example of a situation where knowledge of

processing-structure-performance relationships controlling, in this case, W nanopar-

ticle formation and evolution is critically needed. Thermionic cathodes are used to

generate electron beams and are essential components in a wide range of vacuum

electron devices (VEDs) for both military and civilian applications. VEDs relying

on thermionic cathodes include satellite and telecommunications communication sys-

tems, ion thrusters for small spacecraft, RADAR sensors [138], mm-wave devices for

remote sensing and imaging [139], and more [140, 141]. As a potential solution to the

ever-increasing demand for longer-lasting, higher current density, and lower power

overhead emitters and electron devices, scandate cathodes have received a great deal

of attention. Since 1967, researchers have repeatedly demonstrated that scandate

cathodes offer up to an order of magnitude increase in emitted current density at

fixed or reduced operating temperatures compared to existing state-of-the-art cath-

odes [142, 143, 144, 145, 146, 147, 148, 149]. Nevertheless, incomplete knowledge of

the processing-structure-performance relationships governing scandate cathode fabri-

cation and operation continue to limit their use in most applications. Unpredictable
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longevity, low manufacturing yields, and high variability in device performance among

cathodes fabricated with the same processes (and even within the same production

batch) combine to prevent adoption of scandate cathodes [142, 150, 151, 152, 153].

Similar to previous generations of dispenser cathodes, scandate cathodes consist

of loosely sintered W nanoparticles (500-1000 nm in diameter) with Ba-, Ca-, and

Al-containing mixed oxide powders impregnating the pores between W crystallites.

In scandate cathodes, Sc metal or Sc oxide (Sc2O3) is also incorporated, with different

fabrication approaches adding Sc-containing material at different stages of processing

and in different forms [77, 78]. The final step in fabricating dispenser cathodes,

including scandate cathodes, is an “activation” heat treatment, where the cathode

undergoes a high temperature anneal at ∼1180◦C (∼1450 K) for times on the order

of 24 hours, though specific procedures vary by manufacturer [154].

During activation, the microstructure of the constituent W crystallites in scandate

cathodes evolve and, by the end of the process, exhibit improved performance relative

to cathodes not containing Sc. Critically, this manufacturing process yields cathodes

with highly characteristic (i.e. unique and ubiquitous) W particle shapes [79]. This

shape [equiaxed crystallites bounded by (001), (110), and (112) facets] is both stable

during cathode operation [during which the cathode is held for thousands of hours at

temperatures at or above 850◦C (1125 K)] and a hallmark of high-performing cath-

odes. Therefore, knowledge of the processing conditions leading to this characteristic

shape are highly desirable and potentially transformative with respect to repeatable

and reliable manufacturing. Unfortunately, Sc cathodes are activated and operated

in sealed environments in which the specific chemical conditions are unknown and

not directly controllable. In an effort both to uncover the mechanism by which Sc

enhances cathode emission and to identify optimal processing conditions for scandate

cathode fabrication, significant recent research has focused on understanding the ori-

gin of the characteristic shape and the roles that surface composition and annealing

temperature play in its stabilization [79, 83]. In this chapter, in an effort to reveal

the role of Sc in the processing, structure, and properties of W nanoparticles in scan-

date cathodes, previous calculations of the BaxO/W (hkl) system were extended to

account for the presence of Sc. Computed surface excess free energies (accounting

for vibrational entropy) were used to deduce local chemical conditions required to

yield the observed characteristic shape. The results discussed here demonstrate the

feasibility of reverse engineering the local conditions controlling particle formation

and evolution from experimentally observed nanoparticle shapes and provide new

insights into the chemical conditions required to fabricate high-performing scandate
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cathodes.

5.2 Methods

5.2.1 Overview

Liu et al. [79] used scanning electron microscopy (SEM) to observe the presence of

a characteristic, highly-faceted W nanoparticle shape throughout the microstructure

of high-performing scandate cathodes that had been previously activated at temper-

atures over 1400 K and operated for thousands of hours at temperatures in excess

of 1150 K in sealed glass envelopes. The authors concluded that the observed shape

was the equilibrium particle shape (or Wulff shape) for W crystallites in the chemical

environment present in the sealed envelopes based on the fact that the crystallites

had been held at high temperature for extended periods of time and that the shape

was characteristic of all W particles observed across the cathodes. In addition, the

observed particle shape is markedly different than that expected for W nanoparti-

cles fabricated in environments containing only W and O, where W crystallites are

(110)-dominated, as discussed in the previous chapter. Analysis of the angles between

facets and the facet shapes determined that only the (001), (110), and (112) facets

were present and appeared with relative exposed areas of ∼20%, ∼10%, and ∼70%,

respectively [155]. In seeking to use this observed characteristic W particle shape

to deduce the chemical environment present during particle equilibration—that is,

during cathode activation—knowledge of the relative exposed surface areas of each

facet must be leveraged to determine the relative surface energies of the stable facets.

To this end, one may begin with Gibbs’ 1875 (and P. Curie’s 1885) assertion that

a crystal’s equilibrium shape is one which minimizes the excess Gibbs free energy

due to the presence of surfaces [156, 157]. Each possible crystal shape s has a total

surface excess Gibbs free energy, which is the sum:

∆Gs =
∑
j

γjOj (5.1)

for j surface facets each having γj surface Gibbs free energy per unit area and ex-

pressed with Oj area. The equilibrium shape of the crystal will then be that which

has a minimum ∆Gs, where, for a given crystal volume Vc is

δ

(∑
j

γjOj

)
Vc

=
∑
j

γjδ(Oj)Vc = 0 (5.2)
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varying over shapes i expressing facets j.

For crystalline solids, surface facets occur as selected atomic planes drawn from

the countable set of all planes with integer Miller indexes, {hkl}. The shape of a

finite crystalline region will therefore be a closed, convex polyhedron whose faces

all correspond to specific {hkl} planes1. In this case minimizing ∆Gi is a balance

between surface excess energy per unit area of facets j enclosing the crystal and the

areas those facets must express in order to close the 3D shape. Specifically Eq. 5.2

implies that facets with larger γj will be expressed with lower areas, Oj.

In 1901, Wulff expressed this energy minimizing balance in explicitly geometric

terms. He noted the distance from the center of a symmetric polyhedron to the center

of each face (dj) is inversely proportional to the area of the face Oj. Therefore, he

asserted that because the extent to which, at equilibrium, a facet j is expressed in

the equilibrium shape—that is, its area Oj—must be inversely proportional to γj

(following Eq. 5.2), dj ∝ γj. More formally, for some constant λ, then:

dj = λγj (5.3)

First proved by Laue in 1943, this relationship, known as the Gibbs-Wulff theo-

rem, allows the Wulff shape to be constructed from knowledge of the relative surface

energies of all facets likely to appear (that is, facets with relatively low γj). Fig. 5.1

shows the Wulff construction, where radii of length dj proportional to γj are perpen-

dicular bisectors to facets j. The equilibrium shape is defined as the volume within

the Wulff planes that can be reached from the origin without crossing any other

Wulff planes [158]. Fig. 5.1 also highlights that shape (meaning, essentially, relative

Oj values) is determined only by the relative surface energies.

In this section, the Wulff construction is inverted, starting with known relative

surface areas and deducing relative dj values (that is, relative surface energy values)

that would yield the observed shape. For the characteristic particle shape observed

in scandate cathodes, the analysis may be limited to only (001), (110), and (112)

facets, as these are all that are observed, but, in general, any number of observed

facets could be included in the procedure. The absolute surface energy values are

computed for multiple atomic configurations of each facet as a function of T and µO

(that is, the O chemical potential, which is a measure of the chemical availability

of oxygen, and equivalent to O partial pressure given a known temperature). Then,

1Moving forward, the family of equivalent planes {hkl} is referred to with a single representative
plane (hkl). For example, when considered at the atomic scale, Ba0.50O/W (001) is equivalent to
Ba0.50O/W (001̄); therefore, one may refer simply to (001) without loss of generality.
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(a) (b)

dhkl
dpqr

dhkl

dpqr

dhkl/dpqr = 1dhkl/dpqr >> 1
Wulff planes

(c) (d)

dhkl
dpqr dh’k’l’

dp'q’r’

dh'k’l’/dp’q’r’ = dhkl/dpqr = 1dhkl/dpqr << 1

Wulff planes

Figure 5.1: Examples of Wulff constructions where (a) dhkl/dpqr >> 1, (b) dhkl/dpqr

= 1, (c) dhkl/dpqr << 1, (d) dh′k′l′/dp′q′r′ = dhkl/dpqr = 1. The labels hkl and pqr
refer to two unique families of planes. Reproduced with permission from Ref. [159].

regions of (T, µO)-space (that is, processing conditions) that yield the set of relative

surface energies required to produce the observed shape are identified.

5.2.2 Target surface energy ranges

For any set of known (hkl) facets enclosing a symmetric convex polygon, the total

area of each facet can be computed in terms of the distances of each facet from the

center of the polygon. Taking Fig. 5.1b as an example (albeit, rendered in 2D), given

some facets (hkl) and (pqr), the angle between the facets is:

cos θ =
hp+ kq + lr√

(h2 + k2 + l2)(p2 + q2 + r2)
(5.4)

This angle is in the plane defined by the vectors dhkl and dpqr (which originate at

the center of the polygon and terminate at the center of each respective facet), and,

combined with the lengths of dhkl and dpqr, can be used to compute the distances

from the center of each facet to the center of the edge defined by the intersection of

(hkl) and (pqr). The orientation (that is, Miller indices of the vector in space) of this

edge can be computed as the cross product of the Miller indices of the intersecting

planes. Given the orientation of all edges present on the polyhedron and the set of

distances from facet centers to facet edges, the areas of each polygon facet can be

computed.

This process—arriving at facet geometries (and, specifically, areas) from relative

dhkl values—is a direct implementation of the Wulff construction, and, analytically,

the results are functions Ahkl(dhkl) that define the Wulff shape. These functions

can be inverted (for known, finite sets of expressed facets) to solve for sets of dhkl

values given measured Ahkl values, but this process is mathematically cumbersome.
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In specific cases, it is generally more practical and efficient to utilize one of a number

of free Wulff shape generator computer or web applications [160, 121] to qualitatively

search for a set of dhkl values that give sets of areas Ahkl that match experiment. This

qualitative search process was used here to generate relative dhkl values that yield

the experimentally measured (001), (110), and (112) areas. These dhkl values have

been validated with a direct implementation of the Wulff construction (as discussed

above) and confirmation that the identified dhkl values yield Ahkl values quantitatively

consistent with observed particle shapes.

For the present case, from the experimentally observed characteristic W equi-

librium shape (Fig. 5.2), Liu et al. [79] determined the fraction of the total area

expressed in the form of (001), (110), and (112) facets: ∼20%, ∼10%, ∼70%, respec-

tively. Wulff shapes with these relative areas result for {d} values of d(110) = 1.00,

d(112) = 0.945, and d(001) = 0.927, implying relative surface energies (for γ̂(110) chosen

as a reference) of r(001) = γ̂(001)/γ̂(110) = 0.927 and r(112) = γ̂(112)/γ̂(110) = 0.945.

It has been previously reported that when GGA-PBE pseudopotentials are used

DFT underestimates measured surface energies by up to ∼11% [161]. To account for

this potential error, (T, µO)-space is searched for relative surface energies in ranges

r(001) ± δ(001) and r(112) ± δ(112), where:

δ(001) = 0.5
(1.11γ̂(001)

γ̂(110)
−

γ̂(001)
1.11γ̂(110)

)
δ(112) = 0.5

(1.11γ̂(112)
γ̂(110)

−
γ̂(112)

1.11γ̂(110)

)
To yield the observed Wulff shape at a particular T and oxygen availability (µO),

the set of minimum surface energies (among considered surface configurations) for

each facet (that is, γ̂(001), γ̂(110), and γ̂(112)) must be such that both relative surface

energies [r(001) and r(112)] fall within target ranges. Collectively the set of target

ranges [r∗] is defined as:

[r∗] =

[[
r(001) − δ(001), r(001) + δ(001)

]
∪
[
r(112) − δ(112), r(112) + δ(112)

]]
(5.5)

5.2.3 Computing surface energies

Here, the approach described in the previous chapter is applied to compute temperature-

and chemical environment-dependent surface energies—accounting for the vibrational

contribution to surface entropy—for a number of BaxScyO-type/W (hkl) surface con-
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Figure 5.2: (left) Wulff construction of the equilibrium W grain shape present
throughout thermionic cathodes (right) SEM images of a high-performance cathode,
always exhibiting a characteristic W grain shape. Reproduced with permission from
Ref. [159].

figurations2 potentially relevant to scandate cathodes. While previous efforts pre-

dicted W particle shapes when Ba and O are present as a function of T and µO,

here specific focus is given to Sc-containing cathodes, and, therefore, Sc-containing

systems. Although the specific distribution of Sc on W particles in scandate cathodes

is not clear, it is widely expected that Sc, like Ba, is present atop O-covered W sur-

faces. Consequently, a range of such surface configurations have been explored and,

for each, the minimum energy atomic positions, surface energy, vibrational densities

of states (and surface vibrational energies), and work function have been computed.

Surface energies (γ̂α) for Sc-containing surface configurations (α) were computed

using the thermodynamic approach described in Ref. [128] and provided in Chapter 4

as Eq. 4.2. Because the results described in Chapter 4 showed configurational en-

tropy to be a far less significant contributor to total entropy than vibrational entropy,

particularly at elevated temperatures, the present analysis excludes configurational

entropy. Of all surface configurations considered, only those that exhibit the mini-

mum surface energy for a given facet j (at a given T and µO) will be expressed at

equilibrium. From the set of minimum surface energies for each facet, relative surface

energies were calculated, yielding a map of relative surface energies as a function of

T and µO. This map is then searched for T and µO combinations yielding relative

2Here, surface configuration designations follow those in Refs. [83] and [128], where subscripts
indicate coverage in MLs of adsorbing species, and “type” indicates the configuration of adsorbed
O atoms with respect to W atoms in the substrate facet. For example, Ba0.25Sc0.25O-top/W (001)
indicates an 0.25 monolayer (ML) coverage of both Ba and Sc, and 1.0 ML coverage of O, with
“top” indicating that O atoms are located directly the atop outermost W atoms on a (001) slab.
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surface energies that fall within [r∗].

5.2.4 Oxygen thermochemical data

Measurable thermochemical conditions (specifically T and pO2) can be directly con-

nected to computed energies by referencing chemical potentials to tabulated ther-

mochemical data [112]. In a chemical environment containing O2 gas, the computed

binding energy of O2 (EO2
DFT ) is related to µO(T, pO2) as [162, 163]:

µO(T, p) = 0.5µO(T, p
0) + 0.5EO2

DFT + 0.5kBT ln(pO2/p
0) (5.6)

Here µO(T, p
0) (eV) is the tabulated chemical potential of O at standard state pressure

(p0 = 750.06 Torr), EO2
DFT (eV) is the ground state energy of an O2 molecule, and pO2

(Torr) is the O2 pressure.

5.2.5 Work function

The electron work function of a particular surface configuration (Φα) is defined as

the difference between the calculated energies of the Fermi and vacuum levels:

Φα = Evac − EFermi (5.7)

As described in Ref. [83], this is a robust definition for the work function, since

computed total energies of surface slabs are converged with respect to vacuum thick-

ness, implying that there is no electron–electron interaction between periodic slabs

through the vacuum region. Therefore, the vacuum energy level was determined as

the plane-averaged electrostatic potential energy in the vacuum region far from the

slab surfaces, and the Fermi energy is the eigenvalue of the highest-occupied eigen-

state.

With knowledge of each surface configuration’s work function, an area-weighted

effective work function for a given particle shape can be approximated. Here, an

estimate of the effective work function of a surface composed of (001), (110), and

(112) facets is made by first computing an area-weighted total thermionic current:

Jtotal = A(001)J(001)+A(110)J(110)+A(112)J(112). Taking emission from both the overall

(multi-faceted) surface and individual facets to have the form of the Richardson-

Dushman current (J = ART
2 exp(−Φ/β) [164, 165, 166]) an effective work function

is computed as:

Φeff = −β ln(A001 exp(−Φ001/β) + A110 exp(−Φ110/β) + A112 exp(−Φ112/β)) (5.8)
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Here β = kBT and the Richardson constant (AR) is assumed to be the same for each

facet. This approximation does not include potential effects of surface roughness on

effective work function, but provides a practical point of comparison for comparing

expected emitted thermionic currents.

5.2.6 Calculation details

The computational details utilized here encompass all those previously described in

§4.2.2. Unique to this series of calculations, all slabs had symmetric terminations

except for the (BaSc)1/3O-top/W (112) surface configuration, which was not compu-

tationally tractable as a symmetric system for all required calculations. The phonon

density of states had to be computed as an asymmetric slab with Sc, Ba, and O

adatoms at only one termination. Comparing the ground state surface energies of

the asymmetric and symmetric (BaSc)1/3O/W (112) slabs, it was found that the

asymmetric slab overestimates the surface energy of the decorated termination by an

acceptably low 1.98 meV. In addition to the software package Wulffmaker described

previously as a means of visualizing Wulff constructions, the package Wulffpack [160]

was used in this chapter to calculate the respective area fraction of each surface con-

figuration comprising a particle.

5.3 BaxScyO/W surface configurations

5.3.1 M/MOx stability

In computing γ̂α values following Eq. 4.2 as a function of oxygen availability, M/MOX

phase transformations must be considered to ensure the appropriate reference state

is utilized for all atoms in a system. As shown earlier in Eq. 4.4 in Chapter 4, for

a general oxidation reaction at equilibrium, when a bulk metal M is in chemical

equilibrium with its oxide MOX , one may write:

µ̂M +XµO = µ̂MOX

or µO =
µ̂MOX

− µ̂M

X

In a physical system where either the metal or the oxide are observed to be ther-

modynamically stable, these reaction equations become inequalities, with µ̂M +XµO

lower when the metal is stable, and µ̂MOX
lower when the oxide is favored.

Compositional analysis of post-activation and post-operation high-performing scan-

date cathodes has revealed the presence of metallic W, oxidized Ba (BaO), and ox-
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idized Sc (Sc2O3) [79]. Based on the conclusion that these phases are stable, for

systems relevant to scandate cathodes the following inequalities are true:

µ̂W < µ̂WO3 − 3µO

µ̂BaO < µO + µ̂Ba

and µ̂Sc2O3 < 2µ̂Sc + 3µ̂O

Rearranging, this gives limits on the value of µO implied by experimental observation

of stable phases present in scandate cathode systems that can be written as:

µO <
µ̂WO3 − µ̂W

3

µO > µ̂BaO − µ̂Ba

and µO >
µ̂Sc2O3 − 2µ̂Sc

3

These limits—essentially M/MOX phase boundaries or transitions—constrain the

range of oxygen availabilities present during high temperature cathode processing

based on observed species.

Values for µ̂WO3 , µ̂W , µ̂BaO, µ̂Ba, µ̂Sc2O3 , µ̂Sc have been computed as described

above. At all temperatures, the Sc/Sc2O3 equilibrium occurs at the lowest µO, fol-

lowed by Ba/BaO, and then W/WO3. The specific µO values for these transitions

varies with temperature, and values at 0 K and 2000 K are compared in Table 5.1.

In the previous chapter, Fig. 4.5 provided a visual representation of the Ba/BaO and

W/WO3 boundaries.

Table 5.1: Summary M/MOX stability transitions (eV) at 0 and 2000 K.

M/MOX 0 K 2000 K ∆

W/WO3 −7.705 −8.411 −0.706
Ba/BaO −9.652 −10.344 −0.692
Sc/Sc2O3 −11.056 −11.576 −0.520

5.3.2 Surface energies

Extending previous calculations [83, 167] to account for the inclusion of Sc, the

properties of fourteen surface configurations—including W, O/W, BaxO/W, and

BaxScyO/W (001), (110), and (112) configurations as listed in Table 5.2—were com-

puted. These surfaces were studied because they represent a collection of configura-
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tions with low surface energies and low work functions. In addition, the position of

Sc in these configurations is a surface cation (nominally coplanar with Ba atop the

O plane), as is commonly hypothesized to be the case within the scandate cathode

community.

Surface energies were computed as a function of µO for temperatures ranging from

0-2000 K. An example isotherm showing γ̂(µO) at 1450 K is shown in Figs. 5.3a and b.

In these figures, phase boundaries demarking M/MOX stability are plotted as vertical

bars (black for Sc/Sc2O3, magenta for Ba/BaO, and cyan for W/WO3). The region

overlaid with a grid of gray dots at higher values of µO indicates the range of chemical

conditions where (bulk) WO3 is stable (relative to bulk W). Since previous studies

(e.g. Liu et al. [79]) do not observe WO3 crystallites, or WO3 in or at the surface of

W particles, this region of chemical conditions is not consistent with those expected

to be present during cathode activation. The temperature 1450 K is highlighted

because it is a representative temperature at which scandate cathodes are activated

(held at high temperature for times on the order of days), and therefore temperatures

at which particle shapes in a scandate cathode are expected to equilibrate.

Fig. 5.3b highlights that at any particular temperature only a subset of consid-

ered surface configurations for each facet are minimum energy configurations. These

are the only surface configurations expected to be present on equilibrated particles.

Considering the full temperature range studied, bare W surfaces are stable at low

µO values, becoming the lowest energy surfaces for all facets as oxygen availability

decreases through a point between the Ba/BaO and Sc/Sc2O3 phase boundaries. At

high µO values, generally as oxygen availability increases through the Ba/BaO phase

boundary, BaxO/W surfaces are stable for all facets. O/W facets (with no adsorbed

cation species) are never the most stable surface configurations regardless of oxygen

availability. Sc-containing surface configurations are only stable in very narrow win-

dows of oxygen availability around µO = −10.5 to −11.0 eV and only for (001) and

(112) configurations.

At 1450 K, eight configurations are stable for different facets and µO values: W

(001), Ba0.25Sc0.25O-top/W (001), and Ba0.50O-top/W (001); W (110) and Ba0.25O-

tri/W (110); and W (112), (BaSc)1/3O-top/W (112), and Ba0.50O-top/W (112). The

limited range of chemical conditions over which Sc-containing (001) and (112) facets

are stable is highlighted at this temperature. Ba0.25Sc0.25O-top/W (112) is only sta-

ble between µO = −12 and −10.9 eV, with W (112) and Ba0.50O-top/W (112) stable

at lower and higher oxygen availabilities, respectively. Similarly Ba0.25Sc0.25O-top/W

(001) is only stable between µO = −12 and −10.4 eV, with W (001) and Ba0.50O-
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Table 5.2: Surface configurations evaluated in this work.

Adatom Description Surface Configuration

W W (001)
W (110)
W (112)

O/W O-top/W (001)
O-tri/W (110)
O-top/W (112)

BaxO/W Ba0.50O-top/W (001)
Ba0.25O-tri/W (110)
Ba0.50O-top/W (112)

BaxScyO/W Ba0.25Sc0.25O-top/W (001)
Ba0.25Sc0.25O-top/W (110)
Ba0.25Sc0.25O-top/W (112)
Ba0.50Sc0.50O-top/W (112)
(BaSc)1/3O-top/W (112)

top/W (001) stable at lower and higher oxygen availabilities, respectively. The spe-

cific ranges of µO at which Sc-containing surfaces are stable vary with temperature,

shifting to higher oxygen availabilities and narrowing at higher temperatures, and

shifting lower and widening at lower temperatures. Considering both that (i) low

temperatures hinder kinetic activity and (ii) stability windows for Sc-containing sur-

faces narrow with increasing temperature, it is likely that stabilizing Sc-containing

(001) or (112) surfaces requires careful control of both temperature and oxygen avail-

ability.

5.3.3 Chemical conditions required to yield observed shapes

Given γ̂(T, µO) values, (T, µO)-space has been searched for regions where the rela-

tive magnitudes of minimum surface energies for the (001), (110) and (112) facets

will give rise to the experimentally observed Wulff shape: that is, conditions where

relative surface energies fall within [r∗], as defined above. Considering first the 1450

K isotherm shown in Fig. 5.3, computed relative surface energies will yield the ex-

perimentally observed equilibrium particle shape for µO between −10.24 and −10.02

eV (a range of ∆µO
= 0.22 eV) and between −8.76 and −8.45 eV (∆µO

= 0.31 eV).

These two regions are indicated with stars in Fig. 5.3b and represent conditions un-

der which two different combinations of surface configurations are stable and yield
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Sc  Sc2O3

Ba  BaO
W  WO3

W (001) O-top/W (001) Ba0.50O-top/W (001) Ba0.25Sc0.25O-top/W (001)
W (110)
W (112)

O-tri/W (110)
O-top/W (112)

Ba0.50Sc0.50O-top/W (112)
(BaSc)1/3O-top/W (112)Ba0.25O-tri/W (110)

Ba0.50O-top/W (112)
Ba0.25Sc0.25O-tri/W (110)
Ba0.50Sc0.25O-top/W (112)

(a)

Sc  Sc2O3

Ba  BaO
W  WO3

W (001) Ba0.50O-top/W (001) Ba0.25Sc0.25O-top/W (001)
W (110)
W (112)

Ba0.25O-tri/W (110)
Ba0.50O-top/W (112)

(BaSc)1/3O-top/W (112)

(b)

Figure 5.3: (a) An isotherm at 1450 K showing the surface energies of all fourteen
surface configurations evaluated. (b) The same data as in (a), but with sections of
surface energy curves shown in bold only if/when the surface configuration has the
minimum surface for its orientation. Other sections of surface energy curves (where
the particular configuration does not have the lowest surface energy for its facet) are
lightened to highlight that only a subset of all considered configurations are ever the
lowest energy configuration for their facet. The black stars indicate µO values where
relative surface energies that will yield the characteristic Wulff shape occur, and they
correspond to similar stars shown in subsequent figures. Reproduced with permission
from Ref. [159].
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the observed particle shape: (i) at lower µO: Ba0.50O-top/W (001), W (110), and

Ba0.50O-top/W (112), and (ii) at higher µO: Ba0.50O-top/W (001), Ba0.25O-tri/W

(110), and Ba0.50O-top/W (112). Given that kT at 1450 K is ∼0.125 eV, both of

these regions are extremely narrow with respect to the range of oxygen availabilities

(that is, µO values) they encompass.

Extending this analysis to temperatures between 0 and 2000 K, chemical condi-

tions where the observed Wulff shape would be expected to form are indicated as gray

bands in Fig. 5.4. This diagram links experiment and calculation by mapping oxygen

availability in terms of µO (shown as the background color scale) to equivalent partial

pressures as a function of temperature. As in Fig. 5.3, M/MOX stability boundaries

are indicated with solid black, magenta, and cyan lines for Sc/Sc2O3, Ba/BaO, and

W/WO3, respectively, and stars indicate chemical conditions yielding the observed

particle shape at 1450 K. The bands of chemical conditions at lower versus higher

pO2 values correspond to the same sets of surfaces described above. In addition, the

region indicated with a dotted grid is again the region of stability of (bulk) WO3, the

presence of which is not consistent with experimental observations.

Fig. 5.4 highlights two important points relating to the availability of oxygen

during equilibration of W particle shapes in scandate cathodes: (i) the ranges of sta-

bility of the observed shape in terms of pO2 (and equivalently µO) are small (relative

to kT ) at all temperatures, and (ii) forming the observed shape requires conditions

characterized by extremely low oxygen partial pressures. Regarding (i), it is widely

understood that it is extremely difficult to reliably and repeatably fabricate high per-

forming scandate cathodes and that cathode processing and performance is sensitive

to the presence of oxygen. The current results make clear that this is likely a conse-

quence of the fact that optimized cathode particle shapes are stable only in narrow

windows of oxygen availability. The extremely low oxygen partial pressures required

to yield observed particle shapes characteristic of high-performing scandate cathodes

further make clear that chemical gettering is required during fabrication. Specifically,

achieving conditions yielding the observed shape in the higher pO2 band requires get-

tering below the oxidation threshold of W—e.g. with Ba (a standard practice during

fabrication of many types of dispenser cathodes). Achieving conditions required to

yield the observed shape in the lower pO2 band requires sufficient gettering that Ba

is either reduced, or at the Ba/BaO stability boundary. In real systems this likely

requires gettering with a metal with a greater affinity for oxidation than Ba—e.g. Sc.

As a point of interest, it should be noted that none of the surface configurations

found to be stable and exhibiting relative surface energies required to yield the ob-
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All BaxO/W (hkl)

BaxO/W (001, 112); W (110)

Sc  
Sc2O3

Ba  
BaO

W  
WO3

Figure 5.4: Contour plot of µO as a function of oxygen partial pressure and tem-
perature, overlaid with gray bands indicating conditions wherein the characteristic
shape is expected. The stars are equivalent to those in Fig. 5.3b. Reproduced with
permission from Ref. [159].

served Wulff shape contain Sc in an adsorbed cation position. This surprising result

may indicate that the role of Sc in scandate cathodes is not directly related to mod-

ifying surface work functions. Rather, Sc may serve simply as an oxygen sink (or,

potentially “cleaner” as has been suggested elsewhere [168]) required to constrain

chemical conditions to the specific band necessary to stabilize otherwise favorable

(presumably meaning low work function) facets and surface configurations.

5.3.4 Effective work functions

Given sets of specific surface configurations expressed on the equilibrium (Wulff)

shape as a function of T and µO (or, equivalently pO2), the effective work function

of stable, multi-faceted cathode surfaces can be computed. Work functions of all

fourteen surface configurations studied here were computed according to Eq. 5.7.

Effective work functions of multi-faceted particles exhibiting combinations of these

configurations were computed using Eq. 5.8. Fig. 5.5 plots computed effective work

functions over the same range of chemical conditions mapped in Fig. 5.4. As above,

M/MOX phase boundaries are shown with solid lines, the region of (bulk) WO3

stability is indicated with a grid of dots, and bands of chemical conditions yielding

the observed Wulff shape are indicated in gray.

Scandate cathodes have been reported to exhibit effective work functions as low
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Ba/O/W (001, 112); W (110)

All Ba/O/W (hkl)
Sc  
Sc2O3 Ba  

BaO

W  
WO3

(a)

(b)

Figure 5.5: (a) Contour plot of Φeff as a function of oxygen partial pressure and
temperature, overlaid with gray bands indicating conditions wherein the characteristic
shape is expected. (b) Φeff as a function of oxygen partial pressure and temperature
plotted as a scatter plot. Reproduced with permission from Ref. [159].

53



as ∼1 eV [78, 77]. In general agreement with these observations, stable particles

from both regions of (T, µO)-space that yield the observed particle shape exhibit an

effective work function of ∼1.3 eV [gray bands in Fig. 5.5a]. While particles in these

two regions, both of which lie within the medium blue trench in Fig. 5.5b, express two

different sets of surface configurations, they both express significant relative surface

areas of Ba0.50O-top/W (112), which has a work function of 1.23 eV. This surface,

due to its high surface area fraction on the Wulff shape [(112) represents ∼70% of

the surface area of observed particles] and low work function, dominates the effective

work function of all regions of (T, µO)-space that yield the observed particle shape.

The lowest work function computed among all surfaces studied here was 0.82 eV

for the Ba0.25Sc0.25O-top/W (001) configuration. This result is in agreement with

Ref. [83] and is a slightly lower work function than computed for the same surface

in Ref. [169]. The emergence of a Sc-containing surface with a work function this

low would certainly explain the enhanced emission of thermionic scandate cathodes

(compared, for example, to B-type cathodes of similar structure and composition but

lacking Sc). However, the Ba0.25Sc0.25O-top/W (001) surface is only stable [relative

to other (001) surface configurations] in a narrow µO window and under chemical

conditions where the relative (001), (110), (112) surface energies do not yield the

experimentally observed characteristic shape.

The region of (T, µO)-space where Ba0.25Sc0.25O-top/W (001) is stable requires

extremely low oxygen partial pressures, even at elevated temperature, and corre-

sponds to the deepest blue (lowest work function) ribbon in Figs. 5.5a and b. These

conditions are close to the Sc/Sc2O3 phase boundary–suggesting that the presence

of sufficient metallic Sc during cathode activation might getter enough oxygen to

achieve the conditions necessary for forming particles expressing this low work func-

tion configuration. They are also reasonably close to “low µO” conditions that yield

the observed characteristic shape, though, when the observed shape is stable, the

(001) surfaces are relatively small and are terminated with the Ba0.50O-top/W (001)

surface, which exhibits Φ = 2.47 eV.

Fig. 5.5b emphasizes the sudden shifts in effective work function that can occur

as T and pO2 vary. These dramatic changes are associated with transitions in the

particular surface configuration stable on a particular facet. For example, the drop

from effective work functions of ∼ 4.3 eV (the pink region) to ∼ 0.85 eV (deepest

blue ribbon) is due entirely to a change in which configuration of the (001) surface

is stable: W (001) (Φ = 4.3 eV) at higher T and lower pO2 or Ba0.25Sc0.25O-top/W

(001) (Φ = 0.82 eV). This stability transition at 1450 K can be seen in Figs. 5.3a and
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b around µO = −10.7 eV when the red dash-dot curve (Ba0.25Sc0.25O-top/W (001))

falls below the red solid curve (W (001)).

Close examination of the steps in effective work function in Fig. 5.5b shows that

some transitions in Φeff are somewhat gradual—for example from the medium blue

(Φeff ∼1.2 eV) to light blue (Φeff ∼2.5 eV) regions as µO increases. These rel-

atively narrow regions of gradual shifts in Φeff reflect ranges of chemical condi-

tions under which the relative surface energies are evolving in such a way that the

relative expressed surface areas of different facets are changing. For example, in

Fig. 5.5 at 1450 K, the stable configurations from pO2 = 10−20 to 10−10 Torr (roughly,

µO = −9.25 eV to −8.1 eV in Fig. 5.3)—that is as conditions cross from the medium-

to-light blue regions—are Ba0.50O-top/W (001) (Φeff = 2.47 eV), Ba0.25O-tri/W

(110) (Φeff = 2.67 eV), and Ba0.50O-top/W (112) (Φeff = 1.23 eV). As the avail-

ability of oxygen changes, no facets change configuration. Rather, Φeff changes be-

cause the inequivalent slopes of each configuration’s γ̂(µO) result in evolving surface

energy—and therefore surface area—ratios. This effect, continuously varying relative

surface areas, generates relatively smooth (though still dramatic) changes in Φeff .

5.4 Additional Scy-containing W surfaces

5.4.1 Surface energies, chemical conditions, and work functions

In the previous section, §5.3.4, the role of Sc was speculated based on BaxScyO/W

(hkl) configurations, where Sc is a surface cation atop a layer of O atoms. Since

that series of calculations did not find any Scy-containing surfaces present in regions

where the surface energies of the stable (001), (110), and (112) configurations yield the

characteristic W particle shape, additional efforts were undertaken to study surface

configurations where Sc is in other positions. In particular, configurations with Sc

directly bonded to W were evaluated. Work by Taylor et al. [170] in the 1960s

concluded that the Sc-W system has nearly nonexistent solubility. As such, studies of

these types of surface configurations had understandably not been prioritized within

the thermionic cathode community.

The first set of surface configurations examined here are of the type BaxOSc/W

(hkl) and include: Ba0.50O-triSc-top/W (001), Ba0.25O-triSc-top/W (110), and Ba0.50O-

triSc-top/W (112). These configurations were constructed because they are essen-

tially the three BaxO/W (hkl) discussed heavily in both this and the previous chap-

ter, albeit with the inclusion of a 1 ML of Sc directly atop the W (hkl) surface. The

surface energies of each configuration are shown in Fig. 5.6. Compared to Fig. 5.3,
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the region above the Ba/BaO transition remains essentially unchanged, particularly

with respect to the stable surfaces. However, below the Ba/BaO transition, the

Ba0.50O-triSc-top/W (112) configuration exhibits the lowest surface energy of the

(112) orientation, and, except for a narrow, ultralow µO window (between −10.1 and

−10.02 eV ), in all orientations. Interestingly, the low µO characteristic Wulff shape

region (highlighted by black stars in Fig. 5.6) occurs at a µO where the Ba0.50O-triSc-

top/W (112) and Ba0.50O-top/W (112) surface energies intersect. While the effects of

kinetics are not addressed in this dissertation, this junction may possibly be a site of

complex Sc kinetic behavior—desorption, diffusion, etc. The stable (001) and (110)

surface configurations below the Ba/BaO transition are the same as those in Fig. 5.3.

The low surface energy exhibited by the Ba0.50O-triSc-top/W (112) configuration

prompted deeper investigation into surface configurations containing Sc-W bond-

ing. This broad campaign includes Scy/W (hkl), OzSc/W (hkl) and ScyO/W (hkl)

configurations: Sc-tri/W (001), Sc-top/W (110), Sc-tri/W (112), Sc0.50-triO-top/W

(001), Sc0.25-triO-top/W (110), Sc0.50-triO-top/W (112), O0.50-triSc-top/W (001), O-

topSc-tri/W (001), O0.25-triSc-top/W (110), and O0.50-triSc-top/W (112). Fig. 5.7

highlights twenty-seven surfaces, adding the Scy-containing surface configurations to

all others already discussed.

The introduction of these surface configurations significantly changes relative sur-

face energies in the low to medium µO window. Below the Sc/Sc2O3 transition, the

Sc-tri/W (001) configuration exhibits a much lower surface energy than any (110)

or (112) configuration. Above the Sc/Sc2O3 transition, the O-topSc-tri/W (001) be-

comes the lowest energy configuration (among all orientations). Both the Sc-tri/W

(001) and O-topSc-tri/W (001) configurations exhibit a lower surface energy than the

Ba0.50O-triSc-top/W (112) configuration discussed earlier. The low surface energy of

the O-topSc-tri/W (001) also appears to remove the characteristic Wulff shape re-

gion around µO = −10.1 eV. The surface energy ratios in that window yield a Wulff

shape dominated by the (001) facet. This is in contrast to the results discussed in

Chapter 4, which at low µO predict a Wulff shape with a significant amount of (110)

faceting if only Ba, O, and W are present. The high µO region is again dominated by

the BaxO/W (hkl) configurations. As such, the high µO characteristic Wulff shape

window is unaffected by the inclusion of the new Scy-containing surface configura-

tions. The contour plots showing the characteristic Wulff shape windows as a function

of temperature and oxygen partial pressure of the surfaces plotted in both Figs. 5.6

and 5.7 are shown in Fig. 5.8.

None of the Scy-containing surfaces introduced in this section exhibited a par-
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(a)

(b)

Figure 5.6: (a) An isotherm at 1450 K showing the surface energies of all seventeen
surface configurations evaluated. (b) The same data as in (a), but with sections of
surface energy curves shown in bold colors only if/when the surface configuration has
the minimum surface for its facet. Other sections of surface energy curves (where
the particular configuration does not have the lowest surface energy for its facet)
are lightened to highlight that only a subset of all considered configurations are ever
the lowest energy configuration for their facet. Black stars indicate µO yield the
characteristic W shape.
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(a)

(b)

Figure 5.7: (a) An isotherm at 1450 K showing the surface energies of all twenty-seven
surface configurations evaluated. (b) The same data as in (a), but with sections of
surface energy curves shown in bold colors only if/when the surface configuration has
the minimum surface for its facet. Other sections of surface energy curves (where
the particular configuration does not have the lowest surface energy for its facet)
are lightened to highlight that only a subset of all considered configurations are ever
the lowest energy configuration for their facet. Black stars indicate µO yield the
characteristic W shape.
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(a)

(b)

Figure 5.8: Contour plots of µO as a function of oxygen partial pressure and tempera-
ture, overlaid with gray bands indicating conditions wherein the characteristic shape
is expected. (a) The resulting plot of the W, O/W, BaxO/W, and BaxOzSc/W (hkl)
configurations (those plotted in Fig. 5.6). (b) The resulting plot of the W, O/W,
BaxO/W, BaxOzSc/W, Scy/W, OzSc/W, and ScyO/W (hkl) configurations (those
plotted in Fig. 5.7).
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ticularly low work function. The Scy/W (hkl) surface configurations, which showed

exceptionally low surface energies, had work functions ranging from 2.5-4.0 eV. This

range encompassed all other surface configurations. As has been a repeated theme

in this chapter, it is exceedingly rare that an Scy-containing surface configuration is

both (i) low surface energy and (ii) low work function. This is additional evidence

that the role of Sc is likely not directly related to creating low work function surface

configurations, but rather to tune environmental conditions.

5.4.2 Sc and imaginary phonon modes

The previous results highlight a common theme: there is evidence that the addition

of cations to a surface where Sc is positioned directly atop W increases its excess

energy, as shown by the disparities in surface energies displayed by certain groups

of configurations in Fig. 5.6. A deeper study of phonon modes and frequencies fur-

ther supports this statement. Discussed in the previous chapter with respect to the

“row” and “zig-zag” BaxO/W (112) surface configurations, the absence of imaginary

phonon modes indicates mechanical stability in a crystal. Conversely, their presence

indicates instability and major kinetic obstacles to formation. Even a qualitative re-

view of the relationship between particular surface configurations and phonon modes

yields tremendous insight into the possible surface composition of W grains during

scandate cathode operation. Table 5.3 classifies groups of surface configurations by

mechanical and thermodynamic stability. Sets of surface configurations marked with

green indicate both thermodynamic and mechanical stability, the former qualifier re-

ferring to whether the surface configuration ever exhibits the lowest surface energy

of its orientation at any (T, µO) condition. Orange indicates configurations that are

mechanically stable but never thermodynamically stable. Lastly, red indicates con-

figurations that are neither mechanically nor thermodynamically stable at any (T,

µO) condition.

The only set of configurations marked entirely green is Scy/W (hkl). As shown

in Fig. 5.6, these configurations are all thermodynamically stable at very low µO.

Of all the Bax-containing surface configurations, only one is both mechanically and

thermodynamically stable: Ba0.50O-triSc-top/W (112). The rest have multiple high

frequency imaginary modes. Recall that high and low imaginary modes differ based

on the gradient of the potential energy surface—low frequency imaginary modes indi-

cate a gradual, flatter surface while high frequency indicates a steep region. As such,

high frequency imaginary modes indicate atoms seeking to build major surface recon-

structions (or entirely new configurations) rather than slightly vary atomic position.
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Table 5.3: Comparing imaginary modes of Scy-containing surface configurations.

Surface Configurations

Facets Scy/W OzSc/W ScyO/W BaxOzSc/W BaxScyO/W

(001) • • • • •

(110) • • • • •

(112) • • • • •

• mechanically and thermodynamically stable
• mechanically stable
• mechanically unstable

Fig. 5.9 presents the imaginary modes associated with Ba0.50O-triSc-top/W (001).

These modes, represented as hypervectors, correlate to eight unique high imaginary

frequencies. The region of greatest “activity,” i.e. the greatest density of imaginary

modes, is in the Sc and top layer W region. The direction of these modes is observed

to mostly reside in the {001} plane—horizontally along the surface. This suggests

that Sc atoms are seeking a lower energy at a position elsewhere in this direction.

In other words, they are seeking to surface diffuse. The first layer of W atoms show

a similar in-plane set of hypervectors, and it is hypothesized that they would move

to “follow” the Sc atoms. This does not necessarily mean that they are seeking to

diffuse, rather that bonds with Sc are energetically favorable. These assertions are

supported by the earlier observation that only the Scy/W surface configurations are

thermodynamically and mechanically stable. When Ba and O atoms are not included

in a configuration, it is stable. When they are added, Sc atoms become extremely

mechanically unstable. These conclusions align well with those drawn by Mroz and

Kordesch [168, 171], who, as mentioned in the previous section, have described the

role of Sc on the Ba-Sc-O/W (001) surface as an oxygen “cleaner”. However, the idea

that W surfaces in scandate cathodes are bare or even Scy-covered during activation

and operation spawns a series of complexities regarding cathode operating mecha-

nism. Mainly, if Ba-O dipoles are the most plausible origin of enhanced electron

emission, as is widely accepted in the scandate cathode community [78], then it is

not logical that Ba is absent from the W surfaces. If Sc is somehow causing Ba and

O to desorb from W surfaces, Ba must somehow be replenished to maintain emission.

It is not clear by which mechanism this may occur.
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Figure 5.9: Vector representations of imaginary phonon modes exhibited by the
Ba0.50O-triSc-top/W (001) configuration.

5.5 Summary

While the precise origin of scandate cathodes’ superior performance to similar thermionic

cathodes remains obscure [78, 77], observation of a characteristic equilibrium W

nanoparticle shape in high-performing scandate cathodes has led to the hypothe-

sis that particle shape and high emission current (at low operating temperatures)

are correlated. This has driven interest in “reverse engineering” local chemical condi-

tions in effect during particle equilibration, which occurs during the activation step of

thermionic cathode fabrication. Leveraging computed, temperature- and chemical-

environment-dependent surface energies, the implementation of an “inverted Wulff

construction” revealed the chemical conditions required to produce equilibrium par-

ticles with experimentally observed shapes. It was found that the observed char-

acteristic shape will only occur in two narrow regions of (T, pO2)-space, implying

that extremely careful control of chemical conditions during cathode activation is

required yield high-performing cathodes. Such narrow stability windows therefore

provides a direct explanation for the long-standing difficulties in reliably fabricating

high-performing scandate cathodes [78].

In both regions of (T, pO2)-space where the experimentally observed W particle

shape is stable, the Ba0.50O-top/W (112) surface configuration, with a work function

of 1.23 eV, is present in the largest surface area fraction (∼ 70% of total surface area).

The large relative area and relatively low work function of this configuration drives a

low effective work function of ∼ 1.3 eV for particles with the observed shape, a value

comparable to those measured for scandate cathodes. There is a window of chemical
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conditions where the Ba0.25Sc0.25O-top/W (001) surface (with a work function of

0.82 eV) is stable, pushing the effective work function of W particles as low as 0.84

eV. Chemical conditions in this window, though, do not yield the observed particle

shape, and achieving these conditions requires pushing the overall oxygen availability

almost to the Sc/Sc2O3 oxidation limit and near chemical conditions where only bare

W surfaces are stable (with work functions of approximately 4.3 eV). In addition,

perhaps intriguingly no Sc-containing surface configurations were found to be stable

(relative to Sc-free surface configurations) when the observed characteristic particle

shape is stable. In fact, the inclusion of a broad range of Sc-containing surfaces,

including the ScyW/ (hkl) set, eroded the characteristic shape window predicted

around µO = −10.1 eV. The surface energy of the Sc-tri/W (001) configuration is

so low that the Wulff shape at this µO is entirely (001)—starkly different than the

(112)-dominated characteristic shape. Combined these findings suggest the possibility

that the role of Sc is not to directly modify the surface work function by adsorbing

atop O on W crystallites, but rather simply to getter oxygen, driving down oxygen

availability to stabilize particular surface configurations, e.g., Ba0.50O-top/W (112).

Both the importance of Sc as a regulator of the chemical environment near cathode

surfaces and of the (112) facet itself is consistent with a number of previous studies

[79, 83, 168].

Finally, a major theme of this chapter was the potentiality of high-resolution

imaging and characterization in conjunction with atomistic calculations to investi-

gate highly-complex, non-uniform, inhomogeneous materials. Detailed knowledge of

the characteristic particle shapes (i.e. crystallographic facets and relative area frac-

tions) combined with insight into composition at the surface (elemental identification,

surface symmetry, etc.) can, through the methods demonstrated here, be used to de-

termine both the atomic-scale structure and properties of surfaces in a system, as

well as the chemical conditions present as the system formed and equilibrated.

Copyright© Mujan N. Seif, 2022.
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Part II

Continuum scale
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Chapter 6: Finite Element Method

6.1 Overview

“The description of right lines and circles, upon which geometry is founded, belongs

to mechanics. Geometry does not teach us to draw these lines, but requires them to

be drawn.”

— Sir Isaac Newton, The Mathematical Principles of Natural Philosophy, 1729

The Finite Element Method (FEM) is a powerful approach for the numerical so-

lution of boundary- and initial-value problems characterized by partial differential

equations (PDEs) [172]. Consequently, the technique has had a monumental impact

on virtually all areas of engineering and applied science, including structural analysis,

heat transfer, fluid flow, mass transport, and electromagnetic potential. Two funda-

mental attributes of FEM are the cause of its widespread, enduring success. Firstly,

the method is based on the idea of partitioning bounded domains Ω in Rn into a num-

ber N of small, non-overlapping subdomains, the finite elements, over which functions

are approximated by local functions, generally polynomials. Secondly, the boundary-

and initial-value problems, to which the method is applied, are formulated in a weak,

or integral, form, so that the contributions of each subdomain to the global integrals

sum up to produce an integral characterizing the problem over the whole domain. In

essence, FEM is a technique involving two steps: (1) the division, or discretization

of a domain into subdomains, each represented by a set of element equations and (2)

the systematic recombination of all sets of element equations into a global system of

equations.

In the first step, approximation of PDEs by local polynomial expressions, i.e. the

element equations, can be described as a special case of the Galerkin method [173].

This procedure minimizes the error of approximation by fitting trial functions into

the PDE. The residual is the error caused by the trial functions, and the weight

functions are polynomial approximation functions that project the residual. The

process eliminates all the spatial derivatives from the PDE, thus approximating the

PDE locally with a set of algebraic equations for steady state problems and a set of

ordinary differential equations for transient problems. In the second step, a global

system of equations is generated from the element equations through a transformation

of coordinates from the subdomains’ local nodes to the domain’s global nodes. This
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spatial transformation includes appropriate orientation adjustments as applied in

relation to the reference coordinate system, a process carried out using coordinate

data generated from the subdomains.

6.2 Implementation

6.2.1 Algebraic approach

The equations governing small elastic deformations of a body Ω can be written as:

−∇ · σ = f in Ω (6.1)

σ = λ tr (ϵ)I + 2µϵ (6.2)

ϵ =
1

2
(∇u+ (∇u)T) (6.3)

where σ is the stress tensor, f is the body force per unit volume, λ and µ are Lamé

elasticity parameters for the material in the domain Ω, I is the identity tensor, tr

is the trace operator on a tensor, ϵ is the symmetric strain-rate tensor, and u is the

displacement vector field.

The Lamé elasticity parameters can be computed from the Young’s modulus E

and Poisson’s ratio ν, according to:

λ =
Eν

(1 + ν)(1− 2ν)
(6.4)

µ =
E

2(1 + ν)
(6.5)

Combining Eqs. 6.2 and 6.3, one obtains

σ = λ(∇ · u)I + µ(∇u+ (∇u)T) (6.6)

The strain-energy density function U , following the Saint Venant-Kirchhoff model

[174], is:

U(ϵ) =
1

2
λ[tr (ϵ)]2 + µ tr (ϵ2) (6.7)

The variational formulation of Eqs. 6.1, 6.2, and 6.3 consists of forming the inner

product of Eq. 6.1 and a vector test function v ∈ V̂ , where V̂ is a vector-valued test
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function space, and integrating over the domain Ω:

−
∫
Ω

(∇ · σ) · v dx =

∫
Ω

f · v dx (6.8)

Since ∇ · σ contains second-order derivatives of the primary unknown u, the term is

integrated by parts.

−
∫
Ω

(∇ · σ) · v dx =

∫
Ω

σ : ∇v dx−
∫
∂Ω

(σ · n) · v ds (6.9)

where the colon operator is the inner product between tensors (summed pairwise

product of all elements) and n is the outward unit normal at the boundary. The

quantity σ ·n is known as the traction vector at the boundary and is often prescribed

as a boundary condition. One assumes that it is prescribed at a part ∂ΩT of the

boundary as σ · n = T . On the remaining part of the boundary, the value of the

displacement is given as a Dirichlet condition. Then:∫
Ω

σ : ∇v dx =

∫
Ω

f · v dx+
∫
∂ΩT

Tv ds (6.10)

When this expression is inserted into Eq. 6.6 for σ, the variational form of the

unknown u is revealed.

The variational formulation can now be summarized. Find u ∈ V such that

a(u, v) = L(v)∀ v ∈ V̂ (6.11)

where

a(u, v) =

∫
Ω

σ(u) : ∇v dx (6.12)

σ(u) = λ(∇ · u)I + µ(∇u+ (∇u)T) (6.13)

L(v) =

∫
Ω

f · v dx+
∫
∂ΩT

T · v ds (6.14)

The inner product of a symmetric tensor A and an anti-symmetric tensor B van-

ishes. If ∇v is expressed as a sum of its symmetric and anti-symmetric parts, only

the symmetric part will survive in the product σ : ∇v, as σ is a symmetric tensor.

Thus, replacing ∇u by the symmetric gradient ϵ(u) gives rise to the slightly different

variational form

a(u, v) =

∫
Ω

σ(u) : ϵ(v) dx (6.15)
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where ϵ(v) is the symmetric part of ∇v:

ϵ(v) =
1

2
(∇v + (∇v)T) (6.16)

6.2.2 Solution

Gaussian elimination, sparse LU decomposition, is generally used to solve linear sys-

tems of equations in many FEM softwares. This is a simple, robust method rec-

ommended for systems with up to a few thousand unknowns However, sparse LU

decomposition becomes slow and one quickly runs out of memory for larger prob-

lems. For large problems, an iterative method is preferred.

Preconditioned Krylov solvers are a popular type of iterative methods that are eas-

ily accessible in many FEM programs. For asymmetric boundary conditions, a Krylov

solver such as GMRES (generalized minimal residual method) is ideal. GMRES [175]

is an iterative method, mathematically equivalent to the generalized conjugate resid-

ual method, that uses Krylov subspaces to reduce a high-dimensional problem to a

sequence of smaller dimensional problems. If A is an invertible m × m matrix and

b is a vector of length m, Kn(A,b) is the order-n Krylov subspace generated by A

and b. Rather than inverting A directly, GMRES uses least squares to determine

xn ∈ Kn that minimizes the residual rn = ||b−Axn||2. The algorithm is terminated

when the residual is smaller than some predetermined value. In tandem with the

GRMES Krylov solver, the work in this dissertation utilizes a SOR (successive over-

relaxation) preconditioner. This is a method of solving a linear system of equations

Ax = b derived by extrapolating the Gauss-Seidel method. If A = D−L−U , where

−L,D and −U are the lower triangular, diagonal, and upper triangular parts of A,

then the system of linear equations can be rewritten as:

(D + ωL)x = ωb− [ωU + (ω − 1)D]x (6.17)

where ω is the relaxation and ω > 1.

Copyright© Mujan N. Seif, 2022.
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Chapter 7: The Kentucky Random Structures Toolkit and a

prototypical nanoporous system

7.1 Motivation

Nanoporous (NP) materials with microstructural feature sizes at or below 100 nm

have a wide range of applications in catalysis [176, 177, 178, 179, 180, 181, 182],

actuation [183, 184, 185, 186], sensing [187, 188, 189, 190], electronics [191, 192, 193,

194, 195, 196], medicine [197, 198, 199, 200], optics [201, 202, 203], energy storage

[204, 205, 206, 207, 208], and more. While the mechanical properties and deformation

behavior of a range of NP materials have been extensively investigated [209, 210,

211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224], predictive and

transferable models for effective bulk elastic constants determined from physically-

derived details of NP materials’ microstructures are lacking.

The most widely applied model for predicting the elastic and bulk moduli of NP

materials from the intrinsic properties of fully dense solids was developed by Gibson

and Ashby for a regular geometric structure chosen to represent a low-density, open

foam (Fig. 7.1). In the Gibson-Ashby (G-A) model, the stiffness of a NP material

relative to the stiffness of a fully dense solid (E∗/Es) is expressed as a power law of

the solid fraction (ϕ) of the NP material [225, 226]:

E∗

Es

= CEϕ
2 (7.1)

In this chapter, asterisks indicate effective bulk properties of the NP material,

and ϕ is the solid fraction, defined as ρ∗/ρs for ρ∗ and ρs the mass density of the

NP structure and the bulk material of which the NP structure consists, respectively.

The subscript s denotes the material properties of a bulk, fully dense solid phase,

and CE is a constant near unity. Given an arbitrary NP material, CE encapsulates

all material- and geometry-specific effects, and therefore varies with fabrication and

processing details, as well as the composition and crystal structure of the constituent

bulk material [225].

The G-A model was developed for a specific, regular—that is, repeating, crystal-

like—cellular microstructural geometry (Fig. 7.1), and for a limiting case where the

mechanical response of the cellular structure is dominated by bending. This is a

limitation, as a hallmark of nearly all NP materials is an inherent randomness of
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Figure 7.1: The unit cell defining the Gibson-Ashby model for low-density cellular
open foams. Reproduced with permission from Ref. [226].

the underlying microstructure (e.g. ligaments and pores in an open-cell structure).

Accounting for effects of this randomness is challenging, and only a small number

of studies have directly probed the impact of structural disorder on NP materials’

mechanical properties. Huber et al. [227] examined the effects of distorting a regular,

diamond cubic array of cylindrical ligaments. This approach allowed for the calcula-

tion of a quantitative “degree of randomness” that characterized the net distortion

of the ligament network from the reference diamond cubic structure. Finite element

(FE) calculations of mechanical properties as a function of the “degree of random-

ness” showed that elastic modulus decreases with increasing distortion. However, this

approach considered structures with fixed, constant ligament diameters and connec-

tivity, and introduced disorder by distorting a pre-existing regular array resulting in

structures that are not necessarily representative of any particular NP material.

Huber et al. [228] have recently extended their efforts by also considering po-

tential additional effects of network connectivity. By randomly assigning certain

ligaments in distorted diamond cubic lattices to have an infinitesimal mechanical

stiffness (E → 0)–that is, to be “missing” in a mechanical sense–model structures

with effectively variable local and average network connectivities were constructed.

Separately, Liu et al. [229, 230] proposed an adjustment of the G-A model seeking

to account for dangling or broken ligaments where the net density of a NP material

in the calculation of ϕ in Eq. 7.1 was replaced with an “effective reduced density”

that discounts dangling or broken ligaments when determining the volume of the

NP network. This adjustment was designed to account for the fact that dangling
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or broken ligaments cannot bear or distribute applied loads. A similar concept was

implemented by Hu et al. [231], who generated “skeletonizations” of NP Au struc-

tures by removing any ligaments not part of a closed ring. Soyarslan et al. [232, 233]

also considered “skeletonizations,” generating RVEs of spinodal-like stochastic mi-

crostructures from a leveled random field. This investigation implemented a radially

varying stiffness scaling factor at the ligament-ligament connections to model amass-

ments at the aforementioned junctions. Huber et al. [228], Liu et al. [229, 230], and

Hu et al. [231] all found that the presence of dangling or broken ligaments implies

that real NP materials will have lower stiffnesses than predicted by the G-A model.

These approaches demonstrate that connectivity—and, particularly, network defects

or disconnected ligaments—within NP microstructures strongly influences mechani-

cal properties, though none of them permit a general, systematic exploration of the

effects of changes in the local or average network topology.

In addition, Pia et al. [234] have explored the contribution that local bending

deformation makes in determining the linear elastic response of NP materials under

simple tension or compression. These efforts have shown that for a repeating, cubic

lattice of ligaments whose cross sections vary along their lengths, bending deformation

is an important deformation mode that is sensitive to the specific geometry and

properties of ligament regions most distant from nodes in the structure. In effect,

these results highlight that the presence of voids leads to mixed mode deformation at

the microstructural level even in cases of macroscopically simple tensile or compressive

loading.

Taken together these recent results demonstrate that accurately modeling the me-

chanical properties of NP materials requires consideration of the diverse and complex

set of microstructural details—including any inherent randomness—characteristic of

a particular material. In addition, optimization or design of randomly structured

materials requires the ability to comprehensively explore arbitrary changes to lo-

cal microstructure—and, particularly, the ability to evolve and adjust physically-

motivated microstructures—to deduce structure-property relationships dictating ob-

servable, effective mechanical properties. To date, no methodology has been re-

ported that allows a general and systematic exploration of how complex (and often

random) ligament arrangements or connectivity affects mechanical properties. Nor

has a methodology been reported that allows for generation of physically-motivated

representative volumes expressing microstructural features specific to particular NP

materials.

In this section, the Kentucky Random Structure Toolkit (KRaSTk) [235, 236],

71



a flexible and extensible software package for generating and computing properties

of large numbers of model representative volume elements (mRVEs) for materials

with complex structures, is presented. KRaSTk mRVEs are generated from a user-

specified geometric seed description of a material’s microstructure that can be derived

from experimental observations. Using a seed description representing a prototyp-

ical NP material, sets of KRaSTk-generated mRVEs can be used to compute not

only effective macroscale mechanical properties, but also probability distributions of

these effective properties at the microscale. The potential impact of this approach

is demonstrated by systematically examining the relationship between network con-

nectivity in a ligamented NP material and elastic response. Results of finite element

calculations on statistically significant sets of mRVEs reveal that network connectiv-

ity has a separable and additional effect on both elastic and bulk modulus above and

beyond the effects of variations in solid fraction. Finally, it is shown that the effects

of variations in network connectivity can be accounted for with an additional power

law factor modifying the original G-A model, and that these connectivity effects may

explain observed variations in the mechanical properties of NP materials with similar

microstructures and solid fractions.

7.2 Method overview

NP materials can be described on three length scales: (1) the macroscale, at which

the NP material appears and behaves uniformly and generally isotropically, (2) the

mesoscale, at which the complex (and often random) structural characteristics that

define the NP material are evident and properties are strongly dependent on local

geometric features; and (3) the atomic scale, dominated by the intrinsic properties of

the solid material(s) composing the NP material itself.

Within this framework the internal structures characteristic of a NP material is

classified as the mesoscale, as opposed to “nanoscale”, to highlight that while individ-

ual structural features (e.g., a ligament or a pore) may have one or more dimensions

on the nanometer scale, it is the significantly larger ensemble of these individual

features that govern properties of the material as a whole. At the mesoscale, NP

materials are generally both complex and diverse, resulting in widely varying local

structures and properties. Observed at longer length scales, variations in local prop-

erties decrease—that is, the material homogenizes—and observed properties converge

to singular effective bulk properties in the macroscopic limit. While there is no pre-

cise boundary between the mesoscale and macroscale, the size scale at which homoge-
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nization occurs is controlled by the relative sizes and configurations of mesostructural

features in each particular NP material, and is characteristic of those materials.

To enable systematic exploration of arbitrary mesostructural complexity over a

wide range of length scales (relative to structural feature sizes) a flexible and adapt-

able structure generation algorithm as been implemented within KRaSTk that gener-

ates sets of model representative volume elements (mRVEs) based on a user-specified

geometric seed description. The seed description may be either regular (i.e. gener-

ating a periodic structure) or random, and will consist of combinations of geometric

primitives (e.g. spheres, cylinders, prisms, etc.) and their dimensions as well as rules

for their placement within a cuboid computational volume. This approach allows for

the generation of mRVEs of arbitrary volume (relative to feature sizes) and repre-

senting any mesostructure that can be described as a combination of characteristic

geometric shapes or configurations of shapes (i.e. the seed description).

To be representative, mRVEs generated from a particular seed description must be

large enough to contain a meaningful sampling of the characteristic structural features

that are possible based on the given seed description, while being sufficiently small

as to be computationally tractable. In practice, this implies that mRVEs are never

in the macroscopic limit, and therefore do not, individually, exhibit the bulk effective

properties that would be observed for a macroscopic volume. Instead, aggregate sets

of many (unique) mRVEs represent a statistical sampling of the structural motifs

that govern the overall effective behavior of a macroscopic sample.

More formally the present approach adopts two related hypotheses: (1) that ag-

gregated properties of many representative mRVEs quantitatively characterize the

distribution of scale-equivalent local properties present within a NP material, and (2)

that the first moment of the distribution of mRVE properties is the expected value of

the bulk effective property for sufficiently large numbers of sampled mRVEs. Specif-

ically, expected bulk effective properties (P ∗) can be computed as the first moment

(arithmetic mean) of individually determined properties (Pα values determined for

an individual mRVE, α) from a statistically valid ensemble of representative mRVEs:

P ∗ =
1

N

N∑
α=1

Pα (7.2)

for N , the total number of mRVEs in the set.
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7.3 Sampling bulk effective properties with mRVEs

7.3.1 Isotropic mRVEs

Many complex-structure materials are isotropic at the macroscale due to their inher-

ently random microstructures. The effective mechanical properties of these random

NP materials are therefore fully characterized by two elastic constants: E∗ and ν∗,

or, equivalently, C∗
11 and C∗

12
1. Having postulated that bulk effective properties may

be computed as the average of properties of many mRVEs, computing bulk effective

mechanical properties of NP materials reduces to computing (first moments of) E∗,α

and ν∗,α (or, equivalently, C∗,α
11 and C∗,α

12 ) determined for many individual mRVEs, α,

generated from the same geometric seed.

In turn, E∗,α and ν∗,α values can be derived from the computed strain energy

densities in mRVEs under known strain states. Here, two applied strain states were

considered: uniaxial (ϵi = ϵ̄ ̸= 0, ϵj = ϵk = 0) and hydrostatic (ϵi = ϵj = ϵk = ϵ̄ ̸= 0)

loading. In both cases, all shear strains are zero. In applying these conditions it is

convenient to identify the three principle directions for a given mRVE as orthogonal to

the faces of the cuboid mRVE. As each mRVE is random and distinct, though, there

is no unifying characteristic direction or orientation among different mRVEs, and, for

random—and therefore anisotropic—mRVEs, the three uniaxial loading conditions

do not result in the same strain energy. Fig. 7.2 illustrates the four unique boundary

conditions.

z

x

y

Figure 7.2: Boundary conditions to compute three pairs of elastic constants for each
mRVE.

In Voigt notation [237], the strain energy in a given mRVE, α, is:

Ûα =
1

2

[
Cα

ij ϵ̄iϵ̄j
]

1As noted above, the superscript asterisk is used to indicate that the property is a bulk effective
property of the NP material, in contrast to the bulk intrinsic properties of the solid material from
which the NP structure is constructed.
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Which, for the hydrostatic (ÛH,α) and uniaxial (ÛU,α
i ) strain states of interest here,

gives:

ÛH,α =
1

2

[
(Cα

11 + Cα
22 + Cα

33) ϵ̄
2 + 2 (Cα

12 + Cα
13 + Cα

23) ϵ̄
2
]

(7.3)

ÛU,α
i=1,2,3 =

1

2

[
Cα

ii ϵ̄
2
]

(7.4)

In these expressions, quantities with a bar are applied (and therefore known), and

hatted values can be computed (here, with FEM).

For randomly structured mRVEs, the set of elastic constants, Cα
ii and Cα

ij, are,

strictly, all unique, and Eq. 7.4 is actually three distinct equations. In practice,

this means that each mRVE yields three separate ÛU,α
i values (for i indicating the

particular load axis), and that ÛH,α reveals only the sum Cα
12+C

α
13+C

α
23, rather than

the individual values. Critically, though, individual local samplings of the elastic

properties of what is, macroscopically, an isotropic material—where Cα
ii ≡ C∗,α

11 and

Cα
ij ≡ C∗,α

12 —were computed. Therefore the three distinct values of ÛU,α
i can each be

combined with ÛH,α to yield three distinct samplings of the effective bulk properties

C∗
11 and C∗

12
2 were computed, which take the form:

ÛH,α =
1

2

[
3C∗,α

11 ϵ̄
2 + 6C∗,α

12 ϵ̄
2
]

(7.5)

ÛU,α
i =

1

2

[
C∗,α

11 ϵ̄
2
]

(7.6)

In this way, a set of N mRVEs yields 3N pairs of C∗,α
11 and C∗,α

12 values, the ∗, α
superscript indicating that they are samples (extracted from the mRVE α) of effective

bulk properties (∗ superscript). C∗,α
11 and C∗,α

12 are related to E∗,α and ν∗,α:

(C11)
∗,α
i =

E∗,α
i (1− ν∗,αi )

ηαi

(C12)
∗,α
i =

E∗,α
i ν∗,αi

ηαi

for ηαi ≡ 1− ν∗,αi − 2 (ν∗,αi )
2
= (1 + ν∗,αi ) (1− 2ν∗,αi )

2Note that, setting aside shear, six unique pieces of information can be extracted from each
mRVE, namely its six unique elastic constants. Here, the same information homogenized to three
pairs of effective elastic constants characterizing the isotropic bulk material represented by each
mRVE.
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Substituting these expressions for (C11)
∗,α
i and (C12)

∗,α
i into Eqs. 7.5 and 7.6 gives:

ÛH,α =
E∗,α

i

2η∗,αi

[
3(1− ν∗,αi )

[
ϵ̄
]2

+ 6ν∗,αi

[
ϵ̄
]2]

(7.7)

ÛU,α
i =

E∗,α
i

2η∗,αi

[
(1− ν∗,αi )

[
ϵ̄
]2]

(7.8)

and E∗,α
i =

2η∗,αi ÛU,α
i

(1− ν∗,αi )
[
ϵ̄
]2 (7.9)

Substituting back into Eq. 7.7 yields:

ÛH,α =
ÛU,α
i

(1− ν∗,αi )ϵ̄2
[
3(1− ν∗,αi )ϵ̄2 + 6ν∗,αi ϵ̄2

]
or ν∗,αi =

3ÛU,α
i − ÛH,α

−3ÛU,α
i − ÛH,α

(7.10)

With Eq. 7.10, E∗,α
i and η∗,αi may be written solely in terms of uniaxial and hydrostatic

strain energies (note that the superscript α has been omitted from the right-hand side

of these expressions for clarity):

E∗,α
i =

(
2η∗i Û

U
i

)/[(
1− 3ÛU

i − ÛH

−3ÛU
i − ÛH

)[
ϵ̄
]2]

(7.11)

η∗,αi = 1−

(
3ÛU

i − ÛH

−3ÛU
i − ÛH

)
− 2

(
3ÛU

i − ÛH

−3ÛU
i − ÛH

)2

(7.12)

The bulk modulus may be calculated directly from the hydrostatic strain energy:

Kα =
2ÛH,α

ϵ2
(7.13)

where ϵ = ϵ̄1 + ϵ̄2 + ϵ̄3
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It is worth noting that if ϵ̄H1 ̸= ϵ̄U1 , Eq. 7.10 is simply:

ÛH =
ÛU
1

(1− ν1)
[
ϵ̄U1
]2 [3(1− ν1)

[
ϵ̄H1
]2

+ 6ν1
[
ϵ̄H1
]2]

ÛH =

(
ϵ̄H1
ϵ̄U1

)2
(
3ÛU

1 +
6ν1Û

U

1− ν1

)

ν1 =
3ÛU

1 − δÛH

−3ÛU
1 − δÛH

(7.14)

where δ =

(
ϵ̄U1
ϵ̄H1

)2

And Eq. 7.11 is modified slightly:

E∗,α =
(
2ηαÛU

)/[(
1− 3ÛU − ÛH

−3ÛU − ÛH

)[
ϵ̄U1
]2]

(7.15)

utilizing a modified η expression to include δ.

7.3.2 Orthotropic mRVEs

In many applications, particularly when a material property exhibits a directional

dependence as is a main theme of the next chapter, it is necessary to treat the

mRVEs as orthotropic, rather than isotropic. An orthotropic mRVE is assumed to

exhibit a lower degree of symmetry than an isotropic mRVE, thus requiring a greater

number of elastic constants to fully characterize them. For an orthotropic mRVE, the

nine non-zero entries in the stiffness matrix, as shown in Eq. 7.16, must be computed.

C =



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


(7.16)

Compared to the previous section, where assumptions of isotropy to extract three

pairs of C11 and C12 from four calculations for each mRVE were made, here, nine

calculations recover nine elastic constants. Fig. 7.3 illustrates the nine unique bound-

ary conditions: three uniaxial, three biaxial, and three simple shear calculations.

The Lamé parameters E11, E22, E33, ν12, ν13, ν32, G23, G13, and G12 are then computed
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Figure 7.3: Boundary conditions to compute each non-zero elastic constant in the
stiffness matrix of an orthotropic material.

according to:

E11 =
C11C22C33 + 2C23C12C13 − C11C23C23 − C22C13C13 − C33C12C12

C22C33 − C23C23

E22 =
C11C22C33 + 2C23C12C13 − C11C23C23 − C22C13C13 − C33C12C12

C11C33 − C13C13

E33 =
C11C22C33 + 2C23C12C13 − C11C23C23 − C22C13C13 − C33C12C12

C11C22 − C12C12

ν12 =
C12C33 − C13C23

C22C33 − C23C23

ν13 =
C22C13 − C12C23

C22C33 − C23C23

ν32 =
C11C23 − C12C13

C11C22 − C12C12

G23 = C44

G13 = C55

G12 = C66
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7.4 Computing mRVE strain energies from FEM

Equation 7.2 postulates that bulk effective mechanical properties can be computed

as the average of the properties of many individual mRVEs. Equations 7.10, 7.11,

and 7.13 show that the elastic properties of individual mRVEs can be determined

from the strain energies in an mRVE under known strain states. In this chapter,

finite element (FE) calculations were implemented in the Static Structural Analysis

module within ANSYS Workbench to compute uniaxial and hydrostatic strain energies

for sets of KRaSTk-generated mRVEs.

Uniaxial strain energy calculations were conducted with a compressive displace-

ment boundary condition applied to the ligament faces in one cut surface of an mRVE.

Ligament faces in the opposite mRVE surface were set as frictionless supports, while

ligament faces in all remaining mRVE surfaces were set to allow motion in only the

direction parallel to the applied displacement. Hydrostatic strain energy calculations

applied identical compressive displacement boundary conditions to ligament faces

in three orthogonal mRVE surfaces, and frictionless supports to the three opposite

surfaces. In all cases, displacements of ϵ̄ = 0.01 were used. Solid regions were as-

signed intrinsic mechanical properties of Es = 165 GPa, Ks = 98.2 GPa, and νs =

0.22, representing a relatively stiff isotropic bulk material. Four distinct strain en-

ergy calculations were performed for each mRVE, three uniaxial (UU
1 , U

U
2 , U

U
3 ) and

one hydrostatic (UH). Adaptive tetrahedron meshes were generated within ANSYS

Workbench using a resolution set equal to 5 (based on a 0 (coarse) to 7 (fine) scale).

7.5 Approach validation

Using the seed description of a prototype network structure defined above, twelve sets

of mRVEs were constructed: nine sets of random mRVEs and 3 sets of regular mRVEs.

Sets of random mRVEs with network connectivities NC of 3, 4, and 6 were studied.

Within each NC mRVE set, constituent ligaments had different aspect ratios, defined

as ligament length divided by average ligament radius. The average ligament radius

is simply computed as the average of the radii of the ligament ends. Node radii (and

therefore end radii of connecting frustum ligaments) for random mRVEs were selected

from three ranges representing “thick” ([r+min, r
+
max]), “intermediate” ([r0min, r

0
max]),

and “thin” ([r−min, r
−
max]) ligaments, and these mRVE sets were labelled ‘+’, ‘0’, and

‘−’, respectively. For each set of random mRVEs the ratio of the maximum node

radius to the minimum was rmax/rmin = 1.57, and r+max was chosen to be twice

r−max with r0max intermediate. The number density of nodes in the computational
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volume, defined as Nsph/s
3, was the same for all mRVEs, yielding equivalent average

ligament lengths. Minimally each node was a distance dsep from the next nearest

node. Individual sets of mRVEs are therefore referred to by their connectivity and

relative ligament radii (which is equivalent to ligament aspect ratio given the common

ligament lengths), e.g., as ‘6NN+’ or ‘4NN0’, and so on. Fig. 7.4 shows example

mRVEs of 3NN−, 3NN0, 3NN+ sets and Table 7.1 includes details of the structural

parameters used in generating the mRVEs studied here.

Figure 7.4: Example mRVEs of random structures used in this section. Each are
unique due to the varied minimum and maximum sphere radii and network connec-
tivity indicated in Table 7.1. Reproduced with permission from Ref. [236].

Table 7.1: Parameters used to generate all sets of random mRVEs.

mRVE set NC N∗
C rmin rmax Nsph s dsep

3NN+ 3 3.24 5.25 8.25 200 100 3.5
3NN0 3 3.24 4.2 6.6 200 100 3.5
3NN− 3 3.25 2.625 4.125 200 100 3.5

4NN+ 4 4.21 5.25 8.25 200 100 3.5
4NN0 4 4.20 4.2 6.6 200 100 3.5
4NN− 4 4.21 2.625 4.125 200 100 3.5

6NN+ 6 6.26 5.25 8.25 200 100 3.5
6NN0 6 6.26 4.2 6.6 200 100 3.5
6NN− 6 6.29 2.625 4.125 200 100 3.5

The top panel of Fig. 7.5 shows computed Eα
i values for all random mRVEs. Each

point represents results from a single mRVE, and is located at (Eα
x , E

α
y − Eα

x ). The

bottom panel of Fig. 7.5 shows gamma (Γ-) distributions fit to each set of Eα values.

Gamma distributions were chosen to fit mechanical properties data both because

they are positive definite and are a generalization of normal distributions, which
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Figure 7.5: (top) Qualitative evidence that there is no correlation between Eα
x and

Eα
y for individual prototype random network mRVEs, α. The points located at (Eα

i ,

Eα
y − Eα

x ) appear randomly distributed about a central mean (Eα
i ). (bottom) E∗

i

for all mRVEs plotted as Γ-distributions, positioned directly below their respective
point clouds. The break on the y-axis indicates that the first three distributions are
significantly taller than the rest. Reproduced with permission from Ref. [236].

are expected for mRVEs with larger stiffnesses. A quantitative summary of data in

Fig. 7.5 is given in Table 7.2, which lists the effective bulk mechanical properties

computed for each mRVE set, including the effective bulk stiffnesses (E∗), Poisson

ratios (ν∗), and bulk moduli (K∗)—all computed according to Eq. 7.2. Also reported

in Table 7.2 are statistical parameters for the sets of Eα
i values, including the standard

deviation of stiffness values (σ, which is the square root of the variance in E∗), the

shape and scale parameters for the Γ-distribution fits (a and b, respectively), and the

correlation in Eα
i values for each pair of orthogonal directions (R{i,j} for i, j =x, y; x,

z; and y, z).

Fig. 7.5 (top panel) qualitatively shows that there is no correlation between Eα
x and

Eα
y values for individual mRVEs—that is, the points (Eα

x , E
α
y − Eα

x ) show no trend

and appear randomly distributed about a mean value. This lack of correlation is

quantitatively confirmed for all three direction pairs by computed correlation values

below 0.5 for (Eα
x , E

α
y ), (E

α
x , E

α
z ), and (Eα

y , E
α
z ) (see Table 7.2). Therefore, the
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Table 7.2: Effective bulk mechanical properties (E∗, ν∗, and K∗ in GPa) and their
respective statistical distribution parameters for prototype random network mRVE
sets. The quantities a, b, σ, and R correspond to the gamma shape parameter, gamma
scale parameter, standard deviation, and correlation, respectively, for the prototype
random network mRVE E∗ results.

mRVE set E∗ ν∗ K∗ a b σ R{X,Y} R{X,Z} R{Y,Z}

3NN+ 6.31 0.15 2.98 53.35 0.12 0.87 0.00 -0.27 -0.23
3NN0 3.33 0.15 1.59 45.64 0.07 0.50 0.16 0.00 -0.31
3NN− 0.50 0.15 0.25 18.49 0.03 0.12 -0.38 0.04 -0.08

4NN+ 17.89 0.17 8.96 139.03 0.13 1.52 -0.12 0.10 -0.25
4NN0 9.93 0.18 5.16 150.72 0.07 0.81 -0.11 -0.19 -0.26
4NN− 1.87 0.19 1.02 55.09 0.03 0.25 -0.22 0.03 -0.44

6NN+ 43.07 0.19 23.02 437.71 0.10 2.06 0.06 0.10 -0.16
6NN0 25.63 0.20 14.04 583.73 0.04 1.06 0.37 0.25 0.22
6NN− 5.94 0.23 3.80 28.62 0.21 1.11 -0.04 -0.24 -0.26

three Eα
i values computed for each mRVE can be considered three distinct samples

of mesocale mechanical properties. The bottom panel of Fig. 7.5 shows that mean

stiffness values and the ranges of stiffnesses within mRVE sets vary with structural

parameters.

Fig. 7.6a shows Γ-distributions fit to computed Eα
i values for sets of 3NN− mRVEs

constructed in differently sized computational boxes. The size of the computational

box is characterized by λ, the ratio of the length of the computational box to the

average length of ligaments in the mRVEs. That the number density of nodes in each

mRVE is fixed and ligaments connect nearest neighbor nodes implies that the average

ligament length is conserved across the mRVEs studied here. Therefore, a larger λ

corresponds to an mRVE that samples a larger effective volume of NP structure—and

therefore contains more total nodes and ligaments. The inset to Fig. 7.6a shows the

mean value of Eα
i (that is, the effective bulk stiffness, E∗, indicated with hashes), the

standard deviation of Eα
i values (±σ, thick bars), and the absolute range of computed

Eα
i values (thin bars) as a function of λ. Given that there is no correlation between

Eα
x , E

α
y , and Eα

z values, distributions in Fig. 7.6a are fit from the ensemble of all

3NN− Eα
i values (i.e. the collective set of all Eα

x , E
α
y , and E

α
z values) for a given λ.

For λ below some critical λmin, mRVEs are not large enough relative to the struc-

tural feature sizes (i.e. do not contain a large enough volume of the structure) to be

representative of the bulk, and computed results will not be converged with respect to

mRVE size. For very large λ beyond some λbulk all mRVEs will be in the macroscopic
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(a)

(b)

Figure 7.6: (a) Γ-distributions of Eα
i for the 3NN− mRVE set as a function of λ, a

quantity corresponding to mRVE size with respect to structural feature size. (b) Γ-
distributions of a set of structures generated according to the 3NN− parameters as a
function of Eα

i . Since three E
α
i values are calculated for each mRVE, the quantity 3N

corresponds to a number N of mRVEs. Reproduced with permission from Ref. [236].

limit, and will yield the same singular values for all mechanical properties–though it

is expected that such mRVEs would be too large to be computationally tractable.

The inset of Fig. 7.6a shows that E∗ converges at λmin ≈ 4.6, implying that this is

the smallest mRVE size (relative to characteristic structural feature sizes) for which

the generated mRVEs are representative of the bulk. For mRVEs with larger λ the

83



width of the distribution of Eα
i values (as measured by either σ or the range of Eα

i

values) monotonically decreases, consistent with convergence to a singular bulk value

in the macroscopic limit. The value of a λbulk will depend on the magnitude of vari-

ation in properties that can be considered trivial for a specific application, but can

reasonably be taken to be much larger than λ = 7 as σ/E∗ ≈ 0.084 at this relative

computational box size.

Regardless, both the value of λmin and any λbulk (chosen for a particular maximum

allowed variation in properties) are not only important computational parameters

(indicating thresholds for computational convergence) but also physically relevant

materials parameters specific to particular seed geometries that characterize limiting

length scales for the use and application of NP materials. To ensure results converged

with respect to mRVE size, computational boxes with λ = 5.78 have been used

throughout.

Fig. 7.6b shows Γ-distributions fit to computed Eα
i values for sets of 3NN− mRVEs

as a function of the number of mRVEs in each set (N). For large enough sets of

mRVEs from the same geometric seed (N > Nmin), the mean and distributions

of computed properties should be insensitive to increasing N . In such cases, the

distributions of properties among mRVEs will arise solely from the intrinsic and

representative variability of the structures themselves, not from sampling error with

respect to the number of mRVEs. As discussed above, this intrinsic variability will

itself depend on the relative size (e.g. λ) of the mRVEs in the set. Fig. 7.6b shows

that Nmin = 30 mRVEs (3Nmin = 90 Eα
i values) for the present seed geometry, and to

ensure results converged with respect to number of mRVEs, sets of N = 50 mRVEs

have been used throughout this section.

It is important to note that the designation of an mRVE as “orthotropic” or

“isotropic” must stem from prior knowledge of the modeled material. For example, a

material known to be transverse isotropic, like a fibrous mat, must not be evaluated

with the four-calculation approach. In a transverse isotropic material, of the three Exx

values, two will be the same and distinct from the other. The isotropic approach would

inappropriately average the three elastic constants and misrepresent the material. For

an isotropic material, the isotropic approach and the orthotropic approach will yield

very similar results. The results of the nine calculation orthotropic approach would

simply yield a few redundant values. Fig. 7.7 illustrates this with a set of 35 isotropic,

ligament-based mRVEs. An example mRVE is included in the top right of the plot.

The group of red points represents the average Exx of each mRVE using the isotropic

approach (four calculations), and the blue points represent the average Exx of each
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mRVE using the orthotropic approach (nine calculations). The average difference

between the two approaches is 4%. Since the central focus of the KRaSTk tool is the

distribution, or variability of properties exhibited by materials with complex, random

structures, this difference in methods is not considered significant.
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Figure 7.7: Comparison of E results for a set of mRVEs treated as isotropic and
orthotropic.

7.6 Properties of prototype NP geometry

7.6.1 Network connectivity dependence: Extending Gibson-Ashby

Figs. 7.8a and 7.8b plot computed Eα
i and Kα values for the nine converged sets of

mRVEs (λ = 5.76, N ≈ 50 for each) as a function of the reduced density of each

structure (ϕα). Results for 6NN, 4NN, and 3NN mRVE sets are shown with green,

red, and blue points, and sets with +, 0, and − ligament thicknesses are shown with

squares, triangles, and circles, respectively, for both elastic and bulk modulus. E∗

and K∗ (computed following Eq. 7.2) for each mRVE set are shown with white points,

and are reported in Table 7.2. As can be seen, solid fraction alone is not predictive

of either E∗ or K∗ when NC is allowed to vary. In all cases an increase in NC for

a given ligament thickness—which, physically, would correspond to an increasingly

constrained network structure—results in an increase in both E∗ and K∗ that cannot

be explained by the associated increase in solid fraction alone. This is highlighted by,

e.g., the 6NN− and 3NN0 mRVE sets, where, despite the fact that the 3NN0 mRVEs
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Figure 7.8: (a) Effective elastic modulus values and (b) effective bulk modulus val-
ues for all prototype random network mRVEs. Reproduced with permission from
Ref. [236].

exhibit higher solid fractions, the 6NN− mRVEs have both higher elastic and bulk

moduli.

These results show that increasing connectivity in a porous network structure

independently leads to increased stiffness, an effect that would only be captured in

the material-specific prefactor CE in the G-A model. Notably, for any particular

value of NC , quantitative fits to calculated Eα
i values are in excellent agreement

with the G-A model with, as expected, different prefactors for 3NN, 4NN, and 6NN
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E*/ES = 0.49φ2(NC*-3)0.41
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Figure 7.9: (a) The surface fit of all prototype random network mRVEs, allowing for
future calculation of E∗/ES as a function of ϕ and N∗

C . (b) The difference between
the E∗ values generated via FEM and via the fit in Fig. 7.9a. Reproduced with
permission from Ref. [236].

structures. In addition, Fig. 7.8b shows that bulk moduli values appear to follow a

similar trend as elastic moduli, suggesting that they would also be well-modeled by a

Gibson-Ashby-like expression. Based on these observations, an empirical extension to

the G-A model is proposed that appends a power law factor for the effect of network

connectivity and reduces to the original G-A expression (for elastic modulus) when

connectivity does not vary. A similar expression for bulk modulus is also proposed,

written:

E∗

Es

= CEϕ
2 (N∗

C − 3)nE (7.17)

K∗

Ks

= CKϕ
2 (N∗

C − 3)nK (7.18)

The choice of (N∗
C − 3) for the connectivity term in this “extended Gibson-Ashby”

(EGA) model reflects that while structures with N∗
C values below 3 can yield mechan-

ically non-trivial 3D solids, nodes in such structures with less than three connected

ligaments generally represent either the ends of “dangling” ligaments (which do not

contribute to mechanical responses) or the junction between two ligaments that can

be treated as a single, longer ligament. Therefore the minimum effective network

connectivity in a solid is three.

Figs. 7.9a and 7.10a plot computed Eα
i and Kα from all nine random mRVE sets

as functions of ϕα and N∗,α
C , along with least-squares (surface) fits in the form of

Eqs. 7.17 and 7.18. Fit parameters are found to be CE = 0.49, nE = 0.41 for elastic

modulus, and CK = 0.41 and nK = 0.47 for bulk modulus. Figs. 7.9b and 7.10b show
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K*/KS = 0.41φ2(NC*-3)0.47
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Figure 7.10: (a) The surface fit of all prototype random network mRVEs, allowing for
future calculation of K∗/KS as a function of ϕ and N∗

C . (b) The difference between
the K∗ values generated via FEM and via the fit in Fig. 7.10a. Reproduced with
permission from Ref. [236].

the normalized variance between FE-computed E∗ and K∗ values and EGA-predicted

moduli for the average N∗
C and ϕ of each mRVE set. Overall, the proposed empirical

fit is excellent, with somewhat higher relative variance at solid fractions below ∼0.2.

It should be noted, however, that the absolute magnitude of E∗/ES and K∗/KS are

quite small at these low solid fractions such that, with respect to the 3NN− set for

example, observed variances of up to ∼ 50% between FEM computed and model-

predicted E∗ values represent absolute variances that are only ∼ 0.1% of the intrinsic

fully-dense bulk stiffness.

7.6.2 Effect of short- and long-range disorder

Figs. 7.11a and 7.11b show computed E∗
VRH and K∗

VRH values as a function solid

fraction for 4NN, 6NN, and 8NN regular structures, analogous to the white points in

Figs. 7.8a and 7.8b, which show E∗ results for random mRVEs. The red and green

solid curves shown in Figs. 7.11a and 7.11b are the EGA model predictions (Eqs. 7.17

and 7.18) evaluated for NC = 4 and 6 using coefficients fit from random mRVE data

(see above). The black solid curve is the prediction of the original G-A model (Eq. 7.1)

(and an equivalent expression for bulk modulus) for prefactors with the value of 1.0.

Voight-Reuss-Hill (VRH)-homogenized E∗
VRH and K∗

VRH values are approximations

of the bulk effective properties of a material with identical local structure (here, a

regular mRVE) randomly oriented in a contiguous solid. Such structures would have

no long-range order (similar to random mRVEs) but would possess short-range or

local order (unlike random mRVEs) and might be envisioned as examples of network
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Figure 7.11: (a) Voigt-Reuss-Hill elastic modulus approximations for all regular
mRVEs. (b) Bulk modulus approximations for the regular mRVEs. The 4NN-random
and 6NN-random lines were obtained by fitting the relevant data points in Fig. 7.8a.
Reproduced with permission from Ref. [236].

glasses.

While the VRH approach only approximates the behavior of an idealized material,

Figs. 7.11a and 7.11b suggest that random network structures lacking both long- and

short-range order (as represented by the EGA fits to random mRVE data shown in

red and green curves) are less stiff than the VRH approximation predicts for network

structures lacking only long-range order. This is likely a consequence of the fact

that the overall stiffness of a network structure will be strongly influenced by the

weakest (e.g. thinnest or least favorably oriented) ligaments in the structure. As

regular structures have uniform local structure, no “weakest link” local ligament

configurations exist to influence overall properties. Moreover, the effect of weak links

in a network structure would be most pronounced in a poorly constrained network—

that is, a structure with low connectivity.

It is also of note that E∗
VRH and K∗

VRH depend only weakly on network connec-

tivity. This reinforces a “weakest link” analysis in that lower connectivity in (fully)

random network structures (e.g. the random mRVEs considered here) would be

expected to result in more uneven arrangements of ligaments—and therefore weaker

weakest links—than higher connectivity structures. In randomly-oriented regular net-

work structures (as represented here by the VRH approximation applied to regular

mRVEs), the only (effective) variability in local stiffness would arise from geometric

effects (that is, the relative orientation of the load direction) that only weakly depend

on connectivity.
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7.6.3 Transferability of EGA model

While this section has considered a specific seed geometry, many nanoporous materi-

als can be reasonably approximated as collections of nodes connected by ligaments.

It is therefore postulated that the form of the EGA model proposed above has wide

applicability to a range of NP and general complex-structure materials. It is unclear

based on present results alone the degree to which the empirically derived coefficient

values extracted here are transferable among different materials with node and lig-

ament structures. The prefactors CE and CK remain materials-specific parameters

that encapsulate details of both (i) the intrinsic material from which the NP structure

is formed, and (ii) other details of ligament and network structure. Efforts applying

KRaSTk to isolate the magnitude and details of both of these types of effects are

underway.

In considering the exponents nE and nK , which characterize the sensitivity of bulk

effective properties to changes in connectivity (with nE or nK equal to zero indicating

no sensitivity) two observations from the present results emerge: that short-range

disorder dramatically enhances the effect of connectivity on elastic response (see e.g.

Figs. 7.11a and 7.11b), and that bulk modulus (in addition to elastic modulus) varies

with connectivity. As noted above, the first point shows that elastic behavior is

strongly influenced by differences in local structure (i.e. short-range disorder) that

result in weaker regions in a material. The second point, that the elastic response

to hydrostatic loading is affected by connectivity, highlights a related finding that in

random ligamented structures elastic responses along different directions of the same

volume are not only inequivalent, but uncorrelated. Both of these observations link

the degree of variability in local structure, and therefore local mechanical responses,

to the sensitivity of effective bulk properties to network connectivity, and therefore

nE and nK are expected to increase from zero with increasing structural variability

(e.g. in ligament thickness, range of effective network connectivities, or increasing

inhomogeneity in node distributions in space).

7.7 Summary

Using the Kentucky Random Structures Toolkit (KRaSTk), sets of random- and

regular-structured model representative volume elements (mRVEs) constructed from

a geometric seed description consisting of conical frustum ligaments connecting near-

est neighbor spherical nodes have been generated and their mechanical properties

computed. Elastic and bulk moduli derived from FE-computed strain energies were
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determined for sets of mRVEs with ranges of network connectivities and ligament

aspect ratios. Properties of individual randomly-structured mRVEs are taken to be

mesoscale samples of the properties of a bulk NP material for mRVEs beyond a

minimum size relative to the characteristic size of structural features in the mRVEs.

Averages of computed properties over sufficient numbers of mRVEs are therefore mea-

sures of expected effective bulk properties. Averages and distributions of computed

properties for sets of random mRVEs converged towards a singular bulk value for

mRVEs with larger volumes, and were self-similar for sets of ∼30 or more mRVEs.

Computed elastic properties of random mRVEs illustrate that there is a sepa-

rable and independent effect of network connectivity on elastic and bulk moduli.

Increasingly constrained network structures are stiffer than less constrained struc-

tures with the same reduced density. This effect can be captured in an extension

to the Gibson-Ashby model of open-foam mechanical properties with the addition of

a connectivity-dependent factor, and this extended G-A (EGA) model is found to

apply to both elastic and bulk modulus:

E∗

Es

= 0.49ϕ2(N∗
C − 3)0.41

K∗

Ks

= 0.41ϕ2(N∗
C − 3)0.47

The value of the exponents in the connectivity term are expected to be universal in

that they do not depend on the specific bulk material from which the NP structure

is formed, but will vary based on the degree of feature-scale disorder present in the

NP material—falling to zero (no effect of connectivity) for materials constructed of

identical feature-scale structural units. The prefactor values remain material specific

and further work is ongoing to reveal additional specific factors that significantly

influence these parameters.

Overall, the present results demonstrate a robust method for generating and com-

puting properties of large sets of mRVEs based on a physically motivated geometric

seed description of complex or randomly-structured materials. The present approach

can be applied to any material that can be described as combinations of geomet-

ric primitives, and can be adapted to probe any properties of materials for which

FE-based continuum methods are available. While the capabilities of KRaSTk have

been demonstrated here for a porous 3D network structure, other potentially impact-

ful applications include, to name a few, the exploration of structure–property rela-

tionships in additive materials (e.g. powder sintering-based 3D printed materials),
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membrane materials, or nanocrystalline/polycrystalline alloys—all of which exhibit

complex and/or random feature-scale structures. In the next chapter, KRaSTk is

applied to yet another material and application: metallic foams for micrometeoroid

and orbital debris shielding.

Copyright© Mujan N. Seif, 2022.
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Chapter 8: Stochastic mesoscale mechanical modeling of Duocel

8.1 Motivation

Micrometeroid and orbital debris (MMOD) pose a significant danger to both robotic

and crewed spacecraft operating beyond Earth’s atmosphere [238, 239, 240, 241, 242,

243]. Despite minuscule size (typically on the order of µm to mm), particles orbiting

Earth at 10-12 km/s have tremendous impact velocities and can cause catastrophic

damage [238], as shown in Fig. 8.1. The International Space Station alone has been

subjected to hundreds of strikes, including damage to solar arrays, handrails, radia-

tors, and windows. Fortunately, no major failures have resulted from these impacts,

such as breech of pressure integrity of the crew modules. However, some of these

damages have resulted in noticeable effects to ISS systems and operations, such as

power degradation due to damage to solar arrays, cut-gloves from craters on EVA

handrails, and an unplanned EVA to stabilize tears in a solar array from a snagged

guidewire caused by damage from MMOD.

Albeit with substantial cost and risk, the damage caused by larger objects is

generally mitigated by avoidance maneuvers. Currently, about 21,000 objects at least

10 cm in diameter or larger are being tracked by the US Space Surveillance Network

(including about 800 objects representing functional satellites) [246]. Only the largest

pieces of debris in orbit can be tracked, mainly by using optical sensors. The minimum

size of objects that are regularly tracked are 30 cm and 10 cm in geosynchronous orbit

and low Earth orbits, respectively. Among the tracked pieces of debris, there are

about 200 satellites abandoned in geosynchronous orbits occupying or drifting through

Figure 8.1: Examples of MMOD impacts: (a) Surface of an ISS radiator panel [244]
and (b) MMOD impact on satellite component retrieved during the STS-41C Solar
Max repair mission [245].
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Figure 8.2: A diagram of a projectile striking an open cell metallic foam sandwich
panel.

valuable orbital positions and posing a collision hazard for functional spacecraft.

However, protection from smaller debris is prohibitively difficult to address in this

way, and therefore remains a challenging and increasingly important problem.

Open cell metallic foam sandwich panel structures have proven effective at miti-

gating damage from MMOD strikes [240, 241, 242]. Commercially available metallic

foams sandwiched between solid metallic facesheets are widely used for MMOD shield-

ing on a range of spacecraft. The foam core layer is composed of open, node-ligament

networks of randomly oriented polycrystalline metallic ligaments. Ligament lengths

and pore sizes vary over some distribution characteristic of the specific material, but

typically have lengths on the order of microns. Impacting particles penetrate the

outer sacrificial facesheet of the sandwich structure and suffer repeated impacts with

ligaments in the foam—deflecting, fragmenting, and vaporizing in the process. Any

residual impactor fragments arriving at the back facesheet have sufficiently reduced

kinetic energy that they can be stopped by a thinner (and therefore less massive)

solid sheet than would be required absent the energy dissipating foam layer. Fig. 8.2

illustrates this operating mechanism.

Operating under powerful imperatives to minimize weight and volume while ro-

bustly assuring mission success (within externally determined parameters), compo-

nent and spacecraft designers require accurate knowledge of Al foam properties and

94



responses to MMOD strikes. This is complicated by the potentially small sizes of

impacting MMODs and the intrinsically random nature of foam-based shielding ma-

terials, which exhibit different materials responses depending on the length-scale of

the particle/foam interactions. For impacts affecting volumes at size scales similar

to that of individual ligaments and/or pores—the “feature” length scale, on the or-

der of microns for many metallic foams—foam properties and responses to MMOD

strikes are not characteristic of the bulk foam material, but rather of individual struc-

tural features (e.g., pores, ligaments, ligament junctions, etc.) within the structure.

At length scales much greater than those of individual pores and ligaments—that

is, on the macroscale—uniform, singular bulk properties characteristic of the foam

material can be observed and represent the homogenized, or “effective”, response of

all structural features (ligaments and pores). Between these length scales—on the

mesoscale—material responses become characteristic of the foam material, but are

not singular or uniform, instead varying within characteristic distributions depend-

ing on the detailed arrangement of features in the affected volume. Recall that in

§7.2, it was noted that the terms “mesostructure” or “mesoscale” in these contin-

uum scale chapters do not necessarily refer to features on a particular length scale,

but rather the length scale at which an ensemble of features, rather than individual

features, determine behavior.

In order to make appropriate design decisions—particularly ones that minimize

mass and volume—spacecraft designers require quantitative knowledge of (i) expected

bulk materials properties, (ii) distributions of local properties characteristic of the

material at the mesoscale, and (iii) the physical lengths which bound the feature-

scale, mesoscale, and macroscale. In particular, it is critical to know the length

scale above which behavior representative of the bulk material will be observed—

that is, the transition length from the feature-scale to mesoscale (λf→m)—as this sets

a hard minimum feature size for spacecraft components fabricated from the material.

This need for quantitative knowledge of materials properties and responses has led

to high demand for accurate, physics-based computational models allowing rapid

materials selection (among, e.g., foams with different ligament and pore sizes) and

computational prototyping of component performance. To meet these needs, models

for the material responses of complex and/or randomly structured materials must

necessarily account for the intrinsic inhomogeneity of the bulk material and allow

efficient sampling of the materials structure at a range of length scales. The following

sections investigate the material response of both defect-free and defected metal foam

structures.
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8.2 Defect-free structures

This section on defect-free structures largely focuses on size effects. KRaSTk was

used to compute the properties of many mRVEs at various sizes relative to the key

structural features of the seed description, which allowed for determination of bulk

effective properties, distributions of mesoscale properties, and the size at which the

material’s behavior will transition from feature-scale to mesoscale. The computed

properties were then validated by a comparison to independently obtained experi-

mental results for a commercially available Al foam, Duocel, manufactured by ERG

Aerospace [247].

8.2.1 mRVE generation

The Kentucky Random Structures Toolkit (KRaSTk) was used to generate sets of

200 model representative volume elements (mRVEs) to characterize Duocel foams.

For each set, the structural (generation) parameters are shown in Table 8.1. Each set

is named according to its class and λ. In this section, classes were distinguished based

on reduced density (low, medium, and high). As described in Chapter 7, the quantity

λ is defined as the ratio of mRVE side length, s to characteristic length, ℓ, which is

the average length of every ligament in the set. An example set name is L/5.1, which

indicates that the set is composed of low density mRVEs with a λ of 5.1. Within

each class, an increasing λ is equivalent to a larger sample volume. For example,

mRVEs in the L/5.1 are a third of the size as mRVEs in the L/7.3 set (in terms of

total volume, not reduced density or solid fraction). A few quantities presented in

Table 8.1 are not necessarily independent. For example, the aspect ratio (AR) is

simply the ratio of characteristic length to node diameter: AR = ℓ/2r. Because each

set within a class has the same nodal density (spheres/volume), the characteristic

length and aspect ratio remains constant. In contrast to the structures highlighted in

the previous chapter, the radii of all nodes in every set regardless of class is identical.

The change in reduced density between each class stems entirely from the number

of nodes, rather than the size. A set of mRVEs representing each set is shown in

Fig. 8.3. Each mRVE is a single example of the 200 built for each set. It is crucial

to note that equivalent λs do not correspond to the same s values when comparing

across classes.
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Table 8.1: Structural parameters for each class of mRVEs examined in this section.

mRVE set NC r Nsph s dsep ℓ AR λ

L/5.1 3 3.0 66 100 3.0 19.4 3.23 5.1
L/7.4 3 3.0 132 144 3.0 19.4 3.23 7.4
L/8.8 3 3.0 198 171 3.0 19.4 3.23 8.8
L/9.4 3 3.0 330 182 3.0 19.4 3.23 9.4
L/10.3 3 3.0 528 200 3.0 19.4 3.23 10.3
L/11.1 3 3.0 660 215 3.0 19.4 3.23 11.1

M/6.8 3 3.0 165 100 3.0 14.8 2.47 6.8
M/9.7 3 3.0 495 144 3.0 14.8 2.47 9.7
M/11.6 3 3.0 825 171 3.0 14.8 2.47 11.6
M/12.3 3 3.0 990 182 3.0 14.8 2.47 12.3

H/7.7 3 3.0 275 100 3.0 13.0 2.16 7.7
H/11.1 3 3.0 825 144 3.0 13.0 2.16 11.1
H/12.3 3 3.0 1100 159 3.0 13.0 2.16 12.3
H/13.2 3 3.0 1375 171 3.0 13.0 2.16 13.2

Figure 8.3: A “map” of each set of structures utilized in this section of defect-free
mRVEs. Each image is a single example of the hundreds of mRVEs in each set.

8.2.2 Computational details

The elastic constants of each mRVE was computed via the method described in §7.3.2
for orthotropic mRVEs. Although these structures were hypothesized to be isotropic

and, therefore, the method in §7.3.1 would be appropriate, the calculations in the next

section focus precisely on defect-induced directional properties of these same sets of

mRVEs. As such, the decision was made to use the same method (orthotropic) and
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allow for easier comparison.

Due its ubiquity, there are innumerable software packages available to solve PDEs

using FEM. In essence, they are extremely similar, with only the front ends varying

significantly to cater to the needs of the user base. The elastic constants presented

in this chapter were computed with FEniCSx. FEniCSx is a collection of free and

open-source software components working together to enable the automated solu-

tion of differential equations. The components provide scientific computing tools for

working with computational meshes, finite-element variational formulations of ordi-

nary and partial differential equations, and numerical linear algebra [248]. Although

the calculations in Chapter 7 were conducted with ANSYS Workbench, it was discov-

ered that FEniCSx was inherently more powerful and flexible, and subsequent studies,

including those in this chapter, utilized it as the FEM solver. A Krylov solver incor-

porating the generalized minimal residual method and a successive over-relaxation

pre-conditioner. The absolute tolerance was set to 1×10−7 and the relative tolerance

to 1× 10−5. Geometries were meshed utilizing mshr, the mesh generation component

of FEniCSx. Mshr builds simplicial DOLFIN meshes in 3D, utilizing CGAL and Tetgen

as mesh generation backends. For each structure, a tetrahedral mesh with a resolu-

tion of 150.0 was generated. The resolution quantity is defined as the inverse of the

cell size h, the longest edge in any mesh element. Solid fractions were computed as

the assembled mesh volume. For each calculation, displacements were assigned such

that 0.5% strains were applied. The material within each ligament was isotropic, with

E = 69 GPa, ν = 0.33, similar to commonly reported values for polycrystalline Al

metal. The Γ-distributions, along with each distribution’s respective shape (a) and

scale (b) parameter, were computed in MATLAB using its GammaDistribution object

in the Statistics and Machine Learning Toolbox. Expectation values (means) for Γ-

distributions of E values were computed as µE = a ∗ b, and standard deviations of

E values within mRVE sets as σE = (a ∗ b2)1/2. It is imperative to note here that,

while mechanical properties are the focus of this chapter, the symbol σ is exclusively

used to denote standard deviation–never stress. The range [±σE] was deemed the

“standard variability” of the material. As discussed previously, for mRVEs at very

large λ values, the standard variability (that is, the intrinsic variability in the ob-

served properties of the material) will fall to zero, representing the transition to the

macroscale, the length scale at which the material exhibits singular bulk properties.
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Figure 8.4: E results for each mRVE set for each class.

8.2.3 Feature-scale to mesoscale transition

The three elastic moduli—E1, E2, and E3—computed for each mRVE in each set is

shown in Fig. 8.4. Generally, each set of points obscures several others, and it is not

possible to differentiate individual sets, let alone observe trends and draw conclusions.

Still, one observable feature of this plot is the presence of negative E results for the

L/5.1 set. Since a negative stiffness is nonphysical, one can assert that for a low

density foam with a λ of 5.1, too little of the characteristic structural features are

present to be mechanically stable.

To visualize the E results in a way that is far more useful and descriptive, they were

replotted as Γ-distributions. Compared to other distributions, Γ was selected because

these probability distribution functions (PDFs) are positive-definite and converge to

normal distributions. The plots of Γ-distributions in this dissertation never include

a y-axis because the focus is on comparing distributions of multiple sets spanning

multiple classes. The total area of any PDF, and subsequently each Γ-distribution,

is always equal to 1.

Fig. 8.5 shows only the high density mRVEs (sets H/7.7, H/11.1, H/12.3, and

H/13.2) in the form of Γ-distributions, with the point clouds of computed values

shown in the inset. From this juxtaposition of identical data sets, Fig. 8.5 high-

lights both how Γ-distributions show the convergence of property distributions with
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Table 8.2: The Γ-distribution parameters, a and b, and corresponding statistical
quantities, µE and σE, for each L, M, and H mRVE set.

Γ Parameters Statistics

Set a b µE σE

L/5.1 2.41 13.87 33.36 21.51

L/7.4 6.66 6.81 45.35 17.57

L/8.8 8.35 6.48 54.04 18.71

L/9.4 13.31 4.24 56.41 15.47

L/10.3 26.03 2.09 54.40 10.66

L/11.1 25.15 2.17 54.68 10.90

M/6.8 10.65 9.04 96.32 29.51

M/9.7 22.39 5.08 113.83 24.06

M/11.6 41.00 3.01 123.37 19.27

M/12.3 38.18 3.21 122.42 19.81

H/7.7 16.16 10.68 172.58 42.94

H/11.1 49.40 3.96 195.82 27.86

H/12.3 50.59 3.88 196.29 27.60

H/13.2 48.75 4.01 195.49 28.00

increasing λ and how inadequately scatter plots convey the same result. Beginning

with H/11.1, both µE and [±σE] were identical as the size (s, and therefore λ) of

the mRVEs increases. Table 8.4 highlights the change, with both µE and [±σE] dif-
fering for λ = 7.7, but converged for all other cases. This convergence indicates the

transition from the feature-scale to the mesoscale and sets a range on the value of

λf→m for high density structures: 7.7 < λf→m ≤ 11.1. At much higher lambda values

(much larger computational boxes compared to ligament lengths) [±σE] will approach
zero, while µE will remain fixed, representing the transition from mesoscale to bulk

behavior.

The same procedure was followed to determine λf→m for the low and medium

density mRVE sets. For medium density structures, µE and [±σE] converge as λ ap-

proaches 11.6, indicating that 9.7 < λf→m ≤ 11.6 in this case. The results for the low

density mRVE sets differ in that there is a differentiation between the convergence of

the expectation value, µE and standard variability ([±σE]) as λ increases. Beginning

with L/9.4 and persisting through L/10.3 and L/11.1, µE is around 55 MPa (see
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Figure 8.5: E results for the high density sets, plotted as both scatter and Γ-
distributions. The Γ parameters and statistical quantities are found in Table 8.4.

Table 8.4). However, it is not until L/10.3 that a consistent [±σE] emerges. Further

calculations on additional mRVE sets within the M and H classes are required to

determine if this phenomenon appears at all densities. It remains that the L results

are excellent evidence that variability and averages are two entirely different variables

that must both be considered. These results highlights that accurately resolving the

variability intrinsic to a material with complex structure (at a particular λ) requires

larger (relative to the feature sizes) volumes than resolving the expectation value of

the property.

Based on the results presented in Fig. 8.6 and Table 8.4, the λs at which all classes

(densities) of mRVEs converge can be found. Fig. 8.7 indicates the λ values for all

sets and aggregates the ranges established for λf→m. It is immediately clear that

computed ranges for λf→m overlap—in the range 9.7 ≤ λf→m ≤ 10.3. This makes

physical sense, in that the volume of a complex material relative to structural feature

sizes required for the material to exhibit characteristic properties should be consistent

for similar geometric seed descriptions. Moreover, this result offers further support

to the key hypotheses underlying the KRaSTk approach more generally—namely

that aggregated properties of many mRVEs characterize the expected behavior of

real materials, including both the mean (or expected) materials properties and the

intrinsic variability of those properties as a function of size. Extending this logic,
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Figure 8.6: E results for each mRVE set, plotted as Γ-distributions. The Γ parameters
and statistical quantities are found in Table 8.4.

Figure 8.7: The quantity λ is plotted for each mRVE set. Within each class of
mRVEs, the range of λ where µE and σE converge below 2% is highlighted with a
colored line segment. The black shaded region indicates the range of λs where the
converged windows of each class overlap.
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λf→m values computed for mRVEs with NC = 3, as shown here, should be a ceiling for

λf→m in structures with larger NC—which necessarily have more geometric features

(e.g. ligaments) per unit volume.

While further calculations on mRVE sets with additional λ values would be re-

quired to refine the precise value of λf→m for this metallic foam seed geometry, the

present results show that 9.7 ≤ λf→m ≤ 10.3. Given that λ = s/ℓ, the mRVE side

lengths for the feature-to-mesoscale transition occur at:

L : 188.2 ≤ sf→m ≤ 199.8 (8.1)

M : 143.6 ≤ sf→m ≤ 152.4 (8.2)

H : 126.1 ≤ sf→m ≤ 133.9 (8.3)

These values are in arbitrary units such that all ligaments have diameters of 6 units.

As can be observed, it is expected that as the density of the material increases the

physical volume required to enter the mesoscale decreases, consistent with the quali-

tative analysis that denser materials have more structural elements per volume, and

therefore homogenize at lower volumes.

8.2.4 Stochastic model predictions of Duocel properties

Computed µE and σE values are intended to be directly analogous to measured prop-

erties of metallic foams with structures well modeled by the geometric seed employed

here—an assertion that can be directly tested by comparing computed properties to

those measured for physical foam samples. Here, a commercially available Al metallic

foam, Duocel [247], is considered.

Fig. 8.8 plots properties (for both NC = 3 and NC = 4 mRVEs) computed in

this work along with properties of Duocel samples as measured experimentally by the

foam manufacturer, ERG Aerospace [247], according to ISO 13314:2011. Computed

properties reported in Fig. 8.8 are for mRVE sets with λ values at or just above the

λf→m range discussed above–that is, applicable to equivalent physical samples with

sizes on the order of 20-30× typical ligament diameters. Analytic predictions of both

the Gibson-Ashby model[225, 226] the Extended Gibson-Ashby expression derived in

Ref. [236] are also shown.

In Fig. 8.8 red markers indicate µE values and whiskers indicate the standard vari-

ability ([±σE]). The inset shows only results obtained from the series of calculations

presented in this chapter (red points) and analytic model curves for open-cell foams
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based on the Extended Gibson-Ashby equation presented in Ref. [236]:

E∗

Es

= 0.49ϕ2(N∗
C − 3)0.41 (8.4)

The EGA model was developed to extend the longstanding Gibson-Ashby model

for the mechanical properties of porous materials by accounting for the connectivity

of node-ligament network structures. Careful consideration of Fig. 8.8 reveals that

computed elastic properties for mRVEs with NC = 4 match experimental results both

in terms of elastic modulus values [247], but also in terms of the apparent variability

of elastic properties among samples. For samples having a reduced density (ϕ) of

≈ 0.10, the scatter or variation in measured properties as reported by ERG is about

±39 MPa. At a similar ϕ, the KRaSTk-computed standard variability is ±45 MPa.

Similar agreement is observed throughout the considered range of reduced density

values. Independent evaluation of ligament connectivity in Duocel foam by ERG

(based on micro-CT volumetric imaging) confirms that Duocel does, in fact, have

NC = 4. Physical sample sizes used for testing are approximately 50 mm × 50 mm

× 65 mm.

Figure 8.8: Comparison of in-house ERG measurements and KRaSTk-generated re-
sults.
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8.2.5 MMOD interaction scale

Encouraged by these accurate predictions, conversions from dimensionless quantities

(λt, s) to physical lengths were computed. Utilizing measurements in the literature

[249], the characteristic length of a ligament in a Duocel sample was set equal to

the average ligament length in KRaSTk mRVEs. Assuming that the length of a

medium density ligament is 1.50 mm (this is an average of the values Ref. [249] lists

for ∼8% reduced density 10 and 20 PPI–pores per linear inch—foams) and the length

of the medium density mRVE ligament is 14.85, the following conversion was made.

With 1.50 mm set equal to 14.85 in KRaSTk’s unitless dimensions, 1 in KRaSTk is

approximately 101 µm. Considering that the feature-to-mesoscale transition occurs

at a common relative size scale (λf→m) (∼10) for each reduced density, the minimum

sample volume must be about 10× the characteristic ligament length. Based on

the mm→KRaSTk conversion, this correlates to about a 15 mm side length for the

medium reduced density mRVEs and a wider approximate range of mRVE side lengths

of about 12–20 mm, depending on reduced density and PPI.

It is interesting to note that while the feature-to-mesoscale transition occurs at

a common relative size scale (λf→m), due to the nature of the node-ligament struc-

ture, this transition occurs at varying physical size scales depending on the density

of the foam. This has important implications for the use of these materials as com-

ponents in MMOD shielding. Revisiting Fig. 8.1, the diameter of a representative

MMOD strike is approximately 500 µm. On average this is 30× shorter than the

feature-scale to mesoscale transition for any reduced density foam. Therefore, bulk

(or even mesoscale) materials properties of Duocel will have limited applicability for

determining the response of Duocel foam to MMOD strikes—instead, the individual

properties of ligaments and/or pores will dominate the materials response.

8.3 Defected structures

This section expands beyond defect-free structures and explores the mechanical ef-

fects of defects—cylindrical cavities representing the post-collision, residual damage

of an MMOD impact. KRaSTk was utilized to assess the disparity in stiffness in the

in-plane and through-the-thickness directions of the model representative volume ele-

ments as a function of cavity volume. With these results, statistical-based conclusions

regarding the effect of MMOD impact-inspired cavities on Duocel were drawn.
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8.3.1 mRVE generation

KRaSTk was used to generate sets of 50 model representative volume elements

(mRVEs) to characterize Duocel foams with penetrating cavities of varying volumes,

as shown in (Fig. 8.9). As with the previous section, classes of mRVEs were dis-

tinguished based on their reduced density before cavities were introduced: low (L),

medium (M), and high (H). The average reduced densities of these classes (again,

before cavities are introduced) was ∼6%, ∼11%, and ∼15%, respectively. Beginning

with sets of defect-free mRVEs (0% cavity volume), additional sets were built by

increasing cavity volume from 5% to 10% to 20%. The cavities were included by

removing a cylindrical volume from the center of the mRVE, parallel to the TTT

direction, as shown in Fig. 8.10. Based on the results from the previous section, the

λ of each class of mRVEs was λf→m, or the λ at which the feature scale to mesoscale

transition occurred. In upcoming sections, these sets are named according to their

corresponding reduced density and cavity volume. For example, the low density set

with a 20% cavity volume is referred to as L-20.

8.3.2 Computational details

The elastic constants of each mRVE was computed via the method described in §7.3.2
for orthotropic mRVEs. While the defect-free mRVEs are isotropic, the introduction

of cavities requires a more complete knowledge of elastic constants. The elastic con-

stants were computed with FEniCSx. The computational details in this section are

identical to those presented in §8.2.2.

8.3.3 Directional disparities due to cavities

The mean elastic moduli of each mRVE set–including the first IP, second IP, and TTT

directions—are shown in Fig. 8.11. The inclusion of cylindrical voids of increasing

volume correlates with a decrease in elastic modulus. While this simple statement

is admittedly intuitive, a deeper analysis revealed more intriguing results. In the

high and medium density sets, increasing the cavity volume resulted in increasing the

disparity between the moduli of the IP and TTT orientations. The introduction of a

cylindrical cavity with an axis parallel to the TTT direction (as shown in Fig. 8.10)

initiated weakening in the IP direction. When the cavity volume was 0%–i.e. nonex-

istent and the structure defect-free–the mRVEs at all reduced densities were isotropic

and IP and TTT orientations indistinguishable. As the cavity volume increased to

20%, the mean stiffness in the combined IP directions compared to the TTT direc-
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Figure 8.9: Example structures of each of the twelve mRVE sets utilized in this series
of calculations.

Figure 8.10: A diagram indicating the directions referenced in this section with re-
spect to mRVEs.
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tion was ∼2% for the low density sets, ∼17% for the medium density sets, and ∼19%

for the high density sets. With respect to the low density sets, it was hypothesized

that the initial reduced density of the structures were so low that the inclusion of

additional voids did not have a significant impact. For example, the inclusion of a

cylindrical cavity that was 20% of the volume of the defect-free (no cavity) low den-

sity mRVEs only decreases the reduced density from 5.9% to 4.6% (∆ = 1.3%). This

same comparison in the high density mRVEs saw a decrease of the reduced density

from 15.1% to 12.0% (∆ = 3.1%). The change in reduced density for the high density

mRVEs was more than twice that for the low density mRVEs, explaining the difficulty

in distinguishing the IP and TTT points in low density mRVE results.

Table 8.3: Reduced average IP and TTT stiffnesses, comparing 0% and 20% volume
cavity mRVE sets.

In-plane (IP) Through-the-thickness (TTT)

EL-20 = 0.83EL-0 EL-20 = 0.80EL-0

EM-20 = 0.70EM-0 EM-20 = 0.86EM-0

EH-20 = 0.64EH-0 EH-20 = 0.82EH-0

Figure 8.11: A scatter plot showing the mean elastic modulus values of all mRVE
sets, including both IP and TTT directions.
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The magnitude of reduced average IP and TTT stiffnesses was related to the size

of the cavity, as shown in Table 8.3. Again, it is hypothesized that the low density

mRVEs did not contain enough material to be severely affected by the inclusion of

additional cavities. Comparing the medium and high density results, the IP stiffness

appeared to be more highly affected by the inclusion of 20% volume cavities than

the TTT stiffness. It is hypothesized that this disparity in directional dependence

originated from the resulting distribution of load once the cavity was introduced.

When the cylindrical cavity was oriented in the TTT direction, it severed many

more load-bearing ligament paths in the transverse (IP) direction than in the TTT

direction.

Although discussion of the mean values in this section allowed for the drawing

of a few broad conclusions with regard to the behavior of mRVEs containing large

cylindrical cavities, KRaSTk allowed for deeper insight gained by a statistical ap-

proach. Fig. 8.12 plots the computed elastic modulus values for each mRVE set as

Γ-distributions, rather than means. The conclusions drawn in the previous section

were supported by these results as well: peaks shifted to the left as the cavity vol-

ume increases and peaks for IP and TTT orientations separated as cavity volume

increases. As a note, in further discussion, the IP distribution was a combination of

values from both the IP directions, hypothesized to be acceptable given the minor

deviations exhibited by the expectation values in Fig. 8.11. Even in this presentation,

the results were overwhelming and difficult to deconstruct. It was possible to discern

by the peak shifts that stiffness decreases with increasing cavity volume, though this

information was already evident in Fig. 8.11, and is, admittedly, uninspired.

8.3.4 Stochastic model predictions of cavity effects in Duocel

However, a particularly unique set of results can be distilled from the overlap of

distributions, rather than the µE and σE of individual distributions. The overlap

coefficient, a similarity measure that measures the overlap between two finite sets

(X, Y ) was defined as the size of the intersection divided by the smaller of the size of

the two sets:

overlap(X, Y ) =
|X ∩ Y |

min(|X|, |Y |)
(8.5)

As the area of each distribution (PDF) generated by KRaSTk is always 1, the quantity

the denominator min(|X|, |Y |) will always equal 1. In this section, the overlap will

be represented by a percentage of the area of an individual distribution. Eq. 8.5 can

109



Table 8.4: The Γ-distribution parameters, a and b, and corresponding statistical
quantities, µE and σE of the defected mRVE sets in both the IP and TTT directions.

Γ Parameters Statistics

Set a b µE σE

L-0 IP 8.52 12.66 107.87 36.95

L-0 TTT 7.55 14.64 110.56 40.23

L-5 IP 7.94 13.10 103.94 36.90

L-5 TTT 8.55 12.54 107.23 36.66

L-10 IP 5.22 19.38 101.25 44.30

L-10 TTT 9.51 10.42 99.12 32.14

L-20 IP 7.68 11.33 87.06 31.41

L-20 TTT 8.60 10.31 88.65 30.22

M-0 IP 17.85 13.22 235.88 55.84

M-0 TTT 14.76 15.68 231.43 60.24

M-5 IP 17.95 12.14 217.95 51.44

M-5 TTT 16.73 13.90 232.48 56.84

M-10 IP 23.07 8.68 200.27 41.70

M-10 TTT 18.68 11.84 221.21 51.18

M-20 IP 14.87 11.18 166.32 43.13

M-20 TTT 14.85 13.47 200.00 51.91

H-0 IP 32.23 11.09 357.53 62.97

H-0 TTT 26.36 13.85 365.15 71.1

H-5 IP 20.85 14.42 300.63 65.85

H-5 TTT 25.64 13.62 349.23 69.0

H-10 IP 22.601 12.12 273.97 57.63

H-10 TTT 48.25 7.00 337.85 48.64

H-20 IP 14.89 15.46 230.23 59.66

H-20 TTT 26.26 11.41 299.64 58.47
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(a) L sets (b) M sets

(c) H sets

Figure 8.12: Elastic modulus distributions, in both IP and TTT orientations, for all
mRVE sets.

be rewritten in terms of distribution area (A):

Aoverlap(X,Y ) =
A|X∩Y |

Amin(|X|,|Y |)
=
A|X∩Y |

1
(8.6)

Therefore, the ratio of overlap to total unique area beneath the two distributions,

here referred to as the similarity index (η), is:

η =
Aoverlap(X,Y )

(AX + AY )− Aoverlap(X,Y )

=
Aoverlap(X,Y )

2− Aoverlap(X,Y )

(8.7)

For each class of mRVEs, Fig. 8.13 shows the 0% and 20% cavity volume Γ-

distributions of both orientations, with the overlapping area shaded. Table 8.5 in-

cludes area overlaps in addition to similarity indices. In the IP direction, Aoverlap was

shown to steadily decrease as reduced density increased. In the TTT direction, the

low and medium density area overlaps were comparable, but decreased significantly

for the high density results. Even examining the smallest area overlap distributions

(H-IP), there was an overlap of 0.293, correlating to a similarity index of 0.172 and

subsequently a 17.2% probability that the elastic modulus of the 20% cavity mRVEs
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(a) L-IP (b) Low-TTT

(c) M-IP (d) M-TTT

(e) H-IP (f) H-TTT

Figure 8.13: Plots showing the overlap between distributions of 0% and 20% cavity
volume elastic modulus values, both in the IP and TTT orientations.

was indistinguishable from that of the 0% cavity mRVEs. The high density class of

mRVE sets also had the lowest TTT distribution area overlap (0.613) and similarity

index (0.442). Fig. 8.14 illustrates the physical implications of these results.

In practice, these results show that there were a relatively high number of in-

stances in which a set of defect-free structures exhibited the same elastic modulus

as a set of structures that include a massive cylindrical cavity. In other words, this

is evidence that the effects of intrinsically, random and complex microstructure (e.g.

standard variability, deviation of distributions) present in each set of mRVEs domi-

nated the effect of cavities (e.g. changes in the expectation values). As uncertainty
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Table 8.5: Similarity measures of the 0% and 20% cavity volume Γ-distributions of
each reduced density class and both orientations.

Distributions (X, Y ) Orientation Aoverlap(X,Y ) η

(L-0, L-20) IP 0.760 0.613

(M-0, M-20) IP 0.480 0.316

(H-0, H-20) IP 0.293 0.172

(L-0, L-20) TTT 0.758 0.610

(M-0, M-20) TTT 0.780 0.639

(H-0, H-20) TTT 0.613 0.442

Figure 8.14: A representation of the physical implications of the overlapping Γ-
distributions in Figs. 8.13e and 8.13f.

quantification is a major consideration for any NASA mission, a deeper understand-

ing of the range of properties exhibited by a critical component material is essential

for assessing the fidelity of shielding materials.

8.4 Summary

This chapter focused on the practical application of KRaSTk to Duocel, a mate-

rial with a highly-complex, random porous microstructure that is critical to MMOD

shielding. The node-ligament network structure of Duocel make it an ideal material

for this application, as the repeated impacts of the projectile on ligaments would cause

melting and vaporization before penetrating the spacecraft. However, its complex mi-

crostructure produces wide variability in properties. In this chapter, the transition

from feature-scale to mesoscale dominated behavior with respect to elastic properties

was computed. Examining three classes of mRVEs with low, medium, and high re-

duced densities, the feature-scale to mesoscale transition occurred at the same λt for
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all classes. The quantity λt was in the range 9.7− 10.3 for all classes, indicating that

the mRVE length must be 10× the characteristic length before individual features

no longer represent the material. This shared λt corresponds to physical mRVE side

lengths of 12-20 mm, depending on reduced density. KRaSTk predictions of Duocel

were found to be accurate compared to measurements taken by ERG Aerospace, its

manufacturer. In particular, mRVEs where NC = 4 aligned incredibly well, with not

only expectation values agreeing but standard variabilities as well.

The final section in this chapter explored the effect of cylindrical, MMOD-inspired

cavities in Duocel. As cavity volumes increased, the directional dependence of me-

chanical properties was determined. For the medium and high reduced density classes

of mRVEs, the introduction of cavities, regardless of their volumes, decreased stiffness

in both the TTT and IP directions. However, the magnitude of this decrease was far

greater for the high density mRVE sets than the medium density. The introduction

of cavities to the low density mRVE sets also decreased stiffness in all directions;

there was no notable difference in the magnitude of this decrease in the IP or TTT

directions. It is hypothesized that this is due to the low initial reduced density in

the defect-free (0% volume cavity). Cavities simply did not change the individual

low density mRVEs significantly. By analyzing the area overlaps of distributions

between defect-free and high cavity volume mRVE sets, it was determined that me-

chanical properties of Duocel are dominated by inherent structural variability over

defects. Even with cavities around 20% in volume, there remained a relatively high

probability within each reduced density class that defect-free and defected structures

would exhibit the same stiffness in practice. As uncertainty quantification is a major

consideration for any NASA mission, this type of analysis will allow for improved

assessment parameters for MMOD shielding materials.

Copyright© Mujan N. Seif, 2022.
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Chapter 9: Conclusions

9.1 Concluding remarks

The work presented here addresses outstanding questions in two unrelated applica-

tions of complex materials. In Part I, the first chapter introduced a method by which

surface excess free energies incorporating vibrational entropy could be used to pre-

dict Wulff shape in a particular chemical environment at finite temperature. The

following chapter essentially inverted this method to determine the chemical condi-

tions required to form the characteristic microstructure of high-performing scandate

cathodes. In Part II, the first chapter introduced KRaSTk, an algorithm by which the

distribution of properties for materials with highly-variable, even random, microstruc-

tures could be computed. The following chapter focused on applying this method to

Duocel, a metallic foam used in MMOD shielding. The variability in mechanical

properties was evaluated with respect to length scale, revealing the transition from

local, feature-dominated behavior to mesoscale behavior. The effect of defects, in par-

ticular cylindrical cavities, on directional properties was also presented. Atomistic

techniques—density functional theory and density functional perturbation theory—

were central to the scandate cathode sections. Continuum scale approaches—finite

element analysis—combined with statistical methods were utilized in the inhomoge-

neous microstructure sections. The broad scope of computational materials science

approaches with respect to complex materials central to a range of [unrelated] scien-

tific applications—surfaces, nanoparticles, NP metals, metallic foams—was demon-

strated.

9.2 Key findings

The results from the scandate cathode sections in this dissertation can be summarized

as follows:

• The addition of Ba to O/W-containing environments dramatically alters the

chemistry and shape of W particle surfaces at scandate cathode relevant con-

ditions. In particular, the (112) facets widely observed in thermionic cathodes

are shown to only be present when Ba is available, as these facets are not

appreciably expressed on W particles in O-only environments.
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• Implementing the invert Wulff construction reveals the chemical conditions re-

quired to produce equilibrium particles with experimentally observed shapes.

The observed characteristic shape will only occur in two narrow regions of

(T, pO2)-space, implying that extremely careful control of chemical conditions

during cathode activation is required to reliably and repeatably yield high-

performing cathodes.

• In both regions of (T, pO2)-space where the experimentally observed W particle

shape is stable, the Ba0.50O-top/W (112) surface configuration, with a work

function of 1.23 eV, is present in the largest surface area fraction (∼70% of

total surface area). The large relative area and relatively low work function of

this configuration drives a low effective work function of ∼1.3 eV for particles

with the observed shape, a value comparable to those measured for scandate

cathodes.

• There is a window of chemical conditions where the Ba0.25Sc0.25O-top/W (001)

surface (with a work function of 0.82 eV) is stable, pushing the effective work

function of W particles as low as 0.84 eV. Chemical conditions in this window,

though, do not yield the observed particle shape.

• No Sc-containing surface configuration is stable (relative to Sc-free surface con-

figurations) when the observed characteristic particle shape is stable. Combined

these findings suggest the possibility that the role of Sc is not to directly modify

the surface work function by adsorbing atop O on W crystallites, but rather

simply to getter oxygen.

• Despite the bulk phase diagram showing no miscibility between Sc and W,

Scy/W (hkl) surface configurations exhibit much lower surface energies than

any other set; however, they do not have a particularly low work function.

• There is evidence that the addition of cations to a surface where Sc is positioned

directly atop W increases its excess energy and initiates mechanical instability,

particularly in the region between the Sc monolayer and the first W layer.

The KRaSTk sections of the prototypical nanoporous material and Duocel foam

have yielded the following results:

• There is a separable and independent effect of network connectivity on elastic

and bulk moduli. Increasingly constrained network structures are stiffer than

less constrained structures with the same reduced density. This effect can be

116



captured in an extension to the Gibson-Ashby model of open-foam mechan-

ical properties with the addition of a connectivity-dependent factor, and this

extended G-A (EGA) model is found to apply to both elastic and bulk modulus:

E∗

Es

= 0.49ϕ2(N∗
C − 3)0.41

K∗

Ks

= 0.41ϕ2(N∗
C − 3)0.47

• The transition between local, feature-driven behavior and mesoscale behavior in

Duocel occurs at the same λ (a ratio of sample to characteristic length); however,

the conversion of this parameter to physical lengths depends on porosity. As a

result, the transition for a low porosity material is at a far higher length scale

than a high porosity material.

• KRaSTk predictions align well with measurements made by Duocel’s manu-

facturer, with respect to both the expectation value, or first moment, and the

standard variability.

• The introduction of a cylindrical cavity parallel to the through-the-thickness di-

rection transforms a nominally isotropic Duocel into an anisotropic (transverse

isotropic) material, weaker in-plane than through-the-thickness.

• Comparing the elastic moduli probability distribution functions of structures

with and without a cavity, a significant probability remains that the two struc-

tures would be practically indistinguishable.

Copyright© Mujan N. Seif, 2022.
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[116] S. Schönecker, X. Li, B. Johansson, S. K. Kwon, and L. Vitos, “Thermal surface

free energy and stress of iron,” Scientific Reports, vol. 5, p. 14860, Oct. 2015.

[117] S. Baroni, P. Giannozzi, and E. Isaev, “Density-Functional Perturbation Theory

for Quasi-Harmonic Calculations,” Reviews in Mineralogy and Geochemistry,

vol. 71, pp. 39–57, Jan. 2010.

[118] M. Geng and H. Jónsson, “Density functional theory calculations and thermo-

dynamic analysis of bridgmanite surface structure,” Physical Chemistry Chem-

ical Physics, vol. 21, no. 3, pp. 1009–1013, 2019.

[119] P. Kempisty and Y. Kangawa, “Evolution of the free energy of the GaN(0001)

surface based on first-principles phonon calculations,” Physical Review B,

vol. 100, Aug. 2019.

[120] D. Scheiber, O. Renk, M. Popov, and L. Romaner, “Temperature dependence

of surface and grain boundary energies from first principles,” Physical Review

B, vol. 101, p. 174103, May 2020.

128



[121] R. V. Zucker, D. Chatain, U. Dahmen, S. Hagège, and W. C. Carter, “New soft-
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[126] P. E. Blöchl, “Projector augmented-wave method,” Physical Review B, vol. 50,

pp. 17953–17979, Dec. 1994.

[127] D. Singh, S.-H. Wei, and H. Krakauer, “Instability of the ideal tungsten (001)

surface,” Physical Review Letters, vol. 57, pp. 3292–3295, Dec. 1986.

[128] M. N. Seif and M. J. Beck, “Surface excess free energies and equilibrium Wulff

shapes in variable chemical environments at finite temperatures,” Applied Sur-

face Science, vol. 540, p. 148383, Feb. 2021.

[129] R. Kumar and H. E. Grenga, “Surface energy anisotropy of tungsten,” Surface

Science, vol. 59, pp. 612–618, Oct. 1976.

[130] A. Szczepkowicz and A. Ciszewski, “Faceting of curved tungsten surface induced

by palladium,” Surface Science, vol. 515, pp. 441–452, Sept. 2002.

[131] T. Acsente, R. Negrea, L. Nistor, E. Matei, C. Grisolia, R. Birjega, and G. Di-

nescu, “Tungsten nanoparticles with controlled shape and crystallinity obtained

by magnetron sputtering and gas aggregation,” Materials Letters, vol. 200,

pp. 121–124, Aug. 2017.

129



[132] C. Arnas, A. Chami, L. Couëdel, T. Acsente, M. Cabié, and T. Neisius, “Ther-
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