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Abstract
This paper proposes a novel modelling framework for estimating the global potential field
from trajectories of multiple sensing agents whose perception of the unknown field is
subject to abrupt changes. We derive a parametrised formulation of the estimation
problem by combining the jump Markov non‐linear system ( JMNLS) model of agent
dynamics with a basis function decomposition of the environmental field. An approxi-
mate expectation‐maximisation algorithm is employed for joint estimation of the global
field and of the agent behavioural modes from observed agent trajectories. To avoid
prohibitive computational costs associated with the state estimation of JMNLS, we utilise
two approximation steps. First, an interacting multiple model smoother is used to account
for the hybrid structure that emerges in this problem. Second, we propose two ap-
proaches to approximating the non‐linear sufficient statistics during the expectation step.
This results in the maximization step being exact. The performance of the developed
framework is tested on simulation examples and demonstrated on an application study in
which the observed movement patterns of immune cells are utilised in quantifying the
underlying chemical concentration field that governs their migration. The results show-
case that the proposed framework can be readily applied to problems where agents as-
sume several behavioural modes.

KEYWORD S
hidden Markov models, maximum likelihood estimation, nonlinear dynamical systems, parameter estimation,
state estimation

1 | INTRODUCTION

The phenomena in which the physical environment influences
the movement of sensing agents are encountered in a multitude
of applications ranging from environmental engineering to cell
biology. Arrays of moving sensors used for source localisation
in spillages and environmental surveys correct their trajectories
based on point‐wise measurements of local concentrations
[1, 2]. In particle physics, trajectories of Brownian particles
drift in response to unobserved microscopic force fields [3].
In biological applications, cell migration is driven by attractive
or repelling chemical concentrations [4, 5]. The common
assumption in modelling these phenomena is that the envi-
ronment is acting on sensing agents as a potential field, forcing

a sensor to align with the direction of the steepest gradient.
The potential field paradigm has long been used in robot path
planning [6] and other applications where a single moving
object is moving in response to its surroundings [7, 8]. The
emergent challenge of using potential fields to model physical
phenomena is that the acting environment cannot be observed
directly and is sensed only locally by individual agents. How-
ever, with the large number of agents sensing to the same
potential field, it is possible to infer its underlying gradient
from the general trends in the direction of sensor motion. This
paper addresses the problem of estimating the hidden global
potential field from the trajectories of multiple sensing agents.

Reconstructing the global potential field from the localised
trajectories is an infinite‐dimensional estimation problem that
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is further complicated by the lack of knowledge about the
functional form that best represents the field. Existing solu-
tions range from approximating the gradient locally [1] to
fitting a priory chosen functions to the data [9], to considering
a partial differential equation that governs the field and esti-
mating its parameters [10]. Models of the environmental field
without prior assumptions about its functional form rely on
basis function decomposition, which yields a linear‐in‐
parameters representation [4, 11, 12]. In Refs. [4, 11], fre-
quentist approaches are adopted to estimate scaling
coefficients of the basis function grid that approximates the
concentration of a signalling substrate. Authors of Ref. [12]
propose a hierarchical Bayesian framework for field inference
that performs the order reduction of the basis function grid
and parameter estimation simultaneously. All of the existing
solutions rely on the assumption that the behaviour of moving
agents is homogeneous and they respond to the environment
at all times. However, in most real‐life applications, the
perception of the environment by an agent is prone to abrupt
changes that can be caused, amongst other reasons, by
component failures, sensing faults [13], or physiological limi-
tations of an agent [14, 15]. The present paper summarises the
first attempt to extend the environmental inference to the cases
of heterogeneous sensing behaviour of mobile agents.

We consider a novel class of problems that accounts for
the fact that environmental sensing by a single agent is an
intermittent process: not only the environment is unobserved
but it is unknown whether an individual agent at a given time is
interacting with it. Our principal contribution is a rigorous
estimation framework that scales to a large number of agents
and their possible behaviors. The problem of agent localization
is not considered here, nor is the agent‐to‐agent interaction. It
is assumed that the agents do not have control of their own
behavior and cannot exchange information about the under-
lying environment with each other.

We approach this problem by formulating a hybrid model
of the single agent motion. The abrupt changes in agent's
perception of the environment are modelled by a Markov
chain that evolves according to the unknown transition
probability matrix. The state of this Markov chain correspond
to behavioural modes, each described by a generic non‐linear
state‐space model (SSM) [16]. The influence of the environ-
ment is modelled by the input signal of the SSM. The envi-
ronmental sensing mechanism within an individual agent is
not considered here—we treat agent movement as the direct
response to the sensed gradient. This way, the only strict
assumption we impose on the dynamical model is that it is
linear with respect to the input signal. Limited knowledge
about the agent’s behaviour is reflected by the partially hidden
state and the unobserved sequence of the governing Markov
chain. The resultant model is the input‐affine jump Markov
non‐linear system (JMNLS) that remains linear with respect to
the unknown parameters of the environment model. The joint
problem of state parameter estimation of JMNLS can be
decoupled and solved within the maximum likelihood (ML)
setting via the offline expectation‐maximisation (EM) algo-
rithm [17–20], leading to a closed‐form expression for field

parameter estimates in terms of several sufficient statistics
which are non‐linear with respect to. agent states. These ex-
pressions will hold for a broad class of dynamical systems
meaning that our framework can be readily used in a range of
applications.

The main challenge of implementing the framework is
associated with computing the expectations for sufficient sta-
tistics, because evaluation of smoothing probability density
functions ( pdfs) of hidden data requires storing exhaustive
mode histories, incurring exponential computational costs [21].
Multiple methods of feasible jump Markov system (JMS)
estimation have been proposed, mostly in application to jump
Markov linear systems. They can be divided into two broad
categories: the multiple model (MM) methods [22] and
particle‐based methods [23]. The MM approaches run banks of
mode‐associated filters in parallel and approximate mode his-
tories by a single Gaussian at the end of every recursion [24].
The most popular approach is the interacting multiple model
(IMM) filtering [25, 26]. Particle‐based algorithms rely on
sampling from complex state pdfs using sequential Monte
Carlo (SMC) methods [23, 27, 28]. An alternative solution that
does not quite fall into either of the categories is proposed in
Ref. [29] in the form of iterating optimal estimators for the
continuous and discrete states.

Only a limited number of works deal directly with JMNLS.
Several extensions of the IMM framework to non‐linear cases
have been proposed, employing banks of extended [30], un-
scented [31], and cubature [32] filters. In Ref. [33], a Rao–
Blackwellised particle filter (RBPF) is presented that marginal-
izes over modes and uses classical SMC for the states, leading to
particle depletion around mode changes. Authors of Ref. [34]
avoid particle degeneracy by employing IMM‐type particle filter.
The IMM smoothing strategies for JMNLS require an additional
approximation of the joint pdf for state and mode in backward
time. Existing solutions rely on two‐filter approach to compute
mode‐interacting likelihoods [35, 36], or on backward kernel
approximation under small noise assumption [37, 38]. An
improved method based on the closed‐form backward recur-
sion of the joint state‐mode posterior has been proposed during
the preparation of this manuscript in Ref. [39].

To our best knowledge, the only particle forward‐backward
estimator of JMNLS in the parameter estimation context has
been proposed as part of the online EM procedure in Ref. [40].
The method combines RBPF with conditional Hidden Markov
model filters in forward recursion to avoid particle degeneracy
around mode changes. At backward recursion, the authors
compare a path‐based particle smoother that ‘prunes’ unlikely
modes [41] and computationally expensive forward particle
smoother. The uthors state that the use of path‐based
smoother leads to particle degeneracy, but explain that its ef-
fect is not as severe in the context of the online EM algorithm.
For offline problems, this is detrimental because the state
estimator stops detecting agent mode switches as particles
deplete and estimation errors accumulate, with agents
becoming ‘stuck’ in an insensitive mode. On the other hand,
forward smoothing does not scale well to large number of
agents as its complexity quadruples with the growing numbers
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of particles. To ensure scalability of the filed inference
framework to a large set of sensing agents, we employ IMM‐
type smoothing to avoid particle degeneracy altogether.
Gaussian approximations of posterior pdfs produced by the
IMM smoother are used to compute the non‐linear sufficient
statistics either numerically using direct importance sampling
from these pdfs or analytically by exploiting the adopted model
parametrisation and mean‐field (MF) approach.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces a hybrid model of individual agent dynamics
that incorporates the influence of the environment. The
problem of estimating the environment from multiple agent
trajectories is then formulated in the ML setting. Section 3
details the estimation procedure and discusses adopted ap-
proximations. The estimation performance is demonstrated on
a simulated data in Section 4. Section 5 demonstrates how the
proposed modelling framework can be applied to the experi-
mental data collected from observing immune cell migration in
the inflammation process. Conclusions are drawn in Section 6.

2 | MODEL OF AGENT‐

ENVIRONMENT INTERACTION

2.1 | Agent dynamics

Let M¼ f1;…;Ng be the countable finite set corresponding
to possible behavioral modes that can be assumed by an in-
dividual sensing agent. In the collection of K agents, the
discrete time dynamics and observation process of the kth
agent are described by an input affine hybrid system.

r ktþ1 �Φ r ktþ1 ∣ r kt
� �

ð1aÞ

x k
tþ1 ¼ f r ktð Þ x k

t
� �

þ g r ktð Þ x k
t

� �
uk
t þ G r ktð Þw

k
t ð1bÞ

y k
t ¼ h r ktð Þ x k

t
� �

þ v k
t ; ð1cÞ

where r kt 2M is the modular state or mode that changes ac-
cording to some kernel Φ and where x k

tþ1 2 R
2d is the

continuous‐valued state vector that consists of the spatial po-
sition and velocity projections on d axes

x k
tþ1 ¼ skt;1;…; skt;d; v

k
t;1;…; vkt;d

h i
⊤;

where (⋅)⊤ denotes the transpose operator. Both states and
modes are latent and are observed indirectly through the
measured agent position y k

t 2 R
d . Further in Equation (1),

G r ktð Þ is the noise input gain, w k
t �N 0;Q r ktð Þ

� �
; Q r ktð Þ 2

R
2d�2d and v k

tþ1 �Nð0;RÞ; R 2 R
d�d are mutually inde-

pendent Gaussian noises, and the input vector uk
t reflects the

influence of the hidden global environment U .
In JMSs, switching between modes is governed by a ho-

mogeneous ergodic Markov chain with initial probabilities

Π¼ πj ≥ 0
� �N

j¼1 and with the transition probability matrix

Φ¼ ϕji ≥ 0
n oN

i;j¼1
elements of which are defined as follows:

ϕji ≜ P r ktþ1 ¼ i ∣ r kt ¼ j
� �

;

where j; i 2M. Since the mode sequence is unobserved, matrix
Φ cannot be evaluated directly and is assumed to be unknown.

Additional properties of the model Equation (1) are
defined by the following assumptions.

Assumption 1 The mode transition process is right‐
continuous, that is, the effect of mode r kt starts at t+.

Assumption 2 The initial state of the kth object

x k
0 �N bx k

0;Pk
0

� �
is independent from w k

tþ1 and v k
tþ1 ∀ t.

Assumption 3 Parameters of the candidate SSMs

f ðjÞð⋅Þ; gðjÞð⋅Þ;GðjÞ; hðjÞð⋅Þ; ∀j 2M ð2Þ

and the initial state and mode of each agent r k0; x
k
0

� �
; k ¼

1;…;K are known.

Assumption 4 The process of observing agent positions is
mode‐independent.

hðjÞð⋅Þ ¼ hð⋅Þ ∀ j 2M

Note that Assumptions 1–2 are standard for JMS and 3–4
are non‐strict. The relaxation for Assumption 3 is discussed
further in Remark 1. Assumption 4 is reasonable for a wide
class of applications because agent positions are often
observed externally (GPS for sensors and robots and video‐
microscopy for cells), thus the changes in the agent’s
behavior do not affect the measurement process.

Remark 1 The unknown vector Θ is not limited to the pa‐
rameters considered in this study and may be extended to
include initial conditions, parameters of the noise distribu‐

tions R;QðjÞ; j 2M

� �
, or dynamical models f ðjÞð⋅Þ; gðjÞð⋅Þ;

�

hðjÞð⋅Þ; j 2MÞ thus relaxing 3. The estimation of the former is
straightforward and of the latter is case‐specific. Under
Gaussian assumptions, the maximum likelihood estimates
(MLEs) of the noise distribution parameters can be obtained in
closed form by extending the M‐step with a series of condi‐
tional optimization problems. This modification results in the
familiar Expectation‐Conditional Maximization (ECM)
scheme [42].

The causal relationships between states, modes, and ob-
servations for an individual agent under the adopted assump-
tions are illustrated in Figure 1. For each agent the continuous
state sequence is denoted by xk ≜ x k

t
� �Tk

t¼1 and the mode
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sequence is rk ≜ r kt
� �Tk

t¼1, where Tk is the length of the
observation period for the kth agent. The hidden data set
comprises the collections of state and mode sequences over K
agents X ¼ xkf g

K
k¼1;R¼ rkf g

K
k¼1.

2.2 | Environment parametrization

The input vector in Equation (1b) represents the influence of
the global environment acting as a potential field

uk
t ¼ ∇U skt;1;…; skt;d

� �
; ð3Þ

where skt;1;…; skt;d is the spatial position of kth agent at time
instance t. Since the problem of environment estimation often
occurs in applications with slowly diffusing chemical or
physical fields, it is reasonable to assume the following:

Assumption 5 The hidden environment U is a smooth time‐
invariant function of coordinates (s1, …, sd).

Assumption 5 is commonly adopted in estimation frame-
works where the environment is invariant [7] or agents move
with rates that are much larger than the diffusion rate of the
field [4, 11, 12], unless the field is explicitly modeled by the
partial differential equation, such as [10]. Another common
assumption when it comes to networks of sensors, particles, or
cells is that their tracking is preformed independently from
their interaction with the environment:

Assumption 6 Sufficient tracking data Y ¼ ykf g
K
k¼1 is

collected prior to the inference.

Estimating U directly poses an infinite‐dimensional prob-
lem. A natural way to make this problem tractable is to represent
the smooth function U by a linear combination of M isotropic
differentiable basis functions via the following decomposition

U st;1;…; st;d
� �

¼ U0 þ
XM

m¼1
βm st;1;…; st;d

� �
θm; ð4Þ

where βm denotes a multivariate basis function defined in
d dimensions and θm is the corresponding scaling coefficient
that determines the magnitude of the function and where U0 is
an additive constant.

Remark 2 The unknown potential field is only identifiable up
to an additive constant U0 since it is not the magnitude of the
field that drives agent movement but its gradient.

With the choice of Equation (4), Equation (3) becomes

uk
t ¼ ∇φ x k

t
� �

θ; ð5Þ

where the term ∇φ x k
tþ1

� �
denotes the gradient of super-

position of basis functions at the current agent location

∇φ x k
t

� �
¼

∂βm st;1;…; st;d
� �

∂st;d
…

∂βm st;1;…; st;d
� �

∂st;d

2

666664

3

777775

M

m¼1

; ð6Þ

and where θ contains corresponding scaling coefficients

θ ¼ θ1;…; θm;…; θM½ �⊤;

thus the inference of the unknown global field becomes the
problem of estimating θ. By denoting g

�

r ktð Þ≜
g r ktð Þ x k

t
� �

∇ φ x k
t

� �
, we can rewrite the model of agent dy-

namics Equation (1b) explicitly as a linear function of the
unknown field parameters

x k
tþ1 ¼ f r ktð Þ x k

t
� �

þ g
�

r ktð Þ x k
t

� �
θ þ G r ktð Þw

k
t ; ð7Þ

which will allow us to the obtain a closed form expression of
the environment model parameters in further subsections.

3 | ESTIMATION FRAMEWORK

3.1 | Expectation‐maximisation algorithm

The task of hidden environment estimation associated with the
presented model can be formalised as two coupled estimation
problems: (i) estimate the latent variables fX ;Rg given the
tracking data Y; (ii) estimate the unknown parameter set
Θ = {Φ, θ} given the tracking data Y.

In the context of the EM estimation for the model
described above, there exists a complete data set
Z ¼ fR;X ;Yg. Then MLEs of the unknown parameters can
be obtained recursively by maximising the log‐likelihood
function of Z:

LðΘÞ ¼ log pðZ ∣ ΘÞ; ð8Þ

F I GURE 1 Directed acyclic graph of the considered jump Markov
system. The observation yt depends only on the state xt, while the state
update is conditioned by the previous mode rt−1 and the previous state xt−1.
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which is usually lower bounded by its conditional expectation

Q Θ; bΘl−1� �
¼ ER;X LðΘÞ ∣ Y; bΘl−1h i

; ð9Þ

where E ⋅½ � denotes the expected value of the function and

where bΘl−1
is the MLE of unknown parameters obtained at

the previous iteration of the EM algorithm. The subscript
R;X in the expectation indicates that it is taken over the joint
hidden data pdf which we denote it as follows:

qðR;XÞ ≜ p R;X ∣ Y; bΘl−1� �
; ð10Þ

In case of a hybrid system, the lower bound Equation (9) is
represented using the law of iterated expectations:

Q Θ; bΘl−1� �
¼ ER EX ∣R LðΘÞ ∣ Y; bΘl−1h ih i

; ð11Þ

where the inner expectation is taken over the continuous‐
valued states conditioned on the mode, and the outer expec-
tation is taken over the modes of the Markov chain [43, 44].
Evaluating Equation (11) constitutes the expectation step (E‐
step) of the algorithm. MLEs of unknown parameters are then
obtained by maximising the computed expectation:

bΘl
¼ arg max

Θ
Q Θ; bΘl−1� �

: ð12Þ

Evaluating Equation (12) is the maximisation step (M‐step)
of the algorithm, since maximising the lower bound maximises
the log‐likelihood in Equation (8). The algorithm is initialised
with the user‐define initial point of bΘ0

that can be obtained by
solving a Least‐Squares or ML problem for the system under
the assumption that all sensors are in the interactive mode.
Then the two steps are iterated until the convergence of either
the lower bound or MLE values. Convergence of the EM
under general conditions is established in Ref. [45]. For the
algorithms with a stochastic approximation of the expectations
such as the one used in our framework, convergence properties
were investigated in Ref. [46].

3.2 | The likelihood function

Recall that under the Assumption 3, initial state x0 and the mode
r0 are known for each agent. Then the joint pdf of the complete
dataset across all sampling points for K agents is given by

pðZ ∣ ΘÞ ¼ ∏
K

k¼1
∏
Tk

t¼1
p y k

t ∣ x k
t

� �
Φ r ktþ1 ∣ r kt
� �

p x k
tþ1 ∣ x k

t ; r
k
t ; θ

� �� �
:

ð13Þ

Since there are no interaction between agents, their data are
mutually independent and the hidden data pdf Equation (10)
can be partitioned as

qðR;XÞ ¼ ∏
K

k¼1
qk rk; xk
� �

;

where each factor qkð⋅Þ ¼ p ⋅ ∣ yk; bΘl−1� �
denotes the joint

marginalised pdf of the relevant hidden variables for the kth
agent. Hence, the lower bound of the joint log‐likelihood
function for K agents is viewed as a sum of individual Q‐
functions:

Q Θ; bΘl−1� �
¼
XK

k¼1
Qk Θ; bΘl−1� �

: ð14Þ

where the term corresponding to an individual agent conforms
to Equation (11) and is represented by the integral.

Qk Θ; bΘl−1� �
¼
X

rk

Z

xk∣rk
qk rk; xk
� �

log p rk; xk; yk
� �

dxk; ð15Þ

where the sum
P

rk ⋅½ � is over the mode sequence and the in-
tegral

R
xk∣rk ⋅½ � is over the state sequence conditioned on the

mode sequence.
From substituting the complete data pdf in Equation (14)

by Equation (13) the following expression arises

Q Θ; bΘl−1� �

¼
XK

k¼1

X

rk

Z

xk∣rk
qk rk; xk
� �XTk

t¼0
log p y k

t ∣ x k
t

� �
( )

dxkþ

(

þ
X

rk

Z

xk∣rk
qk rk; xk
� �XTk

t¼0
log Φ r ktþ1 ∣ r kt

� �
( )

dxkþ

þ
X

rk

Z

xk∣rk
qk rk; xk
� �XTk

t¼0
log p x k

tþ1 ∣ x k
t ; r

k
t ; θ

� �
( )

dxk
)

:

ð16Þ

Acknowledging the Markovian nature of both state and
mode evolution and the causal relationships defined by As-
sumptions 1 and 4, we can further marginalise the hidden data
pdf over all unused variables in Equation (16) to obtain the
following

Q Θ; bΘl−1� �
¼
X

k;t

Z

x k
t

qk x k
t

� �
log p y kd

t ∣ x k
t

� �n o
dx k

t

(

þ

þ
X

r ktþ1

X

r kt

qk r ktþ1; r
k
t

� �
log Φ r ktþ1 ∣ r kt

� �n o
þ

þ
X

r kt

Z

x k
tþ1∣r kt

Z

x k
t

qk x k
tþ1; x

k
t ; r

k
t

� ��

log p x k
tþ1 ∣ x k

t ; r
k
t ; θ

� ��
dx k

tþ1dx
k
t

o
; ð17Þ
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where the outer sum is over the full time sequence for all
agents

P
k;t ⋅f g ≜

PK
k¼1

PTk
t¼0 ⋅f g. The expression in Equa-

tion (17) is separable with respect to to unknown parameters

Q Θ; bΘl−1� �
¼QΦ þQθ þ c; ð18Þ

where the constant c denotes all terms independent of un-
known parameters. Note that the last term in Equation (17)
constitutes the expectation of a distribution of two continuous
random variables with a joint probability conditioned on the
mode r kt . Then, by factorising the hidden data pdfs we can
express the constituent terms as follows.

QΦ ¼
XN

j;i¼1

X

k;t
P r ktþ1 ¼ i; r kt ¼ j ∣ yk; bΘl−1� �

log ϕji ð19aÞ

Qθ ¼
XN

j¼1

X

k;t
P r kt ¼ j ∣ yk; bΘl−1� �

EðjÞ log p x k
tþ1 ∣ x k

t ; θ
� �� �

;

ð19bÞ

The expression Equation (19a) follows from the definition
of the discrete variable pdf qk r ktþ1; r

k
t

� �
. In Equation (19b), the

conditional expectation denotes

EðjÞ ⋅½ � ≜ E ⋅ ∣ r kt ¼ j; yk; bΘl−1h i
;

for which the corresponding hidden data pdf is factorisable as
follows

qkðjÞ x k
tþ1; x

k
t

� �
¼ qk x k

tþ1 ∣ x k
t ; r

k
t ¼ j

� �
qk x k

t
� �

: ð20Þ

We denote the mode association probabilities in Equai-
ton (19b) as

μkt∣TkðjÞ ≜ P r kt ¼ j ∣ yk;Θl
� �

≥ 0;

XN

j¼1
μkt∣TkðjÞ ¼ 1

that serve as weighting coefficients for the conditional
expectations.

3.3 | Maximisation step

All constituent terms of the lower bound Equation (18) are
linear with respect to the unknown parameters and thus can be
maximised in the closed form. Here we provide expressions
for the unknown parameter MLEs in terms of sufficient sta-
tistics that will be evaluated during the expectation step.

Recall the input affine structure of continuous state dy-
namics Equation (7) and expand the log‐likelihood in Qθ as
follows

Qθ ¼
XN

j¼1

X

k;t
μkt∣TkðjÞEðjÞ x k

tþ1 − f ðjÞ x k
t

� �
− g

�

ðjÞθ
� �

⊤⋅
h

⋅ΣðjÞ x k
tþ1 − fðjÞ x k

t
� �

− g
�

ðjÞθ
� �i

;

ð21Þ

where all constants are omitted and where

ΣðjÞ ≜ G†
ðjÞ

� �
⊤Q−1G†

ðjÞ:

Further expansion shows that only a few terms in Equa-
tion (21) are a function of θ. The parameter MLEs are ob-
tained by taking the partial derivative of Equation (21) with
respect to θ and setting it to zero

∂Qθ

∂θ
¼ Sð1Þt;tþ1 − Sð2Þt − Sð3Þt θ ¼ 0; ð22Þ

where the introduced sufficient statistics correspond to the
expectations of the constituent terms taken over marginalised
smoothing pdfs.

Sð1Þt;tþ1 ¼
XN

j¼1

X

k;t
μkt∣TkðjÞ EðjÞ g

�⊤

ðjÞ x k
t

� �
ΣðjÞx

k
tþ1

h in o
ð23aÞ

Sð2Þt ¼
XN

j¼1

X

k;t
μkt∣TkðjÞ E g

�⊤

ðjÞ x k
t

� �
ΣðjÞf ðjÞ x k

t
� �h in o

ð23bÞ

Sð3Þt ¼
XN

j¼1

X

k;t
μkt∣TkðjÞ E g

�⊤

ðjÞ x k
t

� �
ΣðjÞg

�

ðjÞ x k
t

� �h in o
ð23cÞ

where the subscripts in the left‐hand side correspond to those
of the states over which the expectation is taken. It can be seen
that only Sð1Þt;tþ1 is a function of two subsequent states and its
corresponding expectation is taken over mode conditioned pdf
Equation (20), whereas expectations in Sð2Þt and Sð3Þt depend
only on the current state and therefore these pdfs are mar-
ginalised over the current agent mode.

Assuming that the statistics in Equation (23) are computed
during the expectation step at the lth iteration, we obtain a
closed‐form expression for the field model parameters

bθ
l
¼ Sð3Þt

� �−1
Sð1Þt;tþ1 − Sð2Þt

� �
: ð24Þ

Furthermore, the second partial derivative of the Q‐func-
tion defined by Sð3Þt is clearly a negative definite owing to its
auto‐product structure, which verifies that the new parameter
estimate is located at a maximum, global or local.

The closed‐form solution for the transition probability
matrix arises from constrained maximisation of QΦ.

bϕ
l
ji ¼

Sð4Þj;i
PN

h¼1S
ð4Þ
j;h

; ð25Þ
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where the sufficient statistic is the joint probability of the agent
assuming any two modes j, i at two consecutive time instances

Sð4Þj;i ¼
X

k;t
P r ktþ1 ¼ i; r kt ¼ j ∣ yk;Θ
� �

; ð26Þ

Noting the Markovian property of the system, we express
the sufficient statistic in terms of smoothed mode probabilities
as follows

Sð4Þj;i ¼ μkt−1∣TkðjÞμkt∣Tkði ∣ jÞ; ð27Þ

where the first factor is defined by Equation (21), and the
second factor is the smoothed conditional probability
μkt∣Tkði ∣ jÞ ≜ P r ktþ1 ¼ i ∣ r kt ¼ j; yk;Θ

� �
. This representation

requires that we preserve the full transition kernel structure at
the smoothing stage during the expectation step [47].

3.4 | Expectation step

The challenge of the expectation step is two‐fold: to provide a
tractable solution for the MM smoothing problem and to
approximate non‐linear functions of the continuous‐valued
states Equation (23). We propose separating these approxima-
tions at two levels to circumvent the known problems of
JMNLS smoothing and reduce computational costs. First we
deal with a jumpMarkov structure using a classical IMM scheme
with a bank of extended Kalman filters in forward recursion and
an extended RTS smoothers in the backward recursion. Here we
employ a solution proposed in Ref. [38] that explicitly computes
mode probabilities required in Sð1Þt;tþ1 and Sð4Þj;i at the backward

stage using an approximate backward transition kernel Φ
�
¼

ϕ
�

ij

n o
. The backward recursion is summarised in Algorithm 1.

At the second level of approximation, we consider two
approaches to computing the non‐linear expectations in
Equation (23):

� A1: Numerically approximate hidden data pdf using MC
sampling from smoothing distributions [41].

� A2: Use the state estimate from the IMM smoother in a MF
type approximation of the expectations.

To illustrate these approaches, we assume a generic non‐
linear function of the hidden state ρ x k

t
� �

with the expecta-
tion defined by the integral over the hidden state pdf.

E ρ x k
t

� �� �
¼

Z

x k
t

ρ x k
t

� �
q x k

t
� �

dx k
t : ð28Þ

A1: MC sampling. This approach is based on providing a
point‐mass approximation of the hidden data pdf.

q x k
t

� �
≈
XL

i¼1
ωk
i;tδx

�k
i;t

x k
t

� �
;

where x
�k
i;t

n oL

i¼1
is the particle system sampled from some

proposal density

x
�k
i;t � q

�
x k
t

� �
; ð29Þ

and the important weights ωk
i;t are computed to account for

discrepancy between the true and proposal density.

ωk
i;t ∝

q x k
t

� �

q
�

x k
t

� �:

Algorithm 1 Iteration of the IMM RTS smoother.
Input: Mode-conditioned states and
covariances, filtered xkt∣t;j;Pkt∣t;j

� �
and

smoothed xktþ1∣Tk;i;Pktþ1∣Tk;i
� �

; Mode
probabilities, filtered μkt∣tðjÞ

� �
and smoothed

μktþ1∣TðiÞ
� �

, j;i 2M.
1: for j ← 1, N do
2: Approximate backward transition

kernel

ϕ
�

ij ¼
1
ei

ϕjiμ
k
t∣tðjÞ; ei ¼

XN

h
ϕhjμ

k
tþ1∣TkðhÞ:

3: Compute smoothing conditional
probabilities

μkt∣Tkði ∣ jÞ ¼
1
dj

ϕ
�

ijμ
k
tþ1∣TkðiÞ; dj ¼

XN

h
ϕ
�

hjμ
k
tþ1∣TkðhÞ:

4: Mixing prior states to obtain
xktþ1∣t;j;Pktþ1∣t;j

� �

5: Run a mode-matched RTS smoother to
obtain mode-conditioned state and
covariance,xkt∣TkðjÞ;Pkt∣TkðjÞ; and mode
likelihood Lt∣TkðjÞ.

6: Compute smoothing mode
probabilities

μkt∣TkðjÞ ¼
1
c
Lt∣TkðjÞμkt∣tðjÞ; c¼

XN

j¼1
Lt∣TkðjÞμkt∣tðjÞ:

7: end for
8: Merge states and covariances

x k
t∣Tk ¼

XN

j¼1
μkt∣TkðjÞx k

t∣TkðjÞ;

Pk
t∣Tk ¼

XN

j¼1
μkt∣TkðjÞ Pk

t∣TkðjÞ þ x k
t∣TkðjÞ − x k

t∣Tk

� �
ð⋅Þ⊤

� �
:
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Another attractive feature of the IMM‐ERTS smoother in
this context is that it provides Gaussian approximations for the
merged state pdfs that can be used as proposal densities in
Equation (29): The proposal density marginalised over mode is
the merged smoothing pdf.

q
�

x k
t

� �
¼N bx k

t∣Tk ;Pk
t∣Tk

� �
ð30Þ

while the true density is a Gaussian mixture with the estimated
probabilities as weights.

q x k
t

� �
¼
XN

ðjÞ

μkt∣TkðjÞN bx k
t∣TkðjÞ;Pk

t∣TkðjÞ
� �

: ð31Þ

On the other hand, mode‐conditioned expectations can be
approximated by MC sampling directly from the smoothing
pdf corresponding to each mode.

qðjÞ x k
t

� �
¼N bx k

t∣TkðjÞ;Pk
t∣TkðjÞ

� �
; j 2M: ð32Þ

Since the proposal densities are already smoothed, we can
sample directly from the corresponding density at each time
instead of propagating the particle system in backward recur-
sion that would be required by a particle smoother.

Particle systems sampled from densities Equations (30) and
(32) are used to approximate the expectation Equation (28) as
follows. Expectations marginalised over mode are computed
using the IS:

E ρ x k
t

� �� �
≈
1
L

XL

i¼1
ωk
i;tρ x

�k
i;tþ1

� �
: ð33Þ

In case of mode‐conditioned expectation such as Sð1Þt;t−1 in
Equation (23), the expectation is approximated by sampling
from all factors of Equation (20) and averaging.

EðjÞ ρ x k
tþ1; x

k
t

� �� �
≈

1
L2

XL

i¼1

XL

h¼1

ωk
i;tρ x

�k
h;t;j; x

�k
i;t

� �
; ð34Þ

where

x
�k
h;tþ1;j

n oL

h¼1
� qðjÞ x k

tþ1
� �

ωk
i;tx

�k
i;t

n oL

i¼1
� q

�
x k
t

� �

A2: MF. If the environment is approximated by low‐
bandwidth basis functions that have wide support, then
ρ x k

t
� �

is a low‐bandwidth in comparison to the pdf of the
estimated agent position at any given time. The expectation
integral is dominated by the mean bx k

t ¼ E x k
t

� �
that satisfies

∂q x k
t ∣ yk; bΘ i� �

=∂x jbx k
t
¼ 0, since the other factor is nearly

constant in the vicinity of bx k
t . This results in a MF type

approximation of an expectation integral by its value at the
mean point [48]:

E ρ x k
t

� �� �
≈ ρ E x k

t
� �� �

; ð35Þ

EðjÞ ρ x k
tþ1; x

k
t

� �� �
≈ ρ EðjÞ x k

t
� �

; E x k
tþ1

� �� �
: ð36Þ

While this is a more crude approximation than the
simulation‐based one, it allows the evaluation of expressions in
Equation (23) without additional computations.

3.5 | Implementation details

The resulting algorithm is initialised with computing the
gradient of the basis function grid for each measured agent

position bφk
tþ1 ¼ φ y k

tþ1
� �

and setting bθ
0
¼ 0, while the initial

estimate of bΦ0
is set to 0:5I2. The estimation procedure is

summarised in Algorithm 2. As an ML estimator, the devel-
oped algorithm arrives at a point estimate of unknown pa-
rameters in a finite number of iterations but does not guarantee
that the estimate corresponds to the global maximum of the
log‐likelihood.

The IMM state estimation requires running N filters in
forward time and N smoothers in backward time. The
computational complexity of employed filters and smoothers
will depend on the way model non‐linearities are addressed.
The asymptotic costs of the MF‐type and MC approximation
of summary statistics in the E‐step are O(NKTMd2) and
O(LNKTMd2), respectively, with L denoting the number of
particles. The computational cost of field estimation in the M‐
step is dominated by O(M3), where M is the number of B‐
splines.

4 | SIMULATION STUDY

4.1 | Data generation

The performance of the proposed algorithm is assessed
through MC simulation of several migration patterns
generated in the 2‐D gradient field. Each scenario is simu-
lated 100 times with different realisations of the process
noise and with the same parameters of the global field. The
environment is modelled using a 4 � 4 grid of bivariate
tensor product cubic B‐splines β(s1, s2) cardinally spaced on
the map of size 1000 � 1000 arbitrary units (a.u.). Each MC
experiment simulates the migration patterns of K = 100
passive agents whose trajectories are observed for Tk = 100
time instances or until the agent leaves the field of influ-
ence. The interaction is described by a system with linear
structure.
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r kt �Φ r kt ∣ r kt
� �

ð37aÞ

x k
tþ1 ¼ A r ktð Þ x k

t
� �

þ B r ktð Þu
k
t þ G r ktð Þw

k
t ð37bÞ

y k
t ¼ Cx k

t þ v k
t ; ð37cÞ

where uk
t is defined by Equation (5). Note that because the

state of an agent enters the basis function decomposition of
the field, the model Equation (37b) remains non‐linear with
respect to the state.

Each agent can assume one of two modes: the responsive
mode in which the object responds to the acting environment.

Að1Þ ¼
I2 TI2
O2 I2 − Tρð1ÞI2

" #

Bð1Þ ¼

T 2

2
I2

TI2

2

64

3

75Gð1Þ ¼

T 2

2
I2

TI2

2

64

3

75;

ð38Þ

and the non‐responsive mode in which an agent is not influ-
enced by the environment.

Að2Þ ¼
I2 TI2
O2 I2 − Tρð2ÞI2

" #

Bð2Þ ¼
O2

O2

� �
Gð2Þ ¼

T 2

2
I2

TI2

2

64

3

75;

ð39Þ

where T = 1 min is the time increment and I2 is the identity
matrix and O2 is a zero matrix of size 2 � 2. The presented
model is the Euler–Maruyama discretisation of the biased
random walk with resistance to the environment that is
commonly used to describe particle and cell motion. In the
transition matrix A, the term I2 − TρI2 corresponds to the
reversion to mean in the O‐U process describing the velocity
of a large Brownian particle, while the matrix B in the first
mode introduces bias in response to the environment.

The rate of the reversion to mean has been set to ρ(1) = 0.3
for the sensing mode and ρ(2) = 0.7 for the desensitised mode.
The process noise covariances are set toQð1Þ ¼ 0:2I2 a.u.2/min4

and Qð2Þ ¼ 0:5I2 a.u.2/min4, The measurement noise
covariance is set to R¼ I2 a.u.2. Initial velocity estimates are
arbitrarily assumed to be zero with uncertainty covariance
P0 ¼ I2 a.u.2/min4. Initial mode probabilities for the IMM
filter are set to π¼ 0:5; 0:5½ � to ensure no knowledge of the
initially correct model. The mode transition probability matrix
Φ is set to

ϕ11 ϕ12
ϕ21 ϕ22

� �
¼

0:9 0:1
0:2 0:8

� �
: ð40Þ

The described system is used to generate the agent of
migration patterns with uniformly distributed starting point.
The examples of generated tracking data for each scenario are
demonstrated in Figure 2. The generated trajectories are then
processed with two versions of the estimation framework: the
first version utilised MF approximation of non‐linear sufficient
statistics, while the second version relied on the importance
sampling with L = 100 particles generated from each proposal
distribution.

4.2 | Estimation results

The estimation results for the field model are presented in
Figure 3a,c. The mean and standard deviation of parameter
MLEs are obtained from 50 MC simulations. Recalling
Remark 2 about inferring the gradient and not the field itself,
we use absolute bias between the true field and the one con-
structed with mean estimates to assess the performance of the
estimation framework. As shown in Figure 3b,d, Both algo-
rithms are able to reconstruct the gradient that is consistent
with the modelled one, however the MF‐based EM understates
the slope of the field. The highest bias is observed in the area
with the highest field magnitude. This can be explained by the
fact that the true gradient in that area is rather small and its
influence on the agents is comparable with the magnitude of
process noise. This results in assignment of high probabilities
to the diffusing mode for many agents in that area, reducing

Algorithm 2 Approximate estimation framework.
Input: Observation set, Y; hypothesised
models, M; initial model probabilities, Π;
convergence threshold, e.
Output: Smoothed agent states, X; smoothed
mode probabilities, μ; estimated model
parameters, bΘ.
1: Initialise parameter vector bΘ0;
2: while (l ≤ lmax) and ¬(convergence) do
3: for k ← 1, K do
4: IMM-EKF in forward time
5: for t ← 1, T do
6: IMM-ERTS backward recursion

(Algorithm 1)
7: A1: Obtain proposal densities

(32)-(31)
8: Sampling from estimated pdfs:

MC : x
�k
i;t;j

n oL

h¼1
� qðjÞ x k

t
� �

; j ¼ 1;…;M:

IS : ωi; x
�k
i;t

n oL

i¼1
� q

�
x k
t

� �
:

9: Approximateexpectationsusing
Equations (33) and (34);

10: A2: Approximate Equation (23)
using Equations (35) and (36);

11: end for
12: end for
13: Estimate bΘl using Equations (24) and

(25);
14: Check convergence of the parameter

vector bΘ;
15: end while
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the information about the local gradient. The result might
indicate that the localisation of the sensing agents and their
spread in the region of interest is one of the key contributing
factors to the accuracy of environment inference. Further
investigation of varying movement patterns may be required.
The IS‐based method overstates field magnitude, but the bias
of the estimate is nearly constant in the region of interest and
thus can be explained by Remark 2.

Table 1 summarises selected statistics obtained with both
MF‐based and IS‐based algorithms. The last column of the
table includes the present computing time required to one EM
iteration of each method.1 It can be seen from the table that
MF‐based EM achieves the accuracy similar to the IS‐based
EM at nearly of the computational cost that is proportional
to the number of particles used in sampling. The comparable
results of two methods can be explained by low measurement
noise variance: agent position estimates obtained from the
IMM smoother will not change significantly with iterations of
the EM algorithm. We can conclude that since in most prac-
tical applications the noise‐to‐signal ratio in tracking of agent
positions is small, the MF‐based algorithm can be used without
significant loss of accuracy.

The inference of the mode switching process from the
tracking data is performed both in the M‐step, where the
transition probability matrix is estimated, and in the E‐step,
where the most probable mode sequence can be obtained from
estimated mode probabilities. The example results presented in
Figure 4 demonstrate that the estimates converge to the true
values. The mean and 3σ deviation interval for the transition
probabilities are calculated from the sample of 50 MC simu-
lations (see Figure 4c). Successful estimation of mode transi-
tion probabilities is the result of having a model structure
where behavioural modes are distinguishable from one
another. It can be seen in Figure 4e, however, that some short‐
term changes of the mode are not detected by the framework.
Under the scenarios in which the change in the true mode is
reversed within a short time interval, the smoothed mode
probabilities do not change significantly to reflect this change

(see times t = 30, 60, and 70 min in Figure 4d). Thus is the
result of a fundamental trade‐off between detecting abrupt
changes in the mode and smoothing noisy processes in the
smoothing procedure.

5 | APPLICATION STUDY: CELL
MIGRATION

5.1 | Neutrophil chemotaxis

The applicability of the developed framework is demonstrated
on the dataset fromRef. [11] where the migration of white blood
cells (neutrophils) during the inflammatory reaction in zebrafish
larvae is analysed. The inflammation is triggered by the injury of
the fish tail fin. In the initial stages of the inflammatory event,
neutrophils migrate to the injury site in response to the chemical
attractant (ChA) that is generated at the cut area and spreads out
into the tissue. The cells known to travel up the ChA gradient
and arrive to the inflammation site within the first several hours
post injury [49]. In the experiment, neutrophils are tracked via
video microscopy with time increment of 30 s. For the purpose
of testing the framework, these cells are considered to be the
sensing agents, and their trajectories shown in Figure 5a
constitute the observation dataset Y. Cell velocities are not
measured, but they constitute hidden data X . The environment
of interest, U , is the concentration of the ChA.

It has been established experimentally that neutrophils
transition between different behavioural modes while migrating
through the tissue [14]. Several works suggest varying number
of modes, with the unifying idea that at certain periods the cells

F I GURE 2 Generative model and the example agent trajectories.
(a) The grid of basis functions with corresponding scaling coefficients used
to model the potential field: Θ1:4 = 10, Θ5:8 = 100, Θ9:12 = 190,
Θ13:16 = 290. (b) All agents enter the field at random positions (*).

F I GURE 3 Environment inference. Left: the potential field
constructed with mean maximum likelihood estimate of B‐spline
coefficients averaged over 50 MC realisations θm ¼

P50
iMC¼1

bθ
iMC , where iMC

is the simulation index. Right: absolute bias. Colourbars normalised to one
scale. (a, b) Results obtained using MF‐based EM. (c, d) Results obtained using
IS‐based EM. EM, expectation‐maximisation; MF, mean‐field.

1
All computations are performed using MATLAB Parallel Computing Toolbox on UoS
HPC cluster. Full specifications can be found at https://docs.hpc.shef.ac.uk/en/latest/
sharc/cluster_specs.html.
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stop interacting with the environment due to receptor over‐
saturation. In this example, we assume that each cell can as-
sume one of the three modes: responsive mode (M1) that
characterises interaction with the environment, diffusing mode
(M2) for active cells with receptor oversaturation, and stationary
mode (M3) that characterises behaviour of cells either waiting to
be dispatched to the tissue or those arrived to the wound. These
modes are coresspond to the states of the Markov chain
M¼ f1; 2; 3g. We utilise the SSM structure Equation (37)
introduced in the previous section. The responsive mode is
described by the model with the structure Equation (38), which
corresponds to a model of single cell motion described in Ref.
[49]. The other two modes are modelled by O‐U process
Equation (39) with different noise amplitudes.

The hidden chemoattractant field in this case has been
approximated by a 5 � 4 grid of B‐splines. The time increment
between observations is t = 2 min with the observation noise
covariance set to 2I2 μm2. Mode‐specific coefficients of
reversion to mean are set to ρ(1) = 0.3, ρ(2) = 0.5, ρ(3) = 0.5,
and process noise covariances are set to Qð1Þ ¼ 2I2 μm2=min4,
Qð2Þ ¼ 2I2 μm2=min4, Qð3Þ ¼ 0:5I2 μm2=min4, with an initial
field parameter estimate Θ = 0, and the initial mode transition
probability is defined as follows: ϕji = 0.8, j = i, ϕij = 0.1,
j ≠ i ∀ j; i 2M. The data is processed using the EM algo-
rithm with MF‐type approximation.

5.2 | Chemoattractant inference

The results of applying the estimation framework to the cell
tracking data for an individual zebrafish larvae are presented in
Figure 5. While it is impossible to determine whether the
magnitude of the field has been estimated correctly, the esti-
mated gradient is consistent with the experiments that measure
the concentration of attractants near the wound of the tail fin
[4]. Besides, a sparse polynomial basis provides a consistent
gradient—in the areas without cell tracks the estimated con-
centration of the ChA is uniformly low.

The framework appears to make a clear distinction be-
tween different migratory modes. For example, it can be seen
in Figure 5d that the probabilities of an agent being in the
responsive mode are normally close to one or zero. The MLEs
of mode transition probabilities illustrated in Figure 5b indicate
that the diffuse mode may be an intermediate state between the
responsive and stationary modes, as the MLE ϕ22 is small
compared to other diagonal elements of the transition matrix.
Since only cells in the first mode contain information about the
environment, the increase in estimated concentration is

observed starting from the middle of the tail fin, where more
neutrophils start aligning with the direction of the wound as
shown in Figure 5c.

The following behavioural pattern can be established from
the estimates of mode probabilities. Multiple cells start in the
fish’s lower body at a stationary mode waiting to be released into

TABLE 1 Selected MLE statistics

Methods

Max std Min std Max bias Min bias

Time, sValue Coeff. Value Coeff. Value Coeff. Value Coeff.

MF 34.427 θ1 7.192 θ10 32.831 θ15 1.484 θ6 737.35

IS 29.052 θ4 11.689 θ11 39.106 θ15 1.019 θ3 1276.6

Abbreviations: MF, mean‐field; MLE, maximum likelihood estimate.

F I GURE 4 Agent behaviour inference. (a) True agent positions and
modes of agents against the true gradient: j = 1 ( ) and j = 2 ( ).
(b) Estimated agent positions colour coded according to the probability of
being in a responsive mode. (c) Transition probability maximum likelihood
estimates and �3σ confidence regions: bϕ11 ( ) and bϕ22 ( ). (d) The
estimated mode sequence for an individual agent: estimated mode ( )
against the mode of the generative model ( ). (e) Smoothed mode
probabilities for j = 1 ( ) and j = 2 ( ).
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the tissue.Once activated, neutrophils first diffuse away from the
starting point in search of the gradient. Upon sensing an uneven
concentration, they switch to the responsive mode and rapidly
migrate up the gradient (see Figure 5d). Occasional changes back
to the diffusivemode are seen in Figure 5e; theymay be the result
of sporadic receptor desensitisation to the chemoattractant or
obstacles within the tissue. Upon entering the wound site, the
area starting at an ~100 μm away from the wound, the neutro-
phils switch back to the diffusive mode and eventually slow
down to a stationary mode (see Figure 5f). These results illus-
trates how the developed estimation framework can provide an
insight into both the underlying environment affecting cell
population and the changing behaviour of the individual cells.

6 | CONCLUSION

This paper introduces a modelling and estimation framework
that deals with a novel problem, in which the global environ-
ment driving multiple passive agents is estimated from their

observed movement. The dynamics of an individual agent
moving in response to its environment is described by an input
affine JMNLS. The switching nature of the model reflects
heterogeneous behaviour of agents observed in many appli-
cations, while the affine input term incorporates the local in-
fluence of the global environment on the agent. The basis
function decomposition of the environment renders the linear‐
in‐parameters global model that can be estimated from local-
ised trajectory data.

The proposed hybrid system is embedded into the
maximum likelihood estimation framework to estimate the
functional form of the unknown environment and the transi-
tion probability matrix associated with agent behavioural
modes. Since the estimation is performed in the presence of
hidden data, an EM solution is derived. The expectation step
combines IMM smoothing and with two approaches to
approximating the sufficient statistics, importance sampling
and MF approximation. These approximations of the necessary
statistics are then used in the maximisation step to compute the
estimates of unknown parameters in closed form.

The simulation examples reveal that the MF type approx-
imation of the sufficient statistics in the EM algorithm achieves
accuracy comparable with the simulation‐based approxima-
tions at a smaller computational cost. The framework identifies
the mode sequence of agents which indicates that IMM is
sufficient for JMNLS estimation in cases where dynamical
model of each mode is known. The framework is then used to
analyse the migration of white blood cells in the inflammatory
response in a living animal. The estimate of the attractant
concentration field driving cell migration conforms with the
concentration patterns demonstrated in experimental literature.
The case study illustrates the applicability of the novel
formulation that captures the changing behaviour of sensing
agents in unknown environments.
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F I GURE 5 Estimation results for the neutrophil migration patterns.
(a) Experimental data used for field estimation. (c) Estimated transition
probabilities between three modes. (b) The estimated concentration field of
the chemical attractant in the zebrafish tailfin. (d) Responsive mode
probabilities for each track. (e) Diffusing mode probabilities for each track.
(f) Stationary mode probabilities for each track.
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