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Abstract

Transboundary livestock diseases are a high priority for policy makers because of the seri-

ous economic burdens associated with infection. In order to make well informed preparedness

and response plans, policy makers often utilize mathematical models to understand possible

outcomes of different control strategies and outbreak scenarios. Many of these models focus

on the transmission between herds and the overall trajectory of the outbreak. While the

course of infection within herds has not been the focus of the majority of models, a thorough

understanding of within-herd dynamics can provide valuable insight into a disease system

by providing information on herd-level biological properties of the infection, which can be

used to inform decision making in both endemic and outbreak settings and to inform larger

between-herd models. In this study, we develop three stochastic simulation models to study

within-herd foot and mouth disease dynamics and the implications of different empirical

data-based assumptions about the timing of the onset of infectiousness and clinical signs.

We also study the influence of herd size and the proportion of the herd that is initially

infected on the outcome of the infection. We find that increasing herd size increases the

duration of infectiousness and that the size of the herd plays a more significant role in deter-
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mining this duration than the number of initially infected cattle in that herd. We also find

that the assumptions made regarding the onset of infectiousness and clinical signs, which are

based on contradictory empirical findings, can result in the predictions about when infection

would be detectable differing by several days. Therefore, the disease progression used to

characterize the course of infection in a single bovine host could have significant implications

for determining when herds can be detected and subsequently controlled; the timing of which

could influence the overall predicted trajectory of outbreaks.

Keywords: transboundary livestock disease, foot and mouth disease, within-herd

dynamics, herd size
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• Within-herd dynamics of transboundary livestock diseases affect outbreak outcomes.3
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• In the FMD system, empirical studies show differing disease progressions in cattle.4

• Herd detectability differs by several days depending on assumed disease progression.5

• Herd size impacts infectious duration more than number of cattle initially infected.6

Introduction7

Mathematical models, including agent-based and hybrid models, are part of the tool-8

set that policy makers deploy to inform decisions regarding the potential for outbreaks of9

transboundary livestock diseases, such as foot and mouth disease (FMD), highly pathogenic10

avian influenza (HPAI), and African swine fever (ASF) (Webb et al., 2017; Schoenbaum and11

Terry Disney, 2003; Probert et al., 2016; Keeling et al., 2001; Tildesley et al., 2006; Yoon12

et al., 2006; Willeberg et al., 2011; Buhnerkempe et al., 2014; Tsao et al., 2014; Savill et al.,13

2006; O’Neill et al., 2020; Hill et al., 2017; Retkute et al., 2018; Lange et al., 2018; EFSA14

et al., 2018; Hill et al., 2018). These diseases have the potential to spread rapidly across15

international borders and cause serious, sometimes catastrophic, economic and agricultural16

losses in non-endemic countries (Paarlberg et al., 2008; Thompson et al., 2002). Often these17

models focus on transmission between herds (Keeling et al., 2001; Tildesley et al., 2006;18

Buhnerkempe et al., 2014; Tildesley et al., 2008; Keeling, 2005; Pomeroy et al., 2015a; Tsao19

et al., 2019). However, models of between herd spread often make a simplifying assumption20

that herds are either susceptible or infected. The reality is more subtle as within-herd21

dynamics impact the force of infection from a herd (Keeling, 2005). Thus, understanding22

the outbreak trajectory within a herd can provide important information for understanding23

the biology of transboundary disease systems, including the transmission behavior and the24

potential for disease detection. This information can also be used to inform decision making25

and developing policy, and in parameterizing larger between-herd models.26

A primary focus of policy intended to mitigate transboundary livestock diseases in non-27

endemic countries has been to reduce the potential for fast spreading infections. Due to their28
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fast spread rates, models often make the assumption that once infection is introduced the29

entire herd or flock, functioning as a single unit, can be considered infected and subsequently30

infectious. This is a justifiable assumption in large-scale outbreak models because inference31

is often on large-scale control policies whose implementation occurs over months or weeks32

compared to the smaller timescale of within-herd dynamics. Additionally, there is often33

limited data on infection dynamics at this scale (Keeling, 2005). The assumption is also34

more tractable because it allows herds, flocks or premises to be treated as a single entity.35

Assuming the entire herd or flock is a single unit is a simplifying assumption but it provides36

policy makers with metrics of interest about potential outbreaks, including the number of37

potential herds or flocks infected and the spatial extent. However, some outbreak metrics38

of interest to policy makers are influenced by within-herd dynamics, particularly overall39

outbreak duration (Chis Ster et al., 2012; Gilbertson et al., 2022), which is important for40

understanding potential economic impacts and can be underestimated by models that do41

not include within-herd dynamics.42

Studies exploring the potential impact of within-herd dynamics on outbreak disease pro-43

gressions are often done using information from data collected in outbreaks, which often44

includes the day of reporting, the location, control actions taken and, if available, an in-45

ferred infection date. These data are invaluable and have been used effectively for numerous46

studies (Keeling et al., 2001; Keeling, 2005; Tildesley et al., 2006, 2008, 2009; Keeling et al.,47

2003; Hayama et al., 2012, 2013; Perez et al., 2004b,a; Ward and Perez, 2004; Ferguson, 2001;48

Ferguson et al., 2001). However, it can be difficult to parameterize within-herd models using49

outbreak data. One reason for this is there is uncertainty in the estimated date of infection50

for herds and these data are not always collected during outbreak situations (Keeling et al.,51

2001; Perez et al., 2004b; Muroga et al., 2012). Additionally during an outbreak, premises52

that are identified as being infected or at higher risk from infection are often controlled as53

quickly as possible (Anderson, 2002; Muroga et al., 2012; Perez et al., 2004b), which means54

that the full progression of infection within a herd or flock is not realized. For instance at55
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the end of March in the U.K. 2001 FMD outbreak, herds that were identified as infected56

were supposed to be culled within 24 hours, and those that were identified to be at higher57

risk (dangerous contacts) were culled within 48 hours (Anderson, 2002), meaning that in-58

fected herds were removed from the population before the infection fully progressed through59

the herd. In endemic settings, serological data are available (Pomeroy et al., 2015b); how-60

ever, the complex interactions between immunology and the different circulating serotypes61

can make it difficult to understand the progression of a single strain in an immunologically62

naive population. Parameterization through serological data also requires repeated sampling63

through time, which is not always available or feasible.64

Another difficulty is that outbreak data available to researchers usually report the entire65

herd or flock as infected rather than reporting the number of animals that are infected.66

This means that even with an inferred infection date, there is little information available to67

understand how the route (e.g. fomite, imported animal) of pathogen introduction impacts68

the dynamics. For example, it is unknown if a shipment of one or two infected animals69

into a herd will result in different dynamics than if twenty percent of the herd or flock70

was infected via local spread (i.e. transmission through a non-shipment related event).71

Understanding how the number or proportion of the initially infected population within a72

herd or flock influences disease dynamics could be important for allocating control strategies73

and understanding both within and between entity transmission.74

A factor that can further complicate the parameterization of within-herd models is that75

estimates of epidemiological parameters from experimental infections are often based on76

proxies of infectiousness rather than direct observations of transmission (Clancy et al., 2006;77

Bos et al., 2009; Rohani et al., 2009; Mardones et al., 2010; Charleston et al., 2011; Ypma78

et al., 2013). Using a coupled experimental design, Charleston et al. (2011) showed that the79

timing of clinical signs and the onset of infectiousness of FMD in cattle changes depending80

on the methods used to identify infectious animals (Charleston et al., 2011). Results from81

a transmission challenge experiment suggest that cattle develop clinical signs shortly before82
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they are capable of transmitting the virus to other susceptible cattle; however, if cattle are83

monitored using more traditional measures of viremia in various bodily fluids, the results84

suggest they are infectious before they show clinical signs. The two differing disease progres-85

sions in cattle, one suggested by the transmission challenge experiment, one suggested by86

traditional measures, could manifest in different dynamics within a herd and could impact87

the length of time a herd is infectious as well as the detectability assumptions about that88

herd. The results presented in Charleston et al. (2011) also suggest that FMD progression in89

cattle may differ from the progression in pigs (Charleston et al., 2011; Stenfeldt et al., 2016;90

Paton et al., 2018). Uncertainty in the timing of disease stages, such as periods when animals91

are infectious or showing clinical signs, has also been acknowledged in other transboundary92

livestock diseases, including HPAI and ASF (Bos et al., 2007; Backer et al., 2009; Guinat93

et al., 2017). Uncertainty in disease stages, both within a species or among different species,94

could have ramifications for detection, and possibly control or surveillance, in both endemic95

and epidemic disease situations. In outbreaks, the time to detection is considered a critical96

factor in minimizing potential losses (Carpenter et al., 2011; Sánchez-Vizcáıno et al., 2013);97

therefore, exploring the impact of uncertainty and, in the case of FMD, conflicting findings98

on the disease stages would be highly beneficial both for policy makers and modeling groups.99

In this study, we focus on developing within-herd models for one transboundary live-100

stock disease, FMD, which is a highly contagious virus that infects divided hoofed animals,101

including important livestock species such as cattle, sheep, and pigs (Haydon et al., 2004).102

FMD outbreaks are expensive because of the restrictions on trade that are placed on infected103

countries and the control measures implemented by non-endemic countries (Anderson, 2002;104

Thompson et al., 2002; Knight-Jones and Rushton, 2013). This makes FMD a policy con-105

cern for both countries that are not infected and for countries that are dealing with endemic106

spread. The United States (U.S.) has not experienced an FMD outbreak in almost a cen-107

tury, and as with many FMD-free countries, preparing for the potential introduction of FMD108

means having to rely on information gained from outbreaks in other countries; this includes109
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information on between and within-herd spread. Understanding how within-herd dynamics110

may be influenced by the factors discussed above will be helpful for informing assumptions111

about larger-scale between herd processes and control.112

For epidemic FMD, it is rare that models focus solely on within-herd dynamics. More113

often within-herd models are embedded in the larger between-herd models that are of more114

interest for policy and preparedness. There are a few notable exceptions where within-115

herd dynamics or transmission have been specifically studied (Chis Ster et al., 2012; Brito116

et al., 2011; Carpenter et al., 2004). These studies have focused on understanding the role117

within-herd dynamics or transmission played in previous outbreaks of FMD (Chis Ster et al.,118

2012; Brito et al., 2011), and improving our understanding of the epidemiology, detection119

(Chis Ster et al., 2012), vaccination (Brito et al., 2011) and diagnostics (Carpenter et al.,120

2004). From these studies, it is clear that within-herd dynamics do affect the overall outbreak121

trajectory or parameter estimates and that there are a number of unknowns associated with122

understanding within-herd dynamics, including a quantitative exploration of the animals123

initially infected in a herd (Chis Ster et al., 2012).124

Here, we performed a systematic exploration of the impact of herd size, the number of125

animals initially infected within herds, and model structure (disease progression) to develop126

a better understanding of within-herd FMD dynamics in cattle. We developed a set of three127

stochastic compartmental models of within-herd FMD, which are based on the differing as-128

sumptions about disease progression that could be made based on experimental studies. By129

running simulations with these models across herd sizes from 5–10,000 head and initial in-130

fection sizes representing 1–25% of the herd, we quantified how these herd characteristics131

impact the length of time a herd is infectious and potentially contributing to onward spread.132

Additionally, we investigated the predicted differences in the detectability of infected herds133

between model structures. The results from these models provide information about the134

length of time herds of different sizes could be infectious and the impact the inclusion of135

within-herd dynamics may have on overall outbreak dynamics. By exploring the effect of136
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disease progression on predictions, these results show that uncertainty in the progression also137

results in uncertainty in herd detectability which could have impacts on decision making.138

These results also provide predictions that could be used to inform nation-scale between-herd139

outbreak models, including assumptions about the reporting of infected herds and possibly140

the timing of control in relation to onset of infectiousness. Together these results provide141

information about how herd demographics and assumptions about disease progression im-142

pact the predictions about a transboundary disease system and point to the importance of143

understanding the underlying biology.144

Methods145

We developed three stochastic compartmental models to study the within-herd dynamics146

of FMD in cattle. The three model structures reflect the differing disease progression results147

from empirical studies (Charleston et al., 2011; Mardones et al., 2010) and are all variations148

on standard susceptible, exposed, infectious, removed (SEIR) models. For all three model149

variants, we make the assumption that we are dealing with a closed population, such that150

there are no births, deaths, emigration or immigration. The speed of FMD spread through151

a herd is on a faster time scale than the processes affecting the herd size and can therefore152

justify this assumption. We also make the assumption that the cattle herd is immunologically153

naive, which mimics the situation in an outbreak setting or in an endemic situation with a154

novel strain, as there is little cross-immunity between strains (Paton and Taylor, 2011).155

We assume that FMD will be introduced into a herd through the exposed class, rather156

than through the infectious class. We make this assumption because it is the first disease157

stage, and regardless of model variant, the exposed stage is both non-infectious and without158

clinical signs. Since there is not clear experimental evidence for within-herd FMD transmis-159

sion being density- or frequency-dependent, we built both transmission types for our three160

model variants. There is some evidence that between-herd transmission of FMD is density-161

dependent (Ferrari et al., 2011), and we therefore present the density-dependent versions162
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of the models in the main text and the frequency-dependent versions in the Supplementary163

Methods.164

The first model, which will hereafter be referred to as the Base model, is an SEIR165

model (Figure S1). In this model, we assume that cattle are infectious and clinical in the166

infectious stage, such that cattle become infectious and detectable at the same time. This167

model represents the simplest assumption regarding relative timing of infectiousness and168

clinical signs and is therefore useful as a benchmark for comparing with the other two models169

presented below. Cattle move through the compartments of the Base model as follows:170

dS

dt
= −βSI (1)

dE

dt
= βSI − σE (2)

dI

dt
= σE − γI (3)

dR

dt
= γI (4)

where, S, E, I, R represent susceptible, exposed, infectious, and removed individuals, respec-171

tively. The transmission rate is given by β, the transition between exposed and infectious172

(infectious rate) is given by σ and the recovery rate is given by γ. The stage transition rates173

for this model and the following two models are in units of days−1 (Table S1). Equations174

1–4 show density dependent transmission (see the Supplemental Methods for the equations175

describing frequency-dependent transmission).176

The second model, which will be called the Clinical First model, includes an additional177

compartment for cattle that are showing clinical signs but are not yet infectious. This model178

follows the results of the transmission challenge experiment conducted by (Charleston et al.,179

2011). The Clinical First model compartments are: Susceptible, Exposed, Clinical Not180

Infectious, Infectious & Clinical, Removed (SEAIR) (Figure S2). The model equations are181

given by:182
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dS

dt
= −βSI1 (5)

dE

dt
= βSI1 − φE (6)

dA1

dt
= φE − ωA1 (7)

dI1
dt

= ωA1 − θI1 (8)

dR

dt
= θI1 (9)

assuming density-dependent transmission. The transmission rate, β, is the same parameter183

as used in the base model. The stages are given by S, E, A1, I1, R, where S, E, and R are184

the same as the Base model and A1, and I1 represent the clinical not infectious, and clinical185

and infectious stages unique to the Clinical First model. The rate of transition from exposed186

to clinical not infectious is given by φ, the rate from clinical not infectious, to clinical and187

infectious, is given by ω and the recovery rate is given by θ.188

The third model will be called the Infectious First model, and follows the results from189

measures of viremia in fluid. In this model variant, cattle are assumed to be infectious before190

they show clinical signs. The five compartments of the Infectious First model are: Suscepti-191

ble, Exposed, Infectious Not Clinical, Infectious & Clinical, Removed (SEIAR) (Figure S3)192

and is described by:193

dS

dt
= −βS(I2 + A2) (10)

dE

dt
= βS(I2 + A2) − ηE (11)

dI2
dt

= ηE − ρI2 (12)

dA2

dt
= ρI2 − µA2 (13)

dR

dt
= µA2 (14)
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assuming density-dependent transmission. The transmission rate, β, is the same parameter194

as used in the base model. The stages are given by S, E, A2, I2, R, where S, E, and R195

are the same as the base model and A2, and I2 represent the infectious not clinical, and196

clinical and infectious stages unique to the Infectious First model. The rate of transition197

from exposed to infectious not clinical is given by η, the rate from infectious not clinical, to198

clinical and infectious, is given by ρ and the recovery rate is given by µ.199

All three model variants were parameterized from the empirical cattle study by Charleston200

et al. (2011) (Table S1). We chose to use this study because it experimentally estimates201

each model parameter and uses Bayesian inference to estimate uncertainty in each param-202

eter estimate, which is used in the sensitivity analysis described below. Charleston et al.203

(2011) also allows consistent parameterization methods among models because it coupled a204

transmission challenge experiment with measurements of viremia in bodily fluids. Whilst205

the results from the transmission challenge part of the Charleston et al. study are differ-206

ent from results previously reported, the results from the measures of viremia are consistent207

with previous FMD studies (Mardones et al., 2010; Charleston et al., 2011). The Base model208

and Clinical First models were parameterized using the transmission challenge experiments;209

however, in the Clinical First model, the exposed stage is split into two so that there is210

a distinct stage for clinical but not yet infectious cattle. The Infectious First model was211

also parameterized using the same experiment, but Charleston et al. (2011) defined the212

infectious state based on a commonly used proxy for infectiousness: detection of the virus213

in fluids by PCR. Specifically, Charleston et al. (2011) measured viremia in blood, nasal214

fluid, and oesophageal-pharyngeal fluid (OPF), which resulted in three estimates for stage215

durations (Charleston et al., 2011). Therefore, we used three different parameterizations for216

the Infectious First model, corresponding to the different fluids.217

Twelve herd sizes ranging from 5 to 10,000 head were selected based on the category218

divisions in the NASS Agricultural Census herd sizes (USDA, 2014). For each herd size,219

infection was seeded with 1%, 5%, 10%, and 25% of the herd initially infected with the220
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virus. For smaller herd sizes, the initial number of animals exposed at the start of the221

simulation will either be the stated percentage above or 1 animal, whichever is larger. For222

larger herds, the initial number of animals exposed will be the stated percentage above or 100223

animals, whichever is smaller. All percentages will be rounded to the nearest whole animal,224

see Table S2 for a complete list of herd sizes and the number of initially exposed animals.225

All models were stochastically simulated using the adaptive tau-leaping method (Cao et al.,226

2007) coded in the R programming language (version 3.0.3) with the adaptivetau package227

(Team, R Core, 2014; Johnson, 2019). We ran 1000 simulations for each combination of228

model variation, initial condition, and parameter set.229

We analyzed the results to estimate the length of time in days herds are predicted to be230

infectious. For the Base and Clinical First models, this is the length of time cattle remain231

in the infectious (I and I1, respectively) class. For the Infectious First model, the length232

of time animals are infectious is the total length of time they are in either the Infectious233

Not Clinical stage (I2) or the Infectious and Clinical stage (A2). As we are interested in234

understanding the potential ramifications of when cattle become detectable, for the Clinical235

First and Infectious First models we also studied the length of time the cattle could be236

detectable before they are infectious and the length of time cattle could be shedding virus237

before they are detectable, respectively. For Clinical First model, the length of time before238

cattle are clinical but not yet infectious, is the length of time they remain in the Clinical239

Not Infectious stage (A1). For Infectious First model, we are interested in the length of time240

cattle are in the Infectious Not Clinical stage (I2). For each of these quantities of interest241

we found the median and the 2.5 and 97.5th quantiles.242

We conducted a sensitivity analysis to assess the relative importance of herd size, num-243

ber of initially infected animals, and each epidemiological parameter for the length of time244

herds are infectious. Using Latin Hypercube Sampling, we generated 1000 epidemiological245

parameter values for the 4 herd sizes between 100 and 1000 head, and 4 initially infected246

sizes, resulting in 16,000 parameter sets (Marino et al., 2008). The sensitivity analysis was247
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localized to the epidemiological parameter ranges based on the 95% credible interval from248

the Charleston et al. (2011) study (Table S1). We calculated model sensitivity based on the249

median infection times from 1000 simulations of each parameter set. We define sensitivity250

as the change in infection time for one standard deviation change in each parameter and251

use a linear regression to assess the contribution of each parameter as well as interaction252

terms between parameters (Buhnerkempe et al., 2014; Tsao et al., 2019). We report anal-253

yses for each model separately and for the Infectious First model focus on the viremia in254

blood parameterization sensitivity results.255

Results256

The results from all three model variants, the three parameterizations of Infectious First257

model and both the transmission types, show that the length of time herds are infectious258

increases with increasing herd size (Figures 1 & S4-S5). We see very little difference between259

the results from the density and frequency-dependent transmission versions of the models.260

Similarly, there are only slight differences between model variants in the predicted length of261

time herds are infectious. The largest difference in the predicted duration of infectiousness262

is between the blood parameterization of the Infectious First model and all other model263

variants and parameterizations. The blood parameterization of the Infectious First model264

predicts that at larger herd sizes, the length of time the herds will be infectious is lower than265

the predictions from other parameterizations and model variants, such that the slope of the266

duration of infectiousness by herd size is lower for the blood parameterization (Figure 1c &267

S4c).268

Our results also indicate that the size of the herd is more important in determining269

the length of time the herd will be infectious than the number of animals initially infected270

(Figures 1 & S4-S5). This is also supported by results from the sensitivity analysis. Herd size271

is consistently the best predictor of infection duration while the initial size of the infected272

population has a minimal effect (Figure 2 & S6). For example, in the base model assuming273
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1% of a herd is initially infected, an increase in herd size from 100 to 1000 individuals is274

associated with an increase in the median duration the herd is predicted to be infectious275

by 10.4 days. An increase in the initially infected size from 1% to 5% is associated with no276

changes in duration. Epidemiological parameters are also more important than the initial277

size of the infected population in influencing the duration a herd will be infectious. Longer278

exposed and infectious periods are associated with longer infection times.279

In the Clinical First model, cattle develop clinical signs before becoming infectious, such280

that the virus may be detectable before transmission begins. Our results indicate that the281

median estimated length of time that herds could be showing clinical signs but not transmit-282

ting is less than half a day for both the density and frequency-dependent models (Figures 3283

& S7-S8). The duration that herds show clinical signs is sensitive to epidemiological param-284

eters but not herd size or initial infection size (Figure 4). However, there is more variation285

at smaller herd sizes than those studied in the sensitivity analysis; the estimated 97.5th286

quantile for herds of 20 or smaller being 2 days and for herds of 5 being 3 days. The results287

of the Clinical First model suggest that detecting the infection in cattle herds before the288

onset of transmission would be unlikely but that the chances increase in small herds.289
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Figure 1: The length of time in days herds of 100 to 1000 head are infectious assuming density-dependent
transmission. The top x-axes show the number of animals initially exposed to the FMD virus and the bottom
axis shows the herd size. The Base model results are shown in panel (a), Clinical First model results are
in panel (b) and Infectious First model results are in panel (c). On the Infectious First model plot (c), the
round points show results using OPF parameters, triangle points show results using nasal fluid parameters
and square points show results using blood parameters.
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Figure 2: Sensitivity analyses across model parameters. Effect size represents linear regression coefficients
and 95% confidence interval for models fit to the median duration a herd is infectious in the (a) Base model,
(b) Clinical First model, and (c) Infectious First model assuming density-dependent transmission. We have
standardized both predictor and response variables for comparison among parameters.
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lines correspond to the herd size, shown in the legend.
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Figure 4: Sensitivity analyses across model parameters for (a) the median length of time herds could be
showing clinical signs but not transmitting and (b) the median length of time herds are transmitting the
virus without clinical signs. Effect size represents linear regression coefficients for models fit to the median
duration a herd is infectious assuming density-dependent transmission. We have standardized both predictor
and response variables for comparison among parameters.
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Figure 5: Sensitivity analyses across model parameters for models assuming frequency-dependent transmis-
sion. Model sensitivities are displayed for (a) the median length of time herds could be showing clinical signs
but not transmitting and (b) the median length of time herds are transmitting the virus without clinical
signs. Effect size represents linear regression coefficients for models fit to the median duration a herd is
infectious assuming density dependent transmission. We have standardized both predictor and response
variables for comparison among parameters.

In the Infectious First model, cattle develop clinical signs after becoming infectious,290

such that cattle may be transmitting the virus for several days before they are visually291

detectable. Our results show that the median length of time herds can be transmitting the292

virus without clinical signs is 2 days for the majority of herd sizes, number of initially infected,293

and parameterizations (Figure 6 & S9). This also holds for both the density and frequency-294

dependent versions of this model, though there is a bit more variation in the frequency-295

dependent case (Figures 6 & S9-S10). The variation in the length of time that herds can296

be silently transmitting ranges between one and four days, with the variation decreasing297

as herd size increases (Figure 6 & S9). The duration of transmission prior to clinical signs298

is less sensitive to epidemiological parameters than the duration of clinical signs but no299

infectiousness from the Clinical First model. Instead the duration of infectiousness without300

clinical signs is slightly sensitive to herd size, number of initially infected, the epidemiological301
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parameters and some of the interaction terms (Figure 4 & 5).302
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Figure 6: Median length of time herds of size 100 to 1000 head are predicted by the Infectious First model
to have infectious cattle that are not yet showing clinical signs assuming density-dependent transmission
with the 2.5 and 97.5 quantiles. The x-axis is the number of initially exposed animals. The color of the
points and lines correspond to the herd size, shown in left legend. The round points show results using OPF
parameters, triangle points show results using nasal fluid parameters and square points show results using
blood parameters (right legend).

Discussion303

The length of time a herd or premises is infectious is important to decision makers and304

a parameter common to many livestock disease models (Backer et al., 2009; Buhnerkempe305

et al., 2014; Bradhurst et al., 2015; Carpenter et al., 2004; Gulenkin et al., 2011; Jewell306

et al., 2009; Keeling et al., 2001; Tildesley et al., 2006; Tsao et al., 2019; Hayama et al.,307

2013; Ward et al., 2008). This value is often estimated from outbreak data, which can be308

difficult because herds are often identified and controlled before the full infection dynamics309

are observed such that the estimated infectious times may be too short. Using empirical310

studies to parameterize herd-level infection parameters removes the uncertainty and uncon-311

trolled elements of infection dynamics observed in outbreaks; however, these data are on the312

individual animal-level, which does not necessarily provide a good estimation of a herd-level313

duration of infection. Our study provides estimates of the infectious period of FMD at the314

herd-level when the infection is allowed to run its course without intervention. Our results315
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suggest that if left uncontrolled, herds can transition from having very few infected animals316

to many infected animals rapidly. Additionally, once infected, herds may be infectious for317

several weeks to over a month for larger herds. From these results, we can see that the318

duration of infectiousness is highly influenced by the size of the herd.319

Our results also indicate that the size of the herd is more important in determining320

the length of time the herd is infectious than the initial size of the infected population321

regardless of the model variant or the transmission version of the models. The sensitivity322

analysis also supports the importance of herd size in determining the length of time herds323

are infectious. This finding suggests that large farms could drive between farm transmission324

by being both more transmissible and by staying infectious longer and that therefore, from325

a policy perspective, large farms should be considered for targeted control in the event of an326

outbreak. This finding also suggests that in larger between-herd spread models, accounting327

for herd size may be the most important variable for estimating the length of time herds328

will be infectious and is more important for capturing the dynamics than the number of329

animals that initiated the infection in that herd. The relationship between initially infected330

population and duration is extremely hard to estimate from observed data because of the331

many different factors influencing the outbreak. Additionally, while we estimate herd size to332

be more important in determining duration than the proportion of the herd initially infected333

for cattle only premises that are infected at a single time point, in an epidemic setting334

herds may be infected through multiple routes at different times which has the potential to335

change the dynamics. Additionally, the presence of multiple species on a single premises may336

change the interaction between the proportion of the herd initially infected, the herd size337

and the duration. Within-herd FMD dynamics on multi-species premises may be particularly338

complex because not all susceptible species have the same disease progression (Charleston339

et al., 2011; Stenfeldt et al., 2016; Paton et al., 2018).340

The duration of the infectious period chosen in models may not have a substantial impact341

on outbreak scenarios that are well controlled; however, this parameter could have measur-342
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able impacts on scenarios where control resources are assumed to be limited. In a scenario343

with a limited control resource, it may not be possible to control herds as expeditiously as344

when the resource is unlimited. For example, in the event of a delay in culling owing to345

personnel or disposal constraints, the results from this study could provide an estimate of346

the length of time herds may continue to contribute to spread. In this study, we do not study347

potential impacts of transmission from asymptomatic carriers because the transmission risk348

from these animals has been estimated to be fairly low and potentially context dependent349

(Parthiban et al., 2015). Therefore, the estimated length of spread does not account for350

potential carriers, which would be an important consideration in the context of uncontrolled351

long-term infection dynamics both of FMD and other livestock diseases. Additionally, the352

application of control measures, which is not studied here, would alter the length of time a353

herd is infected, either by removing infected animals before the infection has run its course354

or by changing the susceptibility of a herd through vaccination. However, the estimates355

provided in this study give an upper bound on the length of time herds are contributing to356

transmission during the non-carrier phase of transmission. Estimates of the potential length357

of spread could be used in economic analyses of the cost of allowing animals to remain on358

a control wait list for specific lengths of time or investing in additional resources to move359

through the wait list more swiftly. These types of economic and epidemic trade-off analyses360

are invaluable when creating preparedness plans or estimating the impact different control361

strategies would have on outbreaks.362

The duration that individual herds contribute to transmission will also be important for363

understanding how the composition of premises contributes to the overall outbreak dynamics.364

Studies have shown that aspects of demography, including premises clustering, and the365

number of large farms in a given area, impact the outcome of potential FMD outbreaks366

(Werkman et al., 2016; Tsao et al., 2019; Gilbertson et al., 2022). Using well informed367

estimates for the duration of infectiousness for herds of different sizes will help disentangle368

the impact of herd size on duration of an outbreak within a herd versus the duration of an369
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outbreak across multiple herds. Depending on the demography, it is possible that a single370

large farm in isolation will have a shorter outbreak duration than many small farms that371

all become infected in a transmission chain. Using herd size-specific infectious durations372

may also be helpful in accurately determining high risk regions or areas because of the373

livestock demography. This finding that the transmission dynamics of FMD within-herds374

contributes to the overall outbreak has also been found by previous explorations of epidemic375

FMD outbreaks (Brito et al., 2011; Chis Ster et al., 2012). Chis Ster et al. (2012) points376

to the importance of herd size and species composition for understanding the UK 2001377

FMD outbreak and how little is known, quantitatively, about the initially infected animals378

within a herd. The work we present here builds on these results, focusing on a single379

susceptible species, and shows that the herd size is more impactful to the duration a herd380

is infectious than the number or proportion of initially infected animals. Additional studies,381

exploring the interactions among species within and between-herds will be important for fully382

understanding how within-herd dynamics and livestock demography interact to influence383

overall outbreak dynamics.384

The suggestion that cattle may not be infectious until after they are symptomatic presents385

an opportunity to catch, and potentially, control the onward spread of FMD very early in an386

outbreak. Additionally, the onset of clinical signs corresponding closely (less than one day)387

to the onset of infectiousness, could be used to target efforts in determining which herds388

could have been infected by the focal herd by narrowing the search window. The results389

from our simulations suggest that the short time window where cattle are not infectious but390

are showing clinical signs, does not offer much opportunity of identifying the virus before391

transmission has begun; the median for all herd sizes is less than one day. However, at392

smaller herd sizes, there is greater variation in this time period and therefore there is more393

opportunity for catching it, though logistically the time is short enough that it is still unlikely.394

While the Clinical First model suggests that the window of time cattle are symptomatic395

but not yet infectious is too short for an actionable difference in detection in comparison396
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to the Base model, it does provide a substantial head start in detection in comparison to397

the Infectious First model. The Infectious First model, that follows the traditional idea of398

cattle silently transmitting FMD before developing symptoms, suggests that visual detection399

is not possible until after several days of viral shedding. The difference between a few days400

of silent spread (median 2 days, Figure 6 & S9) and simultaneous or closely timed onset of401

clinical signs and infectiousness could result in substantial differences in assumptions about402

detection. Rapid detection of FMD outbreaks is considered to be an important aspect of403

containing spread and mitigating the impacts of the outbreak (Carpenter et al., 2011). Gen-404

erally in models the first few herds to be infected take longer to be reported than subsequent405

infections; an assumption that follows data from FMD outbreaks and results from the in-406

tensification of surveillance after the outbreak has been officially reported. Models assuming407

that FMD spreads silently could predict longer detection times and unchecked transmis-408

sion than those models assuming transmission with clinical signs. Given the importance409

of the FMD disease progression in determining herd detectability and outbreak dynamics,410

additional research on the timing of infectiousness and clinical signs would be beneficial.411

Additionally, empirical research suggests that unlike cattle, pigs do transmit FMD before412

developing clinical signs (Paton et al., 2018; Stenfeldt et al., 2016). Research into the bio-413

logical aspects of FMD infection across serotypes and susceptible species, and more broadly414

into the timing of disease stages in other transboundary livestock diseases would be useful for415

informing decision making and parameterizing mathematical models. Additional research is416

of particular importance for diseases that infect more than one species because these can, as417

has been found with FMD, have differ between susceptible species (Charleston et al., 2011;418

Paton et al., 2018; Stenfeldt et al., 2016).419

The results we present here are based on simple compartmental models exploring within-420

herd infection dynamics of FMD independently of between herd transmission, control or421

immune dynamics. The simplicity of the model limits our ability to fully study the potential422

impacts of the different model assumptions, parameters, and herd sizes on overall outbreak423
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trajectory. Additionally, the models presented here are for a single species and FMD infects424

multiple important livestock species. As a result of this, we were not able to study the425

potential dynamics of mixed species herds. The cattle only scenario does however cover426

the most commonly observed outbreak scenario as 72.1% of FMD outbreaks internationally427

have been in cattle only (USDA APHIS VS Center for Epidemiology and Animal Health,428

2017). Additionally, approximately 71% of FMD outbreaks in non-endemic countries have429

been first suspected in cattle (McLaws and Ribble, 2007). To the best of our knowledge,430

cattle are the only livestock species, at least so far, where the silent spread portion of the431

FMD infection has been brought into question (Charleston et al., 2011; Paton et al., 2018).432

If the almost concurrent appearance of clinical signs and transmission is unique to cattle,433

then herds that are mixed or consist solely of non-cattle divided hoofed species would silently434

transmit the virus and detection on these premises would be delayed. Another assumption435

we make is that herds are uniformly mixing. While we feel this assumption is justifiable436

because of the high degree of infectivity, we do recognize that there are certain production437

types (e.g. U.S. dairy) that could lead to non-uniform mixing. In such situations, the438

differences resulting from assumptions regarding onset of infectiousness and detectability439

may have greater impacts on the predicted results than those presented here. The models440

used in this study are limited in scope, but they still provide information that can point to441

additional studies and new avenues of research. These models could also be easily adapted442

to study other livestock species susceptible to FMD.443

The implications of the difference in potential for detection on overall outbreak trajectory444

and the potential for control are beyond the purview of this study; however, it is a very in-445

teresting finding that could be studied further by larger between-herd models. As mentioned446

in the previous paragraph it is unclear if cattle are the only species affected by FMD that447

can be detected before or at the same time as infectiousness begins. Should it be found for448

FMD or more broadly for any livestock infection that certain species are detectable earlier449

in infection than others, it opens up new possibilities for surveillance and control strategies.450
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For example, one common control tactic in highly infectious agricultural pathogens, is to451

assign a higher risk status for herds that have had an epidemiologically relevant contact452

with infected herds. Higher risk herds are controlled preemptively or given more stringent453

movement restrictions than lower risk herds (Tildesley et al., 2009; Perez et al., 2004a). In454

situations where certain species transmit silently and others do not, control prioritization of455

high risk herds could be optimized taking this information into account.456

The importance of within-herd dynamics to overall outbreak dynamics is not always457

apparent, particularly in non-endemic settings where herds are fully susceptible and the458

spread between them is rapid. However, there are a number of aspects about FMD that459

cannot be understood in the absence of within-herd dynamics. In this study, we used a460

series of compartmental models to gain a better understanding of how changes to the most461

basic assumptions, such as the ordering of the infection stages, can alter the predicted within-462

herd dynamics of FMD. Our findings suggest that regardless of the model structure and type463

of transmission, herd size is more important in determining the length of time herds remain464

infectious than the size of the initially infected population. We also found that the differences465

in disease progression lead to a two day difference in detectability; which results either in466

silent spread or detection concurrent with transmission. The magnitude of this difference467

could have interesting implications for larger between-herd transmission models and could468

influence surveillance and response plans. The information gained from this study can be469

used to inform herd-level parameterizations for models and provide a basis for incorporating470

herd demography data into outbreak simulations to guide future surveillance and response471

plans. Additionally, the results of this study demonstrate the importance of understanding472

the within-herd dynamics of fast-spreading livestock diseases and could be applied to other473

systems, such as HPAI and ASF.474
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Supplemental Methods
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Figure S1: Base model structure. The within herd cattle population is closed and moves sequentially through
four compartments: Susceptible, Exposed, Infectious, and Removed.
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Figure S2: Clinical First model structure. The within herd cattle population is closed and moves sequentially
through five compartments: Susceptible, Exposed, Clinical, Not Infectious, Clinical And Infectious, and
Removed.
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Figure S3: Infectious First model structure. The within herd cattle population is closed and moves sequen-
tially through five compartments: Susceptible, Exposed, Infectious, Not Clinical, Clinical And Infectious,
and Removed.

The three model variants were also run with frequency-dependent transmission. The base
model variation is given by the following equations.

dS

dt
=

−βSI
N

(S1)

dE

dt
=

−βSI
N

− σE (S2)

dI

dt
= σE − γI (S3)

dR

dt
= γI (S4)

N = S + E + I +R (S5)

Where, S, E, I, R represent susceptible, exposed, infectious, and removed individuals,
respectively. N represents the total number of animals in the population. The transmission
rate is given by β, the transition between exposed and infectious is given by σ and the
recovery rate is given by γ.

The frequency-dependent version of the Clinical First model, which describes the situa-
tion where cattle develop clinical signs before they become infectious, is given by:
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dS

dt
=

−βSI1
N

(S6)

dE

dt
=

−βSI1
N

− φE (S7)

dA1

dt
= φE − ωA1 (S8)

dI1
dt

= ωA1 − θI1 (S9)

dR

dt
= θI1 (S10)

N = S + E + A1 + I1 +R (S11)

The transmission rate, β, is the same parameter as used in the base model. The stages
are given by S, E, A1, I1, R, where S, E, and R are the same as the base model and A1,
and I1 represent the clinical, not infectious and clinical and infectious stages unique to the
Clinical First model. N represents the total number of animals in the population. The rate
of transition from exposed to clinical, not infectious is given by φ, the rate from clinical, not
infectious, to clinical and infectious, is given by ω and the recovery rate is given by θ.

The Infectious First model, in which cattle become infectious before clinical signs, with
frequency-dependent transmission is described by the following equations.

dS

dt
=

−βS(I2 + A2)

N
(S12)

dE

dt
=

−βS(I2 + A2)

N
− ηE (S13)

dI2
dt

= ηE − ρI2 (S14)

dA2

dt
= ρI2 − µA2 (S15)

dR

dt
= µA2 (S16)

N = S + E + I2 + A2 +R (S17)

The transmission rate, β, is the same parameter as used in the base model. The stages
are given by S, E, A2, I2, R, where S, E, and R are the same as the base model and A2,
and I2 represent the infectious, not clinical and clinical and infectious stages unique to the
Infectious First model. N represents the total number of animals in the population. The rate
of transition from exposed to infectious, not clinical is given by η, the rate from infectious,
not clinical, to clinical and infectious, is given by ρ and the recovery rate is given by µ.

The herd sizes and the size of the initially infectious cattle on a premises are shown
in Table S2. Each model variant and herd size and initial exposed population size were
simulated 1000 times.
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Table S1: Parameter Values

Model Parameter Description Value Range

Base model β Transmission Rate 21.84 0.34–141.62

σ Infectious Rate (Days−1) 0.22 0.32–0.14

γ Recovery Rate (Days−1) 0.77 3.33–0.21

Clinical First model β Transmission Rate 21.84 0.34–141.62

φ Clinical, Not Infectious Rate (Days−1) 0.25 0.34–0.17

ω Infectious Rate (Days−1) 1.92 6.25–0.77

θ Recovery Rate (Days−1) 0.77 3.33–0.21

Infectious First model β Transmission Rate 21.84 0.34–141.62

OPF ν Infectious, Not Clinical Rate (Days−1) 2.17 5.56–1.19

ρ Clinical Signs Rate (Days−1) 0.27 3.6–0.19

µ Recovery Rate (Days−1) 0.22 0.27–0.18

Infectious First model β Transmission Rate 21.84 0.34–141.62

Nasal Fluid ν Infectious, Not Clinical Rate (Days−1) 0.39 0.59–0.22

ρ Clinical Signs Rate (Days−1) 0.65 0.75–0.57

µ Recovery Rate (Days−1) 0.20 0.30–0.12

Infectious First model β Transmission Rate 21.84 0.34–141.62

Blood ν Infectious, Not Clinical Rate (Days−1) 0.43 0.67–0.26

ρ Clinical Signs Rate (Days−1) 0.58 0.69–0.43

µ Recovery Rate (Days−1) 0.41 0.48–0.37
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Table S2: Herd sizes and number of animals in the herd infected at the start of the simulations.

Percent Infected

Herd Size 1% 5% 10% 25%

5 1 1 1 1

10 1 1 1 3

15 1 1 2 4

20 1 1 2 5

50 1 3 5 13

100 1 5 10 25

200 2 10 20 50

500 5 25 50 100

1000 10 50 100 100

2500 25 100 100 100

5000 50 100 100 100

10000 100 100 100 100
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Supplemental results

(a) Base model

(b) Clinical First model

(c) Infectious First model

Figure S4: The length of time in days premises are infectious assuming density-dependent transmission. The
x-axes show the size of the herd before the period and the number of animals initially infected with the
FMD virus (after the period). The top x-axis is the number of animals that are initially infected and the
bottom x-axis is the total number of animals in the herd. The base model results are shown in panel (a), the
Clinical First model results are in panel (b) and the Infectious First model results are in panel (c). On the
Infectious First model plot (c), the round points show results using OPF parameters, triangle points show
results using nasal fluid parameters and square points show results using blood parameters.
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(a) Base model

(b) Clinical First model

(c) Infectious First model

Figure S5: The length of time in days premises are infectious assuming frequency-dependent transmission.
The x-axes show the size of the herd before the period and the number of animals initially infected with the
FMD virus (after the period). The top x-axis is the number of animals that are initially infected and the
bottom x-axis is the total number of animals in the herd. The base model results are shown in panel (a), the
Clinical First model results are in panel (b) and the Infectious First model results are in panel (c). On the
Infectious First model plot (c), the round points show results using OPF parameters, triangle points show
results using nasal fluid parameters and square points show results using blood parameters.
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Base model 
(R2 = 0.77)

Clinical First model
(R2 = 0.87)

Infectious First model
(R2 = 0.73)

Figure S6: Sensitivity analyses across model parameters for models assuming frequency-dependent trans-
mission. Effect size represents linear regression coefficients for models fit to the median duration a herd
is infectious in the (a) Base model, (b) the Clinical First model, and (c) the Infectious First model as-
suming frequency-dependent transmission. We have standardized both predictor and response variables for
comparison among parameters.

Figure S7: Median length of time premises are predicted by the Clinical First model to have cattle with
clinical signs that are not infectious assuming density-dependent transmission with the 2.5 and 97.5 quantiles.
The top x-axis is the number of animals that are initially infected and the bottom x-axis is the total number
of animals in the herd.
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Figure S8: Median length of time premises are predicted by the Clinical First model to have cattle with
clinical signs that are not infectious assuming frequency-dependent transmission with the 2.5 and 97.5 quan-
tiles. The top x-axis is the number of animals that are initially infected and the bottom x-axis is the total
number of animals in the herd.

Figure S9: Median length of time herds are predicted by the Infectious First model to have infectious
cattle that are not yet showing clinical signs assuming density-dependent transmission with the 2.5 and 97.5
quantiles. The top x-axis is the number of animals that are initially infected and the bottom x-axis is the
total number of animals in the herd. The round points show results using OPF parameters, triangle points
show results using nasal fluid parameters and square points show results using blood parameters.

Figure S10: Median length of time herds are predicted by the Infectious First model to have infectious cattle
that are not yet showing clinical signs assuming frequency-dependent transmission with the 2.5 and 97.5
quantiles. The top x-axis is the number of animals that are initially infected and the bottom x-axis is the
total number of animals in the herd. The round points show results using OPF parameters, triangle points
show results using nasal fluid parameters and square points show results using blood parameters.
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