
fmed-09-1100966 January 18, 2023 Time: 10:15 # 1

TYPE Review
PUBLISHED 09 January 2023
DOI 10.3389/fmed.2022.1100966

OPEN ACCESS

EDITED BY

Dominik Bettinger,
University of Freiburg Medical Center,
Germany

REVIEWED BY

Yue Zhang,
The First Affiliated Hospital
of Nanchang University, China
Ansgar Deibel,
University Hospital of Zürich,
Switzerland

*CORRESPONDENCE

Tilman Sauerbruch
sauerbruch@uni-bonn.de

SPECIALTY SECTION

This article was submitted to
Gastroenterology,
a section of the journal
Frontiers in Medicine

RECEIVED 17 November 2022
ACCEPTED 12 December 2022
PUBLISHED 09 January 2023

CITATION

Sauerbruch T, Hennenberg M,
Trebicka J and Schierwagen R (2023)
Beta-blockers in patients with liver
cirrhosis: Pragmatism or perfection?
Front. Med. 9:1100966.
doi: 10.3389/fmed.2022.1100966

COPYRIGHT

© 2023 Sauerbruch, Hennenberg,
Trebicka and Schierwagen. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

Beta-blockers in patients with
liver cirrhosis: Pragmatism or
perfection?
Tilman Sauerbruch1*, Martin Hennenberg2, Jonel Trebicka3,4

and Robert Schierwagen3

1Department of Internal Medicine I, University of Bonn, Bonn, Germany, 2Department of Urology,
University Hospital, Ludwig Maximilian University of Munich, Munich, Germany, 3Department of
Internal Medicine B, University of Münster, Münster, Germany, 4European Foundation for the Study
of Chronic Liver Failure, Barcelona, Spain

With increasing decompensation, hyperdynamic circulatory disturbance

occurs in liver cirrhosis despite activation of vasoconstrictors. Here, the

concept of a therapy with non-selective beta-blockers was established

decades ago. They lower elevated portal pressure, protect against variceal

hemorrhage, and may also have pleiotropic immunomodulatory effects.

Recently, the beneficial effect of carvedilol, which blocks alpha and beta

receptors, has been highlighted. Carvedilol leads to “biased-signaling” via

recruitment of beta-arrestin. This effect and its consequences have not been

sufficiently investigated in patients with liver cirrhosis. Also, a number of

questions remain open regarding the expression of beta-receptors and its

intracellular signaling and the respective consequences in the intra- and

extrahepatic tissue compartments. Despite the undisputed role of non-

selective beta-blockers in the treatment of liver cirrhosis, we still can improve

the knowledge as to when and how beta-blockers should be used in

which patients.
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Prologue

In liver cirrhosis there is a significant change in hemodynamics in different vascular
compartments, depending on the degree of decompensation (1–3). This is a major cause
of organ dysfunction, concerning not only the liver but also the kidney (4), the lungs (5),
the heart (6) or the intestine (7). Regardless of the etiology of cirrhosis, vasodilatation
of the splanchnic vessels occurs early, followed by peripheral vasodilatation with
decreased intrathoracic blood volume, resulting in hormonal counter regulation and
hyperdynamic circulatory disturbance (2, 8, 9). Within the liver–in addition to the
remodeling of the organ architecture and contrary to the extrahepatic situation–
vasoconstriction dominates (2).

One force driving toward decompensation of liver cirrhosis is portal hypertension,
often alongside a chronic inflammatory status. Such inflammation is caused and
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maintained on the one hand by etiological factors such as
viruses, which directly damage the liver, and on the other hand
by potential stimuli derived from the bowel. Based on these
pathophysiological mechanisms, the treatment of liver cirrhosis
primarily aims at the interruption of etiology and in advanced
stages of liver disease additionally at reduction of portal
hypertension and its sequels–a main cause of complications–
either by drugs or placement of a trans-jugular intrahepatic
portosystemic shunt (TIPS).

In this context, administration of a non-selective ß-blocker
(NSBB) has been firmly established for almost four decades.
The therapy was introduced by Lebrec and coworkers under
the hypothesis that a non-selective ß-blocker reduces tributary
blood flow into the portal vein (10), thereby diminishing the
risk of bleeding from varices. This hypothesis passed the test
of a clinical trial followed by many others (11). In Germany,
the admission rate for variceal bleeding decreased significantly
between 2005 and 2018, possibly due to the widespread use of
ß-blockers in liver cirrhosis (12).

Non-selective ß-blockers have been used for primary and
secondary prophylaxis of variceal hemorrhage (13, 14), and
there is much evidence that NSBBs reduce the risk of first and
recurrent bleeding from esophageal varices. Less certain is to
which degree and whether this also has an effect on survival.
Furthermore, there is still uncertainty as to which patients
respond to the administration of a NSBB. Also, there is now
a body of evidence pointing to beneficial pleiotropic effects of
NSBBs beyond their effect of lowering blood flow and blood
pressure in the portal vein and its collaterals.

Hemodynamic changes in liver
cirrhosis, catecholamines, their
respective receptors and signaling

More than 60 years ago, it was observed that patients
with liver cirrhosis have hyperdynamic circulation disorder,
characterized by an increased cardiac index (CI) and a decreased
systemic peripheral resistance (15–17). This disturbance
increases with the extent of decompensation of liver cirrhosis.
It is less dependent on the etiology. Especially in the abdomen,
vasodilation occurs early as a result of portal hypertension,
causing a shift of blood from the intrathoracic compartment
into the splanchnic vasculature. Mediators for this phenomenon
are vasodilators that act systemically and paracrine, especially
nitric oxide (NO), but also other molecules such as carbon
monoxide (CO), prostacyclines (PGl2) or glucagon (1, 16, 18).
One stimulus for formation of these molecules is believed to
be vascular shear stress (19) in the splanchnic area (especially
at onset of portal hypertension). Another is a subclinical
chronic inflammation, of which it is increasingly discussed
that a disturbed intestinal barrier and translation of pathogen-
associated molecular patterns (PAMPs) from the gut into the

body are the cause, together with an intestinal dysbiosis (20).
The inhibitory effect of certain bile acids on vascular smooth
muscle cell (VSMC) contraction may also play a role (21).
The process is additionally maintained by an impaired VSMC
response to vasoconstrictors, especially in decompensated
cirrhosis (1, 22–24).

Adrenergic stimulation in liver cirrhosis

Around 40 years ago, the research group of Robert
Schrier showed that plasma norepinephrine (NE) levels are
significantly elevated in patients with decompensated liver
cirrhosis as compared to controls (25). This is associated
with water retention. By elegant investigations (head-out water
immersion) they could show that it is mainly a reaction to
a reduced arterial blood volume, i.e., vascular underfilling
where intrathoracic baroreceptors react. The high plasma
NE levels correlate significantly with vasopressin levels (26)
and in cirrhosis with ascites they are associated with high
plasma renin and aldosterone levels, as a consequence of an
activated renin-angiotensin-aldosterone-system. Furthermore,
high plasma vasoconstrictors correlate positively with the
degree of portal hypertension (27). These plasma levels
reflect a sympathetic overactivity induced by baroreceptor-
stimulation, but may be also due to an overflow of local
organ NE formation, such as in the kidney, liver, and heart.
Furthermore, the central nervous system is involved. The
contribution of the different organ compartments to the
systematic plasma concentrations is difficult to differentiate.
However, the activation of the baroreceptors is an essential
source (28).

Adrenergic receptors

Catecholamines like norepinephrine and epinephrine,
which–as stated above–increase with decreased liver function
in cirrhosis, mediate their effect via adrenergic receptors which
are G protein-coupled (GPCR). The effect of the sympathetic
system depends on the expression of different receptors on the
various cells and organs. They are categorized into two main
groups: α and β receptors with nine subtypes (α1 and α2, with
three subtypes each, as well as the ß1, ß2, and ß3 receptors).
All three ß-adrenergic receptors (ß-AR) are coupled on their
cytoplasmic side to Gs proteins, and in the case of ß2- and ß3-AR
also to Gi proteins. Comparing the potency of norepinephrine
and epinephrine, epinephrine has a stronger effect on ß2- and
norepinephrine has a stronger effect on ß1-AR. Both have about
the same effect on α1 receptors (29–31).

Although cardiac myocytes predominantly express ß1-
AR and peripheral vasculature or the bronchial system
predominantly express ß2-AR, most organs have a
heterogeneous composition of ß-receptors. For instance,
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ß1-AR of the kidney are involved in renin secretion, whereas
ß2-AR directly influence sodium concentration in the tubular
system via ion channels/transporters (32). ß3-AR are expressed
in a variety of human tissues such as skeletal muscle, atrium,
heart, adipose tissue, brain or–to a great extent–in the urinary
bladder (33–35). We found an up-regulated expression of ß3-AR
in arteries and the liver in the condition of liver cirrhosis (36).

Thus, with respect to the cardiovascular and intestinal
systems, activation of ß1-AR causes an increase in the frequency
and contraction of the heart, whereas activation of ß2-AR causes
vasodilation. The motility of the intestine and gallbladder is
decreased by ß2-agonists.

While we know that the sympathetic system is activated in
cirrhosis, we have little insight beyond systemic levels into the
extent of activation at the cellular and organ levels across stages
of cirrhosis. Even less is known about how the expression of the
various adrenergic receptors change at the cellular level in the
different organs during liver cirrhosis.

Signaling and ß-receptors

The contraction and relaxation of smooth muscle cells
depends largely on the phosphorylation and dephosphorylation
of myosin light chains (MLC), essential contractile proteins.
Here, calcium homeostasis, regulated by its trans-membrane
influx against efflux of potassium plays an important role.
Thus, vascular smooth muscle contraction by activation of
vasoconstrictor receptors, including α1-AR or receptors for
angiotensin-II result in contraction by promotion of MLC
phosphorylation caused by three prototypical intracellular
signaling pathways, shared by all contractile receptors (1).

Vascular ß-AR are coupled to G protein alpha subunit (Gαs)
(see Figure 1; 37). Activation of Gαs by ß-adrenergic receptors
causes intracellular adenylyl cyclase activation, subsequent
cAMP production, and cAMP-dependent relaxation in smooth
muscle cells or contraction in cardiomyocytes, by various
mechanisms (34, 37). One major mechanism in smooth muscle
cells is activation of protein kinase A (PKA) by cAMP, resulting
in relaxation by decreasing cytosolic calcium concentrations and
calcium sensitivity (see Figure 1; 38, 39). ß3-AR mediate their
effects probably mainly via Gαs in smooth muscle cells, but also
via Gi and eNOS, at least in endothelial cells and cardiomyocytes
(34). The latter leads to formation of cGMP and vasodilatation
(34). Their vasodilatory effect may also be further induced via
inhibition of Rho-kinase (36).

However, a number of other responses of smooth muscle
cells may occur after activation of ß-AR by recruiting other
G-proteins or non-G protein interaction partners, altering the
membrane localization of the receptor. As a result, other
intracellular signaling proteins are activated (40). Here, the
phenomenon of ß-arrestin recruitment to activated GPCR is of
clinical relevance with a transduction of signaling toward other

pathways (41)–besides the receptor desensitization effect of ß-
arrestin. Principles of this phenomenon have been described,
especially for activation of ß2-AR and angiotensin II receptors
(1, 42). Evidence that ß-arrestin-mediated receptor regulation
also applies to splanchnic vessels in liver cirrhosis is available, at
least for angiotensin II receptors (24, 43, 44).

The different ß-AR blockers

About 60 years ago, ß-blockers were introduced for
the treatment of systemic hypertension (45). Although all
ß-blockers have an antihypertensive effect they differ in
pharmacokinetics and pharmacodynamics, depending on their
molecular structure (29). ß-AR blockers can be broadly divided
into water-soluble and lipid-soluble agents, as well as into ß1

selective and non-selective substances.
At high concentrations, the selective ß1-effect is partially

lost. Some ß-blockers have an additional agonistic effect on
the ß-AR (intrinsic sympathomimetic activity, e.g., pindolol),
whereas carvedilol has an additional antagonistic effect on α-
receptors. Nebivolol also promotes NO formation (39; Table 1).
Conventional NSBB or ß1-AR blockers have only a minimal
effect on ß3-AR (34).

Propranolol and metoprolol are lipophilic. They are almost
completely absorbed via the intestine and largely metabolized
by the liver. Thus, their bioavailability is quite variable. They
also have a short plasma half-life. Nevertheless, mainly due to
the receptor binding, a dosage twice daily or–in other galenic
forms–even once daily is sufficient.

Most of the trials in patients with liver cirrhosis have been
performed with non-selective ß-blockers (NSBBs) propranolol,
nadolol, timolol or carvedilol (Table 1).

Among the different ß-blockers, carvedilol shows a unique
pharmacological profile, which is, as mentioned above, first
reflected by antagonism of α1-AR in addition to blockade
of ß-AR (Figure 2). Antagonism of α1-AR by ß-adrenergic
ligands is not uncommon, but often requires unphysiologically
high concentrations (46, 47). However, binding of carvedilol
to ß- and α1-AR occurs with similar affinities, and within
ranges of plasma concentrations (see Figure 2; 48, 49). Plasma
levels with daily doses of 12.5 and 25 mg range from 115
to 131 nM in healthy patients, and from 256 to 315 nM in
patients with chronic renal insufficiency (50). Thus, antagonism
of α1-adrenoceptors by carvedilol occurs in vivo, especially in
kidney dysfunction, even though its clinical relevance has been
debated (37). In contrast to most other NSBBs, carvedilol may
not only “block” ß-adrenergic receptors, but may even activate
ß-arrestin-induced signaling, a behavior allowing classification
as a “biased ligand” (37, 51). Functional outcomes of signaling
via ß-arrestins are unknown in the context of cirrhosis
and with respect to portal hypertension, splanchnic vascular
cells or the heart in liver dysfunction. ß-arrestin dependent
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FIGURE 1

Mechanisms of ß-adrenergic vasorelaxation and α1-adrenergic vasocontraction (simplified). Phosphorylation of myosin light chains (MLC) in
smooth muscle cells is essential for contraction and is increased by MLC kinase (MLCK) and decreased by MLC phosphatase (MLCP), both being
adversely regulated by α1- and ß-adrenoceptors. Activation of α1-adrenoceptors causes activation of phospholipase C (PLC), resulting in
inositol-1,4,5-trisphosphate (IP3) formation, leading to increases in cytosolic calcium concentrations and finally to contraction by
calcium-dependent MLCK activation. In parallel, MLC phosphorylation is promoted by deactivation of MLCP, caused by its inactivation by
protein kinase C (PKC) activation by PLC-derived diacylglycerol (DAG), and in parallel by RhoA/Rho kinase. Activation of ß-adrenoceptors
(predominantly ß2-AR) causes activation of adenylyl cyclase (AC), subsequent cyclic adenosine monophosphate (cAMP) formation, and
activation of the cAMP-dependent protein kinase A (PKA). PKA activates several potassium channels, resulting in hyperpolarization and finally in
decreases of cytosolic calcium concentrations by closure of voltage-dependent calcium channels. In parallel, PKA-mediated decreases in
cytosolic calcium are imparted by relocation of calcium from the cytosol to intracellular stores, resulting from PKA-mediated
sarco/endoplasmatic Ca2+-ATPase (SERCA) activation. Finally, PKA activates MLCP, leading to reduced MLC phosphorylation and relaxation, in
addition to PKA-mediated decreases in cytosolic calcium. In endothelial cells, ß3-adrenoceptors may activate endothelial nitric oxide synthase
(eNOS), resulting in production of the vasodilator nitric oxide (NO), and NO-mediated vasorelaxation.

pathways include non-motoric functions, such as activation of
mitogen-activated protein kinases (MAPK) with consequences
on proliferation, differentiation, and growth of cells (37). See
below!

It is evident that NSBBs lower cardiac index via ß1 blockade.
But it is poorly studied what effect they have at the different
vessel compartments in liver cirrhosis.

Beta-arrestin, biased signaling, and
carvedilol

ß-arrestin-1 and -2 are ubiquitously expressed intracellular
proteins that modulate the response to stimulation of GPCRs
(52). By binding to phosphorylated GPCRs, they desensitize
G-protein mediated signaling in the cell, partially through
receptor endocytosis (53). In addition to this canonical role
of ß-arrestin, current attention is increasingly focused on its

function as a scaffold protein, which–internalized with other
intracellular proteins–triggers further pathways as a cytoplasmic
“signalosome”, or directly by receptor GPCR binding, and thus
inducing different patterns of signaling cascades in the cell. This
phenomenon has been described particularly for activation of
the angiotensin II receptor, but most likely also applies to other
adrenergic receptors (1, 52, 54).

Increased ß-arrestin signaling has been associated with
profibrotic diseases (55, 56). In liver cirrhosis, increased
expression of ß-arrestin 2 was found in liver (57), gastric
mucosa (58, 59), and splanchnic vessels (24)–both in humans
and animal models. Contrary to this, shortage of ß-arrestin 2
in sinus endothelial cells (SEC) has been described for liver
cirrhosis. This may be one explanation for hepatic deficiency
of NO together with increased intrahepatic resistance in liver
cirrhosis, since ß-arrestin 2 mediates NO formation in SEC
(60). As concerns those findings, which describe a significantly
increased ß-arrestin 2 in different whole tissue homogenates
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TABLE 1 Non-selective ß-blockers used for therapy of
portal hypertension.

Drug ß1–blockade
potency ratio

(propranolol = 1)
(29)

Further
effects

Daily oral
dosage#

Carvedilol 10 α1 blocking
activity, biased
signaling via

ß-arrestin

Start with
1× 6.25 mg (even
lower) up to
2× 6.25 mg

Nadolol 1.0 1× 20–40 mg up to
1× 160 mg

Propranolol 1.0 2× 20 mg up to
2× 80 mg

Timolol 0.6 1× 10 mg up to
1× 80 mg

#Resting heart rate 55–70 beats/min, systolic BP > 90 mm Hg.

in liver cirrhosis (24, 57, 58), we lack the exact assignment
of which cells are involved and what increased expression of
ß-arrestin in these cells causes functionally. Overexpression
of ß-arrestin in splanchnic vessels in liver cirrhosis has been
implicated as an explanation for the impaired vascular response
to vasoconstriction (24).

Interestingly, it was then shown that patients, who respond
hemodynamically to acute administration of an NSBB, express
increased ß-arrestin in the stomach antrum mucosa (58, 61) and
also have higher ß-arrestin serum levels (61). All these results
are difficult to interpret in the absence of cell-level findings.

In the context of liver cirrhosis and alteration of ß-arrestin
expression, it is interesting that carvedilol–in contrast to other
NSBB–shows so-called biased signaling as mentioned above
(62, 63). That is, in addition to the inhibitory effect on the
G protein-dependent pathway, carvedilol induces an increased
recruitment of ß-arrestin 2 by changing the conformation of
the cytoplasmic portion of the receptor (64) and subsequent
induction of signaling via ß-arrestin (51). Biased signaling has
been associated with a cardioprotective effect in the cardiology
literature (54, 65). As to liver cirrhosis, it would be very
interesting to dissect how this alternative effect of carvedilol
plays out on the cardiovascular system and other organs where
an increased expression of this protein is already present.

According to the above findings, it could well be that
ß-arrestin expression and binding to the ß-AR receptor
(independent of carvedilol administration) increases with
decompensation of liver disease, at least in the vasculature. This
implies that carvedilol then acts differently with respect to a
“biased-signaling” compared to individuals without liver disease
(Figure 2). Thus, the functional effects of biased signaling
induced by carvedilol are completely unclear in patients with
liver cirrhosis to date.

ß-Arrestin is also thought to play a cancerogenic role,
e.g., through a signal switch toward the wnt/beta-catenin

pathway. However, despite the induction of ß-arrestin signaling,
carvedilol may be protective against carcinogenesis (52, 66) at
least in skin cancers (67). In animal experiments it inhibited
nuclear translocation of ERK despite its effect on ERK
phosphorylation (68). The effect of NSBB on HCC development
is under debate (69, 70). Here, it would be interesting to have
more specific data for carvedilol.

In summary, we need more information on carvedilol and
its biased signaling effect in liver cirrhosis.

Non selective ß-AR blockers and
their influence on
pathomechanisms of liver cirrhosis

Two main pathogenic mechanisms are relevant for
deterioration and acute decompensation of patients with
liver cirrhosis, namely portal hypertension and systemic
inflammation (71). There is evidence that gut-barrier
dysfunction and changes in the microbiome with subsequent
bacterial translocation also contribute to the latter (72). In the
following, we address in more detail how NSBB might influence
this pathomechanism.

The hemodynamic action of NSBB and
portal hypertension

In their first study, published in the Lancet in 1980 (10),
Lebrec and coworkers applied oral propranolol to eight patients
with liver cirrhosis for 1 month at a dose that reduced heart
rate by 25% (40–180 mg twice a day). Since then, this target
reduction in heart rate has been used to dose propranolol
in many centers. They showed that in all treated patients
the gradient between blocked and free hepatic vein pressure
(hepatic venous pressure gradient, HVPG), which–at least in
alcoholic cirrhosis–correlates very well with portal pressure
(73), decreased permanently. At the same time, cardiac index
and hepatic blood flow (assessed by ICG method) decreased.
From this, they concluded that propranolol acts via a reduction
of splanchnic blood flow into the portal vein. None of these
parameters changed in patients receiving placebo. Later they
showed that there was poor correlation between the reduction
in cardiac index (CI) and the decrease in HVPG. Therefore,
a direct additional effect on the vessels in the splanchnic
compartment was assumed. They postulated a vasoconstriction
due “to unopposed alpha-adrenergic activity” as one of the
factors reducing portal pressure (74).

However, a blockade of the vasodilatory effect mediated via
the ß2-AR in the splanchnic arteries could also play a role.

In Lebrec’s first publication, the HVPG was reduced by
25% on average. Many other studies confirmed the portal
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FIGURE 2

Presumed actions of ß-AR blockers on vascular smooth muscle cells. (A) Carvedilol is an adrenergic ligand, antagonizing ß- and
α1-adrenoceptors, and also inducing biased signaling by ß-arrestin. (B) In portal hypertension, ß-blockers are presumed to reduce splanchnic
vasodilatation, and therewith portal tributary blood flow and portal pressure, by antagonism of ß-adrenoceptors. It could be speculated that in
liver cirrhosis the biased signaling effect of carvedilol is even more pronounced due to up-regulation ß-arrestin in these patients.

pressure lowering effect of propranolol and other NSBB, but
to a lesser extent. In the placebo-controlled studies (acute and
chronic administration), the inhibitory hemodynamic effect of
propranolol caused a reduction of HVPG from baseline between
10% and 22%, with a mean of about 15% (75–78). Carvedilol
with its concomitant α1-AR blocking effect decreased HVPG
by a mean of 19% (79). For propranolol, there is only a
loose correlation between dose or pulse reduction and relative
reduction in HVPG (76, 78, 80). For example, we found a
similar reduction of HVPG and response rate (HVPG reduction
of at least 20% or below 12 mmHg) in two different placebo
controlled trials with either a fixed dose of propranolol (20 mg
b.i.d) or a dose aimed at reducing basal heart rate by 25%
resulting in total daily dosages well beyond 100 mg/day (76, 81).
These findings support more recent observations that low-dose
administration of NSBB may be more beneficial than high-
dose administration according to the previous standard (pulse
reduction by 25%) (82). A dose dependency is more likely to be
found for carvedilol (78, 83).

It has been shown that for an efficient reduction of the risk
of bleeding from esophageal varices, certain thresholds (>20%
HVPG reduction or an absolute reduction of HVPG to below
12 mm Hg) should be reached (see paragraph surrogate marker
below). Some studies demonstrated that a relative reduction
of the HVPG by >10% might have a beneficial effect on
survival. But it remains to be seen whether such differences
can be measured reproducibly and reliably in all centers. An
adequate drop in HVPG is more common in patients with high
portal pressures and hyperdynamic circulatory dysfunction as
compared to patients with subclinical portal hypertension–at
least in compensated cirrhosis (15). However, the correlation
is not strong. A later study of the group found a more
pronounced effect of NSBB on systemic hemodynamics (mainly
cardiac index) in patients with decompensated cirrhosis than in
compensated cirrhosis, while the portal pressure decrease was
smaller in these latter patients (84).

There are a number of possible explanations for the
poor correlation (85) between peripheral hemodynamic criteria
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(CI, systemic blood pressure, pulse), the propranolol dose
and the decrease in portal pressure measured by HVPG:
variation in portosystemic shunts, different expression of ß-
AR at the different end organs and/or different formation of
vasoconstrictors in the respective patients with liver cirrhosis.
In this context, it is interesting, that we found no correlation
between portal venous blood flow and baseline HVPG in
patients with liver cirrhosis (86). We also found that the
contraction response of arteria hepatica and the portal vein
of patients with liver cirrhosis to α1-adrenergic stimulation
is impaired compared with controls. While ß2-stimulation
showed differential effects, decreased relaxation of arteries,
but increased relaxation of the portal vein in liver cirrhosis
(22). One may speculate, that the ß2-blocking effect of NSBBs
acts differently in different vascular regions. In addition,
it is unclear how other NO-forming stimuli modulate the
effect of NSBBs in liver cirrhosis. NO-formation increases
with Child-stage (87). To complicate matters further, there is
no sound knowledge as to what extent hepatic dysfunction
and concomitant chronic inflammation influence expression
of adrenergic receptors, cellular signaling, and phenotype,
as well as plasticity of their target cells. Due to the high
catecholamine levels in liver cirrhosis, down-regulation of
adrenoceptors has been discussed. On the other hand, we
found an up-regulation of vasopressor receptors on the
transcriptional (mRNA) level in human cirrhotic hepatic
arteries as compared to controls (88). Also, protein expression
of all three ß-AR was up-regulated in splanchnic arteries
in cirrhotic animal models and also in human arteries (ß3-
AR) of patients with liver cirrhosis. Within the liver ß3-
AR (humans and rats) as well as ß2-AR (rats) showed an
increased protein expression in liver cirrhosis, but not ß1-AR
(36). However, we do not have sufficient information about
the expression of these receptors on the different cell types,
their membrane localization or the induction of the respective
signaling cascades.

Furthermore, different hepatic drug metabolisms, drug
interactions or change of protein binding (e.g., to albumin)
of the drug have to be considered. Last but not least, the
reproducibility of the HVPG determination, especially in less
experienced centers, should also be taken into account when
interpreting results of NSBBs on hemodynamics. Sex and
etiology appear to be of minor importance for the effect of NSBB
in liver cirrhosis (89).

Interestingly, propranolol keeps its portal pressure
lowering effect after TIPS insertion (90). Addition of
irbesartan to propranolol did not further reduce HVPG,
but improved natriuresis (81). Adding statins may
augment the HVPG lowering effect of NSBB (91, 92),
although this was debated for carvedilol (93). Concomitant
phosphodiesterase-5-inhibitors further reduce portal
pressure and may improve erectile dysfunction at the same
time (94).

NSBBs and inflammation

There is strong evidence in the cardiovascular literature
that activation and recruitment of inflammatory cells is
mediated by the adrenergic system, especially via ß2-receptors
(95), and that antihypertensive drugs (96) have a beneficial
immunomodulatory effect.

The hemodynamic changes that occur with increasing
decompensation in liver cirrhosis are accompanied by an
activation of inflammatory cells in the sense of a chronic
inflammatory syndrome with concomitant immune dysfunction
(3, 97, 98). A translocation of microorganisms and/or associated
molecules (PAMPs) from the intestine are blamed, besides
stimuli from damaged tissue (DAMPs) (99). Via the activation
of toll-like receptors (TLR) and the inflammasome, there is
a release of cytokines (100). Direct and indirect evidence
suggests that NSBB can favorably influence this situation.
Their administration is associated with an improvement of
the intestinal barrier, reduction of bacterial translocation and
activation of the immune system as measured by plasma
Il-6 levels (101). Furthermore, reduction of inflammatory
biomarkers in case of NSBB therapy was associated with
a longer survival. This, interestingly, showed only a loose
non-significant association with HVPG drop (102). Also, the
incidence of spontaneous bacterial peritonitis (SBP) decreases
under NSBB (103) and NSBB favorably affect at least the
short-term prognosis of patients with acute on chronic liver
failure (ACLF) (104). This may be explained by effects on
the intestinal motility (105), but also by a direct receptor-
mediated effect on immune cell signaling (95, 106–109). On
the other hand, at least in inflammatory models, ß2-blockade
has a proinflammatory effect on the kidney (32, 110). Thus,
we still not fully understand how, where and when NSBBs
favorably or possibly even unfavorably modulate inflammation
in liver cirrhosis.

Regarding the interaction of chronic inflammatory
syndrome and administration of NSBBs, it is completely unclear
to what extent inflammatory stimuli in liver cirrhosis influence
the expression and function of ß-AR in different organs.
Corresponding changes would of course have implications for
the pharmacological effect of NSBB.

NSBBs, gut motility, and inflammation

In vitro studies on human colonic muscle strips could
show that ß-AR are functionally expressed at the colon and
that ß1- and (less) ß2-agonists lead to intestinal dilatation
(111). In healthy subjects, ß-adrenergic agonists (isoprenaline
as ß2-agonist) delayed orocoecal transit and ß-blockers (ß1-
blocker and propranolol) accelerated it (112). Thus, one
might conclude that activation of the adrenergic system
in liver cirrhosis promotes constipation. The authors are

Frontiers in Medicine 07 frontiersin.org

https://doi.org/10.3389/fmed.2022.1100966
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-1100966 January 18, 2023 Time: 10:15 # 8

Sauerbruch et al. 10.3389/fmed.2022.1100966

not aware of adequate clinical studies on the question as
to what extent intestinal motility changes with increasing
decompensation of liver cirrhosis. Such trials are presumably
difficult to perform due to so many other influencing factors.
Nevertheless, there is some evidence of impaired intestinal
motility in liver cirrhosis (113). This provides the rationale
for administration of NSBBs to alter intestinal dysmotility,
presumably induced by adrenergic stimulation, with the aim
to influence the bacterial translocation. On the other hand,
there is increasing evidence that resident macrophages in the
gut favorably influence inflammation via ß2-mediated signaling
(114, 115) and we do not know how intestinal dysbiosis,
which has been demonstrated especially in alcoholic cirrhosis
(116), affects neuroinflammatory processes in the intestine
and whether NSBBs have a favorable or unfavorable effect
on this.

Indications for NSBBs, results from
randomized trials

After the use of NSBBs for prophylaxis of first variceal
hemorrhage and prevention of recurrent hemorrhage
was established, further studies were conducted on the
administration of NSBB to prevent further decompensation of
compensated cirrhosis. In the following, we review the studies
on these three indications (prevention of decompensation, as
well as prevention of first and recurrent hemorrhage) in terms
of (a) hemorrhage and (b) survival.

Prevention of cirrhosis
decompensation by NSBBs

It has long been an unanswered question whether starting
the administration of NSSBs early in the course of liver cirrhosis
can prevent later decompensation. Several years ago, Groszman
and coworkers initiated a controlled trial to test the hypothesis,
that application of NSBB in an early stage of liver cirrhosis
(213 pts, over 90% Child A, around 60% hepatitis C, one
fourth alcoholics, all patients without gastroesophageal varices)
might prevent development of varices, bleeding or ascites, i.e.,
whether NSBBs can prevent signs of further decompensation
(117). Timolol, a NSBB, was used. The average baseline HVPG
was around 12 mmHg. Timolol dropped the heart rate by
17% and also HVPG, but non-significantly as compared to
placebo. With respect to the primary endpoint (development
of esophageal varices or hemorrhage from the collaterals) there
was no distinction between groups (39% vs. 40%) during
a median follow-up of more than 50 months. Furthermore,
development of ascites and or encephalopathy (around 12%
each) did not differ, nor did death rate (9% timolol group
vs. 14% placebo).

Post-hoc analysis showed that patients with baseline
HVPG < 10 mmHg, a decrease of HVPG > 10% or
an increase < 10% developed significantly fewer primary
endpoints irrespective of the trial group. Following these
findings some centers consider a 10% drop (not 20%) in HVPG
as an important prognostic threshold. See below!

In 2019, Spanish working groups again addressed the
question of the extent to which NSBBs can prevent the
decompensation of liver cirrhosis (118). 201 patients (one third
of screened) were randomly assigned to NSBBs (propranolol,
carvedilol) or placebo. Contrary to the first trial, only
patients (somewhat more than 60% hepatitis C) with an
HVPG > 10 mmHg were included. Response to standardized
intravenous propranolol was tested at inclusion. Patients who
did not show a drop in HVPG of >10% received carvedilol.
The target dose was based on the reduction in heart rate (mean
daily dose 95 mg for propranolol and 19 mg for carvedilol).
The drop in HVPG from baseline at 1 year was higher
with carvedilol (16%) than with propranolol (10%), although
carvedilol was only given to iv propranolol non-responders.
After a median follow-up of 37 months the composite
endpoint (death, ascites, bleeding or overt encephalopathy)
occurred in 16% of the ß-blocker group and 27% of the
placebo group, mainly due to a reduction of ascites formation.
The occurrence of decompensation correlated with a lack
of drop in HVPG after 1 year. It is not entirely clear to
what extent antiviral therapy for HCV-associated cirrhosis
affected the outcome in the final stage of the trial, and
overall there is little knowledge about the comedication in
the groups. In the NSBB group 8% died, as did 11% of the
placebo patients.

The results of these two studies suggest that patients with
significant portal hypertension (HVPG > 10 mmHg) but
not yet decompensated cirrhosis benefit–mainly regarding the
formation of ascites–from treatment with NSBB, preferably
carvedilol, provided there is a decrease of HVPG > 10%.
It remains to be seen whether this applies to alcoholic
cirrhosis, which is the major cause of cirrhosis, at least in
Western countries.

Prevention of esophageal bleeding

First bleeding
One main indication for application of NSBB is

prevention of first bleeding from varices. In the largest
placebo-controlled trial (meta-analysis of individual data
from 589 patients) it has been shown that the two-year
bleeding rate is reduced from 35% (controls) to 22% in
the propranolol/nadolol group (119). Thus, the number of
patients needed to treat (NNT) is around eight to prevent one
bleeding event.
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According to a recently published Cochrane review
(network meta-analysis of 60 controlled trials, 6,212 patients
using NSBB, nitrates, sclerotherapy or ligation of varices) on
primary prophylaxis of variceal bleeding in liver cirrhosis
patients with varices, NSBBs significantly reduced occurrence
of any variceal bleeding compared to no active intervention
in patients with varices. NSBBs or ligation (9 RCTs) were
almost equal. An additional positive effect was observed by
adding ligation of varices (only one trial), but there were more
serious adverse events in the banding groups as compared to
monotherapy with NSBB. The evidence for these findings are
classified as uncertain, mainly because of low number of cases in
the individual trials and the quality of the studies (120).

A very recent time to event analysis with individual
patient data from 11 RCTs comprising 1,400 patients found no
difference in the first bleeding rate between NSBBs (with or
without ligation) and ligation only, but a lower risk to develop
ascites in patients receiving NSBBs (121).

Rebleeding

Since the first RCT (11) demonstrating the potential of
NSBBs to prevent rebleeding from esophageal varices, NSBBs
have become an inherent part for prophylaxis of rebleeding.
Compared to placebo they reduce the rebleeding risk from
60–70% to 30–40% and combined with ligation to 25% (122).
This is less than shunt procedures (5–10% rebleeding after
TIPS), but does not carry the risk to augment or induce hepatic
encephalopathy, an adverse event consistently shown after TIPS
placement, at least in the elective situation (76, 123).

Non selective ß-AR blockers and ligation carry not only
the disadvantage of a higher risk of further hemorrhage as
compared to TIPS, but also the drawback not to influence
the pathophysiology of salt and water retention leading to
ascites, whereas TIPS–by shifting blood into the central
compartment–decreases renin-angiotensin-aldosterone system
(RAAS) activation and kidney salt reabsorption (124). At least
one fifth of patients receiving NSBBs and ligation for prevention
of rebleeding in the end was transferred to TIPS for refractory
ascites (76, 123). In a recent meta-analysis, using individual
patient data analysis in nearly 4,000 patients, TIPS proved
superior to standard of care for rebleeding–which is in most
patients ligation and NSBBs–and also with respect to further
decompensation and even survival, the latter mainly due to
the cohorts receiving pre-emptive TIPS after a variceal bleeding
episode (125).

Most patients, who fail to respond adequately with HVPG
to the administration of propranolol, respond to carvedilol.
By this–compared to ligation–the primary bleeding rate can
be significantly reduced (77). However, a Cochrane review
(126) analyzed the randomized trials (10 RCT, 810 patients)
comparing carvedilol with conventional NSBBs and found no

difference with regard to primary and secondary bleeding rates
and side effects, while a very recent meta-analysis (127) based on
individual data showed improved survival compared to controls
(ligation or placebo).

In summary, the combination of a NSBB along with ligation
of varices remains the standard therapy to prevent recurrent
variceal bleeding (128), although there is debate as to whether
narrow-lumen TIPS, used directly in conjunction with the
acute bleeding event might be the optimal recurrent bleeding
prophylaxis independent from degree of decompensation and
severity of bleeding, at least in patients beyond seven Child-
Pugh points, mainly to protect patients from early rebleeding,
which exerts an increased risk for death (129).

Effect of NSBBs on survival of patients
with liver cirrhosis

In several more recent studies, bleeding has been found to
be only a minor contributor to mortality. This may explain
the rather low impact of NSBBs on mortality, despite their
unquestioned beneficial effect on bleeding risk. Nevertheless,
the question of other pleiotropic effects of NSBBs (besides the
influence on variceal hemorrhage) arises, especially for those
studies that show a prolongation of survival under NSBBs as
compared to alternative approaches (see above).

Prevention of cirrhosis
decompensation

Both studies investigating the effect of NSBB on
decompensation of liver cirrhosis found no effect of NSBB
on overall survival compared with the placebo group (117, 118).

Prevention of first bleeding

In the first meta-analysis (119) of individual patient data
(589 pts from 4 RCT) 2-year-survival was similar (68% placebo
vs. 71% NSBBs). A significant beneficial effect on survival in
the setting of primary bleeding prophylaxis as compared to no
active intervention was described in a very recent network-
meta-analysis on 6,653 patients, however with only marginal
differences when NSBBs were compared to variceal ligation
with and without additional NSBBs (120). A competing risk
meta-analysis of 11 RCT trials comprising individual data of
1,400 patients in the setting of prevention of bleeding from
high risk varices showed that NSBBs alone or in combination
with ligation achieved a better survival than ligation alone in
patients with compensated cirrhosis, but not in patients with
decompensated cirrhosis (121).

Frontiers in Medicine 09 frontiersin.org

https://doi.org/10.3389/fmed.2022.1100966
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-1100966 January 18, 2023 Time: 10:15 # 10

Sauerbruch et al. 10.3389/fmed.2022.1100966

Prevention of rebleeding

The very first meta-analysis (130) on the value of the
use of NSBBs in recurrent bleeding prophylaxis of variceal
hemorrhage already showed that NSBBs as compared to no
active intervention not only significantly decreased the risk of
bleeding during the observation period of about 2 years (mean
improvement 20%), but also prolonged survival to a minor
degree (increase in survival rate during a follow-up of around
2 years from 67 to 75%). There was no difference in mortality
between ligation alone and ligation plus NSBBs for prevention of
rebleeding. It is difficult to deduce from a recent network meta-
analysis (3,526 participants, 48 randomized trials) the effect of
NSBBs on survival when compared to other active treatments
(131). It does not appear that there is a major difference.
Interestingly, the potential beneficial effect on survival might be
independent of hemorrhage protection (132).

A beneficial effect on mortality in the situation of rebleeding
prophylaxis has been shown to be predominantly limited to
patients in whom NSBBs (propranolol or carvedilol) reaches
a drop in HVPG of at least 10% (133–135). In this respect
it is noteworthy that insertion of a covered TIPS, which
achieves the most effective drop of portal pressure has a higher
impact on survival than standard of care (ligation and NSBBs).
However, this was mainly due to TIPS placement in early
temporal relationship to bleeding (125), while elective TIPS
does not improve survival compared to drugs (76, 123). It
remains an open question in this setting, whether hemodynamic
non-responders (HVPG) profit from continuation of NSBBs
treatment with respect to survival (136).

NSBBs in cirrhosis: Controversies

NSBBs in decompensated liver
cirrhosis with ascites

It has been shown that early administration of NSBBs can
prevent ascites formation in some patients with compensated
cirrhosis (118, 121, 137). But the question was raised by the Paris
working group whether it is useful to give NSBBs to patients with
refractory ascites (138). In a prospective case-only study, they
found that patients receiving propranolol had a significantly
shorter survival as compared to those without NSBBs. The vast
majority of patients without NSBBs–otherwise comparable–had
no esophageal varices in this study, a fact that later became
a matter of debate. There is now a number of reviews that
carefully analyze the existing literature, as to whether NSBBs
are appropriate in severely decompensated liver cirrhosis (14,
139). Some evidence suggests that ß-blockers can/should also be
given in patients with ascites and decompensated liver cirrhosis
(140–142) under strict control of pulse, blood pressure and
renal function using an adjusted lower dosage (143). Further
reduction of the cardiac index (CI) in the presence of primarily

already reduced cardiac function in the sense of cirrhotic
cardiomyopathy is certainly unfavorable (144, 145). Systolic
blood pressure <90 mmHg, elevated creatinine levels above
>1.5 mg/dl (better > 1.3 mg/dl?) or an increase in creatinine
value are contraindications to starting or continuing the
administration of NSBBs (14). Some authors regard application
of carvedilol with its more pronounced effect on visceral and
systemic hemodynamics as being contraindicated in patients
with marked ascites (146). In any case, NSBBs should be dosed
carefully in patients with reduced CI.

Contraindications, side effects,
duration of therapy, and adherence

In our own experience (76), nearly 10% of patients with
cirrhosis had contraindications to NSBBs (such as refractory
ascites, non-compliance, hepatic vein thrombosis, severe heart
failure, or HRS type 1). In another randomized trial (147), 5%
of eligible patients with liver cirrhosis had contraindications
for propranolol. Complaints such as symptomatic hypotension,
dizziness, impotence, and Raynaud symptoms occurred in
nearly 70% of patients receiving propranolol, requiring
withdrawal in 16% of the patients (of these 80% hypotension).
In a controlled trial on early treatment of liver cirrhosis with
NSBBs, 5 % of the screened patients had contraindications
against NSBBs. Eight percent of patients discontinued NSBBs for
side effects, as did 6% of the placebo patients (118). In another
controlled trial on pre-primary variceal bleeding prophylaxis
18% of the patients had serious adverse events probably related
to study medication (placebo 6%) such as bradycardia, fatigue,
wheezing, claudication, and impotence (117). In a meta-analysis
of eight RCT comprising 311 NSBB-patients in the setting of
prophylaxis of first bleeding, side effects of NSBBs (mainly
hypotension and breathlessness) required stopping treatment in
15% of the patients (148).

There is evidence that discontinuation of NSBB in patients
with cirrhosis is associated with a high risk of rebleeding and
that these patients may even have an increased mortality (147,
149, 150). Therefore, patients must be carefully selected for
NSBBs, since it is aimed as life-long therapy.

Long-term drug application also concerns the assessment
of compliance and adherence. Poor medication adherence is an
important cause of inadequate treatment of long-term diseases
(151). It is believed that 30–70% of hospital admissions in the
US are due to non-adherence (152). The proportion of non-
adherence to medications against hypertension, dyslipidemia, or
diabetes is around 30% in the US (153).

With respect to liver disease, in one study, 23% of patients
showed poor adherence to NSBB intake for bleeding prophylaxis
from esophageal varices (154). Other small intervention
studies showed that 25% of patients with cirrhosis have
poor medication adherence and just under 50% showed good
adherence (155). Under the conditions of a randomized trial
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FIGURE 3

Non-selective ß-blocker (NSBB) in liver cirrhosis: The pragmatic approach.

9% were non-compliant within a period of 2 years (147).
Analysis of a large US database found around 60% of patients
with variceal bleeding and decompensated cirrhosis receiving
NSBBs. Of those, only 8% showed consistent use (156).
Targeted care to improve medication adherence can reduce
the rate of emergency hospital admissions in cirrhotic patients
(157, 158).

Prognostic markers and surrogates for
endpoints

In the 1980s, it was shown that certain endoscopically
definable criteria of varices (e.g., size or the so-called red color
sign) are associated with higher blood pressure in the varices and
their risk of bleeding (159–161). These endoscopic appearances
have been used for decades to select patients, especially in
primary prophylaxis of variceal hemorrhage with NSBB (162).
As early as the 1960s, the Child classification was introduced
and more or less modified over the years (163). Parameters from
the Child classification were then combined with renal function
(164). These systems are–with modifications–undisputed for
the prediction of survival and also for selection for liver
transplantation (128, 165). Their prognostic accuracy can be
slightly improved by adding inflammatory parameters (166–
168). To what extent these scores should be brought into the
decision process for application of NSBBs is still in debate.

It is to the credit of Lebrec and his group (169), and
later mainly Spanish and also Austrian working groups, to
have introduced in a very consistent and careful way over the
years the role of portal hypertension, measured as HVPG, for
the prognosis of patients with liver cirrhosis, supported by
many clinical studies (170, 171). Patients with an HVPG below
10 mmHg have a low risk of developing hepatic decompensation
or death at least during the following 3–5 years. Patients with
a HVPG > 20 mmHg have not only a high risk of early
recurrent hemorrhage in case of variceal bleeding, but also
a high risk of death (134, 172, 173). They benefit from the
early enrollment for a TIPS in case of bleeding (173, 174). The
decrease of HVPG > 20 % or to a value below 12 mm Hg, is a

good criterion for protection against variceal hemorrhage, even
ascites, and possibly for better survival (133, 134, 172, 175–178).
According to some of these studies, the drop in HVPG of 10%
is sufficient for the prognosis of prolonged survival. However,
the value of this hemodynamic parameter as a surrogate for
clinical end points in trials remains controversial. Among other
reasons, because the measurement of HVPG is only performed
by a limited number of centers in routine practice and because
it is unclear how exactly other groups can measure HVPG
(variability of measurement, but also intraindividual variability).
More and more the measurement of liver or spleen stiffness is
used for evaluation of portal hypertension (179), but its value to
measure the response of portal pressure to NSBBs or to define
clear thresholds is probably not sufficient.

Determination of pharmacokinetic parameters, including
change of stereoselective metabolism in liver cirrhosis (180), are
probably not of prognostic value for hemodynamic response
to NSBBs. Studies on pharmacogenetics with respect to ß-AR
gene polymorphisms and the action of NSBBs are sparse and
inconclusive for patients with liver cirrhosis (181, 182).

Epilogue: Pragmatism or
perfection?

Although NSBBs have been used for the prophylaxis of
variceal bleeding for four decades, a number of questions
remain unanswered, as we have explained above. This concerns
the choice of NSSB or the question of whether and how the
expression of ß-AR in the different organs changes in liver
cirrhosis. It remains also completely unexplored, how ß-AR-
dependent intracellular signaling cascades change in a cell-
specific manner with decreasing liver function. While we have
focused a lot on the cardiovascular system in terms of NSBBs,
we know very little about how they act in the diseased liver,
especially with respect to liver resistance to portal flow. It is
unclear to what extent biased signaling via ß-arrestin, in the
event of carvedilol administration, exerts on the liver or on the
heart in patients with liver cirrhosis. NSBBs may also have a
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double-edged effect on the immune system in liver cirrhosis.
The question as to whether it is best to use NSBBs in a HVPG
response-controlled manner remains open, and we do not know,
whether patients who do not respond adequately with a drop in
HVPG, will benefit at all from further administration of NSBBs.
Also, we do not know to any great extent how the degree of
liver cirrhosis or a change in albumin metabolism influence
the effect of NSBBs. Last but not least, the standards for the
optimal dose range of NSBBs in liver cirrhosis are also under
discussion. Thus, there is much no man’s land in questions about
pharmacokinetics and pharmacodynamics and the use of NSBBs
in patients with liver cirrhosis.

Are NSBBs a good long-term therapy in routine clinical
practice, given that about 10% of patients have primary
contraindications to NSBBs, almost 20% have to discontinue
NSBBs because of side effects, and given that no more than
50% of this patient group shows adequate drug adherence,
although lifelong therapy is necessary? This issue is relevant,
considering that in Western countries, most patients now
have metabolic cirrhosis (food and/or alcohol). One wonders
whether these patients are really compliant for such a therapy.
That may be an unfair assumption. Sufficient data is lacking
in this regard. There is also insufficient data on quality
of life under continuous treatment with NSBBs in patients
with liver cirrhosis. More studies on combination therapy–
e.g., NSBBs with statins, angiotensin II receptor blockers,
phosphordiesterase-5-inhibitors–drugs that might work against
chronic inflammation in cirrhosis, or even the combination of
NSBBs with a narrow-lumen TIPS are also necessary.

Can we answer these open questions with rigor, through
more perfection? By individualizing the choice of NSBB or
combined treatment? By regular monitoring of the HVPG? By
better informing the patient and controlling drug adherence?
By assessing the quality of life of the patients (there are
hardly any studies on this)? Certainly not immediately. But
some of these questions are worth further clinical research to
achieve more perfection in the treatment of patients with liver
cirrhosis using NSBBs.

On the other hand, clinical action requires pragmatism,
taking into account the evidence, based on the available studies
present. Controlled trials (RCTs) provide the best unbiased
information about the effect of an intervention in medicine.
And there are a lot of RCTs with respect to NSBBs and liver
cirrhosis. For the single patient, RCTs show the best possible
choice of intervention, but they will never give the answer as
to how the individual will respond. Under these circumstances
it might be easiest to start NSBBs–preferably carvedilol–very
early and at a low dose so that the patient complies with the
therapy, with attention to pulse reduction, monitoring renal
function and blood pressure at regular intervals, and to choose
an alternative therapy in case of intolerance or lack of adherence
or deterioration of kidney function (Figure 3). All this must
be done in consideration of the other medications the patient
needs. This pragmatism should, however, be accompanied by

TABLE 2 Proposals for further research–non-selective ß-blocker
(NSBBs) and liver cirrhosis.

With respect to pharmacokinetics

- Distribution, metabolism, excretion in decompensated cirrhosis

With respect to pharmacodynamics

- Signaling at different organs and cells, dependent on etiology and stage of
liver cirrhosis

- Pleiotropic effects on intestinal and immune system

- Modulation by genetic background

- Biased signaling effects of carvedilol on intrahepatic resistance and fibrosis
(increase/decrease?)

With respect to individual behavior

- Adherence to NSBBs

With respect to concomitant drugs or interventions
(TIPS, ligation)

- Additive, complementary, or neutralizing effects

With respect to dosage

- Optimal tradeoff between side effects and efficacy

With respect to selection of biomarkers under
NSBBs–prediction of:

- Bleeding

- Ascites

- HCC

- Survival

further research, which demands perfection. To this end we
suggest further studies (Table 2).
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