
Frontiers in Education 01 frontiersin.org

Enhancing writing analytics in 
science education research with 
machine learning and natural 
language processing—Formative 
assessment of science and 
non-science preservice teachers’ 
written reflections
Peter Wulff 1*, Andrea Westphal 2, Lukas Mientus 3, Anna Nowak 3 
and Andreas Borowski 3

1 Physics and Physics Education Research, Heidelberg University of Education, Heidelberg, 
Germany, 2 Department of Educational Research, University of Greifswald, Greifswald, 
Mecklenburg-Vorpommern, Germany, 3 Physics Education Research Group, University of Potsdam, 
Potsdam, Brandenburg, Germany

Introduction: Science educators use writing assignments to assess competencies 

and facilitate learning processes such as conceptual understanding or reflective 

thinking. Writing assignments are typically scored with holistic, summative 

coding rubrics. This, however, is not very responsive to the more fine-grained 

features of text composition and represented knowledge in texts, which might 

be more relevant for adaptive guidance and writing-to-learn interventions. In 

this study we examine potentials of machine learning (ML) in combination with 

natural language processing (NLP) to provide means for analytic, formative 

assessment of written reflections in science teacher education.

Methods: ML and NLP are used to filter higher-level reasoning sentences 

in physics and non-physics teachers’ written reflections on a standardized 

teaching vignette. We particularly probe to what extent a previously trained 

ML model can facilitate the filtering, and to what extent further fine-tuning 

of the previously trained ML model can enhance performance. The filtered 

sentences are then clustered with ML and NLP to identify themes and 

represented knowledge in the teachers’ written reflections.

Results: Results indicate that ML and NLP can be used to filter higher-level 

reasoning elements in physics and non-physics preservice teachers’ written 

reflections. Furthermore, the applied clustering approach yields specific topics 

in the written reflections that indicate quality differences in physics and non-

physics preservice teachers’ texts.

Discussion: Overall, we argue that ML and NLP can enhance writing analytics in 

science education. For example, previously trained ML models can be utilized 

in further research to filter higher-level reasoning sentences, and thus provide 

science education researchers efficient mean to answer derived research 

questions.
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Introduction

Science education researchers routinely use writing assignments 
either for assessment or facilitating learning (Prain and Hand, 1996; 
Chen et al., 2013; Docktor et al., 2016). Empirical evidence supports 
that writing assignments, in general, can be utilized to enhance learning 
processes and evaluate cognitive processes (Bangert-Drowns et al., 
2004; Graham and Perin, 2007; Kellogg, 2008). Writing assignments 
are most effective when they are coupled with meta-cognitive guidance 
on how to write (Bangert-Drowns et al., 2004). As such, they have been 
implemented in science teacher education to enhance, among others, 
teachers’ reflection processes (Hume, 2009), facilitate conceptual 
understanding about force and motion (Chen et  al., 2013), or 
developing students’ critical thinking skills (Stephenson and Sadler-
McKnight, 2016). Written language artifacts such as essays can thus 
provide evidence on learners’ knowledge, understanding, and learning 
processes. Yet, existing studies barely engage in analytic, formative 
assessment of the writing, but rather utilize holistic, summative 
assessment in the form of scores and group comparisons with reference 
to these scores. A finer-grained, analytic and formative assessment of 
written language products can potentially provide more detailed 
evidence on represented knowledge in learners’ texts. Advances in 
computer methods, namely in the field of artificial intelligence research 
such as machine learning (ML) and natural language processing 
(NLP), have been considered promising means to extend analytic, 
formative assessment of language artifacts (Burstein, 2009; Buckingham 
Shum et al., 2017). While many studies in science education examined 
potentials of ML and NLP to score responses based on human 
annotated datasets (Ha et al., 2011; Zhai et al., 2020), it is less clear in 
what ways ML and NLP can be used in more explorative ways in 
science teacher education to enable formative assessment.

This study therefore seeks to utilize ML and NLP as analytic, 
formative assessment tools for science and non-science preservice 
teachers’ written reflections. ML and NLP methods are used to 
filter higher-level reasoning segments in the physics and 
non-physics preservice teachers’ written reflections and identify 
differences in represented knowledge in the texts between both 
teacher groups. To automatically filter higher-level reasoning 
segments, a formerly trained ML model was used to classify 
segments in teachers’ responses and extract segments on higher-
level reflection-related reasoning. Then, a ML-based clustering 
approach is used to cluster these segments with the goal to extract 
expert-novice differences in the texts.

Assessing written language artifacts in 
science education research

Language is intricately linked to scientific literacy, science 
learning, and science teaching, because language provides a 

generic medium for interpreting experiences and communicating 
ideas (Norris and Phillips, 2003; Carlsen, 2007; Halliday and 
Matthiessen, 2007). In particular, personal writing was found to 
be  effective for learning (Smyth, 1998; Bangert-Drowns et  al., 
2004). Consequently, science education researchers used writing 
assignments to facilitate development of conceptual 
understanding, critical thinking, and reflective thinking, among 
others, and for assessment. Facilitating conceptual understanding 
and writing quality was accomplished with the Science Writing 
Heuristic (SWH). Cronje et al. (2013) used SWH to support their 
biology undergraduates’ writing. They provided the students with 
specific prompting questions that they could use to write up their 
lab report. Students who received the SWH instruction scored 
significantly higher on their writing assignments.

Personal writing is also used in science teacher education to 
facilitate professional development. A commonly used method is 
reflective journal writing, where science preservice teachers are 
meant to connect their professional knowledge to interpret 
teaching experiences (Bain et al., 1999; Hume, 2009). Reflecting on 
teaching experiences was singled out as a feature for effective 
teacher education programs (Darling-Hammond, 2012). Reflection 
can be considered as a deliberate and structured thinking process 
that requires evaluation of one’s own professional development 
with the goal to personally grow or improve one’s teaching (Hatton 
and Smith, 1995; Von Aufschnaiter et al., 2019; Jung et al., 2022). 
Reflection processes in teacher education often relate to teaching 
experiences in classrooms (Jung et  al., 2022). Hence, teachers’ 
reflective competencies comprise the noticing and description of 
relevant classroom events, interpreting them, and learning from 
them (Korthagen and Kessels, 1999; Korthagen, 2005).

Noticing and interpreting learning-relevant classroom events 
is then linked with science teachers’ professional knowledge and 
beliefs (Carlson et al., 2019; Wulff P. et al., 2022). In mathematics 
and science teacher education, professional knowledge, subject 
matter knowledge, and knowledge of student understanding/
misconceptions have been singled out as particularly important 
for effective teaching (Park and Oliver, 2008; Sadler et al., 2013). 
Moreover, science experts’ content knowledge tends to be well 
interconnected and coherent (Koponen and Pehkonen, 2010; 
Nousiainen and Koponen, 2012). This knowledge base, among 
others, allows expert science teachers to notice relevant classroom 
events and interpret them (Todorova et  al., 2017; Chan et  al., 
2021). Novice science teachers, on the other hand, oftentimes lack 
the adequate professional knowledge to notice the substance of 
students’ responses (Hume, 2009; Levin et al., 2009; Talanquer 
et al., 2015; Sorge et al., 2018).

To improve noticing and reflective competencies, novice 
teachers engage in teaching practices and reflect their teaching 
(Korthagen and Kessels, 1999; Wenner and Kittleson, 2018). They 
ideally receive guidance from instructors on how to move towards 
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deeper levels of reflection (Lin et al., 1999). Guidance is typically 
provided through reflection-supporting models (Poldner et al., 
2014). These models single out elements of reflections. Common 
elements include observation, interpretation, inference on causes, 
alternative modes of action, and consequences (Korthagen and 
Kessels, 1999; Poldner et al., 2014; Aeppli and Lötscher, 2016; 
Ullmann, 2019). Nowak et al. (2019) devised a reflection-
supporting model which differentiates reflection elements that are 
important categories and should be  addressed in a written 
reflection. In this model, preservice teachers are instructed to 
begin with outlining circumstances of the relevant teaching 
situation. Next, they describe the teaching situation and evaluate 
relevant aspects of it with help of their professional knowledge. 
Finally, the science teachers outline alternatives for their decisions 
and devise consequences for their professional growth. While 
circumstances and observations form the basis for reflections, 
evaluation, alternatives, and consequences can be  considered 
higher-level reasoning elements (Seidel and Stürmer, 2014; 
Kleinknecht and Gröschner, 2016).

To interface the reflection-supporting models and reflective 
thinking processes, teachers are typically instructed to verbalize 
their observations and decision-making processes according to 
reflection-supporting models (Mena-Marcos et al., 2013; Poldner 
et  al., 2014; Wenner and Kittleson, 2018). Verbalizations can 
be collected in many different ways such as logbooks, portfolios, 
reports, or diaries (Hatton and Smith, 1995; Loughran and 
Corrigan, 1995). Overall, verbalizations in written form were 
found to provide rich evidence for reflection processes (Hatton 
and Smith, 1995). Written reflections are mostly scored in holistic, 
summative form (Poldner et al., 2014). Holistic assessment are 
characterized by aggregate evaluations of language and ideas that 
oftentimes contain several conceptual components (Jescovitch 
et al., 2021).

Challenges in assessing reflective 
competencies in written reflections

Researchers repeatedly documented difficulties with assessing 
written reflections. Kost (2019) was forced to apply consensus 
coding for analyzing physics teachers’ reflections, because the 
human interrater agreements were rather low in the context of 
classifying physics teachers’ reflections. Also in a setting in science 
education, Abels (2011) ended up with a coding process that 
comprised six stages with many raters involved to reach 
agreement. Agreements between the raters in the first five circles 
were rather low, caused by the inferential nature of the task. 
Kember et al. (1999) first reached reasonable agreement for eight 
raters, and later acceptable agreement between four raters for level 
of reflection. They noticed that disagreements resulted from 
different interpretations from the written reflections and they 
suggest to only employ project-intern raters. Sparks-Langer et al. 
(1990) note about their coding that “[u]sing a one-level difference 
in codes as acceptable, the two raters’ interview scores matched in 

81 percent of the cases. Reliability was less satisfactory for the 
journal data, possibly because the questions in the original journal 
format did not elicit the kind of thinking we were coding” (p. 27). 
In the discussion, the authors suggest a multi-dimensional coding 
manual to cope with coding issues. In sum, accurate and reliable 
manual coding of reflections was difficult, because language in 
general is ambiguous and human raters’ project-intern expertise 
might be necessary. Given these challenges, Leonhard and Rihm 
(2011) content that their content analyses (i.e., reaching human 
interrater agreement and developing a coding manual) were not 
scalable across contexts. Ullmann (2019) argued that human 
resources available in teacher training programs are a major 
bottleneck to provide preservice teachers opportunities for 
feedback on their reflection.

Advances in computer software and hardware increasingly 
enable the effective and efficient processing of language data 
(Goldberg, 2017). Hence, computer methods became popular to 
analyze written reflections, partly to address the abovementioned 
challenges and partly to explore novel potentials for inquiry 
(Buckingham Shum et al., 2017). Ullmann (2019) summarizes 
approaches to computer-based assessment of written reflections 
into the categories dictionary-based, rule-based, and ML. Ullmann 
(2017) showed that predefined dictionaries could be well used to 
detect some elements in a reflection-detection model, such as 
experience, with fair accuracy. Rule-based approaches typically 
use researcher-defined dictionaries in conjunction with rules to 
identify elements in reflection-supporting models (Gibson et al., 
2016; Buckingham Shum et al., 2017). The accuracies in detecting 
categories in rule-based approaches were similar to dictionary-
based approaches, and, overall, rather low (Ullmann, 2019). Both 
approaches also require hand-crafting of relevant features (e.g., 
terms in the dictionary) prior to data analysis. As a more inductive 
inquiry method, ML has the potential to automate these tasks and 
reach more accurate results.

ML- and NLP-based language 
assessment in science education

Assessment methods for written language artifacts such as 
written reflections in science education require principled 
methods that allow for rich hypotheses spaces, given the 
complexity of language (Lieberman et al., 2007; Mainzer, 2009). 
Commonly used quantitative statistical methods such as 
parametric, linear models in the stochastic data modeling 
paradigm (see: Breiman, 2001) are mostly incapable to model the 
complex relationships that are characteristic for language artifacts. 
Qualitative methods such as content analysis, on the other hand, 
require substantial human resources and, thus, do not scale well. 
ML and NLP have been proposed to be  suitable methods to 
algorithmically model complex processes and phenomena 
(Breiman, 2001). ML refers to inductive problem solving by 
computers, i.e., algorithms learn from data (Marsland, 2015; 
Rauf, 2021).
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ML and NLP have been adopted in a variety of contexts in 
science education research with written language artifacts. Science 
education researchers used ML models to assess complex 
constructs in constructed responses (Ha et al., 2011; Wulff et al., 
2020; Zhai et al., 2022), explore patterns in large language-based 
datasets (Odden et al., 2021; Wulff P. et al., 2022), or develop means 
for automated guidance and feedback (Donnelly et al., 2015; Zhai 
et al., 2020). In these studies, it has been shown that ML and NLP 
could reliably and validly classify argumentations, explanations, or 
reflections of middle-school, high-school, and university students 
and teachers. Despite these successful applications, there remains 
the challenge that ML models especially in the deep-learning 
contexts require excessively large training datasets that are 
seldomly available in science education research.

The learning paradigm of transfer learning, i.e., the 
application of pretrained ML models in novel contexts with 
the goal to fine-tune the models with new data, is a promising 
path to mitigate data requirements, enhance generalizability 
of ML models, and spare resources. Successful transfer 
learning approaches include few-shot learning, where 
pretrained language models in one domain can be used as the 
backbone for novel tasks such as classification in another 
domain. This was also implemented in science education 
research. For example, Carpenter et al. (2020) and Wulff M. et 
al. (2022) could demonstrate that utilizing pretrained ML 
models (here: language models) that were developed by other 
researchers in more generic research contexts could be used 
to enhance performance of ML models in science education-
specific tasks such as scoring reflective depth and breadth of 
middle-school students’, preservice teachers’, or in-service 
teachers’ written responses. This opens up perspectives for 
science education research to develop models in one research 
context—say physics education—and share these models in 
other fields—say educational psychology (or vice versa)—in 
order to jointly develop models and address more 
encompassing research questions. However, to what extent 
transfer learning with ML models works well across 
educational research contexts has not yet been tested.

Also for assessing written reflections ML yielded most 
promising results (Buckingham Shum et al., 2017; Ullmann, 
2019; Nehyba and Štefánik, 2022; Wulff M. et al., 2022). Wulff 
et al. (2020) showed that supervised ML approaches with 
shallow ML models facilitated automated classification of 
reflection elements in preservice physics teachers’ written 
reflections with acceptable accuracy. However, the 
generalizability of the models was rather poor. Advances in 
deep-learning helped to improve generalizability. For example, 
the development of pretrained ML-based language models 
became possible. Following the distributional hypothesis in 
linguistics that meaning in language largely results from the 
context (Harris, 1954), language models are oftentimes trained 
with the objective to predict the context words, given a 
sequence of words. NLP researchers trained large language 
models based on self-supervised learning regimes (e.g., 

masked language modeling, Nehyba and Štefánik, 2022) with 
large written language repositories such as the Internet to 
detect regularities in language and use them in down-stream 
tasks such as sentiment classification of sentences (Jurafsky 
and Martin, 2014; Ruder, 2019). Once trained, language 
models capture regularities in language (grammar, semantics) 
that can be finetuned in a paradigm called transfer learning 
for downstream tasks such as analogical reasoning (Mikolov 
et al., 2013; Ruder, 2019). Finetuning, then, can refer to using 
data from a novel task and the pretrained language model as a 
backbone. The weights in the language model will then 
be adjusted to also excel at the other task. In particular, some 
language models are capable of predicting next words based 
on a sequence of words, a capability that resembles human 
linguistic competence (Devlin et  al., 2018) and cognitive 
processes such as predictive inference (Adams et al., 2013).

Using pretrained language models as the backbone for 
simpler ML models (e.g., classification models) was found to 
improve task performance for the simpler ML models. For 
example, the bidirectional encoder representations for 
transformers (BERT) architecture is trained to predict next 
words in forwards and backwards direction (bidirectional). 
Utilizing BERT as the backbone for further NLP tasks such as 
classification typically improved performance (Devlin et  al., 
2018). Wulff M. et al. (2022) could show that utilizing BERT for 
reflective writing analytics in science teacher education could 
boost classification accuracy and generalizability. In line with 
these findings, Nehyba and Štefánik (2022) found that a 
language model outperformed shallow ML models in classifying 
reflection in general educational contexts and Liu et al. (2022) 
found that a convolutional BERT-CNN substantially improved 
cognitive engagement recognition. Also, Carpenter et al. (2020) 
showed that pretrained language models yielded the best 
classification performance for reflective depth of middle-school 
students’ responses in a game-based microbiology learning 
environment. Pretrained language models could not only help 
to improve classification accuracy, but also to identify and 
cluster science teachers’ responses in unsupervised ML 
approaches. Wulff P. et al. (2022) showed that unsupervised ML 
models in conjunction with pretrained language models such as 
BERT could also be used to explore themes that the physics 
teachers addressed in their written responses which related to 
classroom events and teachers’ noticing. More general and more 
physics-specific themes could be  differentiated. ML, and 
pretrained language models in particular, have proven to 
be effective and efficient methods to advance reflective writing 
analytics through supervised and unsupervised approaches. 
While ML and NLP cannot not necessarily resolve the 
challenges around high-inferential coding categories and 
ambiguity in teachers’ language in reflective writing analytics in 
science education, they might well facilitate the implementation 
of reliable and valid coding for well-defined (sub-)tasks and 
thus enable researchers to answer derived research questions. It 
is also unclear to what extent these ML methods could be used 
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to facilitate analytic, formative assessment of written reflections, 
e.g., to extract quality indicators to differentiate expert and 
novice written reflections.

This study

The goal of this study is to explore capabilities of ML and NLP 
to formatively assess physics and non-physics preservice teachers’ 
written reflections. We first examined classification accuracy of a 
pretrained language model (BERT) to filter segments of higher-
level reasoning in the written reflections according to the 
reflection-supporting model:

RQ1: To what extent can a pretrained language model, that was 
trained in a physics education research context with physics 
preservice teachers (domain expert), accurately classify 
non-physics preservice teachers’ (i.e., domain novice) written 
reflections? To what extent can the classification accuracy 
be enhanced by finetuning the ML model in the novel context?

The physics and non-physics preservice teachers potentially 
notice, describe, and evaluate the standardized teaching situation 
differently, given their differences in professional content 
knowledge and pedagogical content knowledge. We  then 
examined to what extent the ML models can be used to formatively 
assess differences in the written reflections between physics and 
non-physics preservice teachers:

RQ2: To what extent can the pretrained language model be used 
for formative assessment purposes of the physics and non-physics 
preservice teachers’ written reflections on a teaching situation 
depicted in a standardized video vignette?

We further subdivide RQ2 into the following explorative 
sub-questions:

RQ2a: In what ways can a clustering approach with higher-level 
reasoning elements extract quality indicators for evaluating the 
written reflections?
RQ2b: To what extent do human raters assess segments similar 
compared to the machine?

Materials and methods

Samples

An important component for this study is the differentiation 
of physics (i.e., domain experts) and non-physics (domain 
novices) preservice teachers’ written reflections. Hence, 
throughout this study two research contexts are differentiated: 
physics context and non-physics context. All preservice teachers 
in both groups were instructed to write a reflection on the basis of 

the reflection-supporting model either on a video vignette or on 
their own teaching experiences. Data was collected in multiple 
university courses. Courses included bachelor and master’s 
courses such as teaching internships or regular content-based 
seminars (referenced as BA/MA seminar/internship in the 
remainder). Table  1 shows an overview and the descriptive 
statistics for the written reflections, disaggregated by subsample.

The group physics context comprises several phases of data 
collection exclusively with physics preservice teachers and few 
in-service physics teachers. The physics preservice teachers either 
reflected on their own teaching experiences in school internships 
or they reflected on a standardized teaching situation in a video 
vignette. We collected data over several years in various university 
courses in different universities in Germany (called University 
A/B/C/D in the remainder). The group physics context comprised 
N = 81 preservice teachers in 10 subsamples (see Table 1) who 
reflected either on a video vignette or their own physics lessons 
during university-based teaching internships. Ages ranged from 
21.0 years on average to 29.6 years on average. Overall average age 
for preservice physics teachers was 24.6 years.

In the non-physics context preservice teachers in a general 
educational seminar were instructed to write a reflection on the 
video vignette only. The non-physics context (seminar “University 
B/SS2021/BA internship (education)” in Table  1) comprised 
N = 68 preservice teachers who reflected on a teaching situation 
depicted in a standardized video vignette. Preservice teachers in 
the non-physics context were on average 23.0 years old.

Differences between both contexts are already apparent when 
considering segments (i.e., sentences) per document and mean 
words per segment. The non-physics preservice teachers scored in 
the lower half of the distributions for segments per document, 
7.69 and 17.7, respectively whereas the median (SD) values were 
9.2 (3.3) and 18.6 (6.3). The type-token-ratio was also lowest for 
the non-science context sample, 0.22, against a median (SD) 
values of 0.40 (0.10). This means that these students used a more 
unspecific language (i.e., less unique words). Linguists posit that 
the type-token-ratio can be indicative of the acquired vocabulary 
by a person (Youmans, 1990). Hence, this can be seen as evidence 
that the non-science students had less domain-specific vocabulary. 
This can be expected, because they were no domain experts, and 
domain experts tend to know more specific vocabulary that they 
can use.

Video vignette

The main focus material of this study is a video vignette 
depicting a standardized teaching situation, which was 
developed to provide preservice physics teachers with suitable 
material to reflect upon. A video vignette presents viewers a 
short, problem-oriented teaching situation (Billion-Kramer 
et al., 2020). Preservice teachers are put in a position to judge 
and advocate teaching by others (Oser et al., 2010). The video 
vignette used in the present study depicts an introductory 

https://doi.org/10.3389/feduc.2022.1061461
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Wulff et al. 10.3389/feduc.2022.1061461

Frontiers in Education 06 frontiersin.org

physics lesson covering free fall and factors influencing the free 
falling movement (see: Wulff P. et al., 2022). The vignette depicts 
a teacher (an intern in a preparatory teacher course) who starts 
the lesson with several small experiments. He  intends to 
demonstrate to the students that free fall behavior is 
independent of mass. The students notice the relevance of air 
resistance for free falling movement. The teachers then 
demonstrates a vacuum tube experiment, where a feather and a 
screw (in an evacuated vacuum tube) move at the same pace. 
Subsequently, the teacher instructs the students to write down 
a definition of free fall and to devise own experiments on how 
to experimentally determine whether free falling movement is 
at constant velocity or accelerated.

The pedagogical value of the video vignette lies in the fact 
that it presents an authentic, complex teaching situation that 
implements some known challenges in physics and science 
teaching. For example, the teacher does not adequately control 
experimental variables when letting the objects fall in the 
shown experiments. A student notices this, however, the 
teacher fails to notice the substance of the students’ remark 
and glosses over it. In general, the lesson is rather ill-structured 
(redundant experiments) and the teacher performs all 
experiments himself leaving few opportunities for cognitive 
engagement of the students. When asking the students to pose 
hypotheses, however, the teacher evaluates the hypotheses 
unsystematically leaving multiple hypotheses conflated with 

TABLE 1 Descriptive overview of the various samples that were considered in this study.

Seminar 
(location/
semester/
seminar)

N Segments Segments/ 
document

Mean 
words 

per seg

(SD) NaNs Type-
token-
ratio

Mean 
age

University C/

WS202021/

unknown

5 63 12.6 19.7 8.1 0 0.44 -

University B/

SS2021/BA 

internship 

(education)

68 523 7.69 17.7 8.2 16 0.22 23.0

University A/

SS2021/MA 

Seminar (physics)

4 49 12.25 16.4 6.4 0 0.48 -

University B/

SS2020/unknown

8 52 6.5 32.9 21.9 6 0.4 29.6

University B/

SS2021/MA 

internship (physics)

1 13 13.0 18.6 5.5 0 0.69 -

University B/

SS2021/MA 

internship (physics)

7 36 5.14 15.5 7.6 0 0.57 -

University B/

WS201920/

unknown

13 148 11.38 23.8 13.6 7 0.33 22.0

University B/

WS202021/MA 

internship (physics)

5 46 9.2 15.8 7.9 0 0.51 -

University B/

WS202021/MA 

internship (physics)

5 81 16.2 15.1 8.1 1 0.43 22.0

University B/

WS202021/BA 

internship (physics)

3 24 8.0 19.8 10.5 1 0.55 21.0

University D/

SS2020/unknown

30 240 8.0 31.8 20.3 10 0.25 25.2

Median (SD) 5.0 (19.7) 52.0 (150.0) 9.2 (3.3) 18.6 (6.3) 8.1 (5.6) 1.0 (5.4) 0.4 (0.1) 22.5 (3.2)

WS, Winter semester (October to March); SS, summer semester (April to September).
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each other. At multiple times there are thoughtful comments 
by the students where the teacher fails to engage with the very 
substance of these remarks. For example, a student asks an 
intricate question on consequences if an object is accelerated 
ad infinitum (involving the speed of light). Another student 
asks why it is called free fall if a parachute jumper jumps off 
an airplane. In both cases, the teacher does not pick up on the 
opportunity to relate these questions to the lesson’s contents.

We emphasize that these challenges are rather germane to 
novice teachers’ physics teaching, rather than attribute to 
failures by the individual teacher. For example, cognitive 
overload in early teaching raises the burden for teachers to 
adequately respond to the substance in students’ responses in 
situ (Levin et al., 2009). Moreover, control of variables is an 
intricate concept that is even more difficult to implement in 
practice—especially with short experiments that are meant to 
demonstrate phenomena rather than experiments where the 
entire experimental cycle is implemented. Hence, the video 
vignette presents novice teachers with opportunities to notice 
relevant challenges in physics teaching and propose  
alternatives.

Analyses

To assess in what ways ML and NLP can be  utilized for 
analytic, formative assessment of written reflections on the video 
vignette we employ ML models that were trained in prior research 
studies and finetune them according to our specific goals (see 
Figure 1).

Filtering higher-level reasoning segments in 
physics and non-physics preservice teachers’ 
written reflections (RQ1)

To filter higher-level reasoning, we reuse a ML model that was 
trained in a prior study based on preservice physics teachers’ 
written reflections (Wulff M. et al., 2022) and evaluate to what 
extent this ML model (ML-base) could be  used to accurately 
classify segments in non-physics preservice teachers’ written 
reflections. Classification categories comprised the elements in the 
reflection-supporting model: Circumstances, Description, 
Evaluation, Alternatives, and Consequences. Human interrater 
agreement for these categories is typically substantial (Wulff M. et 
al., 2022). Sentences in the written reflections (e.g., “The teacher 
picked up the vacuum tube and demonstrated the free falling 
movement”) were annotated by three independent human raters, 
which were student assistants who were trained to classify 
segments according to the reflection-supporting model. Each of 
the raters coded a subset of the new data according to the elements 
in the reflection-supporting model. Interrater agreements, as 
measured by Cohen’s kappa, were substantial (ranging from 0.70 
to 0.77). The entire dataset is then annotated and split (randomly) 
into train (75%) and test (25%) dataset.

We then further finetune this ML model with data from the 
non-physics context (ML-finetuned) and examine if classification 
performance can be improved. Evaluating the performance of the 
ML models will be  achieved through cross-validation where 
generalizability of the ML model is tested by applying it to unseen 
test data. In cross-validation, the ML model is trained on a 
training dataset and tested on a held-out test dataset that the 
model did not see in the training phase. Hence, the predictive 

FIGURE 1

Overview of research process to answer RQ1 and RQ2.
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capabilities of the ML model can be assessed through the accuracy 
with which unseen examples can be correctly classified. Typically, 
classification performance on test data drops because the training 
data in real-world applications is complex and cannot exhaustively 
represent the domain of interest. Less represented training 
examples result in performance decreases, such that training data 
typically more accurately captures well-represented relationships 
(Christian, 2021).

In our case, the input segments were sentences extracted 
through the spaCy library in Python (Honnibal and Montani, 
2017) from the written reflections that are manually coded 
according to the elements of the reflection-supporting model (see 
Figure 2). The words were tokenized (word-piece tokenization) 
based on a predefined vocabulary into word pieces in order to 
avoid very rare words to occur in the language model (see 
Figure 2). This has been found to improve model performance for 
text translation tasks (Wu et al., 2016). Each index in the input 
then refers to a so-called embedding vector of predefined 
dimension (e.g., 300). The embedding vectors are forwarded into 
the ML-based language model (see Figure  1). So-called 
transformer-based language models became the de-facto standard 
for language modelling in various tasks (Devlin et  al., 2018). 
Language data can be characterized by long-range dependencies, 
as compared to image data, where rather only short-range 
dependencies occur (Vaswani et al., 2017). Transformer-based 
language models make use of an attention mechanism that help 
input tokens to decide which other tokens to attend to (a feature 
of language is that pronouns refer to other words, for example). It 
has then been shown that additional neural network layers (using 
the transformer model as backbone) can use the transformer 

representations of the language input to perform tasks such as 
classification (Devlin et al., 2018; Ostendorff et al., 2019).

In RQ1 we will reuse BERT that had been fine-tuned in a 
former project with the physics context data and apply this ML 
model (called: ML-base) to the non-physics preservice teachers’ 
data who received slightly different instruction (focus on cognitive 
activation) for the same video vignette. We used BERT that was 
open-sourced by Google research (Devlin et al., 2018) and trained 
for German language by deepsetAI. All language inputs to this 
model were tokenized on the basis of 30,000 unique tokens, the 
standard word piece tokenizer. The embedding dimensionality for 
the tokens was 768. The BERT model was used with default 
configuration (base version: 12 attention layers, 12 hidden layers, 
200 tokens maximum sequence length1). We  found that this 
model could be  used to classify elements in the reflection-
supporting model in written reflections with substantial human-
computer-agreement (F1 score on held-out test data: 0.81; Cohen’s 
kappa: 0.74, see: Wulff M. et al., 2022). Note that F1 score is an 
aggregate measure for precision and recall (find a conclusive 
discussion here: Jurafsky and Martin, 2014). F1 ranges from 0 to 
1, with 1 being perfect performance of the classifier. In this study, 
we will apply ML-base without further finetuning to the dataset 
of non-physics preservice teachers. If the pretrained model could 
accurately classify these written reflections, this would indicate 
that we  could apply a once developed ML model in a novel 
research context. Afterwards, we will further finetune ML-base on 

1 Please find details here: https://huggingface.co/bert-base-cased/blob/

main/config.json (Accessed November 28, 2022).

FIGURE 2

Detailed representation of the classification pipeline for the ML-based probalistic language model.
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the new data with the objective to accurately classify elements in 
the reflection-supporting model. We  then compare the 
performance of the pretrained (ML-base) and further finetuned 
model (called: ML-finetuned). If the further finetuning improves 
the classification performance (which could be  expected, see 
Ruder, 2019), we would use ML-finetuned to filter higher-level 
reasoning elements in the physics and non-physics preservice 
teachers written reflections.

Clustering higher-level reasoning elements 
and extracting enacted knowledge (RQ2a)

Next, we set out to cluster the higher-level reasoning elements 
with unsupervised clustering algorithms and pretrained 
embeddings with the goal to extract features such as represented 
knowledge that can differentiate physics and non-physics 
preservice teachers’ writing (see Figure 1). We hypothesized that 
physics preservice teachers used more physics-related clusters 
compared to the non-physics preservice teachers (Norris and 
Phillips, 2003; Yore et al., 2004). Clustering of the segments was 
done with as follows: (a) the filtered segments (RQ1) were 
contextually embedded through BERT (see Figure  1), (b) the 
contextualized embeddings were reduced in dimensionality to 
computationally ease the clustering process, and (c) the reduced 
contextual embeddings were clustered with an unsupervised 
ML algorithm.

To calculate contextualized embeddings (a), the Python library 
sentence transformer was used (Reimers and Gurevych, 2019). 
These contextualized embeddings have 768 dimensions. From a 
computational perspective, it is reasonable to reduce 
dimensionality. In line with the exemplary use case by Grootendorst 
(2020), we  (b) utilized uniform manifold approximation and 
projection (UMAP) to reduce the dimensionality of the 
embeddings (McInnes et al., 2018). UMAP was found to efficiently 
reduce high-dimensional data by keeping local structure, which is 
desirable in our context (Grootendorst, 2020). UMAP involves 
several crucial hyperparameters that control the resulting 
embeddings vectors. First, number of neighbours controls the 
scope (local versus global) of the structure which the algorithm is 
looking at.2 This hyperparameter was set to 5, because this is a 
trade-off between looking at local and global structure and was 
found to be appropriate for the context of written reflections in 
physics (Wulff P. et al., 2022). Minimal distance controls the 
tightness of points. The default value of 0.1 is kept in our case. 
Finally, number of components controls the dimension of the 
target embeddings. We  reduced the 768 dimensions to 10 for 
further processing (and ultimately to 2 for visual inspection). 
Finally, we  (c) used a density-based clustering technique, 
hierarchical density-based spatial clustering of applications with 
noise (HDBSCAN; Campello et al., 2013; McInnes et al., 2017), to 
group the evaluation segments. HDBSCAN determines dense 
volumes in the embedding space and extract clusters based on the 

2 See documentation and tutorial here: https://umap-learn.readthedocs.

io/en/latest/parameters.html (Accessed November 27, 2022).

stability over density variation and noise datapoints (Kriegel et al., 
2011; Campello et al., 2013; Wulff P. et al., 2022). An important 
hyperparameter3 is minimal cluster size that determines the 
smallest possible value for instances in one cluster. Here, a value of 
10 is chosen, given that we had approx. 1,200 segments, which 
would allow up to 120 clusters to be formed.

To examine if the extracted clusters can be used for formative 
assessment, expertise-related covariates were considered (see 
Figure 1). Chodorow and Burstein (2004) showed that text length 
(as measured through word count) in regression models could 
account for up to 60% of the variance in essay scores (see also: 
Fleckenstein et  al., 2020). Rafoth and Rubin (1984, p.  447) 
concluded that “composition length is well established as the 
single most powerful of composition quality ratings.” Leonhard 
and Rihm (2011) report a significant relationship of text length 
(number of symbols) with reflective depth ratings. They report 
high correlations (from r = 0.26 to r = 0.76, p < 0.05) between 
number of symbols and reflective breath and reflective depth 
(similar findings in: Carpenter et  al., 2020; Krüger and Krell, 
2020). Hence, domain experts likely compose longer texts as 
compared to domain novices. Word count will be calculated as the 
number of words in a written reflection.

Moreover, experts are likely more capable of engaging in 
elaborate processes of knowledge retrieval from long-term 
memory and transformation of knowledge towards rhetorical 
goals (integrating author and text representation), rather than 
more direct transmission (knowledge telling) in the form of 
‘think-say’ or ‘what-next’, which is a rather linear process (Kellogg, 
2008; Galbraith, 2009; Baaijen and Galbraith, 2018). The writing 
process is intricately involved with episodic and semantic memory, 
and, hence, the types of knowledge which are differently organized 
for domain experts compared to novices (Jong and Ferguson-
Hessler, 1986). Consequently, we expected domain experts’ texts 
to have a higher degree of coherence between the sentences 
(McNamara et  al., 1996; Crossley et  al., 2016). A coherence 
indicator was calculated on the basis of the contextualized 
segment embeddings via sentence transformers and ML-base. 
Similar segments will be close in distance in embedding space, 
hence the cosine similarity between two sentences that are 
semantically related will be  high. We  calculated within each 
written reflection all mutual cosine similarities between all 
sentences. All sentence similarities above the 0.80 quantile were 
considered similar to each other. Related sentences will 
be represented by means of a link between them in our graphical 
representations below.

Determine human-machine agreement for 
quality indicators (RQ2b)

To externally validate the quality indicators (clusters, word 
count, and textual coherence), a randomly selected subsample 

3 For examples and tutorial see: https://nbviewer.org/github/scikit-learn-

contrib/hdbscan/blob/master/notebooks/How%20HDBSCAN%20Works.

ipynb (Accessed November 27, 2022).
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comprising high quality texts and another randomly selected 
subsample comprising low quality texts was compared with 
manual ratings. To do so, we randomly selected five sentences in 
each of the 20 lowest and 20 highest rated written reflections based 
on their text length and their number of sentences that were 
grouped into domain-specific clusters. Agreement between 
human labels (“high” versus “low”) with automatically determined 
labels was calculated. Three independent raters (including the first 
author) received a spreadsheet with the 5 sampled sentences for 
the 40 different written reflections. All three raters had a physics 
background. Rater A was the first author and knew the proportions 
(each 50%) of lower and higher scored segments. Raters B and C 
were researchers (graduate students) involved in the project and 
knew the observed teaching situation, but not the proportions. 
Rater D was an independent rater (graduate student) who was not 
involved in the project and did not know the proportions. 
Interrater agreements were calculated through Cohen’s kappa, 
which is a commonly used metric for chance-corrected agreement 
among any two raters. Cohen’s kappa values over 0.75 indicate 
excellent agreement, values of 0.40 to 0.75 indicates fair to good 
agreement, and below 0.40 indicate poor agreement (Fleiss 
et al., 1981).

Results

RQ1: To what extent Can a pretrained language model, that 
Was trained In a physics education research context with physics 
preservice teachers (domain expert), accurately classify 
non-physics preservice teacher’s (i.e., domain novice) written 
reflections? To what extent Can The classification accuracy 
Be enhanced By finetuning The ML model In The novel context?

To examine to what extent pretrained ML models could 
be  utilized to filter higher-level reasoning segments (i.e., 
evaluations) from non-physics preservice teachers’ written 
reflections, the different BERT models (ML-base and 
ML-finetuned, see Figure 1) were used to classify segments in the 
written reflections according to the elements in the reflection-
supporting model. To evaluate performance of ML-base, 
ML-base was fit on the test data without any further adjustment 
(i.e., finetuning) of the model weights. Table  2 shows the 
performance metrics for applying the validated model to the 
unseen novel data, namely a subset of the non-physics preservice 
teachers written reflections. Overall, as judged by the macro and 
weighted F1 score, the accuracy of the model predictions with the 
human ratings is acceptable, 0.52 and 0.67, respectively. Note that 
in the novel research context, no circumstances were coded by 
the human raters because outlining circumstanc es was not part 
of the task instruction in the video vignette. This hampers 
accuracy for the macro F1 score. The weighted F1 score accounts 
for this issue. As we  commonly see with ML models, and 
inductive learning more generally, classification performance is 

correlated with the support (i.e., samples for testing from each 
category). As such, descriptions can be classified best, whereas 
alternatives worst. The Cohen’s kappa values were 0.53 and 0.59 
for the accuracy with and without circumstances, respectively. 
ML-base performed notably better in the original research 
context. In the original context, ML-base performed at 0.81 for 
weighted F1 (Wulff M. et al., 2022), compared to 0.67  in this 
context. We  now further trained the ML-base with the 
non-physics preservice teachers’ written reflections, i.e., further 
finetune the model, to eventually improve performance.

In order to fine-tune ML-base, we used the training data. 
We trained the model for 10 epochs with a batch size of 4. As 
previously done, we used the Adam optimizer with a learning rate 
of 5e-7. Table  3 show the classification performance for 
ML-finetuned. A noticeable improvement in classification 
performance was found. The macro and weighted F1 scores 
improved to 0.58 and 0.74. We  still find the correlation with 
support and classification accuracy. Some categories, such as 
description, consequences, and evaluation could be labeled with 
good accuracy. The Cohen’s kappa values for the overall 
classification improved to 0.63 and 0.64 with and without 

TABLE 2 Performance of ML-base on test dataset from non-physics 
preservice teachers.

Precision Recall f1-
score

support

Alternatives 0.59 0.59 0.59 34

Description 0.80 0.71 0.75 99

Evaluation 0.57 0.82 0.67 71

Consequences 0.97 0.43 0.60 76

Circumstances 0.00 0.00 0.00 0

Micro avg 0.65 0.65 0.65 280

Macro avg 0.59 0.51 0.52 280

Weighted avg 0.76 0.65 0.67 280

Samples avg 0.65 0.65 0.65 280

TABLE 3 Performance of ML-finetuned on test dataset from non-
physics preservice teachers.

Precision Recall f1-
score

Support

Alternatives 0.72 0.62 0.67 34

Description 0.77 0.75 0.76 99

Evaluation 0.63 0.75 0.68 71

Consequences 0.85 0.74 0.79 76

Circumstances 0.00 0.00 0.00 0

Micro avg 0.73 0.73 0.73 280

Macro avg 0.59 0.57 0.58 280

Weighted avg 0.75 0.73 0.74 280

Samples avg 0.73 0.73 0.73 280
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circumstances, respectively. These values indicate substantial 
human-computer agreement (Landis and Koch, 1977).

RQ2: To what extent Can The pretrained language model 
Be used for formative assessment purposes of The physics and 
non-physics teachers’ written reflections On a teaching situation 
depicted In a standardized video vignette?
RQ2a: In what ways can a clustering approach with higher-level 
reasoning elements extract quality indicators for evaluating the 
written reflections?

The ML model ML-finetuned could now be used to filter 
higher-level reasoning elements (here: evaluations) in physics and 
non-physics preservice teachers written reflections on the video 
vignette. Based on the extracted evaluations, we then applied a 
clustering approach to extract facets of enacted knowledge in the 
evaluations. By investigating the most representative words from 
each topic, the following discernable topics were identified (see 
Table  4). To facilitate interpretation, Figure  3 displays a 
two-dimensional representation of the extracted topics. Each 
point in this two-dimensional space represents a single sentence 
from a preservice teacher. The color-coding differentiates the 
topics. The lines represent two sentences that are semantically 
similar, i.e., have a high cosine similarity in a students’ written 
reflection. The grey dots refer to noisy sentences, e.g., sentences 
that are too general or include multiple topics. The left side of 
Figure 3 refers to written reflections with a length below median, 
whereas the right side refers to written reflections with a length 
above median.

Qualitative and quantitative differences in topic distribution 
and textual coherence can be seen. In particular, the longer texts 
include more physics-specific topics and have a higher score 
(rho) for textual coherence. Rho refers to the density of 
connections that a student made in a written reflection (i.e., 
“number of connections by student X”/“number of sentences by 
student X”). Noticeably, the shorter texts more often refer to 
topics 11 and 4. Both topics refer to rather generic observations 
such as observably active participation especially by male 
students. The longer texts more often include topics 15, 16, and 
17. These topics relate to physics-specific events such as the 
students’ question on whether parachute jump is free fall, the 
vacuum tube experiment, and a question related to the speed of 
light. Noticing and reasoning about these topics arguably 
requires more physics knowledge and would be  more 
characteristic for expert-like written reflections. Quantitative 
differences in topic proportions between the groups were 
calculated with Mann–Whitney-U rank sum tests. Mann–
Whitney-U rank sum test is oftentimes used in language 
analytics, because words and sentences are not normally 
distributed (Kelih and Grzybek, 2005). Given the Bonferroni 
correction for multiple tests, p values smaller than 0,003 (i.e., 
0,05/19) can be considered significant. We found that the longer 
reflections included significantly more physics-specific topics 
(see Table 5).

TABLE 4 Five most representative words for each extracted topic.

Topic Most representative 
words

English 
translation

–1 sus, lehrer, lehrkraft, schüler, 

experiment

students, teacher, student, 

experiment

0 freundlich, art, herrscht, sicher, 

lehrkraft

friendly, type, ruling, safe, 

teacher

1 lehrers, positiv, handlungen, 

empfinde, aufgefallen

teacher, positive, actions, 

feel, noticed

2 denke, kompetenzen, guten, 

notwendigen, mitbringe

think, skills, good, 

necessary, bring

3 negativ, faktoren, beteiligung, 

kleinere, selben

negative, factors, 

participation, smaller, 

same

4 aufgefallen, negativ, klasse, sus, 

unruhe

noticed, negative, class, 

students, tumult

5 sus, untereinander, melden, finde, 

klar

students, among each 

other, raise hand, find, 

clear

6 finde, positiv, lehrkraft, ausreden, 

lässt

to find, positive, teacher, 

let talk

7 bewerten, antworten, lässt, lehrkraft, 

fragen

assess, answer, let, teacher, 

ask

8 sus, scheinen, meist, sicherlich, 

weiterhin

students, seem, mostly, 

certainly, continue

9 bezüglich, förderlich, gesamten, 

späteren, gespräch

regarding, beneficial, 

entire, later, conversation

10 gelungen, experiment, experimente, 

hypothesen, durchgeführt

successful, experiment, 

experiments, hypotheses, 

executed

11 lehrer, unterricht, schüler, gelingt, 

kognitiv

teacher, teaching, 

students, succeeds, 

cognitive

12 grundlage, zudem, art, ausdrücken, 

vertrauen

basis, moreover, kind, to 

express, to trust

13 unterricht, aktiv, mitgearbeitet, 

führung, beteiligt

teaching, active, 

participating, leadership, 

involved

14 klasse, vorne, interessiert, zeigt, 

interesse

class, front, interested, 

shows, interest

15 frage, fall, fallschirm, boden, lehrer question, fall, parachute, 

ground, teacher

16 luftwiderstand, fall, 

lichtgeschwindigkeit, einstieg, thema

air resistance, fall, speed 

of light, introduction, 

topic

17 vakuumröhre, vakuum, röhre, 

versuch, luft

vacuum tube, vacuum, 

tube, experiment, air

18 eher, sus, erkennen, experimente, 

ergebnisse

rather, students, 

recognize, experiments, 

results
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As expected, we find that from the non-physics preservice 
teachers, 85% were in the lower scoring group (split by 
document length only). We  also extended the splitting 
criterion and used document length in conjunctions with sum 
of addressed topics 15, 16, and 17  in a document, because 
these three topics were specifically related to physics-specific 
contents and would most likely be  indicative of domain 

expertise. This aggregate score4 was then split into a 5-point 
scale. The non-physics preservice teachers scored on average 

4 Aggregate score = (Document length (on log scale)) + (Sum of topics 

15, 16, and 17). These values were then z-standardized and grouped into 

five equally spaced quantiles.

FIGURE 3

Representation space of the clusters and highlighted relationships between sentences (top row). Barplot for average proportions of topics in the 
evaluations for pre-service teachers with low (left) and high (right) text lengths. Color coding refers to the different topics.
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2.13 (SD = 1.15), whereas the physics preservice teachers 
scored on average 3.73 (SD = 1.20).

RQ2b: To what extent do human raters assess segments similar 
compared to the machine?

It would now be possible to use document length and the 
physics-specific topics as quality indicators for automated, 
formative assessment purposes. To evaluate to what extent 
human raters would similarly differentiate written reflections 
based on document length and physics-specific contents (i.e., 
topics 15, 16, and 17), three independent raters who were not 
familiar with the analyses (except for rater A) scored randomly 
sampled written reflections into either of two categories, low and 
high quality. To avoid that human raters use document length as 
a proxy criterion for their quality rating, we rather randomly 
sampled five sentences from each reflection. Overall, 40 written 
reflections were scored (20 lower and 20 higher quality). Table 6 
shows to what extent the human ratings agreed with the results 
of the ML model ratings. Rater A had the highest agreement with 
the ML-based ratings (0.65). This can be expected given that rater 
A knew the relevant criteria (document lengths, and physics 
topics) that were used to score the texts. Agreements for raters B 
(0.49), C (0.26), and D (0.29) dropped noticeably. Rater B’s 
agreement with the ML-based score was, however, higher 
compared to raters C and D. This might be  attributed to the 
higher familiarity of rater B with the context of written reflections 
and the standardized teaching situation. Note also that in any 
case the Cohen’s kappa values increased if only ratings were 

considered that were judged as certain by the raters (see second 
value in Table 6). This might be result from the fact that it is 
sometimes difficult, even impossible, to judge quality based on 
only five sampled sentences.

Summary

Writing assignments such as reflective writing in science 
teacher education are widely used methods to enhance science 
learning and assessment of competencies. While typically rather 
holistic, summative assessment is used to score writing 
assignments, ML and NLP methods have been argued to facilitate 
analytical, formative assessment. Analytical, formative assessment 
would be desirable given that it can be used to provide feedback 
on how to improve task performance, rather than text quality. In 
this study we explored potentials and challenges of utilizing ML 
and NLP to advance formative assessment in science teacher 
education for reflective writing.

In RQ1 we used ML models to filter higher-level reasoning 
segments in physics and non-physics preservice teachers’ written 
reflections on a video vignette. We found that a previously trained 
ML model (ML-base) that was reused in the present study yielded 
acceptable performance to filter higher-level reasoning segments. 
This performance could be  noticeably improved by further 
finetuning the ML model with training data from the non-physics 
preservice teachers to reach substantial human-machine agreement 
(ML-finetuned). Hence, ML-finetuned can be readily used to filter 
segments from the physics and non-physics preservice teachers. 
Finetuning ML models has been widely employed in the context of 
deep learning research (Brazdil et  al., 2022) and even teacher 
education (Nehyba and Štefánik, 2022; Wulff M. et al., 2022). ML 
researchers showed that ML-based language models have the 

TABLE 6 Computer-human agreement on coding the computer-
scored written reflections.

Computer Rater 
A

Rater 
B

Rater 
C

Rater 
D

Computer - 0.65; 

0.66; 24 

samples

0.49; 

0.64; 16 

samples

0.26; 

0.03; 13 

samples

0.29; 

0.47; 15 

samples

Rater A - 0.35; 

0.55; 25 

samples

0.25; 

0.46; 19 

samples

0.27; 

0.51; 28 

samples

Rater B - 0.24; 

0.38; 11 

samples

0.37; 

0.51; 21 

samples

Rater C - 0.25; 

1.00; 12 

samples

Rater D -

First value is the raw Cohen’s kappa. Second value is Cohen’s kappa for ratings that were 
judged as certain. Third value is the number of samples that were judged as certain.

TABLE 5 Mann-Whitney-U rank-sum tests for the different topics and 
groups (low and high text lengths).

Topic U p

0 1,943 0.001

1 2,376 0.457

2 2,023 0.015

3 2,347 0.355

4 2,365 0.454

5 2,340 0.305

6 2,302 0.248

7 2,373 0.427

8 2015 0.002

9 2,328 0.265

10 1,843 0.002

11 2,262 0.288

12 2,296 0.172

13 2,343 0.357

14 2,266 0.107

15 1,834 <0.001

16 1,779 <0.001

17 1,733 <0.001

18 1,802 <0.001
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capacity to transfer to novel situations, also in reflective writing 
analytics (Nehyba and Štefánik, 2022). Our findings in RQ1 are in 
line with these results. We could show that reusing an ML model 
with a different student population (non-physics preservice 
teachers) was possible and that further finetuning the ML model 
with data from the novel context could improve classification 
performance. The finetuned ML model could be used for formative 
assessment, e.g., automated, instantaneous identification of 
elements in the reflection-supporting model in preservice teachers 
written reflections. It can also be  used as a tool for science 
education researchers to answer derived research questions, by 
implementing reliable coding for a subtask.

In RQ2 we employed the finetuned ML model to filter higher-
level reasoning elements and cluster them to identify quality 
indicators in the preservice teachers’ written reflections. In RQ2a 
it was examined to what extent clustering of the higher-level 
reasoning elements yielded interpretable topics that correlate 
with other quality indicators such as text length. We used BERT 
in conjunction with UMAP and HDBSCAN to cluster the 
segments. Furthermore, the written reflections were median split 
with regards to text length (word count). The extracted topics 
could be  distinguished to relate to more general and more 
physics-specific contents in the video vignette. Furthermore, the 
longer written reflections included more physics-specific topics 
compared to shorter written reflections. Moreover, the groups of 
physics and non-physics preservice teachers were distributed 
unequally across the longer and shorter written reflections. The 
physics preservice teachers wrote more expert-like, e.g., they 
included more physics-specific topics, wrote on average longer 
and more coherent reflections. Findings in writing analytics and 
noticing research buttress these findings. Expert teachers notice 
more learning-relevant events when observing, given that they 
have a more elaborate professional knowledge base for 
interpretation (Chan et al., 2021). Experts’ writing is also more 
coherent, given, among others, their elaborate knowledge base 
(Kellogg, 2008). Our findings mirror these findings for the 
particular context of reflecting on a physics teaching situation in 
a video vignette. This clustering approach alongside the coherence 
metric can be well used as formative assessment tools. Formative 
assessment could be  related to the specific topics that the 
preservice teachers include in their evaluations of a lesson and 
which they missed out on other topics.

We finally examined in RQ2b to what extent human raters 
were also able to distinguish written reflections in the same way the 
machine did (based on text length and physics topics). All human-
machine agreements values (Cohen’s kappa) were positive. Hence, 
document length and addressed physics topics relate to some 
extent to human judged text quality. However, degree of human-
machine agreement ranged from fair to poor agreement, depending 
on the familiarity of the human rater with the research context. 
Familiarity with the written reflections and the standardized video 
vignette seemingly helped to raise human-machine agreement. 
Moreover, even the human raters did not agree with each other on 
the text quality. Hence, the text excerpts are probably too short to 
provide all the necessary information to determine text quality. An 

extended validation procedure would be needed to determine to 
what extent simple criteria such as document length and addressed 
physics topics alone could be used to automatically score preservice 
teachers written reflections.

Limitations

Our study has several limitations that relate to (1) the 
experimental control and variations of this study, (2) 
explainability of ML model decisions and implicit bias, and (3) 
implications resulting from the observed group differences. (1) 
Experimental setup is crucial in studies on ML. Even though 
there is theoretical progress to understand ML algorithms, most 
algorithms are too complex to be formally analyzed (Langley, 
1988; Engel and van Broeck, 2001). Hence, the empirical 
component in ML studies is important, and independent 
variables should be systematically controlled and evaluated with 
regards to a dependent variable (typically performance). Different 
ML algorithms are oftentimes independently varied in order to 
find most promising performance for a specific ML algorithm. In 
our study, however, we rather constrained analyses to one ML 
algorithm, i.e., the transformer-based language model BERT with 
a classification ML algorithm on top. Recent progress in 
transformer architectures (e.g., Robustly Optimized BERT 
Pre-training Approach: RoBERTa) makes it likely that there may 
be even more performant alternative ML algorithms that could 
be used in future research. Given that our main goal in RQ1 was 
the filtering with a previously finetuned BERT model and 
answering derived research questions, we  did not consider 
alternative implementations in this context. To determine the 
contextualized embeddings in RQ2a, we  suggest that future 
research either try to calculate the embeddings based on the 
finetuned BERT model, or try different contextualized 
embeddings such as GloVe or ELMo (Carpenter et al., 2020). 
Moreover, it should also be evaluated to what extent accuracy for 
the further finetuned ML model in the original research context 
is changed. ML researchers documented a phenomenon called 
catastrophic forgetting, where ML models eventually decrease 
performance in old tasks, once a new task is acquired (McCloskey 
and Cohen, 1989). However, language models such as BERT seem 
to be more robust in these regards (Devlin et al., 2018).

Finding best performing ML algorithms for specific problems 
also involves systematically evaluating performance for different 
hyperparameter configurations. Our chosen experimental setup 
included multiple hyperparameters that relate to the 
contextualized embeddings through sentence transformers and 
BERT, the dimensionality reduction through UMAP, and the 
clustering through HDBSCAN. Rather than systematically 
varying all hyperparameters we heuristically chose values based 
on prior studies with similar research goals (Grootendorst, 2020; 
Wulff P. et al., 2022) and the tutorials referenced in the footnotes 
above. We therefore cannot exclude the possibility that there exist 
hyperparameter configurations which yield more interpretable 
topics. However, choosing the hyperparameters heuristically is 
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advantageous from a sustainability perspective, given the compute 
resources that can be  necessary for training and finetuning 
especially deep learning language models (Strubell et al., 2019).

(2) Even though the ML models reached substantial agreement 
with human raters and well interpretative and diagnostically 
valuable topics, we  did not investigate on what grounds the 
classifications and clusters were reached. Hence, the ML models 
remain black-boxes in our context. Pretrained language models are 
commonly trained on language sources such as Wikipedia and the 
Internet where all sorts of gender and racial biases in language are 
present (Bhardwaj et al., 2020). Similar implicit biases were also 
found to be present in the pretrained language models (Caliskan 
et al., 2017). Our models would have to be examined with regards 
to gender biases or similar biases. However, necessary covariates 
need to be collected which was not part of this study.

(3) Even though we  found significant group differences 
between physics and non-physics preservice teachers’ written 
reflections, we  stress that these findings do not reflect the 
competencies of the students in the respective groups. We merely 
used the different populations to showcase potentials of the 
employed ML and NLP methods to enable formative assessment. 
Both groups of students differed in relevant covariates (age, 
instruction, subjects) that have not been controlled for.

Enhancing writing analytics in 
science education research

An important part of research in science education engages 
with the development of reliable and valid assessment 

instruments that are ideally shared across research contexts as 
measuring instruments. This typically involves the development 
of coding rubrics. Once the rubric is meant to be  used in a 
different context, human raters have to be trained, and coding 
performance becomes a function of expertise levels and other 
circumstances. In this study we explored a way in which ML 
algorithms acquire the capacity to perform the coding, and thus 
can function as an interface to connect different research 
contexts. Once trained ML models can be shared across contexts, 
reimplemented, and further finetuned by which they improve 
their performance. These capabilities might enhance science 
education research processes, where ML models are trained in 
one context, and further finetuned and improved in different 
contexts. This paradigm is called transfer learning or meta 
learning in ML research. Different contexts can relate to sample 
characteristics (e.g., expertise level, language), or task 
characteristics (e.g., scientific practice). A rather general template 
how this research with ML models can be  done in science 
education is presented in the form of a flow chart in Figure 4. 
(Science) education researchers used pretrained language models 
to enhance classification performance (Carpenter et al., 2020; Liu 
et al., 2022; Wulff M. et al., 2022) or to cluster responses (Wulff 
P. et al., 2022). This study followed up on this research and 
extended previously used pretrained ML models to answer 
derived research questions and cluster them. Follow up research 
should evaluate to what extent transfer across tasks is also 
possible with these pretrained language models. The versatility of 
language models to form the backbone for different language-
related tasks and the importance of writing assignments in 
science education motivate this path to be further explored.

FIGURE 4

Research pipeline to employ and transfer ML-based language model.
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